
Tighter Response-Times for Tasks with Offsets

Jukka Mäki-Turja and Mikael Nolin

Mälardalen Real-Time Research Centre (MRTC)
Mälardalen University, Box 883, SE–721 23, Västerås, Sweden

{jukka.maki-turja, mikael.nolin}@mdh.se

Abstract. We present an improvement to the analysis methods for cal-
culating approximate response times for tasks with offsets. Our improve-
ment calculates tighter (i.e. lower) response-times than does earlier ap-
proximation methods, and simulations show that the method, under cer-
tain conditions, calculates the exact worst-case response time.
We reveal, and exploit, a misconception in previous methods concerning
the interference a higher priority task poses on a lower priority task. In
this paper we show how the generally accepted concept of “released for
execution” interference produces unnecessary pessimistic response times
for the approximate response time analysis (RTA), presented by Tin-
dell [1] and Palencia Gutierrez et al. [2]. This concept of interference
does not cause any pessimism in response-time analysis for tasks without
offsets (neither in the exact analysis with offsets), and has thus remained
undetected over the years.
Instead, we propose the concept of “imposed” interference, which more
accurately captures the interference a task causes a lower priority task.
We provide formal proofs that “imposed” interference is never higher
than “released for execution” interference and that it never underesti-
mates the interference caused by higher priority tasks. We also show, by
simulations on randomly generated task sets, that our improvement re-
sults in response times that outperform previous approximate methods.
A typical improvement results in about 12% better admission probability
(more than 30% under certain circumstances can be obtained).

1 Introduction

c©Springer-Verlag, Published in RTCSA, August 2004.

A powerful and well established schedulability analysis technique is the Response-
Time Analysis (RTA) [3]. RTA is applicable to systems where tasks are scheduled
in priority order which is the predominant scheduling technique used in real-time
operating systems today. RTA is a method to calculate worst-case response-times
for tasks in hard real-time systems. Hence, RTA can be used to perform schedu-
lability tests, i.e., testing if tasks in a system will meet their deadlines.

In this paper, we reveal and exploit a misconception concerning the interfer-
ence a task causes a lower priority task under analysis, one of the core concepts
of RTA. The essence of this misconception is that the amount of interference a
higher priority task is causing is occasionally overestimated. The misconception
has its origin in the original RTA presented by Joseph and Pandya [4] for Liu and

1

Layland’s classical task model [5]. In essence, Joseph and Pandya’s RTA simu-
lates the amount of execution-time queued in the ready-queue of an operating
system, i.e. when a (higher priority) task is released for execution, its execution
time is added to the response time of the task-under analysis. Hence, we call
this concept for “released for execution” interference. For traditional RTA, for
tasks without offsets, this concept will not cause any overestimation of calcu-
lated response times. However, as we will show in this paper, this concept is an
overestimation of the interference, and when performing approximate RTA for
task with offsets, it results in unnecessary pessimistic response times.

Accounting for offsets between tasks gives significantly tighter response times
than using the traditional notion of a critical instant where all tasks in a system
are considered to be released simultaneously [5]. In fact, many systems that will
be deemed infeasible by RTA without offsets will be feasible when taking offsets
into account. The first RTA for tasks with offsets was presented by Tindell [1]. He
provided an exact algorithm for calculating response time for tasks with offsets.
However, this algorithm becomes computationally intractable for anything but
small task sets due to its exponential time complexity. In order to deal with
this problem, Tindell provided an approximation algorithm, with polynomial
complexity, which gives pessimistic, but safe results (worst case response times
are never underestimated).

Several researchers have extended the work provided by Tindell. In this pa-
per we focus on the approximate analysis, which was generalised and formalised
by Palencia Gutierrez et al. [2]. They introduced dynamic offsets, allowed offsets
and deadlines larger than period, and made some improvement of the approxima-
tion algorithm. Palencia Gutierrez et al. also provided improvements in order to
calculate tighter response-times in certain situations [6]. Redell further improved
their work by giving a method to calculate even lower response-times [7].

However, both improvements [6, 7] are only useful in very special circum-
stances where task priorities are chosen in a particular way and task jitter is
extremely high.1 Hence, their improvements are of limited generality. The fo-
cus of their methods is on finding infeasible execution orders between tasks and
removing these execution orders from the set of possible critical instants. The
method we present in this paper is more general and can straight forwardly be
combined with the above described improvements. In fact, our approach pre-
sented here is complementary to these approaches in the sense that the most
improvement for our method is achieved when jitter is low.

In this paper we present a novel interpretation of higher priority task inter-
ference: “imposed” interference, with corresponding changes to the response time
formulae, which will result in less pessimistic response times for tasks with off-
sets using the approximation algorithm. We formally prove that response times
obtained with this novel method are never greater than the method presented by

1 Priority needs to be chosen so that transactions can “interlock” each other, and the
jitter needs to be in parity with, or greater than, the task’s periods. Otherwise the
proposed improvements will have little or no effect.

2

Palencia Gutierrez et al. [2]. Furthermore, we also show that our method does
this without the risk of ever underestimating response times.

To quantify the improvements gained with our method we present an evalu-
ation, showing that with our method presented in this paper, one can typically
gain about 15% lower response times in over 50% of the cases, resulting in a
12% higher admission probability, compared to existing approximate methods.
In more extreme cases (just one transaction) about 30% higher admission prob-
ability can be obtained.

Paper Outline: In section 2 we present the pessimistic “released for exe-
cution” interference and introduce our novel concept of “imposed” interference.
In section 3 we revisit and restate the original offset RTA [1, 2]. In section 4 we
modify this RTA to use the concept of “imposed” interference instead, and show
some consequences and proofs of correctness. Section 5 presents evaluations of
our method, and finally, section 6 concludes the paper and outlines future work.

