
Quality Improvements by Integrating Development Processes

Annita Persson Dahlqvist1, Ivica Crnkovic2, Ulf Asklund3

1Ericsson AB, Molndal, Sweden,

Annita.Persson.Dahlqvist@ericsson.com
2Mälardalen University, Department of Computer Science and Engineering, Västerås, Sweden,

ivica.crnkovic@mdh.se
3Department of Computer Science, Lund University, Lund, Sweden,

ulf.asklund@cs.lth.se

Abstract
Software is an increasing and important part of many

products and systems. Software, hardware, and system
level components have been developed and produced
following separate processes. However, in order to
improve the quality of the final complex product,
requirements and prospects for an automatic integrated
process support are called for. Product Data
Management (PDM) has focused on hardware products,
while Software Configuration Management (SCM) has
aimed to support software development. Several attempts
to integrate tools from these domains exist, but they all
show small visible success. The reason for this is that
integration goes far beyond tool issues only. According to
our experiences, three main factors play a crucial role for
a successful integration: tools and technologies,
processes, and people. This paper analyses the main
characteristics of PDM and SCM, describes the three
integration factors, identifies a model for the integration
process, and pin-points the main challenges to achieve a
successful integration of hardware and software
development. The complexity of the problems is shown
through several case studies.

1. Introduction

Traditionally, hardware development has been
separated from software development. The development
processes have been separated and different tools have
been used to support these processes. In fact, software
products have been clearly separated from hardware
products during development, and they have not been
integrated before the start of system verification. Today
this border between hardware and software begins to
vanish. The final product is a result of tight integration of
hardware and software components and the decision
whether a specific function should be implemented in
hardware or software may come late in the project and

may even change during the products life cycle. When the
border become vague it is no longer possible to keep the
development organizations separated and to use different
life cycle processes, but they should be integrated.
However, the requirements for such integration points out
a number of problems: process adjustments, information
exchange, access and flow, infrastructure support, tool
integration, cultural differences, etc. To integrate the
processes and the tools have been difficult problems and
challenges for many companies [2].

Product Data Management, PDM, is an engineering
discipline including different methods, standards, and
tools. It (i) manages the data related to products, (ii)
supports procedures during the product lifecycle, and (iii)
deals with the development and production infrastructure
[1],[2],[14]. Traditionally PDM deals with hardware
components only.

The software development phase is characterized by
collaboration and coordination of many developers.
Software Configuration Management, SCM, manages this
type of complexity. The scope of SCM is to (i) keep track
of all the files and modules constituting the product, (ii)
manage all the changes made to these items during their
entire life, and (iii) manages all documentation related to
the product [1],[2],[14].

On the system level, where hardware and software
components are integrated, the goal is to control the
product development process for the entire product
[1],[2]. To effectively manage a complex system on the
system level, adjustments of all included processes are
needed [4],[14]. To bridge the gap between PDM and
SCM, three main factors are crucial; (i) processes, (ii),
tools and technology and (iii) people and cultural
behaviors.

During 2001 the Association of Swedish Engineering
Industries sponsored a project about PDM and SCM. As
part of this project several case studies were performed,
e.g. ABB and Ericsson AB, in order to analyse concrete
current requirements and solutions. The project resulted

Inception TransitionConstructionElaboration

Inception TransitionConstructionElaboration

Inception TransitionConstructionElaboration

Increment 1

Increment 2

Increment 3

Inception TransitionConstructionElaborationInceptionInception TransitionTransitionConstructionElaborationElaboration

Inception TransitionConstructionElaborationInceptionInception TransitionTransitionConstructionElaborationElaboration

Inception TransitionConstructionElaborationInceptionInception TransitionTransitionConstructionElaborationElaboration

Increment 1

Increment 2

Increment 3

Concept
Design

System Level
Design

Detail
Design

Testing and
Refinement

Production
Ramp-up

Concept
Design

System Level
Design

Detail
Design

Testing and
Refinement

Production
Ramp-up

in a report [1]. The work went further, more case studies
were performed, Sun Microsystems, and Mentor
Graphics, which resulted in a book published by Artech
House [2].

