
On the Expected Synergies between Component-Based Software Engineering and
Best Practices in Product Integration

Stig Larsson
ABB Corporate Research,

Västerås, Sweden
stig.larsson@mdh.se

Ivica Crnkovic
Mälardalen University,

Västerås, Sweden
ivica.crnkovic@mdh.se

Fredrik Ekdahl ABB
Corporate Research,

Västerås, Sweden

Abstract

The expectations for a well working integration
process are described in the Capability Maturity Model
Integration (CMMI). Often during the integration
process, weaknesses of the entire development process
become visible. This is usually too late and too costly.
Particular development processes and use of particular
technologies may help to improve the performance of the
integration process by providing proper input to it. For
example, by the use of a component-based approach, the
development process changes. Some of these changes
may help in performing according to the process
expectations. In this paper, examples of problems that
have been observed in the integration process are
described. Through a case study we describe a number of
practical problems in current development projects.
Based on this case study, we analyze how a component-
based approach could help and lead to a more effective
integration process.

1. Introduction

Product integration is a specific activity in the software
development process. Very often this is also the activity
where most of problems become visible and when it is
either too late or at least very expensive to solve the
problems. This is especially true for large and complex
software products and systems which parts are developed
and tested separately and when different mismatches are
invisible until the products are integrated. The problems
of integration usually have roots in previous phases, and
most often in the lack of coordination between these
phases. There are several reasons for this. First, it can be
a communication problem and differences in goals
between engineers conducting requirements analysis and
specification, development, integration, testing and
delivery of the products. Further there can be differences
in the project goals (personified by project managers) and
long-term goals (personified by system architects and
domain experts). Second, a source of the problem is

inadequate preparation of parts for the final integration.
While being tested and verified on a part level, the
product parts do not fit together. The reason for this
problem can be inadequate test environments that are
sufficient for testing particular functions of each part in
isolation, but which do not reflect the impact of a
particular part on the entire product. A third source of
problems is inadequate information provided from parts.
Very often there are many unwritten rules and “default”
assumptions known on the part level that are invalid for
the whole product. A fourth type of problems is features
added into particular parts that are unknown to other parts
and the entire product. By adding new features (such as
improvement of particular functions or protocols) the
architecture of the entire system can degrade or even
break down.

Many of these problems originate from the ambiguity
of separations of activities in the development process.
While a separation of the different parts of the
development processes exists in practice, this separation
is often not well defined and formalized.

In component-based software engineering (CBSE), a
separation of the development of components from the
product integration is one of the main characteristics [1].
This raises several questions as described in [2]: What is
a component, what is included into a component
specification, what are the possibilities of predicting the
product properties from component properties, how does
a component interact with other components and its
environment and similar.

So far the research focus for component-based
engineering has primarily been on technical issues, and
considerably less on process issues. It is however very
important to know if the development process and CBSE
are synergistic; will it be more efficient and effective or
will it meet new challenges and maybe unsolved
problems?

In this paper our aim is to investigate what the
opportunities for improvement of the integration process
and the development process in general by introducing a
component-based development. Can the problems
described be (at least partially) solved?

To investigate this possibility our research approach is
the following. From a case study of a development
process that has many similarities to a component-based
approach, but still is not explicitly designed so, we
highlight to the main challenges and problems that
become visible in the integration phase. Further we
analyze these challenges and discuss the possible changes
and improvements in the process by introduction of a
component-based development process.

The definition of a software component used in a
product follows in this paper is broad, and the term is
used to describe a part of a software system. However, in
the discussions regarding CBSE, the notion of a
component follows to a large extent [1], i.e. software
components are binary units of independent production,
acquisition, and deployment that interact to form a
functioning system. We also use the definition of a
product as an application that can be sold and distributed
independently, and has a clear customer value on its own.

The remainder of the paper is organized as follows.
Section two describes the main characteristics of the
integration phase of a development process, the main
characteristics of a component-based development
process, the changes in the integration process implied by
component-based software engineering and related work.
In section three, a case study is presented to show
examples of how the integration process is performed
today. Section four analyzes how the use of component-
based software engineering would resolve today’s
challenges. Finally section five contains the conclusion
and proposed future work.

2. Product Integration in relation to CBSE

The product integration process for software products

addresses the assembly of software components. The
target is to integrate components into a product and to
ensure that the product works appropriately so that it can
be delivered to customers. An integration process that is
working well is expected to increase the probability that a
development project delivers quality products in a timely
manner. Component-based software engineering is
targeting similar goals; to improve the productivity
through use of high-quality components with predictable
behavior. This section describes these two independent
methods for improving the performance in development
projects, and lists possible synergies.