2 The Concept of Interference

Classical response time analysis for Liu and Layland’s periodic task model [5]
(where a task τi has a period Ti and worst-case execution-time Ci), presented
first by Joseph and Pandya [4], states that the worst case response time, for a
task under analysis (τi), occurs when it is released at the same time as all higher
priority tasks. Under this assumption the worst case response time, Ri is:

Ri = Ci +
∑

∀j∈hp(i)

interferencej(Ri) (1)

where Ci is the execution-time of task i, hp(i) is the set of higher priority tasks,
and interferencej(t) is the amount of interference task j causes during time-
interval t. The interference formula presented by Joseph and Pandya is [4]:

interferencej(t) =

⌈
t

Tj

⌉
Cj

where the ceiling expressions calculates the number of instances of task j. Here
the full interference on each task instance (Cj) occurs immediately when the task
is released. We denote this concept of interference as “released for execution”
interference.

This, however, is an overestimation of the interference that τi actually can
experience. In fact, the interference experienced by τi during a time interval can
never exceed the size of the time interval. Or more precisely, the interference
experienced can never grow faster than the considered interval. Formally, the
derivative of the interference cannot be greater than the derivative of the time
interval:

dinterferencej(t)

dt
≤

dt

dt
⇒

dinterferencej(t)

dt
≤ 1 (2)

3

Theorem 1. Consider a task τj, activated at time 0 and subsequently with pe-
riod Tj, having execution-time Cj (0 < Cj ≤ Tj). For a positive time-interval
t = kTj + t′ (where k ∈ N and 0 ≤ t′ < Tj), kCj + min(t′, Cj) is an upper bound
on the interference τj can impose on any lower priority task during t.

Proof. During kTj, τj imposes an amount of interference of kCj (task instances
are activated periodically), one instance for every period. During the remaining
time interval, t′, τj can, according to equation 2, never impose more interference
than the length of the interval itself. Hence, kCj + t′ is an upper bound on the
interference τj , can impose during t.

However, the last instance of τj (when activated t′ = 0), cannot contribute
with more interference than its execution time Cj . Hence, kCj + Cj is also an
upper bound on the interference τj can impose during t.

Combining these upper bounds (by taking the minimum of them) we get
kCj +min(t′, Cj) as an upper bound on the interference τj can impose during t.�

in
te

rf
er

en
ce

j(t
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 190 20
t

2

4

6

8

released for execution
imposed

Fig. 1. Released for execution vs. imposed interference

We denote the concept of interference which is bounded by interferencej(t)
and theorem 1 with “imposed” interference. As an example, consider a task with
Tj = 10 and Cj = 4. Figure 1 illustrates the difference between “released for
execution” and “imposed” interference for t ∈ 0 . . . 20. The released for execution
interference increases in a stepped stair fashion, whereas the imposed interference
increases in a slanted stair fashion (with a derivative of 1 in the slants).

In figure 1 the shaded areas represent the overestimation made by the re-
leased for execution concept. For classical response-time analysis this overesti-
mation has no effect on the calculated response-time, and Joseph and Pandya’s
equation does yield exact worst case response-times. The reason for this is that
the response-time analysis calculation (which is done by fix-point iteration) has
no solutions in the shaded areas (as discussed further in section 4.3). Also for ex-
act RTA of task with offsets [1] this overestimation does not yield any pessimism
in the calculated response-times.

4

3 Existing offset RTA

This section revisits the existing response-time analysis for tasks with offsets [1,
2] and illustrates some intuition behind the analysis and the formulas.

3.1 System model

The system model used is as follows: The system, Γ , consists of a set of k
transactions Γ1, . . . , Γk. Each transaction Γi is activated by a periodic sequence
of events with period Ti (for non-periodic events Ti denotes the minimum inter-
arrival time between two consecutive events). The activating events are mutually
independent, i.e., phasing between them is arbitrary. A transaction, Γi, contains
|Γi| tasks, and each task is activated (released for execution) when a relative
time, offset, elapses after the arrival of the external event.

We use τij to denote a task. The first subscript denotes which transaction the
task belongs to, and the second subscript denotes the number of the task within
the transaction. A task, τij , is defined by a worst case execution time (Cij), an
offset (Oij), a deadline (Dij), maximum jitter (Jij), maximum blocking from
lower priority tasks (Bij), and a priority (Pij). The system model is formally
expressed as follows:

Γ :={Γ1, . . . , Γk}

Γi :=〈{τi1, . . . , τi|Γi|}, Ti〉

τij :=〈Cij , Oij , Dij , Jij , Bij , Pij〉

There are no restrictions placed on offset, deadline or jitter, i.e., they can each
be either smaller or greater than the period.

Event arrives

time

Erliest possible release Latest possible release

O ij Jij

Fig. 2. Relation between an event arrival, offset, jitter and task release

The relation between event arrival, offset, jitter and task release is graphically
visualised in figure 2. After the arrival of the event the task τij is never released
for execution until its offset (Oij) has elapsed. The release may be delayed by
jitter (maximally until Oij + Jij) making its exact release uncertain. For a more
extensive explanation of task parameters see [2]. Parameters for an example
transaction (Γi) with two tasks (τi1, τi2) are depicted in figure 3.

5

1 2 3 4 5 6 7 8 9 100

Oi1=2

Ci1=2

Oi2=5

Ti=10

Ji2=1

Ci2=1

Ji1=8

Time

Fig. 3. An example transaction Γi

3.2 Response-time analysis

The goal of RTA is to facilitate a schedulability test for each task in the system by
calculating an upper bound on its worst case response-time. We use τua (task a,
belonging to transaction Γu) to denote the task under analysis, i.e., the task
who’s response time we are currently calculating.

