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Abstract—Autonomous vehicular systems require computer
vision and intelligent on-board decision making functionalities
that include a mix of sequential and parallel workloads. The
execution times of the workloads and power consumption in
these functionalities can be lowered by utilizing the accelerators
(e.g., GPU) instead of running the workloads entirely on the host
processing units (CPU). However, allocating all the parallelizable
workload to accelerators can create a computation bottleneck
in the accelerators that, in turn, can have an adverse effect
on schedulability of the systems. This paper presents a novel
framework that can allocate the accelerate-intensive workloads to
the accelerators as well as to the non-accelerated host processing
units. Within the context of this framework, the paper introduces
five offloading techniques to mitigate the accelerator-intensive
workloads by utilizing excess capacity of non-accelerated pro-
cessing units under dynamic scheduling in CPU-GPU heteroge-
neous processors. The proposed techniques are evaluated using
simulation experiments. The evaluation results indicate that one
of the proposed techniques can achieve up to 16% improvement
in schedulability of the task sets compared to the traditional
non-offloading technique.

I. INTRODUCTION

Employing accelerators in modern embedded platforms in-
creases the diversification of embedded system applications.
Examples of the accelerators include graphics processing units
(GPUs), field-programmable gate arrays (FPGAs) and digital
signal processors (DSPs), which are often used in parallel
programming applications like computer vision. The accel-
erators often perform better than general-purpose processors
(i.e., central processing units (CPUs)) with respect to latency
and power consumption. For example, in autonomous vehicles,
computer vision and intelligent decision making often require
the use of heterogeneous processors (e.g., CPU and GPU) [1],
[2]. However, the accelerators act as shared resources within
heterogeneous processors [3], [4], which brings challenges of
synchronization and blocking.

While the processing trend has been shifting from single-
core to multi- and many-core processors as well as to hetero-
geneous processors, the development of single-core processors
is also progressing, e.g., AMD Ryzen 5000 series with Zen3
architecture CPUs1 and 11-th Generation Intel Core i9 pro-

1https://www.amd.com/en/processors/ryzen

cessors2. In other words, the host processing units, CPUs,
in heterogeneous processors are becoming more and more
capable of assisting the accelerators in computing accelerator-
intensive workloads. This paper focuses on techniques to
offload accelerator-intensive workloads from GPUs to non-
accelerated host processing units in the systems with het-
erogeneous processors. We assume that accelerator-intensive
workloads contain a segment, a parallel segment, which can be
parallelizable on the accelerators. Furthermore, in this paper,
we consider that the applications that run on the heterogeneous
processors are constrained by real-time requirements.
The main contributions in this paper are as follows:
• We propose a new framework to allocate accelerator-

intensive workloads in CPU-GPU heterogeneous processors.
The proposed framework utilizes the alternative executions
of parallel segments of the workloads [4], [5] and the server-
based scheduling [6]–[8].

• Based on the proposed framework, we introduce five tech-
niques for mitigating the accelerator-intensive workloads by
lowering the overuse of the accelerators. The proposed tech-
niques use the resource-reservation mechanism by means of
servers to offload the execution of parallel segments of the
workload to non-accelerated host processing units.

• We perform a comparative evaluation of the proposed
offloading techniques with respect to the baseline tech-
nique that always executes the parallel segments on the
accelerators. The evaluation is performed on the basis of
schedulability of the task sets and the time to perform the
offloading.
The rest of the paper is organized as follows. Section II

discusses the related work. Section III presents the proposed
system model, followed by the proposed workload allocation
framework in Section IV. The offloading techniques for mit-
igating the accelerator-intensive workloads are presented in
Section V. Section VI presents the experimental evaluation.
Finally, Section VII discusses the conclusion and future work.

II. RELATED WORK

Historically, the adoption of heterogeneous processors is
intimately bound to the development of supercomputers, espe-
cially, in the area of distributed heterogeneous supercomput-
ing [9]. The execution times of the workloads can vary a lot

2https://www.intel.com/content/www/us/en/products/details/processors/
core/i9.html978-1-7281-2989-1/21/$31.00 ©2021 IEEE



depending on what type of processing units they are executed
on. To this end, there are several existing works that focus
on how to allocate applications to the appropriate processing
units in order to achieve the best-case execution time, i.e., the
shortest execution time [5], [10], [11]. In contrast, the work
presented in this paper focuses on offloading the accelerator-
intensive workloads, constrained by real-time requirements,
e.g., deadlines on the response times of the workloads, to the
available non-accelerated host processing units.