2.1 Product Integration Best Practices

The Capability Maturity Model Integration, CMMI,
[3] defines three goals for the product integration process.
These are that (i) the product integration should be
prepared, (ii) interface compatibility should be ensured

and that (iii) the product components should be
assembled and delivered.

 The preparation for product integration typically
includes preparation of an integration sequence. Different
integration sequences should be examined and also
include test components and equipment. The established
sequence should be periodically reviewed to
accommodate changes in the development project. The
preparation also includes the establishment of the
environment needed for product integration. One
important decision in the preparation of the integration
environment is if it should be developed in-house or
bought from outside. In practice, the system will include
both components that are bought and that are developed
in-house.

A prerequisite for the possibility to ensure the
interface compatibility is that the interface descriptions
are complete. The design of the interfaces is important for
the design of the components, but may also affect the
design of the verification and validation environments.
The interfaces need also to be managed throughout the
project. Note that this is valid also for interfaces with the
environment that the product is operating in.

The actual assembly of components should be done in
accordance with the selected integration sequence.
However, before a component is included in the product,
the readiness for integration should be confirmed. The
identity of the component needs to be established and the
conformance to the specifications and established criteria
should be confirmed. This confirmation can include a
check of the status of the component, e.g. that the design
of the component is reviewed, that the component is
tested and that the interface descriptions are followed.
Once assembled, the components should be evaluated.
This is done based on the integration sequence and the
verification specified. Based on the systems created in the
product integration process, the system is verified and
validated. When all product components have been
integrated, the product should be delivered to the
appropriate customer. This can be made in an iterative
fashion, with part deliveries, internal deliveries and of
course as a final delivery for production.

2.2. Developing systems with CBSE

When developing a system based on components, the

focus is on the system requirements, the overall system
functionality and the mapping these requirements to
components. However, the implementation of individual
components is not in the focus of the process. The
components used in the solutions are thus considered to
be developed or acquired independently of the
development of the system.

The activities performed when developing a system
are similar to those for any non-component-based

development; they include requirement analysis,
architectural specification, component selection and
evaluation, system design, implementation, integration,
verification and validation. A specific activity here is
component selection, but also other activities have
specific parts that are influenced by the component-based
approach. As the dependencies between these activities
are strong, it is important to note that they are usually
performed in an iterative fashion, and that these iterations
should be taken into account when planning the system
development.

The requirement analysis is done to transform the
collected needs into system requirements. The task is also
to define the scope for the system. Based on the system
requirements, it is possible to define the system
architecture and to derive the component requirements.
As the definition of components to be used and the
resulting system properties are investigated, it may be
necessary to reexamine the system requirements and
prioritize what is most important. The reasons may, for
example, be that requirements are found to be
contradictory, that the selected solution is too expensive
or that the time-to-market requirements cannot be met.

When an initial architecture has been created, a
decision how to obtain the needed components is taken. If
the decision is to develop a new component, specific for
the system, the development will be based entirely on
component requirements derived from the system
requirements. This decision will also make sure that the
component fits to the architecture. Preexisting
components developed in-house may be used as-is, but
may also require modifications. As this reduces the
possibilities for reuse, it is more likely that interactions
between the components are modified, that adapters are
created, or that the architecture is modified to fit the
selected components. This is also likely when using
commercial components, as these normally require a
specific architecture. Both types of pre-existing
components may influence the architecture, especially if a
specific component framework is required. To find and
select components based on the component requirements
is a challenge. One reason is that it is difficult to derive
these requirements from the system requirements. If the
component is not created specifically for the developed
system, it is unlikely that a component exactly matching
the requirements can be found. In addition to fulfilling the
requirements, the components must also coexist in the
system, which leads to the need to investigate
compatibility issues between the components and also
with the selected component framework. It is worth to
mention that already in the selection process, integration
activities can be performed. Often when validating
components they must be composed with other
components and integrated in the system environment.

The system construction depends on the chosen
architecture and on the selected component technology
and framework. The design also depends on what types of
components will be used in the system. More reuse and
commercial components will reduce the freedom to select
different design solutions.

The implementation activities should be limited to
adaptations of the components and connections between
the components. This should be a minor task, but if the
components are not properly selected, the work may be
substantial. Also verification of the component behavior
in the selected environment should be a part of the
implementation. This may lead to additional development
of code to handle the components in- and outputs or
changes in the way the component is set up.