In this paper we use our experiences from these earlier
studies to analyze the gains of integrating PDM and
SCM. We identify the main challenges to achieve a
successful integration of hardware and software
development processes, mainly on the development
phase. We have focused on the two domains PDM and
SCM, and our analysis is based on studies of different
PDM and SCM tools and several case studies from large
companies using PDM and SCM with different levels of
integration. The case studies were made during several
years and some of the findings have been published
[2],[1],[3],[11]. This paper gives an overview of our
conclusions, illustrated by some of the cases.

The remainder of this paper is organized as follows.
The important integration issue, life-cycle processes, is
discussed in section 2 in which we point out some major
similarities and differences between hardware and
software development processes. The second factor, tools
and technology, is discussed in section 3. Major
differences and similarities in a technology aspect are
discussed. The third factor, people and cultural behaviors,
together with terminology are discussed in section 4. In
section 5 we discuss different integration aspects. Finally,
section 6 concludes the paper.

2. Development Processes and Infra-
structure Support

The development of hardware and software products
seams on a high level to be very similar. Similar
processes are used and the infrastructure and data flow
used to manage all information are also similar. The
question is if this similarity is deep enough to make it
possible to either integrate them seamlessly or to let one
of them acquire the other. Can software development
acquire a hardware development process, and vice versa?
To answer these questions we analyze both processes and
the underlying support from PDM and SCM: data flow,
information management, and standards used or
supported within these domains.

2.1. Processes and Underlying Principles of
PDM and SCM

Often the result of the development phase for a
hardware product is the set of many different documents
describing both the product itself and the included
components, e.g. drawings, manufacturing specifications,
bill of materials, etc. Everything included in a hardware
product has to be described and documented, before the

pre-production phase can start to produce a prototype,
which often is done once or twice before ramping-up the
production to full scale. In the pre-production phase the
documents are used by the manufacturing people often
located in another organization within or outside the
company. The manufacturing phase is usually long and
costly, e.g. a new production line has to be purchased and
set up, new tools have to be designed and produced.
Furthermore, changes to a hardware product have to be
done first in the documents and then in the production
phase.

The most commonly used process for hardware
development is the waterfall model, as shown in Figure 1.
The main characteristics are the sequential flow of
information, and the presentation of data and structures
following the physical structure of the product.

The most important PDM-related requirements for
hardware development are document management,
product structure management, and process support. The
objects managed in PDM are not the products themselves
but different data about the products designated as
metadata. This data is usually collected from different
tools and spread out through different organizations.

Figure 1. A generic Waterfall model commonly
used in hardware development.

During software product development the product is
often designed incrementally, i.e. planned parts of the
software are designed, integrated, and tested before next
increment starts. Figure 2 shows an example of three
increments and their activities [9]. The developers build
the executables often, sometimes on a daily basis. All
necessary documents are written in an incremental way
too. When all increments are finalized, the software is
built and released. The build, the production phase, is
very short and cheap compared to hardware production.

Figure 2. A generic incremental model
commonly used for software development

The most fundamental differences in the development
processes are the following: hardware development,
supported by PDM, follows a sequential process with a
clear separation between the phases. The software
development process, supported by SCM, is flexible, with
unclear borders between the phases. While outcomes
from different phases of hardware development differ

Design Archive
CAD/CAM

Design Archive
CAD/CAM

Design Archive
CAD/CAM

Design Archive
CAD/CAMDesign Archive

CAD/CAM

Design Archive
CAD/CAM

PDMPDMPDMPDMPDMPDM

Concept
Design

System Level
Design

Detail
Design

Testing and
Refinement

Production
Ramp-up

Design Archive
CAD/CAM

Design Archive
CAD/CAM

Design Archive
CAD/CAM

Design Archive
CAD/CAMDesign Archive

CAD/CAM

Design Archive
CAD/CAM

PDMPDMPDMPDMPDMPDM

Concept
Design

System Level
Design

Detail
Design

Testing and
Refinement

Production
Ramp-up

Concept
Design

System Level
Design

Detail
Design

Testing and
Refinement

Production
Ramp-up

SCMSCM
SCMSCM SCMSCM PDMPDM

Inception TransitionConstructionElaboration

SCMSCM
SCMSCM SCMSCM PDMPDM

Inception TransitionConstructionElaborationInceptionInception TransitionTransitionConstructionElaborationElaboration

significantly in form and even physical shape (a technical
drawing of a product is very different from the product
itself), the outcomes from software development phases
are very similar and often only transformations of each
other (for example, from a UML design code can be
partially generated, and the final production is a
transformation of source code into binary code). Such
facts make these processes incompatible.