In the classical RTA (without offsets) the critical instant for τua is when it
is released at the same time as all higher (or equal) priority tasks [4, 5]. In a
task model with offsets this assumption yields pessimistic response-times since
some tasks can not be released simultaneously due to offset relations. Therefore,
Tindell [1] relaxed the notion of critical instant to be:

At least one task in every transaction is to be released at the critical
instant. (Only tasks with priority higher or equal to τua are considered.)

Since it is not known which task that coincides with (is released at) the critical
instant, every task in a transaction must be treated as a candidate to coincide
with the critical instant.

Tindell’s exact RTA tries every possible combination of candidates among all
transactions in the system. This, however, becomes computationally intractable
for anything but small task sets (the number of possible combinations of candi-
dates is mn for a system with n transactions and with m tasks per transaction).
Therefore Tindell provided an approximate RTA that still gives good results but
uses one single approximation function for each transaction. Palencia Gutierrez
et al. [2] formalised and generalised Tindell’s work. We will in this paper use
the more general formalism of Palencia Gutierrez et al., although our proposed
method is equally applicable to Tindell’s original algorithm.

3.3 Interference function

Central to RTA is to capture the interference a higher or equal priority task (τij)
causes the task under analysis (τua) during an interval of time t. Since a task
can interfere with τua multiple times during t, we have to consider interference
from possibly several instances. The interfering instances of τij can be classified
into two sets:

Set1 Activations that occur before or at the critical instant and that can be
delayed by jitter so that they coincide with the critical instant.

6

Set2 Activations that occur after the critical instant

When studying the interference from an entire transaction Γi, we will consider
each task, τic ∈ Γi, as a candidate for coinciding with the critical instant.

RTA of tasks with offsets is based on two fundamental theorems:

1. The worst case interference a task τij causes τua is when Set1 activations
are delayed by an amount of jitter such that they all occur at the critical
instant and the activations in Set2 have zero jitter.

2. The task of Γi that coincide with the critical instant (denoted τic), will do
so after experiencing its worst case jitter delay.

The phasing between a task, τij , and a critical instant candidate, τic, becomes
(slightly reformulated compared to [2], see Appendix A):

Φijc = (Oij − (Oic + Jic)) mod Ti (3)

From the second theorem we get that τic will coincide with the critical instant
after having experienced its worst case jitter delay, i.e., the critical instant will
occur at (Oic + Jic) mod Ti, relative to the start of Γi. From this, the definition
of Φijc follows in order to keep the relative phasing (of releases) among tasks
within Γi. An implication of this is that the first instance of a task τij in Set2 will
be released at Φijc time units after the critical instant, and subsequent releases
will occur periodically every Ti.

Figure 4 illustrates the four different Φijc-s that are possible for our example
transaction in figure 3. The upward arrows denote task releases. The height of
the upward arrows denotes the amount of execution released.

Figure 4(a) shows for the case that τi1 coincides with the critical instant, the
invocations in Set1 (arriving at time 0) and the first invocations in Set2. Fig-
ure 4(b) shows the corresponding situation when τi2 is the candidate to coincide
with the critical instant.

1 2 3 4 5 6 7 8 90 10

2iτ1iτ 1iτ
211 =Φ i

521 =Φi

1 2 3 4 5 6 7 8 90 10

612 =Φi

922 =Φi

1iτ
2iτ 2iτ
1iτ

(a) τic = τi1 (b) τic = τi2

Fig. 4. Φ-s for the two candidates in Γi

Given the two sets of task instances (Set1 and Set2) and the corresponding
phase relative to the critical instant (Φijc), the interference caused by task τij

can be divided into two parts:

1. The part caused by instances in Set1 (which is independent of the time
interval t), ISet1

ijc , and

7

2. the part caused by instances in Set2 (which is a function of the time inter-
val t), ISet2

ijc (t).

These are defined as follows:

ISet1
ijc =

⌊
Jij + Φijc

Ti

⌋
Cij ISet2

ijc (t) =

⌈
t − Φijc

Ti

⌉
Cij (4)

The interference transaction Γi poses on τua, during a time interval t, when
candidate τic coincides with the critical instant, is:

Wic(τua, t) =
∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
)

(5)

Where hpi(τua) denotes tasks belonging to transaction Γi, with priority higher
or equal to the priority of τua.

3.4 Approximation function

Since we beforehand cannot know which task in each transaction coincides with
the critical instant, the exact analysis tries every possible combination [1, 2].
However, since this is computationally intractable for anything but small task
sets, the approximate analysis defines one single, upward approximated, function
for the interference caused by transaction Γi [1, 2]:

W ∗
i (τua, t) = max

∀c∈hpi(τua)
Wic(τua, t) (6)

That is, W ∗
i (τua, t) simply takes the maximum of each interference function (for

each candidate τic).
As an example, consider again transaction Γi depicted in figure 3. Figure 5

shows the interference function for the two candidates (Wi1 and Wi2), and it
shows how W ∗

i is derived from them by taking the maximum of the two functions
at every t.

Given the interference (W ∗
i) each transaction causes, during a time interval

of length t, the response time of τua (Rua) can be calculated. Appendix A shows
how to perform these response-time calculations.

4 Tight offset RTA

We begin this section with an illustrative example of how the original analysis
overestimates the response-time. Consider a simple transaction Γi depicted in
figure 6 where jitter (Jij) and blocking (Bij) is zero.