To ensure that the quality requirements on the system
can be met, the integration of the system is crucial and
should be started as soon as possible in the development
cycle. The activities include determination of integration
sequence, verification that the components adhere to the
interface description, and provision of systems
appropriate for verification and validation. Additional
tasks are to identify the need for additional
implementation and to monitor the system properties as
these emerge when the system is integrated. The
integration will depend on the architectural solution, as
the possibility to build systems is determined by the
selected architecture as well as the component model and
framework. The verification that the requirements are met
can start as soon as the first integration has been made,
while the validation that the customer expectations are
met can only be made when the final assembly has been
made.

In component-based software systems, components
may exist also in runtime. The result of this is that it is
possible to change the system while in operation, or at
least without replacing the entire system, by replacing
components. This simplifies the maintenance and error
correction and also makes enhancements possible. A
well-designed architecture is however necessary as the
dependencies between different parts and components in
the system make such changes dangerous if the
consequences are not well understood. Special care must
be taken when a component is used by several other
components.

There are many reasons why component-based
approach can improve the integration process. We list
here the most important.
• Component specification. The basic principle in

component-based approach is a separation of
component specification from its implementation
through its interface. This separation is stronger than
in object-oriented approach since all interaction is
supposed to be performed through interfaces. This
principle drastically decreases the risks for

introduction of unknown properties and architectural
mismatches. Though it should be noted that many
component models do not follow this principle, in
particular for required interface, which may cause
many unpredictable problems.

• Early integration requirements. For component
validation usually a kind of integration procedure
must be made. An early integration process can show
problems that might remain hidden until the final
integration.

• Standardized interoperation. Component models
define the standards for interconnection between the
components. This eliminates a number of potential
errors due to architectural mismatches.

• Integration tool support. Integration is an inherent
part of a basic approach of CBSE. For this reason the
component-based technologies focus on this process
and usually provide powerful integration tools.

2.3. Related work

This section describes some of the work that has been
done related to integration in component based software
systems. In the related work, the integration process
partly includes what is often described as the composition
process.

The notion that all development phases, including the
integration activities, need to be reconsidered when
working with component-based software is pointed out in
[4]. It is also mentioned that the current component
models do not take enough of the needs of the system
developer into account. A part of the information that is
mentioned as underdeveloped is the specific collaboration
rules for interfaces and component behavior. This
influences the ease with which a developer can determine
if the chosen components fulfill the requirements of the
system.

The PECOS project [5] [6] describes an approach and
a software process to be used for basing embedded
systems on component-based technology. The
composition process is examined and described. It is,
however, not compared to the overall expectations on the
integration process.

The OOSPICE project [7] was targeted at overcoming
the shortcomings experienced when applying software
process improvement approaches to component-based
development. In [8], the observation that component-
based development is integration-centric is elaborated.

In [9], the risks in the composition phase for
component-based software development are listed.
Several of the risks are related to the integration process,
and a method for how to deal with these risks is outlined.

3. Case study

The case study was performed at an ABB unit

developing industrial control systems. The system has
evolved through several generations, and a new
generation of the system is currently being developed.
Compared to the first generation, where the effort was
three man months, the effort for software development in
the current development is estimated to about 100 man
years.

In essence, the controller has layered architecture and
within layers, component-based design. The
implementation consists of approximately 2500 KLOC of
C language source code divided in 400-500 components,
organized in 8 technical domains. The software platform
defines infrastructure that provides basic services like: a
broker for message-based inter-task communication,
configuration support, persistent storage handling and
system startup and shutdown.

3.1. Research method for the case study

The methods for the case study include interviews,

document reviews and an observation. The interviews
have been based on a set of open questions, and have
been conducted as discussions about the integration
process. The document review was performed on the
documentation describing the integration process, the
training material for the organization as well as the files
used for and as a result from the build process. As the
purpose of the observation was to identify challenges, it
was designed to obtain as much information as possible,
i.e. the decision was to perform an unstructured
observation.

3.2. Product Integration

The development of the system is conducted in
different development groups, and there are separate
groups for the integration, verification and validation
activities. As the system has evolved over several years
and parts of it have been replaced with new solutions, the
development environment as also been changed. For
example two different configuration management systems
are used. Unique tools are used for the integration group
that also handles the build process. Developers have their
own set of tools for building on local systems. Training of
the developers is done as part of the general information
about the system given to the staff. The developers also
get hands-on training in the projects.