2.2 Information Management and Data Flow
– A Case Study

A discussion of the hardware and software design
process and information usage in [14] concludes that
every company has its own customized development
process, usually a variant of the generic model. Therefore,
in this section we discuss a case study from the
telecommunication company Ericsson [15] where we look
into (i) where in the processes the information is
generated, (ii) in which tools the information is stored and
when, (iii) how the information is interchanged between
these tools, and (iv) how information is managed on a
system level.

During the development of hardware products,
information is created in all phases: during concept and
system level design mostly requirements documents, in
detail design phase the documents specifying the product,
in the testing and refinement phase the changes of the
product the change requests and documentation updates,
and during production ramp-up phase a few changes in
the documentation (see Figure 3). Drawing documents are
created in CAD/CAM tools. They are stored in the PDM
system for manufacturing accessibility. Some documents
will remain in the development tools due to internal
database structures not possible for extraction.

Figure 3. Processes and information storage for
a hardware product

Similarly in software development, information is
created in all phases. During the inspection phase,
documents describing different requirements on the
product are written. During the elaboration and
construction phases use cases, source codes, detailed
design descriptions, test cases, and user documentation
are written, executable files generated, and test cases

performed. In the phase transition, the final product is
tested for deployment. The software product is ready and
transferred to the PDM system for manufacturing
accessibility (see Figure 4).

In the case of hardware development we see that the
tendency is to save most of the information in a PDM
system, while in the case of software development it is
the SCM system that comprises most of the information,
although the final product information might be stored in
a PDM system. In both cases, PDM and SCM have a
similar integration role. The question is if in an integrated
environment, one of these systems can overtake the role
from the other (can PDM or SCM be exclusive
information integrator)? To answer this question we must
look at the differences and similarities between the tools
and underlying technologies described in section 3.

Figure 4. Processes and information storage for
a software product in one increment

2.3 Standards

Standards and de facto standards vary considerably, in
their scope, in their purpose, in the formality of their
acceptance, their use, etc. With respect to PDM and SCM
systems we can classify standards as those used for
information exchange in its broadest meaning, or
standards, which specify processes in particular, domains.
Further, there are standards, which are applicable to SCM
only or to PDM only, or standards, which are valid for
both PDM and SCM and, in many cases, for other
domains. Several CM standards were acquired by SCM.
Finally, there are standards which can be directly
implemented by software (typically the implementation of
particular protocols or the management of particular data
formats), and standards which involve human activities
and can possibly be supported, but not automated, by
tools (usually process-related standards).

PDM and SCM systems usually consist of several
tools that exchange data. As these tools have neither
common data nor a common information model and
exchange of information is one of the major problems in
their use.

For PDM there exist standards as ISO 10300 STEP
[13], and relating standards as ANSI/EIA-649 [10] Non-
consensus Standards for CM. Although PDM uses many
standards, there are no standards that are exclusively

intended for PDM systems. Many standards are closely
related to PDM and originate from PDM-related
requirements.

No explicit standards exist for SCM except related
standards for CM such as ISO 10007 Guide Line for
Configuration Management [12], IEEE STD 1042—1987
Guide to Software Configuration Management [6] and
IEEE STD 828-1998 Standard for Software
Configuration Management Plans [7].

There are different standards and models for different
Product Life Cycle Management (PLCs). Some standards
addresses the life cycles of systems closely related to
PDM and SCM, e.g. ISO/IEC FDIS 15288 Systems
Engineering – System Life Cycle Processes [8].

For integration purposes no standards exist today.

2.5 Conclusion

From a system level, there are requirements on
managing the whole product irrespective of its contents of
hardware and software components, i.e. interoperability
in the information flow. The development processes for
hardware and software development, although similar,
distinguish on a detailed, practical level. SCM and PDM
have different production phases; PDM with high cost,
long lead-time, and another organization involved, and
SCM short and cost effective with no other than the
developer team performing the product manufacturing
involved in the production phase. PDM-related and SCM-
related standards in CM exist, but they are too vague and
too little integrated in PDM and SCM to be used as a
common integration factor between PDM and SCM.

3. Tools and Technology View

In a well-integrated development process we need
tools that cover all development cases of both software
and hardware development. The question arising is: Is it
possible to use one of the tools or must we use both PDM
and SCM tools? To be able to answer this question we
discuss some basic functionality in the tools: data
representation, version management, management of
distributed data, product structure management, process
support, and document management.