Also consider a lower priority task, τua, which is the single task in trans-
action Γu, with Cua = 2. For this simplified task model where Bij = Jij = 0,
Dua ≤ Tu only one instance of the task under analysis is active at any point in

8

1 2 3 4 5 6 7 8 90

2

4

6

10 1 2 3 4 5 6 7 8 90

2

4

6

10

1 2 3 4 5 6 7 8 90

2

4

6

10 1 2 3 4 5 6 7 8 90

2

4

6

10

*
iW

1iW

21 & ii WW

2iW

t t

tt

Fig. 5. Wic(τua, t) and W ∗

i (τua, t) functions

time
0 105

Ci1=2 Ci2=4
Ti=12

Oi2=4Oi1=0

Fig. 6. A simple example transaction

time. This means that the response time formulas, for the single lower priority
task, presented in appendix A, can be reduced and simplified to:

Rua = Cua +
∑
∀i�=u

W ∗
i (τua, Rua) (7)

The response-time calculation is performed by means of fix-point iteration
(starting with Rua = 0) as follows:

Iter# t Wi1 Wi2 W ∗

i Rua

0 0
1 0 0 0 0 2
2 2 2 4 4 6
3 6 6 4 6 8
4 8 6 4 6 8

Where column “Iter#” denotes the iteration number, “t” the time interval, “Wi1”
and “Wi1” denotes Wic(τua, t) for the two candidate tasks τi1 and τi2 respectively.
“W ∗

i ” denotes the value of W ∗
i (τua, t), and “Rua” the calculated response-time

for the iteration. In iteration number 4 the fix-point iteration terminates (Rua

9

has the same value as in the previous iteration), and the calculated response
time is Rua = 8. However, it can easily be seen that a task with Cua = 2 can
never be preempted by both tasks τi1 and τi2 since both tasks are separated
by at least 2 units of idle time. Hence, the actual worst case response-time is
Rua = 6 and the response-time is overestimated.

4.1 Using Imposed Interference

One property of the ceiling expression of ISet2
ijc (t) in equation 4 is that it returns

the amount of interference “released for execution” at time t. This result in a
stepped stair interference function. If we modify ISet2

ijc (t) in equation 4 so that
it returns the interference “imposed” on τua we get a slanted stair function (as
proposed in section 2). The two slanted stair functions for our simple example
transaction from figure 6 are shown in figures 8(a) and 8(b).

The slanted stairs are obtained by modifying ISet2
ijc (t) defined in equation 4

so that the “last” task instance, of the periodically activated tasks in Set2, does
not interfere with its full execution time unless the interval t is sufficiently large.
Our redefined version of ISet2

ijc (t) is:

ISet2
ijc (t) =

⌈
t∗

Ti

⌉
Cij − x

x =

{
Cij − (t∗ mod Ti) if t∗ > 0 ∧

(
0 < t∗ mod Ti < Cij

)
0 otherwise

t∗ = t − Φijc

(8)

where Φijc is defined in equation 3 and x is used to generate the slants of the “im-
posed” interference function. Figure 7(a) illustrates a sequence of task releases,
and figure 7(b) shows how the value of x varies accordingly.

0 Ti
2Ti

3Ti

t
t* = 0

Cij

Cij

x

(a)

(b)

Φijc

Fig. 7. Relation between task release and x

10

0 12

t

6

0

0 12

t

6

0

0 12

t

6

0

0 12

t

6

0

(d)(c)

(b)(a)

1iW 2iW

21 & ii WW *
iW

Fig. 8. Interference imposed by our example transaction

The slanted stairs generated by equation 8 are shown in figures 8(a) and 8(b),
and figure 8(c) shows them overlaid. Using our new version of ISet2

ijc (t) in equa-
tion 5 we get the maximised slanted stairs interference function, representing
the approximation function W ∗

i , shown in figure 8(d).

With the new definition of interference in equation 8 we can now use equa-
tion 7 to calculate a new response-time Rua for our example as follows:

Iter# t Wi1 Wi2 W ∗

i Rua

0 0
1 0 0 0 0 2
2 2 2 2 2 4
3 4 2 4 4 6
4 6 4 4 4 6

We note that our new definition of ISet2
ijc (t) makes the analysis able to “see” the

empty slot between tasks τi1 and τi2, something the original analysis overlooked.

Hence, the calculated response-time (6) is lower than that of the original
analysis (8), and in section 5 we will quantify this improvement in more general
terms.

4.2 Correctness Criteria

For our proposed modification to ISet2
ijc (t) in equation 8 to be correct, and not

produce greater response-times than the original analysis, three criteria have to
be fulfilled:

11

– The new definition of ISet2
ijc (t) is not allowed to be greater than the old

definition (for any t). If this condition holds, the analysis performed with
the new definition is guaranteed not to yield larger response-times than the
old definition does.

– The new definition of ISet2
ijc (t) must not underestimate the interference caused

by Set2-tasks. If the interference is underestimated, analysis performed with
the new definition could yield unsafe response-time estimates.

– The new definition of ISet2
ijc (t) must yield a monotonically increasing interfer-

ence function W ∗
i (τua, t). Monotonicity is required to guarantee that at least

one solution to the response-time formula exists and that fix-point iteration
finds the smallest existing solution [8].

Theorem 2. For a given task under analysis, τua, and one candidate task, τic ∈
Γi, our new definition of ISet2

ijc (equation 8) is never greater than the old definition
(equation 4).

Proof. x, as defined in equation 8, is used to decrease the calculated value of
ISet2
ijc . Since x, by definition, is never negative, it can never contribute to making

equation 8 greater than equation 4. �

Theorem 3. For any time interval t ≥ 0 our new definition of ISet2
ijc (t) (equa-

tion 8) never underestimates the interference caused by Set2 task instances.