The system evolution is performed in an incremental
way. The implementation of a functionality described in
the requirement specification is distributed to different
integration points (IP), as shown in figure 2.

Fig 2. Distribution of functions and error corrections

The changes may occur in a project where the intended

functionality for IPn is redistributed to IPn (1) and to
IPn+1 (2). This redistribution is based on the progress in
the project, the priorities for the different functions as
determined by product management and the possibilities
to alter the decided integration strategy. Also the problem
reports and the error corrections related to them are
assigned to the different integration points (3 and 4).
Product and technology management decides what errors
should be corrected for a specific integration point.

The procedure used when reaching an integration
point is shown in figure 3. The width of the arrows in the
figure (4) represents the amount of new functions or error
corrections that are accepted for integration. As an
integration point is approached, the possibility to add new
functionality is reduced and increasingly monitored. This
is illustrated by the narrowing towards the point of the
arrow (1). As the “beta drop” is reached, the version is
branched to a release track. All release tracks are made
available to the organization for use in testing and further
development. Errors that are found in the verification and
validation are considered for correction for the new
integration point (2). After the release “beta drop”, the
development groups have the possibility to add new
functionality again (3).

Ver ValVer Val

Fig 3. Integration point activities

An important prerequisite for a working product

integration process is an appropriate build process. It is
also in the build process that many of the problems with
the product integration process appear. For our case study
system, the current build process has been in place for
four years and is continuously updated and improved.
Each day, the full system is built and generated for
several target systems with a total of more than 15
versions. A separate build machine is used, and each
build takes seven hours. As soon as a build is started, it is
possible to start delivering to the next one. New code to
be included in a system build is put on a build queue.
Once put in the queue, the component cannot be deleted
from the queue. The two different software configuration
management (SCM) systems used give different
protection against mistakes. One prevents mistakes, as
there are no possibilities to check code directly into the
build directories. The other SCM system makes a direct
merge into the release directory without the delivery
through the queue.

The build is normally done during night, so the result
of the build is known in the morning. The person
responsible for execution of the build process examines
the log files. In case of problems, the responsible persons
are notified and asked to correct the problem. The result
of a severe problem is normally that the build will be
delayed one day. However, as the deliveries in the new
build queue can be included, the setback may be different
for different parts of the project. Today, no metrics or
statistics are captured how often the problems occur or to
see what causes the problems in the integration process.
The error reports from the findings are however tagged
with the build identity to make error correction easier.

The problems identified in the case study relate to
three main areas. The first issue is the delivery of code to
the build process. The code may be delivered late, or a
function is not fully delivered. Also, the two different
ways to deliver the code for integration is a concern. One
system handles this automatically, while the other
requires manual checking that the right things are

Functions

Problem reports

10-12 weeksIP n IP n+1

Functions

Problem reports

10-12 weeksIP n IP n+1

Functions

Problem reports

10-12 weeksIP n IP n+1

included. The second issue is the low quality, e.g. errors
that cause the builds or initial integration tests (“smoke
tests”) to go wrong. This can be due to insufficient tests
and system generation by the developers. They normally
test only a few of the possible combinations. The result
may be that the system generated works for the tested
configurations but fails in the others. The final issue
relates to components that influence other parts of the
system. It may be that changes in include-files affect
other components. This is possible as no routine or
mechanism for how to handle the communication of
changes has been established. This and the second issue
may be discovered in the smoke test following the system
generation.

4. Analysis

When we compare the problems discovered in the case
study to the product integration expectations as described
in [3], we see several activities that can be put in place to
improve the process. The improvements of course can be
made without the introduction of CBSE. However, our
analysis of three main problem areas supports the idea
that a CBSE solution would reduce the difficulties.

A first improvement is related to the checks at
integration time and deals with the first two problems,
delivery of incomplete functions and code with low
quality. The rules for including a component at an
integration point should be appropriate so that they can be
followed both for major additions of functionality and for
minor error corrections. This means that the rules should
be suitable for different types of changes, but need to be
followed for all inclusions at an integration point. To
enable this, additional power must be given to the
integration team. The development groups will through
this lose some control but in return less often get unstable
systems or broken builds. The improved check at
integration time would be supported by CBSE as the
delivery of code to integration would be done as ready-
made components. This would also reduce the problem of
functions delivered before they are ready. Through the
use of CBSE, the poor quality can be reduced, as
components should be tested in all environments they are
envisioned to be used in.