The heterogeneous processors considered in this paper con-
sist of mainly two parts: (i) a host processing unit, CPU,
and (ii) accelerator(s) that include GPUs and FPGAs, among
others. There exist several research trends on how to tackle
heterogeneous processors in real-time systems. One of the
research trends is to explore the properties of accelerators
in heterogeneous processors since a host processing unit is
a well-studied single-core CPU. The existing works in this
regard include TimeGraph [12], Gdev [13], the black-box
method [14], to mention a few.

Another line of existing works targets resource management
in the systems that use heterogeneous processing units. There
are several works [15]–[17] that focus on splitting a task
on accelerators for improving the schedulability. Moreover,
TimeGraph [12], GPUSync [18], and the works by Kim et
al. [19] and Biondi et al. [20] consider schedulability analysis
of the systems that use heterogeneous processors. These works
focus on accelerators, which obviously offer better (shorter)
execution times of the compute-intensive workloads compared
to the executions on the host processing units. On the other
hand, the work in this paper aims at mitigating the accelerator-
intensive workload by efficiently offloading it to the non-
accelerated host possessing units.

There exist several works that support server-based schedul-
ing on single- and multi-core CPU(s) such as the constant
bandwidth server (CBS) [6], total bandwidth server (TBS) [7],
polling server (PS), sporadic server (SS) and deferrable server
(DS) [8]. The work presented in this paper uses the DS. Some
of the existing works also address the challenge of using
the server-based scheduling in accelerators. For instance, the
works in [21], [22] show that the server-based scheduling on
accelerator(s) can improve the schedulability of the systems
that use heterogeneous processors. In comparison to these
works, the work presented in this paper uses the server-based
scheduling in the host processing units instead of accelera-
tors. The rationale behind this decision is that the proposed
framework offloads the accelerator-intensive workloads to host
processing units for efficiently utilizing their excess resources
to assist the accelerators.

The idea of using alternative executions of parallel segments
of real-time workloads is discussed in a few works [4], [23].
Baruah [23] applies conditional branching by using the if-
then-else construct for two or more alternative executions of
a workload. Moreover, a scheduling approach is introduced
based on the conditional DAG model for reserving the neces-
sary amount of computing resources. Tsog et al. [4] discuss a
static allocation of real-time tasks using alternative execution
of parallel segments of the tasks. Both works construct the
fundamental of alternative executions of segments under real-
time constraints. However, dynamic allocation of tasks using

the alternative executions of parallel segments is missing from
the state of the art. Provisioning of such an allocation is the
main focus of the work presented in this paper.

III. SYSTEM MODEL

We consider compute-intensive tasks that heavily require
the use of accelerators such as GPUs. A periodic task, τi, is
characterized by the tuple {Si, Di, Ti}, where Si represents
the set of finite sequence of execution segments of the task,
Di identifies the relative deadline of the task, and Ti represents
the task’s period. Furthermore, Si consists of l sequential
and parallel segments, {Si,1, . . . , Si,l}, where l ∈ N, i.e., it
follows the traditional fork-join task model [24]. Regarding
a parallel segment (Si,j , 1 < j < l), we consider the model
of alternative execution of parallel segments according to the
work in [4]. Fig. 1 illustrates these execution segments as well
as alternative executions of parallel segments. Traditionally,
a sequential segment is executed on CPU as it can only be
executed in sequential manner. In contrast, a parallel segment
can be executed either in a sequential/parallel manner.

In most cases, executing a parallel segment in parallel
manner improves its execution time compared to executing it
in a sequential manner. Hence, the developers tend to allocate
parallel segments to GPU (or on CPU with multi-threading
techniques) to execute them in parallel manner as shown in
Fig. 1(a). This may not be efficient in all cases, especially
when a parallel segment can be executed in a sequential
manner if the GPU is busy serving other parallel segments.
Fig. 1(b) illustrates the two alternatives to execute the parallel
segments. In this paper, we consider that a parallel segment
is executed in parallel manner only on GPU and in sequential
manner only on CPU. This means that an instance of a parallel
segment can be executed on GPU in parallel manner, while
another instance of the same parallel segment can be executed
on CPU in sequential manner.