Proof. Set2 task instances arrive periodically (per definition) with period Ti,
with the first instance arriving at Φijc.

We first treat the time before the first invocation in Set2, i.e. t < Φijc.
During this time interval t∗ < 0 and hence x = 0. Since, t < Φijc < Ti then
t∗ > −Ti and the ceiling expression in equation 8 evaluates to zero. Hence, the
whole equation 8 is also zero. Since the interference before the first invocation
obviously is zero, equation 8 does not underestimate the interference before the
first invocation.

For times at or after the first invocation, i.e. t ≥ Φijc, we have t∗ ≥ 0. Now,
assume t∗ = kTi + t′, where k ∈ N and 0 ≤ t′ < Ti (the relation between t,
t∗ and t′ is graphically visualised in figure 9). If the interference calculated by
equation 8 is not below the safe upper bound defined by theorem 1:

safe upper bound = kCij + min(t′, Cij)

then the interference is not underestimated.

We divide the proof into three cases depending on the value of t′ for a time-
interval t (the three different cases are depicted graphically in figure 10):

– t′ ≥ Cij : The ceiling expression in equation 8 evaluates to k + 1 and the
interference is thus (k + 1)Cij − x. Further, when t′ ≥ Cij then t∗ mod Ti ≥
Cij resulting in x = 0, hence the interference is (k + 1)Cij , which is not
below safe upper bound.

12

Time

Ti kTi (k+1)Ti0

t*
t

t'
ijcΦ ijcΦ

Fig. 9. Relation between t, t∗ and t′

t
Cij

ijcikT Φ+ ijciTk Φ++)1(

0'=t

ijCt << '0 'tCij ≤

Fig. 10. Three proof cases for t′

– 0 < t′ < Cij : The ceiling expression in equation 8 evaluates to k + 1 and
the interference is thus (k + 1)Cij − x = kCij + Cij − x. Further, when 0 <
t′ < Cij then 0 < t∗ mod Ti < Cij and x = Cij − t′, hence the interference
is kCij + Cij − (Cij − t′) = kCij + t′, which is not below safe upper bound.

– t′ = 0: The ceiling expression in equation 8 evaluates to k and the interference
is thus kCij − x. Further, when t′ = 0 then t∗ mod Ti = 0 and x = 0, hence
the interference is kCij , which is not below safe upper bound (since t′ = 0).�

Theorem 4. Our new definition of ISet2
ijc (t) (equation 8) is (non-strictly) mono-

tonically increasing with the time interval t.

Proof. We prove this by showing that the derivative of equation 8 is never neg-
ative. First, we conclude that a negative derivative of x cannot contribute to
make the derivative of equation 8 negative (since x is subtracted in equation 8).
We also conclude that if x is disregarded (i.e. assumed to be 0), then equation 8
does not have a negative derivative in any point.

We divide the proof into three cases, depending on the value of t∗ mod Ti

for times t:

– t∗ mod Ti ≥ Cij : In this case x is continuously 0, hence the derivative of x
is 0, and equation 8 cannot have a negative derivative.

– 0 < t∗ mod Ti < Cij : In this case the derivative of x is -1, hence the deriva-
tive of equation 8 cannot have a negative derivative.

– t∗ mod Ti = 0: For this case we conclude that equation 8 is continuous, since
at time t+ ε (for an arbitrary small and positive ε) the ceiling expression has
increased with Cij and x has increased with Cij − ε, hence equation 8 has
increased with exactly ε. Thus, the derivative of equation 8 at such times t
is 1. �

13

4.3 Discussion

At first glance, it is not obvious that lowering the interference function Wic(τua, t)
should automatically give lower response-times. In fact, the stepped-stair inter-
ference function has been used for many years to represent the interference in
RTA [3, 9], without introducing any pessimism.

The reason stepped stairs (in analysis without offsets) does not introduce
pessimism can be found in our previous work [8]. In short, the fix-point iteration
will terminate when the sum of all interference functions (demand) meets the line
from origin with slope 1 (supply). Hence, replacing stepped stairs with slanted
stairs (with slope 1) will not contribute to earlier fix-point convergence.

However, in approximate response-time analysis with offsets, the interference
functions, Wic-s, are not used directly in the fix-point iterations. Instead they
are first subjected to a maximisation function (equation 6). This situation can be
compared to floating point addition: if you round up the floating point numbers
at each calculation step, instead of just in the end, you will loose precision.
This corresponds to passing released for execution interference, instead of more
precise imposed interference, to the maximisation function. Another view of this
is that by using slanted-stair functions as input to the maximisation function,
one essentially “delays” the time it takes for one low-interference scenario to
overtake a high-interference scenario.

0 12

t

6

0

(c)

0 12

t

6

0

(b)

0 12

t(a)

t1

t1 t2

Fig. 11. Stepped stairs vs. slanted stairs

14

Figure 11(a) shows our simple example transaction from figure 6 with two
arrows denoting the two possible scenarios for the critical instant (one “dashed”
scenario and one “dotted” scenario). Figures 11(b) and 11(c) shows the stepped
stairs and slanted stairs interference functions, respectively, for both scenar-
ios. For times t < t1, the dotted scenario is the one with highest interference.
Time t1 corresponds to the release of the second task in the dashed scenario.
For the stepped stairs case, this means immediately adding another 4 units of
interference to the dashed scenario, hence immediately making it the scenario
with the highest interference. However, for the slanted stairs case, the time t1
means that the dashed line starts to increase, but not until time t2 it catches up
with the dotted scenario. Hence, the interval between t1 and t2 represents the
time by which the slanted stairs “delay” the dashed scenario to catch up with
the dotted scenario. If fix-point convergence can be achieved during this interval,
then RTA with imposed interference will calculate a lower response time than
does RTA with released for execution interference.