3.1 Data Representation

The information in a PDM system is structured to
follow an object-oriented product information model.
Objects are of two different kinds: business items and
data items. Objects used to represent parts, assemblies,
documents etc. are designated business items. A business
item contains attributes and metadata. A PDM system
also manages files. A file is represented in the database as

a data item. The metadata that provides additional
information about data (file) is separated from the content
or actual data (file). Separating business items from data
items makes it easier to manage heterogeneous data.
Several business items can reuse a data item, which is not
possible in a standard file system. Figure 5 illustrates the
data representation of documents. The Cylinder consists
of two different documents, the CAD model and the
specification, represented by a business item each with
different metadata. The actual document or file is
represented by the data item and is related to the business
item, e.g. the Specification Large can have the file
Spec_can.doc related to it.

Figure 5. Data Representation of documents
The basic elements SCM deals with are files and

directories in a file system. Metadata for a file is stored
within the file and not in a separate database. Certain
SCM systems use a similar paradigm as the PDM systems
with a database containing metadata and files placed
outside the database, but they do no have defined product
structures.

Since PDM and SCM have different data
representations, their usage in the other domain is limited.

3.2 Version Management

In PDM systems, the versions of business items are
called revisions and are organized in sequential series.
The business item contains metadata, denoted attributes.
PDM supports customized attributes. Major changes of
business items are tracked by revisions manually
transformed by the user. Different revisions of a business
item are connected by a relationship, the revision-of
relationship. A PDM system may contain many other
relationships, which may have one or more attributes. If a
data item is changed, it may be checked in and out several
times without creating a new revision. Versions are used
to manage the sequence of data items but are usually not
visible to the users. Only one user at a time can update a
file, i.e. there is no support for concurrent engineering.

Versions in SCM form a graphical structure (see
Figure 6).

Part
Cylinder large
4444 Rev3

Specification
Spec. Large can
1321 Rev2

CAD model
Large can
1213 Rev4

Spec_can.doc Can_large.doc

Documents
(As business items)

Documents
(As data items)

Figure 6. Version management in SCM
SCM provides support for concurrent engineering:

several versions of a file can be developed simultaneously
in branches, which may be merged together again if
needed. Each time a file is checked out and in, a new
version is created. This corresponds to a version in PDM.
In SCM, however, versions are visible to the users and
are used frequently. A version of a file can be marked
with attributes. Versions are often marked using a special
attribute called tag or label. Labels almost correspond to
revisions in PDM. In SCM there is no support for
relationships. Because software developers usually work
on the same file at the same time, the branch and merge
mechanism is very important.

In spite of in principle similar mechanisms, the version
management in PDM and SCM is quite different and
would require significant changes in order to support the
other domain: SCM is missing advanced management of
attributes and relationships, PDM is missing advanced
version management.

3.3 Management of Distributed Data

Both PDM and SCM systems support distributed
development by enabling replication of data. There are
however differences. In the PDM system only metadata
or metadata and the files are replicated to other sites as
illustrated in Figure 7.

A typical PDM tool has a master server, often denoted
corporate server. This server contains common
information such as access rights for other servers, and
locations of them in the network. Irrespective of where in
the network the file is located, it is locked when it is
updated. A distributed lock mechanism controlled by the
master server prevents the check-out of a file by two

users at the same time. Such solution does not permit full
parallel development, a strategy commonly used in
software development.

Figure 7. Server replication in a typical PDM
environment

The SCM environment replicates the total file
including the metadata. SCM tools, the servers replicate
data between two nodes, using a peer-to-peer protocol.
Any structures of servers can be built by connecting
servers to each other. An example with four servers is
depicted in Figure 8. These examples show that the PDM
mechanism is not appropriate for distributed software
development. Similar is valid for SCM tools: in cases in
which metadata is more often manipulated the SCM
solution is not the most appropriate.