The execution time Ci,j of any segment Si,j of task τi is
described by (1), where hi,j expresses the allocation decision
of the segment Si,j to the processing units, and CCPU

i,j and CGPU
i,j

are the execution times of the segment Si,j on CPU and GPU,
respectively. In other words, hi,j = CPU and hi,j = GPU mean
that the segment is allocated to CPU and GPU, respectively.

Ci,j =

{
CCPU
i,j , if hi,j = CPU

CGPU
i,j , if hi,j = GPU

(1)

We consider that the execution time Ci of task τi is
the summation of the total execution times of its sequential
segments on CPU and parallel segments on GPU, i.e.,

Ci =
∑

∀τi,j |hi,j=CPU

Ci,j +
∑

∀τi,j |hi,j=GPU

Ci,j (2)

We define CCPU
i and CGPU

i as the total execution times of task
τi on CPU and GPU respectively.

CCPU
i =

∑
∀τi,j |hi,j=CPU

Ci,j (3)

CGPU
i =

∑
∀τi,j |hi,j=GPU

Ci,j (4)



(a) Sequential and parallel segments

(b) Applying alternative executions to parallel segment

Fig. 1: Difference between parallel segments applied with and
without alternative executions.

Hence, the execution time Ci can be represented as:

Ci = CCPU
i + CGPU

i (5)

Intuitively, the utilization of task τi is defined as:

Ui = (CCPU
i + CGPU

i )/Ti (6)

Note that the value of Ci depends upon how its segments
are allocated. To distinguish if a task τi is CPU-heavy or GPU-
heavy, we consider a metric, µi, which is defined as conversion
ratio between CCPU

i and CGPU
i , i.e,

µi = CCPU
i /CGPU

i (7)

The objective of this paper is to lower the utilization of
highly-utilized accelerators and reduce the response times of
middle and low priority tasks. The response time of task τi is
expressed by the parameter Ri.

IV. PROPOSED WORKLOAD ALLOCATION FRAMEWORK

The proposed allocation framework, illustrated in Fig. 2,
considers the allocation of parallel and sequential segments of
tasks differently. A given sequential segment is allocated to a
CPU, while different sequential segments might be allocated
to different CPUs, and these allocations are fixed. This means,
a sequential segment that is ready to execute will be allocated

to the appropriate CPU queue. The CPU queues follow the
priority-based preemptive scheduling policy. The priorities are
assigned according to the rate-monotonic algorithm. However,
any other scheduling policy can be used in the CPU queues
using the proposed allocation framework, e.g., earliest deadline
first.

We introduce an allocator to efficiently manage the exe-
cution of parallel segments. All parallel segments that are
ready to execute are placed in the allocator queue as shown in
Fig. 2. The allocator, in turn, decides which parallel segment to
allocate to the GPU or CPU depending upon the availability of
these compute units. As the first step, we consider the priority-
based arbitration in the allocator queue such that the highest
priority parallel segment is selected for allocation to the GPU
or CPU. Other arbitration policies can also be applied such as
the first-come-first-served policy. However, incorporation of
the other policies within the proposed framework is left for
the future work.

We assume that only one parallel segment executes on the
GPU at a time and it is non-preemptive. This assumption is in
line with the assumption of running one task on GPU at a time
considered in the previous works [18], [19]. Furthermore, the
policies for scheduling of tasks in the GPU proposed by Elliot
et al. [18] and Kim et al. [19] can be used. The main difference
between these policies is whether to keep the selected ready
parallel segment in busy waiting or self suspension if the
compute resources are busy. In this paper, we consider the
self-suspension policy [19].

The proposed framework relies on the server-based dynamic
scheduling to ensure that CPU resources are reserved to
execute the parallel segments. For this purpose, we adopt
the deferrable server (DS) with synchronization to m multi-
core CPUs [8]. Other servers such as the Constant Bandwidth
Server, Total Bandwidth Server, and Sporadic Server are also
applicable. The DS, considered in this paper, is a set of m
synchronized deferrable servers (SDS), which is characterized
by an (m+1)-tuple {Ts, Qs1 , Qs2 , ..., Qsm}, where Ts is the
common replenishment period of the SDSs and Qsi is the
maximum capacity/budget of the i-th DS. We assume that each
server has the highest priority in its respective CPU queue.
Parallel segments are allocated to a single CPU server at a
time. However, this restriction does not limit the execution
of a parallel segment on different CPU servers. Thus, it is
possible to dynamically allocate a given parallel segment to
different servers throughout its execution.

