Controller Synthesis and Verification for
Multi-Agent Systems

Rong Gu
Milardalen University, Visteras, Sweden
Email: (first.last)@mdh.se

Abstract—Controller synthesis and verification are crucial in
the design of Multi-Agent Systems (MAS), as the controller
serves as the brain of the autonomous systems, which are often
safety- and mission-critical. In this study, we propose a two-layer
framework for formal modeling and verification of MAS. The
static layer of the framework focuses on mission planning that
involves path planning and task scheduling, whereas the dynamic
layer of the framework focuses on the mission execution, where
the continuous motion of the agents, the uncertain occurrence of
moving obstacles, and the design details of the embedded control
systems are considered. Specifically, the framework adopts timed
automata and reinforcement learning for mission planning, and
hybrid automata, stochastic timed automata, and statistical model
checking for mission execution and collision avoidance. The
method of scalable mission-plan synthesis is implemented as a
tool called TAMAA, which also provides GUI for mission and
environment configuration. This approach and tool are evaluated
in an industrial use case: autonomous quarry that is provided
by VOLVO CE, Sweden.

I. INTRODUCTION

Multi-Agent Systems (MAS) are consisted of multiple
agents that move and function autonomously. The design of
controllers of these systems involves path planning and task
scheduling. The former requires the ability of calculating
collision-free paths that lead to the destination, whereas the
latter requires the agents to schedule their tasks effectively so
that the synthesized plans satisfy various requirements, e.g.,
task execution order, timing constraints, etc.

In order to solve this problem and verify the synthesized
controller in a realistic environment model containing un-
certainties, we propose a novel approach that utilizes formal
methods, advanced path-planning and collision-avoidance al-
gorithms, as well as reinforcement learning. We implement
the approach in a tool that provides a user-friendly GUI for
mission management and environment configuration, and a
calculation core for calling the aforementioned algorithms,
generating formal models and temporal logic queries, as
well as synthesizing controllers. To verify the synthesized
controllers, we use hybrid automata (HA) as the modeling
language to mimic the continuous motion of agents and
stochastic timed automata to model the probabilistic events
in the environment. By simulating and statistically verifying
the HA model that is equipped with the synthesized controller,
we obtain qualitative and quantitative analysis of the MAS.

As the controller synthesis and verification concern two
aspects: mission planning and execution, which focus on the
discrete and continuous features of the systems respectively,

A S A |

Moving
obstacle
Unforeseen = -
obstacle 1T ‘ Static layer
Path plan _ Map.
Continuous information\ | Communication
trajectory == \ protocol

AWL

\

- I\T ﬁ.\ Dynamic layer

Embedded control
system

Fig. 1. A two-layer framework

we propose a two-layer framework to provide a separation-
of-concerns when designing MAS. Last but not least, when
the number of agents in MAS increases, the complexity of the
problem grows exponentially. Hence, we propose a method
combining model checking with reinforcement learning to
alleviate the state-space-explosion problem. Evaluation of the
methods are conducted on an industrial use case: an au-
tonomous quarry.

II. A WALK THROUGH THE METHODS AND TOOL CHAIN

Modeling and Verification Framework. There are two
main functionalities of MAS that need to be realized: mission
planning and execution. The former concerns path planning
and task scheduling, which focuses on the discrete feature of
the system, whereas the latter concerns path following, task
execution, and collision avoidance, which takes into account
the continuous motions of the system. The inherent difference
motivates us to design a two-layer framework for modeling and
verification in order to provide a separation-of-concerns when
designing MAS. In paper [1], we propose an initial design
of the framework consisting of a static layer and a dynamic
layer, which is depicted in Figure 1. The communication
protocol supports data exchange between the layers. The static
layer is responsible for path and mission planning, based on
the information of the environment detected by the dynamic
layer. The static layer includes static obstacles and milestones
where the tasks should be carried out. Moving obstacles that
are unforeseen by the autonomous vehicles are considered in
the dynamic layer, which is designed to simulate and verify
the systems to guarantee that they follow the reference path
generated by the static layer and avoid dynamic obstacles.
These two layers support the modeling of mission planning

oFormaIization CTL/TCTL
‘ queries __‘_Tf__i

Requzlrfmmm
[

3 Generation
2
@I)\/IMT GUI

Model
checker

TaskTA |

5
om |
Environment setting _Nl_on_'tﬂTA _l plan

Tasks setting

o

Fig. 2. The Process of TAMAA

and continuous behavior separately, such that the desired
decoupling is achieved.