5 Evaluation

In order to evaluate and quantify our proposed improvement, we have imple-
mented the approximate response-time equations of appendix A, using both the
original definition of ISet2

ijc (t) from section 3 and our tighter version of ISet2
ijc (t)

from section 4. Furthermore, we have also, as a comparison, implemented the
exact analysis.

Using these implementations and a task-generator we have performed simu-
lations of all three approaches by calculating the response time for a single low
priority task, e.g., corresponding to an admission control situation.

5.1 Description of Task Generator

In our simulator we generate task sets that are used as input to the different
implementations. The task-set generator takes the following parameters as input:

– Total system load (in % of total CPU utilisation),
– The number of transactions to generate,
– The number of tasks per transaction to generate, and
– Jitter fraction (in % of the transaction periods).

Using these parameters a task set with the following properties is generated:

– The total system load is proportionally distributed over all transactions.
– Periods (Ti) are randomly distributed in the range 1.000 to 1.000.000 time

units (uniform distribution).
– Each offset (Oij) is randomly distributed within the transaction period (uni-

form distribution).
– The execution times (Cij) are chosen as a fraction of the time between two

consecutive offsets in the transaction. The fraction is the same throughout
one transaction, and is selected so that the transaction load (as defined by
the first property) is obtained.

15

– The jitter is set to the jitter fraction of the period (Jij = f ∗ Ti).

– Blocking (Bij) is set to zero.

– The priorities are assigned in rate monotonic order [5].

5.2 Description of Simulation Setup

The heart of the improvement made to the approximate response time analysis is
a new definition of ISet2

ijc (t). We have implemented the response-time equations
of appendix A which will show the effects of our improvements in a realistic
scenario. However, neither interference from other tasks in Γu nor interference
from previous instances of τua comes into play in the admission control situation
that we simulate. Taking interference from other tasks of Γu into account would
yield less improvement of our methods, since W ∗

i is not used for them (see
appendix A).

The setup of the simulation is as follows: a task set is generated according to
input parameters (system load, number of tasks within a transaction, number
of transactions, jitter). To simulate an admission control situation, we calculate
the response time for a low priority task subjected to admission control.

We have calculated and compared response times for our tighter analysis
(Tight), Palencia Gutierrez et al.’s original analysis (Orig) and the exact analysis
(Exact). The results in section 5.3 have been obtained by taking the mean value
from 1000 generated task-sets for each point in each graph. The graphs in the
left and in the right columns also show the 95% confidence interval for these
mean values.

We have measured three metrics from the simulations:

– “Admission probability (%)” — This metric measures the fraction of cases,
out of the 1000 generated task sets, the admission control task passes the
admission test (its response time is lower than its deadline).

– “Response-time improvement (%)” — This metric measures the average and
maximum improvement (over Original) in response time for the task sub-
jected to admission control. Improvement in response time for the tight anal-
ysis, RTight

ua , is defined as 1−RTight
ua /ROrig

ua (and analogous for the Exact anal-
ysis). Note that for this metric the original acts as baseline and thus only
maximum and average improvement of (Tight) and (Exact) (over (Orig)) are
plotted. Also note that the maximum value is one value (the maximum) out
of 1000, which makes the behaviour in these graphs statistically uncertain
(they show what is possible without quantifying probability of occurrence).

– “Fraction of tasks with improvement (%)” — This metric measures the frac-
tion of admission control tasks that results in a lower response time, com-
pared to the original analysis (Orig). As for previous metric, the original
approximate analysis is used as a baseline, hence no curve is plotted for that
method. Note that this metric says nothing about the size of the improve-
ments.

16

The first metric is to show what effect an improvement in response time could
have in a realistic situation. The purpose of the last two metrics is to quantify
the difference in response time between the three analysis methods.

5.3 Simulation Results

In the simulations we have varied our four task-generator parameters in different
ways. Figure 12 shows a subset of the simulation results. The exact analysis can
only be run on small task sets; hence it is not present for larger tasks sets. For
every parameter that is varied we show all three metrics described in the previous
section, corresponding to column one, two and three respectively in figure 12.
(In figure 12, note that “Tasks = x” denotes “x tasks/transaction”.)

Figures 12 (a–i) corresponds to a base configuration where the number of
tasks per transaction is 6, the number of transactions is 3, system load is 80%
and the load of task under admission control is 2%. From this base configuration
we vary the number of tasks/transaction (a–c), number of transactions (d–f),
jitter (g–i), while keeping the other parameters constant.

Figures (a–c) shows the results when the number of tasks is varied between 1
and 13. For more than 5 tasks we can see in (a), that the admission probability
for (Tight) is around 12% higher than for (Orig). In (b) we see that the average
response time improvement of (Tight) is for 10 tasks over 15%, and that there are
task sets (although rare) where improvement of more than 50% can be obtained.
In (c) we see that when the number of tasks grows, so does the probability of a
response time improvement.

For figures (d–f), where the number of transactions is varied, a quite different
picture emerges. The difference between (Orig) and (Tight) gets smaller as the
number of transactions grows. This is not surprising, since in the case where the
tasks/transaction ratio approaches 1, there are very few offset relations among
tasks and the analysis approaches the analysis for tasks without offsets.