V. OFFLOADING TECHNIQUES

Traditionally, all parallel segments are allocated to accel-
erators in order to exploit the high-performance computing
potential of the accelerators. However, this can have an
adverse effect on the response times of the middle- and
lower-priority tasks allocated to the accelerators when priority-
based arbitration is used in the allocator queue. To address
this, we consider to offload accelerator-intensive workloads,
especially the middle and low priority parallel segments, to
non-accelerated host processing units. However, the execution
time of the parallel segments on non-accelerated devices is
mostly longer than the execution time on the accelerator. That
is, µi (see Equation 7) can reach up to 20 [25], [26] or even



Fig. 2: Proposed workload allocation framework based on server-based global scheduling of heterogeneous processors.

more as it is related to the type of CPU and GPU. In this
paper, we consider the value of µi to be between 1.5 and
10. Note that due to the offloading strategy, the execution of
parallel segments on non-accelerated processing units using
servers can block the sequential segments of higher priority
tasks.

There are two main concerns regarding the offloading tech-
niques: (i) how to lower the overhead of allocation time while
dynamically allocating the parallel segments to the compute
units using the offloading techniques? and (ii) how to mitigate
the impact of the allocation techniques on higher priority
parallel segments? That is, how to reduce the time between
the instant when the task is ready and the instant when it
starts executing in the GPU? We introduce five offloading
heuristic techniques for dynamic allocation of accelerator-
intensive tasks in Sections V-B- V-F in order to explore the
potential impacts using these techniques. Optimal algorithms
for allocating tasks to heterogeneous processing are NP-hard
problems [27]. The main difference among these techniques is
how they address and balance the above mentioned concerns.
Note that we do not consider the genetic algorithms based
techniques as their computation time is very high due to which
they are not preferable for dynamic allocations [4], [28].

A. Baseline: Default Allocation Technique (DAT)

The DAT allocates all parallel segments to the GPU. Hence,
this technique does not offload parallel segments to the non-
accelerated host processing units. We consider the DAT as the
baseline for comparative evaluations (discussed in the next
section).

B. Naive Offloading Technique (NOT)

The NOT has no intelligent decision mechanism for offload-
ing the parallel segments. This technique is intended to reveal
the difference of computing performance between the host
processing unit and accelerator devices. In short, this technique
allocates parallel segments to the devices in the order of their
available computing capacity. This technique can be expressed
in the following steps.

• Step 1. Compute a list of available devices based on their
computing capacity.

• Step 2. Allocate the parallel segment with the highest
priority in the allocator queue to the device with the highest
computing capacity in the list of available devices.

• Step 3. Repeat Step 2 until there are no available devices
or no tasks in the allocator queue.

C. Min-min Fashioned Offloading Technique (MOT)
The min-min bin-packing approach is a well-known ap-

proach by packing rule and packing results [28]. The MOT
offloading technique for parallel segments to non-accelerated
devices is based on the min-min bin-packing approach. This
technique is described by the following steps.
• Step 1. When there are available accelerators, allocate the

highest priority parallel segments from the allocator queue
to the accelerators.

• Step 2. If the allocator queue is empty then either all the
allocator segments have been allocated to the accelerators
and/or there is no ready parallel segment. If the allocator
queue is not empty and there are no more accelerators
available then go to next step.

• Step 3. Select the parallel segment with the highest priority
in the allocator queue.

• Step 4. Calculate the summation of the current waiting
time of the selected segment in the allocator queue and its
execution time on the accelerator (GPU).

• Step 5. Calculate the difference between the summation
(calculated in Step 4) and the execution time of the parallel
segment on the CPU. If the difference is negative, allocate
the segment to the CPU. Otherwise, allocate the segment to
the GPU.

• Step 6. Repeat Step 1 if the allocator is not empty.

D. Speedup Classifier Based Technique (SCT)
The offloading technique is based on the speedup classifier

bin-packing algorithm, which is studied in several works
within the context of heterogeneous processors [4], [5]. As
illustrated in Fig. 3, the different versions of this technique
can exist based on selection of the classifier. In this paper,



we select µi as the classifier. The SCT follows the following
steps.