TAMAA. Mission planning includes path planning and task
scheduling. Classic path-planning algorithms provide a means
of calculating static paths between two positions in the envi-
ronment. However, when the requirement includes temporal
logic constraints, such as repetitively executing tasks B and C
after task A is done, path-planning algorithms are not enough.
Hence, we propose a method called Timed-Automata-based
mission planner for Multiple Autonomous Agents (TAMAA)
and implement it as a tool that is connected with a graphic
mission management tool called MMT [2].

Overall, the approach is composed of the steps shown
in Figure 2: i) Step 1 - formalizing the requirements into
CTL/TCTL queries, ii) Step 2 - configuring the information of
the environment and tasks in MMT, iii) Step 3 - automatically
generating the UPPAAL TA of movement, tasks, and monitors,
iv) Step 4 - verifying models generated in Step 3 in UPPAAL
against the queries of Step 1, and generating execution traces
that satisfy or violate the queries, and v) Step 5 - using
the traces to obtain the mission plans in cases when the
requirements are met, or counter-examples when no mission
plan exists in the environment configuration. Since this is an
automatic approach, users are only involved in the first two
steps in the configuration phase of Figure 2.

MCRL. Experimental results show that TAMAA is capable
of synthesizing mission plans satisfying various requirements,
e.g., reachability, safety, timing ones [2]. However, when the
number of agents increases, the method fails to generate any
result, as it uses exhaustive model checking, which leads to
the notorious state-space-explosion problem when the com-
plexity of the model grows. Therefore, we propose a novel
approach for synthesizing mission plans by using formal meth-
ods while still keeping its ability of exhaustive verification,
namely MCRL [3]. The method combines model checking
with reinforcement learning so that instead of exhaustively
exploring the state space of the model, the method uses random
simulation and a reinforcement learning algorithm, i.e., Q-
learning, to visit the states of the model and stores the possible
actions and their rewards at each state. Thereafter, a Q-table
is populated and injected back to the model of the MAS. The
new model contains a conductor for each of the agents, which
reads the Q-table and always select the action that owns the
highest reward at the current state and does not conflict with

stopped!
v==0

move? braking=false

Idle '==08&&pcx'==0&&pcy'==0

Fig. 3. The skeleton of the pattern

Vv'==08&8&pcx'==v*cos(ca)d&pcy'==v*sin(ca)

Acc
braking=true brake?

v>=0&& v<=MaxS&&
v'==({DF-K*Weight)/Weight&& v'==(AF-K*Weight)/
pex'=Fvcos(ca)d& pex'==v*cos(ca)&&
pey'=Fv*sin(ca) pey'==v'sin(ca)
stopped!

v==0

eight&&

move? braking=false

'==088&pcx'==08&pey'==0

Idle
Fig. 4. The hybrid automaton of the pattern

other agents. In this way, the behavior of the MAS model is
restricted by the Q-table so that when one performs exhaustive
verification on the model, the state space is much constrained.
Paper [3] presents the experiment of a comparison among
TAMAA, MCRL, and UPPAAL STRATEGO. The result shows
that the computation time of MCRL increases linearly as the
number of agents grows, whereas the other two methods raise
exponentially.

Pattern-based Modeling and Statistical Verification of
the Dynamic Layer. As the dynamic layer concerns the
continuous motions of the agents, we adopt hybrid automata
as the modeling language and UPPAAL SMC as the model
checker to conduct statistical model checking. For example,
the linear motion of the agents are modeled as a hybrid
automaton as it is depicted in Figure 4. The changing rates of
the positions and velocity are described by ordinary differential
equations (ODE) based on Newtonian laws of motion (see
Figure 4). As replaceable modules of the model, the ODE
are replaced by blank boxes in Figure 3 that presents the
skeleton of this pattern. Beside the linear motion component,
the hybrid-automata model of the agents include rotation
component, vision component and controlling component. The
vision component captures the information of the environment
and sends it to the controlling component that runs A* [4]
or Theta* algorithm [5] for path planning and a collision-
avoidance algorithm based on dipole flow field [6] to make
decisions of moving speed and directions. The environment
model contains moving obstacles that are predefined before
the verification starts, and unforeseen obstacles that are gen-
erated during the verification, which simulates the scenario
where moving objects suddenly appear in front of the agents.

Primary Crusher Charging Point
= [=

Autonomous Wheel Loader ~ Autonomous Trucks Secondary Crusher

Fig. 5. An example of an autonomous quarry

Statistical model checking is conducted on the model and the
result shows that the agents can manage to avoid all obstacles
and reach the obstacles in most of the cases, but fails when
the moving obstacles rush recklessly towards the agents [1].