The third and maybe most important problem area is
the need to handle dependencies, i.e. interfaces, between
different components more strictly. Changes to interfaces
should be controlled and communicated. To achieve this,
the interfaces must be sufficiently documented. Also, any
changes to the interfaces must be controlled at integration
time to ensure that they have been approved and
communicated. In CBSE, the separation of the processes
for developing components and for building systems into
two separate processes helps in better defining the

interfaces for the components. A component without a
clearly defined interface cannot be used unless the
developers of the system have full knowledge about the
component. Introducing a clear separation in this manner
would also increase the clarity in the dependencies
between the components. It would also make it possible
to have a more thorough, or strict, procedure for
accepting a new version of a component for a specific
integration point. Using CBSE, improved descriptions of
interfaces would diminish the influence from one
component to another, or at least make these
dependencies visible.

For all three main problems, we predict that CBSE
would help in reducing the problems. The cost is however
that the system, processes and organization need to be
changed to accommodate CBSE.

A first step would be the introduction of a complete
component model. There are experiences that by
introduction of component models have significantly
improved the development process [2]. Of course
introduction of a component model would require
additional efforts. First the existing code and basic
architecture should be reused as much as possible. This
implies that widely used components models such as
.NET or EJB are not appropriate. Rather a simple,
probably in-house developed component model should be
deployed. This component model could be built
incrementally, starting with basic principles such as
interface specification and automation of integration of
components.

A second effort required would be a componentization
of the existing code. Since today many of the
dependencies between the components are implicit, their
separation might be a tedious work. However such a
work would pay off in the long run, since errors made
today depending on hidden connections between
components would be reduced. Efforts to describe the
dependencies explicitly are being made in the case study
system today, with promising results. A continued work
in this direction would result in an architecture that is
properly documented and better cohesiveness of
components which are the basic prerequisites for efficient
system development and evolution.

Finally, the organization of projects and departments
to clearly divide the work into development of
components and development of the system is needed.

5. Conclusions and future work

A case study has been compared to the generic
requirements on a best practice product integration
process [3]. In addition to this, we have analyzed what
support the current process may get from using
component-based software engineering. Our conclusion is

that several of the requirements for a well working
integration process can get substantial support through
skilled use of well defined components. The support
comes from the fact that components should be well
documented, tested in the environment they are intended
for and that any dependencies to other components (or the
environment) should be explicitly highlighted.

Future work should include additional case studies in
industry. Both development units working with
components and with traditional software need to be
further examined. These investigations need to include
measurements on the problems caused by an insufficient
integration process as well as root cause analysis. The
purpose of these investigations would be to confirm or
refute the conclusions in this paper that CBSE helps in
providing a platform for efficient and effective software
product integration.

Further additional analysis should be done on a
feasibility of full componentization of the systems. The
efforts and return-on-investments for re-architecting and
for development and introduction of a component model
should be estimated.

6. References

[1] Szyperski, C. Component Software -- Beyond Object-
Oriented Programming, Addison-Wesley, Reading, MA, 1998.

 [2] Crnkovic, I., and M Larsson, Building reliable component-
based software systems, Artech House, Boston, 2002.

 [3] Chrissis, M.B., M. Konrad, S. Shrum, CMMI, Addison-
Wesley, Boston, MA, 2003.

[4] Zeidler, C., Componentware Glory and Crux for early
industrial adopters, Object Oriented Programming conference
OOP 2000, Munich, Germany, 2000.

[5] Winter, M., C. Zeidler and C. Stich, "The PECOS Software
Process", Workshop on Components-based Software
Development Processes, ICSR 7, Austin, TX USA, 2002.

[6] Müller, P., C. Zeidler, C. Stich and A. Stelter, "PECOS —
Pervasive Component Systems", Workshop on ”Open Source
Technologie in der Automatisierungstechnik”, GMA Kongress,
Baden-Baden, Germany, 2001.

[7] The OOSPICE project, http://www.oospice.com

[8] Stallinger, F., B. Henderson-Sellers and J. Torgensson, ”The
OOSPICE Assessment Component: Cusomizing Process
Assessment to CBD”, in Business Component-Based Software
Engineering, edited by F. Barbier, Kluwer Academic Publishers,
Boston, USA, 2002.

[9] Kotonoya, G. and A. Rashid, A strategy for Managing Risk
in Component-based Software Development, Euromicro 2001
CBSE workshop, Warsaw, Poland, 2001.