Fig. 3: A sorted task queue based on speedup classifier.

• Step 1. Sort the parallel segments in the allocator queue
according to the speedup classifier, which is µi in this case.
This means, the segments with smaller µi will be stored on
right side (close to the accelerator) and the segments with
larger µi will be at placed at the left side (close to the non-
accelerated device).

• Step 2. Allocate the parallel segments with the smallest µi
to an accelerator with the higher computing capacity when
there are available accelerator(s). Repeat this step until there
is no available accelerator.

• Step 3. If there are parallel segments in the allocator queue
and non-accelerated devices (CPUs) are available, allocate
the parallel segment with the highest µi to the available
CPU. Repeat this step until all CPUs are unavailable.
A disadvantage of this technique is that the parallel task

segments that have the smallest and largest values of the µi
classifier are prioritized compared to those with average values
of the µi classifier. This means that a higher priority parallel
segment with the average value of the µi classifier can be
blocked by a lower priority parallel segment with a higher or
lower value of the µi classifier.

E. Synchronized Servers Technique (SST)

This technique uses several servers to offload parallel seg-
ments to the non-accelerated devices. This technique can be
described by the following steps.
• Step 1. Allocate the highest priority parallel segments to the

available accelerators.
• Step 2. Repeat Step 1 until no more available accelerators.
• Step 3. If no parallel segment is currently using any server

capacity, pick the parallel segment with the highest priority
in the allocator queue. Otherwise, jump to Step 6.

• Step 4. Calculate the summation of the current waiting
time of the selected segment in the allocator queue and its
execution time on the accelerator (GPU).

• Step 5. Calculate the difference between the summation
(calculated in Step 4) and the execution time of the parallel
segment on the CPU. If the difference is negative, allocate
the segment to the CPU. Otherwise, allocate the segment to
the GPU. Select a parallel segment with the second-highest
priority in the allocator queue and repeat Step 4.

• Step 6. In step 3, if there is a parallel segment that is
currently using a server budget, then check whether the
current server has a left over capacity to serve new requests.

If yes, continue to run the parallel segment on the same
server. Otherwise, switch the parallel segment to the next
available server.

• Step 7. Repeat Step 6 until no more servers are available
or the parallel segment completes its execution. In the
former case, the execution of the parallel segment should
be postponed until the start of the next period of the server
and then repeat Step 6.

F. Efficient Offloading Technique (EOT)
We adapt the previous techniques to propose an efficient

offloading technique. The EOT consists of the following steps.
• Steps 1-2. The first two steps are the same as that of Steps

1-2 in the SST.
• Step 3. If no parallel segment is currently using any server

capacity, pick the parallel segment of the lowest priority
task in the allocator queue as the lowest priority task tends
to miss its deadline. Otherwise, jump to Step 5.

• Step 4. Allocate the selected parallel segment to a server,
which runs on next CPU to the CPU that handles the
sequential segment of the same task. Allocate the selected
parallel segment to a server with the index of i + 1 when
the index of the server that serves the sequential segment
of the same task is i. It is worth to note that we consider
the server index of 1 instead of i+ 1 when i equals to m.
This avoids to block the higher-priority sequential segments
of other tasks assigned to the same server of the sequential
segments of the select parallel segment’s task.

• Step 5. In step 3, if there is a parallel segment that is
currently using a server budget, then check whether the
current server has a left over capacity to serve new requests.
If yes, continue to run the parallel segment on the same
server. Otherwise, switch the parallel segment to the next
available server.

• Step 6. Repeat Step 5 until no more servers are available
or the parallel segment completes its execution. In the
former case, the execution of the parallel segment should
be postponed until the start of the next period of the server
and then repeat Step 5.

VI. EXPERIMENTAL EVALUATION

A number of synthetic experiments are performed to evalu-
ate a wide range of application parameters using the proposed
framework and offloading techniques.

A. Task Set Generation and Experimental Setup
Table I illustrates the configuration that is used to generate

the task sets. The task generation technique is based on the
UUniFast algorithm [29]. The UUniFast is used in two ways
to generate a task. First, using the given system utilization U ,
the UUniFast generates n random task utilizations for n tasks.
For example, Ui represents the utilization for the task τi. The
simulator initializes the following basic parameters of a task:
• period Ti,
• number of parallel segments
• ratio of the length of parallel and sequential segments, and
• conversion ratio of parallel segments µi.