Figure 8. Server replication in a typical SCM
environment

3.4 Product Structure Management

Product structure management is a basic and
fundamental functionality in PDM systems [5]. The
product structure is a configuration of parts connected by
relationships. A database model supports the building of a

Attribute

Attribute

Attribute

Attributes Versions

File

Relationship

1

Branch

Merge

Label1
Label2

Labels

Label3

2

3

4

2.1

2.2

5

Replication

Local server

Site A

Repository

Local server

Site B

Repository

Local server

Site C

Repository

Local server

Site D

Repository

Replication ReplicationReplication

Local server

Site A

Repository

Local server

Site A

Repository

Local server

Site B

Repository

Local server

Site B

Repository

Local server

Site C

Repository

Local server

Site C

Repository

Local server

Site D

Repository

Local server

Site D

Repository

Replication Replication

Local server

Site A

Data A

Metadata

Metadata
ReplicationMetadata

Replication

Metadata

Corporate
Server

Metadata
Replication

Local server
Site B

Data B

Metadata

Local server

Site C

Data C

Metadata

Local server

Site D

Data D

Metadata

Local server

Site A

Data A

Metadata

Local server

Site A

Data A

MetadataMetadata

Metadata
ReplicationMetadata

Replication

MetadataMetadata

Corporate
Server

Metadata
Replication

Local server
Site B

Data B

Metadata

Local server
Site B

Data B

MetadataMetadata

Local server

Site C

Data C

Metadata

Local server

Site C

Data C

MetadataMetadata

Local server

Site D

Data D

Metadata

Local server

Site D

Data D

MetadataMetadata

product structure. Figure 9 shows an example of a
product structure of a bicycle. The structure is a so-called
quantified Bill-Of-Material (BOM) used in production for
collecting all objects and information.

Figure 9. Example of a product structure in a
PDM tool

Software uses a similar approach in object-oriented
design and programming. SCM tools however do not
explicitly address and support product structures. Only
rudimentary support in form of directories in a file system
is available for use in building a hierarchical structure.
SCM tools provide support for managing these structures.

3.5 Process support

Workflow management is a critical part in the product
definition life cycle to ensure that the right information is
available to the correct users at a proper time. It includes
defining the steps in the process, the rules and activities
associated with the steps, the rules for approval of each
step, and the assignment of users to provide approval
support. Workflows in PDM systems provide the
mechanism for modeling and managing defined processes
automatically. Data can be submitted to the appropriate
workflow for processing. Appropriate information is
routed automatically.

Some SCM tools incorporate similar functionality or
provide it using tools tightly integrated. However, in most
SCM tools the support consists of triggers only, which
can execute scripts written by the users.

From a system level perspective, the process support is
essential. Processes as change management, baseline
management, and document approval are examples on
processes useful for not only PDM and system level, but
for SCM too. In principle the support provided either by a
SCM tool or PDM tool can be used in both domains. The
problem that should be solved is the integration of the
tools, which are supposed to be triggered by events from
the workflow management tool.

3.6 Document Management

PDM has built-in functionality for managing
documents such as queries, viewing, and access control.
Document management is an important function in the
PDM systems. This function is not available in SCM.
However, developers prefer to work in their integrated
development environment; software developers prefer to
keep documentation in SCM although SCM does not
provide efficient support.

3.7 Conclusion

From the analysis of basic characteristics of PDM an
SCM tools we find that there are similarities in them, but
that the underlying concepts are quite different. PDM
tools support, document management, product structure
management, distributed development and awareness of
changes of documents. Of these features an SCM tool
does only support awareness of changed documents and
an effective replication between sites. On the other hand
SCM tools support concurrent engineering on file level,
and replication without locking on file level. A PDM tool
does not support these features. Using PDM tools for
development of software would be very difficult and
inefficient. Using SCM for hardware products would be
practically impossible.

4. People and Cultural View

The cultural differences between hardware and
software development groups play a much more
important role than visible when building integration
between PDM and SCM. First of all, both domains are
huge using completely different tools. Secondly, users
from the different domains do not have knowledge about
the other domain. Low communication between the
domains causes poor understanding of each other’s
problems and requirements. Thirdly, users from both
domains believe that the system they use can manage all
situations from the other domain [2],[11]. Fourthly, PDM
and SCM users are often located at different departments
within the company. Their geographical separation can
increase the gap in their understanding of the other group.
Fifthly, the hardware designer uses a lot of documents to
describe the product. These documents are transferred to
the production and manufacturing part used of another
person to produce the actual product. Hence, the
hardware designer focuses on documents. The software
designer writes a lot of source code. The designer then
generates the actual product, the load modules, with no
other person involved. Hence, the software designers
focus on source code more than documents and have

Tire HubSpoke

1 32 1

Saddle

Bicycle

Pedal WheelsHandlebars Frame

1 2 1 2 1

Tire HubSpoke

1 32 1

Tire HubSpoke

1 32 1

Spoke

1 32 1

Saddle

Bicycle

Pedal WheelsHandlebars Frame

1 2 1 2 1

Saddle

Bicycle

Pedal WheelsHandlebars Frame

1 2 1 2 1

Bicycle

Pedal WheelsHandlebars Frame

1 2 1 2 1

small understanding of the importance of writing
documents.