Figures (g–i) show what happens when jitter is varied. Not only does the
admission probability decrease drastically, but also the relative improvement of
(Tight) over (Orig). This is mainly due to the fact that jitter contributes to
ISet1
ijc , whereas our improvement only affects ISet2

ijc (t). As ISet1
ijc account for an

increasingly larger fraction of the total response-time, the relative improvement
of (Tight) decreases. However, the absolute response-time improvement (not
shown) and the number of improvements (figure (i)) is not noticeably affected
by the jitter. As the jitter grows larger than the period (or larger than several
periods) the effects of our improvements diminish further. However, systems with
such large jitter are rare in control-systems (which constitute the majority of real-
time systems), where the jitter is typically only allowed to be a few percent of the
period. Also, for system with such large jitters (such as multimedia applications),
other methods [6, 7] to reduce the estimated response-time can be used.

17

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12

A
d
m

is
si

o
n
 p

ro
p
ab

il
it

y
 (

%
)

No. of tasks/transaction

Trans. = 3, Load = 80%, Jitter = 0

Exact
Tight
Orig

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12

R
es

p
o
n
se

-t
im

e
im

p
ro

v
em

en
t

(%
)

No. of tasks/transaction

Trans. = 3, Load = 80%, Jitter = 0

Exact (Max)
Tight (Max)
Exact (Avg)
Tight (Avg)

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12

F
ra

ct
io

n
 o

f
ta

sk
s

w
it

h
 i

m
p
ro

v
em

en
t

(%
)

No. of tasks/transaction

Trans. = 3, Load = 80%, Jitter = 0

Exact
Tight

(a) (b) (c)

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12

A
d
m

is
si

o
n
 p

ro
p
ab

il
it

y
 (

%
)

No. of transactions

Tasks =6, Load = 80%, Jitter = 0

Exact
Tight
Orig

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12

R
es

p
o
n
se

-t
im

e
im

p
ro

v
em

en
t

(%
)

No. of transactions

Tasks =6, Load = 80%, Jitter = 0

Exact (Max)
Tight (Max)
Exact (Avg)
Tight (Avg)

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12

F
ra

ct
io

n
 o

f
ta

sk
s

w
it

h
 i

m
p
ro

v
em

en
t

(%
)

No. of transactions

Tasks =6, Load = 80%, Jitter = 0

Exact
Tight

(d) (e) (f)

 0

 20

 40

 60

 80

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
d
m

is
si

o
n
 p

ro
p
ab

il
it

y
 (

%
)

Jittter/Period ratio

Trans. = 3, Tasks =6, Load = 80%

Exact
Tight
Orig

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
es

p
o
n
se

-t
im

e
im

p
ro

v
em

en
t

(%
)

Jittter/Period ratio

Trans. = 3, Tasks =6, Load = 80%

Exact (Max)
Tight (Max)
Exact (Avg)
Tight (Avg)

 0

 20

 40

 60

 80

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

F
ra

ct
io

n
 o

f
ta

sk
s

w
it

h
 i

m
p
ro

v
em

en
t

(%
)

Jittter/Period ratio

Trans. = 3, Tasks =6, Load = 80%

Exact
Tight

(g) (h) (i)

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

A
d
m

is
si

o
n
 p

ro
p
ab

il
it

y
 (

%
)

No. of tasks/transaction

Trans. = 1, Load = 80%, Jitter = 0

Exact
Tight
Orig

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12 14 16 18 20

R
es

p
o
n
se

-t
im

e
im

p
ro

v
em

en
t

(%
)

No. of tasks/transaction

Trans. = 1, Load = 80%, Jitter = 0

Exact (Max)
Tight (Max)
Exact (Avg)
Tight (Avg)

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
 o

f
ta

sk
s

w
it

h
 i

m
p
ro

v
em

en
t

(%
)

No. of tasks/transaction

Trans. = 1, Load = 80%, Jitter = 0

Tight
Exact

(j) (k) (l)

Fig. 12. Simulation Results

18

Finally, figures 12(j–l) correspond to a configuration where the number of
transactions is 1, system load 80%, and load of the task under admission control
is 2%. This type of scenario would occur in a system using a hybrid scheduling
method, supporting both static cyclic scheduled tasks (corresponding to the
single high priority transaction) and priority scheduled tasks running in the
background of the static schedule [10]. This situation shows where our method
excels. All tasks have offset relations among them, resulting in well over 30%
better admission probability (4–9 tasks) over (Orig) and an average improvement
of over 50% when the number of tasks/transaction is more than 8. Another
interesting thing is that (Exact) and (Tight) always yield exact response-times.
This comes from the fact that when considering a transaction in isolation (no
interference among several transactions) the slanted stair interference function
captures the worst case interference exactly.

6 Conclusions and Future Work

We have presented an improvement that calculates tighter (lower) response-
times than does earlier approximation methods. We prove that our method never
calculates greater response-times than the method in [2]. Furthermore we prove
that our method never underestimates the interference caused by higher priority
tasks. Hence, it calculates a safe and tight approximation of the actual worst-case
response-time.

We exploit a misconception in previous methods concerning the interference
a task poses on a lower priority one. The concept “imposed” interference is in-
troduced, and is shown to more accurately capture this interference compared
to the previously accepted concept of “released for execution” interference. This
situation is analogous to floating point addition where “released for execution” in-
terference corresponds to calculations with integer values (rounded up) whereas
“imposed” interference corresponds to calculations with the more accurate float-
ing point values (resulting in a lower total sum).

Simulations show that the improvement is significant (especially when tasks/
transaction ratio is high), typically about 15% tighter response times in 50% of
the cases, resulting in 12% higher admission probability for low priority task
subjected to admission control. In certain circumstances the improvement is
much greater, and with just one transaction (corresponds to a static schedule)
our proposed method calculates exact response times.