The UUniFast generates the random length of parallel and
sequential segments based on each task utilization and the total



execution times of parallel and sequential segments. The total
execution times of parallel and sequential segments are derived
from the task utilization, the period and the ratio of the length
of parallel and sequential segments. In order to generate an
alternative of parallel segments (i.e., the sequential execution
of parallel segments), the conversion ratio of parallel segments
µi is used. The value of µi is randomly selected between
1.5 and 10, which is in line with the existing experimental
studies [25], [30], [31].

TABLE I: Initial configuration of task set generation.

Parameters Values
Number of CPU cores (Np) 4, 8
Number of GPUs 1
Number of tasks (n) [Np, 10Np]
System utilization (U ) 0.5-2
Task period and deadline (Ti = Di) [30, 500]ms
Ratio of parallel to sequential
segments length (CGPUi /CCPUi ) [0.1, 3]
Number of parallel segments per task (ηi) 1-3
Conversion ratio of parallel segments (µi) [1.5-10]
Server utilization (Qsi/Ts) [20-40]%
The common period of the SDSs (Ts) [30, 500]ms

In each experiment, the synthetic experiment simulator is
run until the schedulability of the task set converges to the
given condition. The simulator is executed minimum 100 times
with 3,000,000 cycles to get the variance of schedulability
of the task sets. Based on the variance value, the simulator
continues to execute until 200 times in fast-converging cases
and 500 times in slow-converging cases.

B. Offloading Techniques

We perform comparative evaluation of five offloading tech-
niques (NOT, MOT, SCT, SST and EOT), presented in Sec-
tion V, with respect to the DAT technique (Section V). The
DAT acts as the baseline technique as it does not support
offloading the parallel segments to non-accelerated processing
units. Note that the NOT, MOT, SCT are focused on executing
parallel segments on a CPU server, while the SST and EOT
consider to execute parallel segments on multiple synchronized
CPU servers. The input to the offloading techniques is a
set of tasks that must fulfill the input requirements of the
task model (Section III) such as segments’ deadlines. The
execution on CPU is preemptible and self-suspending, while
the execution on GPU is non-preemptive. The execution traces
in the experiments are evaluated until the hyperperiod (least
common multiple of all periods) of the task set, which takes
3,000,000 cycles.

C. Evaluation Results

This subsection presents the evaluation results of the fol-
lowing three groups of experiments.
• Experiment A focuses on the comparative evaluation of the

offloading techniques.

Fig. 4: Schedulable task sets w.r.t. the total number of tasks
in the system with 4 CPU cores and 1 GPU.

• Experiment B performs a detailed comparative evaluation of
the EOT and the baseline technique (DAT) using different
experimental setups.

• Experiment C focuses on evaluating the time to perform the
offloading using various offloading techniques.
The experiments simulate 4 or 8 CPU cores and 1 or 2

GPUs. The implementation of the experiments can be extended
to more than 8 CPU cores and more than 2 GPUs. However,
such extensions are left for future work.

1) Experiment A: Fig. 4 illustrates the performance of
the five offloading techniques in terms of the percentage
of schedulable task sets with respect to the total number
of tasks in the system (with utilization equals to 1). The
NOT, MOT, SCT and SST show similar trend of schedulable
task sets compared to the DAT and EOT, although there are
some big differences between these two sets of techniques.
This confirms that these four techniques (NOT, MOT, SCT
and SST) focus on only part of properties for mitigating
accelerator-intensive loads. Among these techniques, the SCT
shows better results. The reason is that the SCT allocates a
parallel segment with highest conversion ratio µi to CPU and
the lowest conversion ratio to GPU. So, the SCT reorders
the priority of the tasks and allocates them to the appropriate
processing units. However, this can considerably change the
order of the execution.

The DAT and EOT show the best results among the lot.
More specifically, the EOT shows slightly better results than
the DAT. It can be concluded that the use of accelerators is
one of the best choices with respect to the schedulability of
the task sets. However, the results of the EOT indicate that the
improvement can be achieved by better utilizing all computing
resources in the heterogeneous processors. Since the DAT and
EOT are the best performing techniques, we focus only on
them while performing a detailed comparative evaluation in
the next simulation experiment.