4.1 Terminology

Since both PDM and SCM are domains evolved
independently from each other and no common standard
occur some of their terminology differ. Different
terminology is used for the same concepts or different
terms for similar concepts; For example, in PDM
configuration control is the definition and management of
product configuration, while in SCM it means the control
of changes to a Configuration Item (CI) after formal
establishment of its configuration documents. SCM uses
versions for all changes, but PDM distinguish between
minor changes, designated versions, and major changes,
designated revisions. Another example is the term
efficiency used in PDM, which is a concept similar to
change management in SCM.

4.2 Conclusion

Since hardware and software designers are focusing on
different activities, they have both low knowledge and
understanding for each other’s requirements due to
organizational, cultural, and domain specific behavior. On
top of this, the terminology is almost the same but with
different meanings. For integration purposes, terminology
and cultural differences are key factors to highlight. A
common understanding for both domains and terminology
is essential to provide when integrating these domains.

5. Integration

From the analysis we have seen that PDM and SCM
tools cannot replace each other. We have also seen that
the software and hardware development processes differ
and cannot be directly replaced. PDM and SCM are
complex tools themselves and often very difficult to
successfully deploy and utilize even for development of
pure hardware or pure software products. The things are
getting more complicated for development of systems that
include both hardware and software components. Due to
their differences many integration attempts have
succeeded only partially [2].

Usually the development of such systems is divided
into development of components, in particular separated
in development of hardware components from
development of software components. This separation can
however not be complete; there exists common system
requirements and the components must in the end be
integrated into the final system.

To be able to provide full support for the entire
development process, the tools should support the

development of hardware and software components, and
in addition to this a seamless integration of information
should be provided.

Full integration can be achieved through integration of
processes, tools, and by achieving a common
understanding between developers of the software
components, hardware components and integrators of the
final system.

5.1. Process integration

To successfully integrate software and hardware
development processes into a unique process we must: (i)
identify the possible integration points in which the
information can be exchanged, (ii) identify which
information will be exchanged and in which form, (iii)
provide the tools that automatically can exchange the
information, (iv) find out which information is common
and which system should be the primary repository of that
information. For example in a total process, initial phases
(requirements specification, overall system specification
and design) can belong to a common process, the detailed
design and implementation of components can be
separated processes managed separately by PDM and
SCM, and the final integration can again be a part of a
common process, as illustrated in Figure 10. This
integrated process is described in detail in [3].

Figure 10. Integrated process

5.2. Tool integration

The identification of the integrated process will lead to
decisions, which tools can be used and which are the
integration requirements. Further a policy for the
integration of the tools should be decided: integration can
be achieved through a common information model (tight
integration), or in a loose way in which the tools preserve
their internal structure, but interpolate through
Application Program Interfaces (APIs), integration
languages and commands, or web-based services and
components [3]. A tight integration is based on a
consistent information model, which makes simple
interoperation between the tools. However, a tight
integration requires a lot of efforts to achieve agreement
about a common information model. Since different tool
providers want to keep their advantages on the market,
they usually are not willing to change their internal

Com m onCom m on Ind epe nde nt

Sof tw are
dev e lopment

Hardw are
dev e lopment

Requirements .
Ov era ll des ign

Sy s tem
in tegra tion
v er if ic ation
re leas e

Com m onCom m on Ind epe nde nt

Sof tw are
dev e lopment

Hardw are
dev e lopment

Requirements .
Ov era ll des ign

Sy s tem
in tegra tion
v er if ic ation
re leas e

representation to standard formats and models. Instead of
that they focus on enabling integration with other tools. In
a loose integration there is not one common information
repository, but the same data may be saved in several,
different, repositories. For this reason a policy for
information management must be decided. For example:
(i) which system should be the main archive for
documents (drawings, source code, etc.), (ii) which
system should manage the product structure and the
revisions of all products included, and (iii) which system
will manage metadata of delivered products. In particular
the problem of version and configuration synchronization
might be problematical.