Our tighter analysis is noticeably slower than the original analysis (even
slower than the exact for small task sets). This is a natural effect of using tighter
interference functions since it gives slower fix-point convergence. However, we
have previously proposed a method to speed up the original analysis [11]. In
our future work we will adapt that method to our tight analysis. We will also
incorporate complementary improvements to RTA for tasks with offsets such as
[6, 7].

19

References

1. Tindell, K.: Using Offset Information to Analyse Static Priority Pre-emptively
Scheduled Task Sets. Technical Report YCS-182, Dept. of Computer Science,
University of York, England (1992)

2. Palencia Gutierrez, J., Gonzalez Harbour, M.: Schedulability Analysis for Tasks
with Static and Dynamic Offsets. In: Proc. 19th IEEE Real-Time Systems Sym-
posium (RTSS). (1998)

3. Audsley, N., Burns, A., Davis, R., Tindell, K., Wellings, A.: Fixed Priority Pre-
Emptive Scheduling: An Historical Perspective. Real-Time Systems 8 (1995) 129–
154

4. Joseph, M., Pandya, P.: Finding Response Times in a Real-Time System. The
Computer Journal 29 (1986) 390–395

5. Liu, C., Layland, J.: Scheduling Algorithms for Multiprogramming in a Hard-Real-
Time Environment. Journal of the ACM 20 (1973) 46–61

6. Palencia Gutierrez, J., Gonzalez Harbour, M.: Exploiting Precedence Relations
in the Schedulability Analysis of Distributed Real-Time Systems. In: Proc. 20th

IEEE Real-Time Systems Symposium (RTSS). (1999) 328–339
7. Redell, O.: Accounting for Precedence Constraints in the Analysis of Tree-Shaped

Transactions in Distributed Real-Time Systems. Technical Report TRITA-MMK
2003:4, Dept. of Machine Design, KTH (2003)

8. Sjödin, M., Hansson, H.: Improved Response-Time Calculations. In: Proc. 19th

IEEE Real-Time Systems Symposium (RTSS). (1998) URL: http://www.docs.uu.-
se/~mic/papers.html.

9. Audsley, N., Burns, A., Tindell, K., Richardson, M., Wellings, A.: Applying New
Scheduling Theory to Static Priority Pre-emptive Scheduling. Software Engineering
Journal 8 (1993) 284–292

10. Mäki-Turja, J., Sjödin, M.: Combining Dynamic and Static Scheduling in Hard
Real-Time Systems. Technical Report MRTC no. 71, Mälardalen Real-Time Re-
search Centre (MRTC) (2002)

11. Mäki-Turja, J., Nolin, M.: Faster Response Time Analysis of Tasks With Offsets.
In: Proc. 10th IEEE Real-Time Technology and Applications Symposium (RTAS).
(2004)

A Complete RTA formulas

In this appendix we provide the complete set of formulas to calculate the worst
case response time, Rua, for a task under analysis, τua, as presented in Palencia
Gutierrez et al. [2].

The interference transaction Γi poses on a lower priority task, τua, if τic

coincides with the critical instant, is defined by (see equation 5 in this paper):

Wic(τua, t) =
∑

∀j∈hpi(τua)

(⌊
Jij + Φijc

Ti

⌋
+

⌈
t − Φijc

Ti

⌉)
Cij (26 in [2])

where the phase between task τij and the candidate critical instant task τic is
defined as (see equation 3 in this paper):

Φijc = Ti − (Oic + Jic − Oij) mod Ti (17 in [2])

20

The approximation function for transaction Γi which considers all candidate
τic-s simultaneously, is defined by (see equation 6 in this paper):

W ∗
i (τua, w) = max

∀c∈hpi(τua)
Wic(τua, w) (27 in [2])

The length of a busy period, for τua, assuming τuc is the candidate critical
instant, is defined as (Note that the approximation function is not used for Γu):

Luac =Bua + (p − p0,uac + 1)Cua+

Wuc(τua, Luac) +
∑
∀i�=u

W ∗
i (τua, Luac) (30 in [2])

where p0,uac denotes the first, and pL,uac the last, task instance, of τua, activated
within the busy period. They are defined as:

p0,uac = −

⌊
Jua + Φuac

Tu

⌋
+ 1 (29 in [2])

and

pL,uac =

⌈
Luac − Φuac

Tu

⌉
(31 in [2])

In order to get the worst case response time for τua, we need to check the
response time for every instance, p ∈ p0,uac . . . pL,uac, in the busy period. Com-
pletion time of the p’th instance is given by:

wuac(p) =Bua + (p − p0,uac + 1)Cua

+ Wuc(τua, wuac(p) +
∑
∀i�=u

W ∗
i (τua, wuac(p)) (28 in [2])

The corresponding response time (for instance p) is then:

Ruac(p) = wuac(p) − Φuac − (p − 1)Tu + Oua (32 in [2])

To obtain the worst case response time, Rua, for τua, we need to consider
every candidate critical instant ,τuc (including τua itself), and for each such
candidate every possible instance, p, of τua:

Rua = max
∀c∈hpu(τua)∪a

[max
p=p0,uac,...,pL,uac

(Ruac(p))] (33 in [2])

21

	1 Introduction
	2 The Concept of Interference
	Theorem 1.

	3 ExistingoffsetRTA
	3.1 System model
	3.2 Response-time analysis
	3.3 Interference function
	3.4 Approximation function

	4 TightoffsetRTA
	4.3 Discussion
	4.1 Using Imposed Interference
	4.2 Correctness Criteria
	Theorem 2.
	Theorem 3
	Theorem 4.

	5 Evaluation
	5.3 Simulation Results
	Fig. 12. Simulation Results

	5.2 Description of Simulation Setup
	5.1 Description of Task Generator

	6 Conclusions and Future Work
	References
	Apendix: Complete RTA formulas