2) Experiment B: In this simulation experiment, we con-
sider how the EOT handles the schedulability of the task sets.
Fig. 5 illustrates the percentage of schedulable task sets with



Fig. 5: Percentage of schedulable task sets with respect to the
system utilization under the EOT and DAT techniques.

respect to the system utilization under the EOT and DAT
techniques. The results indicate that the EOT performs better
than the DAT, although the relative improvement is small. In
the case of system utilization U = 1, the EOT with both 12
and 24 tasks shows the maximum improvements of 16% and
8% under dynamic scheduling.

Fig. 6 describes how the conversion ratio of parallel segment
to sequential segment (i.e., µi) manipulates the schedulability
of task sets. The horizontal axis expresses the maximum
value that µ can take. We see that the EOT performs better
than the DAT until the value of µi reaches 10. This means,
our proposed framework can perfectly handle the accelerator-
intensive workloads even if the accelerators compute 9 times
faster than the host device.

Fig. 6: Percentage of schedulable task sets with respect to
variations in maximum value of µi under the EOT and DAT
techniques.

Fig. 7 depicts how the variation in the ratio of the length

of parallel and sequential segments, CGPUi /CCPUi , influences
the schedulability of the task sets under the EOT and DAT
techniques. Both techniques show a similar trend in the
results; however, the EOT performs slightly better than the
DAT. This confirms again that the use of accelerators for
parallel segments is the best choice generally. There exists a
slightly small improvement window between the essential use
of accelerators and the total use of heterogeneous processors.
When the length of parallel segments is equal to 75% of the
entire execution time of the tasks, we observed up to 16%
improvement in the schedulability of the task sets with respect
to the DAT.

Fig. 7: Percentage of schedulable task sets with respect to the
ratio of the length of parallel and sequential segments µi under
the EOT and DAT techniques.

3) Experiment C: In this experiment, we extract the execu-
tion traces of the simulation of schedulable task sets. Table II
shows the mean time to perform the offloading. The DAT
shows the best mean time to perform offloading (22.33s),
while the SCT gives the worst results (37.19s). The MOT
and NOT more or less take the same time to perform the
offloading. The reason is that these techniques select a parallel
segment to allocate to the CPU, while the SCT needs to create
a list, ordered by the µi, before selecting to allocate a parallel
segment to the CPU. The SST shows the best results among
the NOT, MOT, SCT and SST. In the SST, only one task can
use the servers, which explains why the SST shows the best
results among the four techniques.

Although the DAT performs the best in terms of the time
to perform the offloading (22.33s), the EOT also performs
nearly best (23.52s). This is because the EOT leverages the
advantages of the NOT, MOT, SCT, and SST techniques.

VII. CONCLUSION

This paper presented a novel and efficient framework to
allocate parallel segments of the accelerator-intensive work-
loads to non-accelerated processing units in the CPU-GPU
heterogeneous processors under dynamic scheduling. Within
the context of this framework, the paper proposed five offload-
ing heuristic techniques for mitigating the accelerator-intensive
workloads. The use of accelerators for parallel segments of the



TABLE II: Mean time to perform the offloading under various
offloading techniques.

No. Offloading Techniques Experiment mean time
1 DAT 22.33s
2 NOT 34.49s
3 MOT 33.15s
4 SCT 37.19s
5 SST 28.75s
6 EOT 23.52s

tasks is crucial and is an excellent choice in most cases. In
this regard, the paper showed that a considerable improvement
can be achieved if all processing units in the heterogeneous
processors are better utilized, i.e., by efficiently offloading
some of the parallel segments to non-accelerated compute
units. The evaluation results indicate that one of the proposed
techniques, namely the efficient offloading technique, can
achieve up to 16% improvement in schedulability of the task
sets under dynamic scheduling compared to the non-offloading
technique. It is worth to note that we have not optimized the
SDS in this paper. In other words, the optimization of the
SDS can improve the proposed framework and we consider
it as future work. Another area of future work will focus
on improvement of the proposed framework and offloading
techniques using the pipelining technique. Furthermore, to
expand our investigation to the use of multiple GPUs and/or
different capacity of processing units entails another line of
future work.
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