Figure 11 shows an example from a case study of
loose integration of two tools aimed to make it possible
for the system managers to continue to work in their PDM
tool (in this case eMatrix) and the software developers to
continue in their SCM tool (in this case Clear Case). Both
tools store and manage their “standard” information, but
they also retrieve some (pre defined) information from the
other tool and present it to “its” users.

Figure 11. PDM and SCM integration
example

Another case from a Swedish company with a complex
integration is shown in Figure 12. Information exchange
between different tools from SCM and PDM follows a
complex pattern, which makes it difficult to understand
where the original information is placed, which data are
read-only, which can be modified. It is also quite unclear
which repositories should be updated when particular data
is changed. The process is in particular complicated as the
information transfer is performed half automatic.

This case is also interesting as it clearly showed the
results of cultural differences of the developers. Earlier,

the company used SCM tools for all development
activities but decided to introduce also a PDM tool.
However, due to bad knowledge of what PDM actually is,
a document management tool was bought instead
(Documentum). The need for PDM functionality
remained and new tools had to be bought (PVCS Tracker,
SAP R/3) resulting in a complicated structure of different
tools.

Independently of which integration strategy is chosen,
the integration process is very complex and it often
requires considerable knowledge of both systems and
technologies. For this reason, many end-users are not
capable to perform the integration alone and need the
assistance of the vendors or consultant companies
providing such service.

Figure 12. Example of a complex integration
of PDM and SCM tools

5.3. Common Understanding

Depending on the process and integration of the tools,
the developers will have a need to learn about the other
domain. In a tight integration with a common information
model, the developers must get familiar with the entire
process; in a loose integration (like the case showed in
Figure 11) most of the developers will work in their
environment using their normal tools. In any case, since
the final product is a result of integrated hardware and
software components, it is important that the developers
from both domains build up understanding of the entire
process. This means that it is not enough to integrate the
tools and the processes, the people involved should also
pass through an “integration process”.

In [3] a case is discussed, which did not succeed to
integrate a SCM and PDM tool. The integration did not
succeed because the tool vendors focused only on

Documentum

Product documents
Components documents
Project document s

Document templates
Guidelines

Outsourcing:
Development

Templates
Guidelines

SAP R/3

Product and prod uction
documents

Develop.
doc.

Outsourcing:
Produc tion

Production
document

P roduct
release d oc.

VSS

Software code
Software specificationSoftware

Spec.

Binary code
Production
doc.

PVCS Tracke r

CRs
Defects

Customer

Product
User doc.

Documentum

Product documents
Components documents
Project document s

Document templates
Guidelines

Outsourcing:
Development

Templates
Guidelines

SAP R/3

Product and prod uction
documents

Develop.
doc.

Outsourcing:
Produc tion

Production
document

P roduct
release d oc.

VSS

Software code
Software specificationSoftware

Spec.

Binary code
Production
doc.

PVCS Tracke r

CRs
Defects

Customer

Product
User doc.

Wizards Wizards
Status Accounting Search

Std. GUI
Wizards

Config. Control

Std. GUI
Baseline Management

ClearCase Developer

Check-
out

Check-
in Merge

eMatrix Developer

MxCC

Map File

eMatrix

ClearCase

Polling
BL Approved

CR
Conn..

CR
Disc.

CR
Appr.

PDM/SCM Interface

Wizards Wizards
Status Accounting Search

Std. GUI
Wizards

Config. Control

Std. GUI
Baseline Management

ClearCase Developer

Check-
out

Check-
in MergeCheck-

out
Check-

in Merge

eMatrix Developer

MxCC

Map File

eMatrix

ClearCase

Polling
BL Approved

CR
Conn..

CR
Disc.

CR
Appr.

PDM/SCM Interface

technical interoperability issues building automatic
import/export tools, but did forget the two other important
factors. First, they neglected the process issues – which
actions and which tools are performed in which phases.
Second their decision was that the user interface, the
terms, and in general the overall philosophy should
follow PDM standards. This caused large problems for
software developers, which did not, understood the PDM
concepts, and were not willing to accept them.