III. EVALUATION

The evaluation of the methods proposed by this study is
based on an industrial use case: an autonomous quarry that is
provided by our industrial partner VOLVO CE. As an example,
in Figure 5 we show the case of an autonomous quarry
that contains several autonomous vehicles such as trucks and
wheel loaders. According to requirements from VOLVO CE,
an autonomous wheel loader digs a given stone pile and loads
them into autonomous trucks, which carry an amount of stones
to a primary crusher that crushes the stones at given fractions,
after which the trucks continue to transfer the stones to the
secondary crusher and finish their one-round job. During this
process, the vehicles must go to the charging point when
their battery-level is low. In addition, the vehicles must finish
carrying all the stones within a time limit to guarantee a
certain level of productivity. To solve the mission planning
and verification problem in this use case, we configure the
environment and vehicles in MMT and automatically generate
the formal model of agents by using TAMAA, then synthesize
mission plans by MCRL and depict the result in MMT as it is

shown in Figure 6. To evaluate the scalability of the method,

Initial location Static obstacle Counter example

.
[}
’
]
a
e

Milestone Collision area

Mission plan

(a) A mission plan (b) A counter example

Fig. 6. Two screenshots of the MMT user interface

we experimented several scenarios with different numbers of
tasks, milestones, and agents. The result shows that MCRL is
able to handle more agents than TAMAA that uses exhaustive
model checking and UPPAAL STRATEGO and the explored
states and time consumption of MCRL are much less than the
other two methods [3].

IV. CONCLUSION AND FUTURE WORK

In this thesis, we propose a two-layer framework for the
controller synthesis and verification of MAS. The main contri-

bution of this framework is to decouple the discrete mission
planning from the verification of concrete execution and
collision avoidance in continuous environments. To facilitate
mission planning, we implement a tool called TAMAA, which
contains the implementation of our model-generation algo-
rithms and connects to UPPAAL and a graphic user interface
for mission management, i.e., MMT. To improve the ability
of handling multiple agents for TAMAA, we combine model
checking technique with reinforcement learning, and conduct
a series of experiments to compare the new approach with the
original TAMAA and UPPAAL STRATEGO. For the dynamic
layer of the framework, we propose a model in the format of
hybrid automata, to describe the discrete state transition of the
systems as well as dynamics and kinematics of autonomous
vehicles and unforeseen obstacles. As the embedded control
software is complex, we propose a pattern-based modeling
method to facilitate the modeling process and enable reuse.
This approach has demonstrated to be correct by building
models in UPPAAL SMC and conducting a series of statistical
analysis of a real-world industrial system: the autonomous
quarry use case, provided by VOLVO CE.

The future work has several possible directions. One is
to integrate the two layers of the framework so that they
communicate in a real-time manner and the mission planning
and verification are both optimized in this way. Another di-
rection is about improving the MCRL approach by embedding
the reinforcement learning into the state-space exploration of
the model when running verification. This can be achieved
by leveraging the function of calling external functions in
UPPAAL STRATEGO, or implementing a customized model
checker by leveraging existing libraries and frameworks, such
as Plasma [7], and Storm [8].

REFERENCES

[11 R. Gu, R. Marinescu, C. Seceleanu, and K. Lundqvist, “Towards a two-
layer framework for verifying autonomous vehicles,” in NASA Formal
Methods Symposium. Springer, 2019, pp. 186-203.

[2] R. Gu, E. P. Enoiu, and C. Seceleanu, “Tamaa: Uppaal-based
mission planning for autonomous agents,” in The 35th ACM/SIGAPP
Symposium On Applied Computing, April 2020. [Online]. Available:
http://www.es.mdh.se/publications/5685-

[31] R Gu, E. P Enoiu, C. Seceleanu, and K. Lundqvist,
“Combining model checking and reinforcement learning for scalable
mission planning of autonomous agents”” Milardalen Real-
Time Research Centre, Milardalen University. [Online]. Available:
http://www.es.mdh.se/publications/5782-

[4] S. Rabin, “Game programming gems, chapter a* aesthetic optimizations,”
Charles River Media, 2000.

[5] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*: Any-angle path
planning on grids,” Journal of Artificial Intelligence Research, vol. 39,
pp. 533-579, 2010.

[6] L. A. Trinh, M. Ekstrom, and B. Ciiriiklii, “Toward shared working space
of human and robotic agents through dipole flow field for dependable path
planning,” Frontiers in neurorobotics, vol. 12, 2018.

[7]1 A. Legay, S. Sedwards, and L.-M. Traonouez, “Plasma lab: a modular
statistical model checking platform,” in International Symposium on
Leveraging Applications of Formal Methods. Springer, 2016, pp. 77-93.

[8] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk, “A storm is coming:
A modern probabilistic model checker,” in Computer Aided Verification,
R. Majumdar and V. Kuncak, Eds. Cham: Springer International
Publishing, 2017, pp. 592-600.