6. Conclusions and Future Work

In a rapid expansion of computer-based systems
developers from different engineering domains are
enforced to work together. This collaboration enables
significant improvements when complex products are
developed and manufactured, i.e. when the development
process has high demands on efficiency and quality.
However, the challenges to achieve this quality are many,
not only in the technologies of the particular domains but
in the coordination, interoperability and integration of
these domains. A characteristic example of such
challenges is the integration of PDM and SCM tools,
which provide information and management support for
the development and maintenance of hardware and
software assets, respectively. Many companies
developing and manufacturing products that include both
software and hardware components face this problem of
building up an integrated support of these products. The
initial steps towards an integrated development and
production environment and an integrated process are
painful; there are a number of unsuccessful or only
partially successful attempts to integrate functionality
available from these tools. In this paper we have shown
why such integration is so difficult. First, the functions
that the tools from these domains provide are in general
similar but in principle very different. Second, the pure
technical solutions for integration are not sufficient; a
total coherent and integrated process is as important as
the technical ability of integration of the tools. Finally we
have experienced that the cultural differences between
domain engineers play an important role. A lot of efforts
must be put in removing cultural barriers, in education
and in building common understanding to make it
possible to introduce a new integrated support for the
entire development process. Our findings are also that
loose types of integrations in which developers can keep
their old tools and local processes are more feasible than
tight integrations requiring a new information model and
entirely new processes. Again, the reasons are not only of
technical nature, but very much of cultural.

We will continue our work on how to integrate
commercial tools in practice. Within Ericsson a project
recently started with the aim to integrate commercial
PDM and SCM tools. We will be part of this work.

Another work is to see how product data and tools for
both production and design can be integrated. One overall
goal is to develop enabling technologies to support
smooth integration of different tools, and to support
concurrent updating of the product data in order to allow
people to work in parallel. In this work we will
investigate the possibility to introduce techniques from
the software development field into the product data field,
which may give rise to new, more flexible, ways thinking
about the tools in that area.

7. References

 [1] U. Asklund, I. Crnkovic, A. Hedin, M. Larsson, A.
Persson Dahlqvist, J. Ranby, and D. Svensson. “Product
Data Management and Software Configuration
Management - Similarities and Differences”, The
Association of Swedish Engineering Industries, 2001.

 [2] Crnkovic I., Asklund U., and Persson Dahlqvist A.,
Implementing and Integrating Product Data
Management and Software Configuration Management,
ISBN 1-58053-498-8, Artech House, 2003.

 [3] Crnkovic I., Persson-Dahlqvist A., and Svensson D.,
"Complex Systems Development Requirements - PDM
and SCM Integration", IEEE Asia-Pacific Conference on
Quality Software, IEEE, 2001.

 [4] Estublier J., "Software Configuration Management: A
Roadmap", In Proceedings of 22nd International
Conference on Software Engineering, The Future of
Software Engineering, pp. 279-289, ACM Press, 2000.

 [5] Estublier J., Favre J-M., and Morat P., "Toward
SCM/PDM Integration?", In Proceedings of Software
Configuration Management SCM-8, Lecture Notes in
Computer Science, nr 1439, pp. 75-94, Springer, 1998.

 [6] IEEE STD 1042 - 1987, Guide for Software
Configuration Management, 1987.

 [7] IEEE STD 828 - 1998, Standard for Software
Configuration Management Plans, 1998.

 [8] ISO TCI194/ SC4/WG5, S. P. 1., Overview and
fundamental principles, 1991.

 [9] Kroll P. and Kruchten P., The Rational Unified Process
Made Easy, ISBN 0-321-166009-4, 2004.

 [10] National Consensus Standard for Configuration
Management, A. N. S. I., ANSI/EIA-649-1998, 1998.

 [11] Persson-Dahlqvist A., Crnkovic I., and Larsson M.,
"Managing Complex Systems - Challenges for PDM and
SCM", In Proceedings of International Symposium on
Software Configuration Management, SCM 10, 2001.

 [12] SIS, S. S. I., Quality management Systems - Guidelines
for configuration management, ISO 10 007, 2003.

 [13] STEP Part 1, Overview and fundamental principles,"
ISO TCI194/ SC4/WG5, 1991.

 [14] Svensson D. and Crnkovic I., "Information Management
for Multi-Technology Products", International Design
Conference - Design 2002, IEEE, 2002.

 [15] Telefonaktiebolaget LM Ericsson, www.ericsson.com,
2004.

