
Automatic Platform-Independent Monitoring and
Ranking of Hardware Resource Utilization

Shamoona Imtiaz1, Jakob Danielsson1, Moris Behnam1, Gabriele Capannini1, Jan Carlson1, Marcus Jägemar2
1 Mälardalen University, Västerås, Sweden, 2 Ericsson AB, Stockholm, Sweden

1first.last@mdh.se, 2first.last@ericsson.com

Abstract—In this paper, we discuss a method for automatic
monitoring of hardware and software events using performance
monitoring counters. Computer applications are complex and
utilize a broad spectra of the available hardware resources, where
multiple performance counters can be of significant interest to
understand. The number of performance counters that can be
captured simultaneously is, however, small due to hardware
limitations in most modern computers. We suggest a platform
independent solution to automatically retrieve hardware events
from an underlying architecture. Moreover, to mitigate the
hardware limitations we propose a mechanism that pinpoints
the most relevant performance counters for an application’s
performance. In our proposal, we utilize the Pearson’s correlation
coefficient to rank the most relevant performance counters and
filter out those that are most relevant and ignore the rest.

I. INTRODUCTION

Due to modern trends towards real-time data acquisition,
inter-connectivity, data exchange and automation, Industry
4.0 has revolutionised the industrial technology into cyber
physical systems (CPS), Internet of things (IoT) and cloud
computing. While bringing improved functioning, enhanced
communication capabilities and shared services, this digital
transformation has also put an increased pressure on engineers
and system administrators. For them to keep such infrastruc-
ture functional, efficient, reliable and secure, it is more than
ever required to conduct systematic health checks of computer
systems and apply performance monitoring routines. A good
knowledge of hardware resource demand and utilization by
the hosted applications would facilitate the engineers, system
administrators and auditors to ensure the Quality of Service
(QoS) and security of IT infrastructure from undesired use.

The hardware resources required by an executing appli-
cation may differ over the time. The demand could be for
dedicated and/or shared resource(s) which is on discrete
disposal, time scheduled [1] or managed through isolation
techniques [2]. Observing the resources utilization can reveal a
distinctive behaviour of the application and can be used to tune
the quality assurance process. Furthermore, in-depth analysis
of performance monitoring data can ensure that system is
performing as it is expected and can capture the execution
profile of an application.

Monitoring of system performance can be categorised into
processor utilization, disk activity, memory usage and network
usage. Modern computers have performance monitoring units,
responsible for monitoring the micro-architectural events.
There are on-chip hard-wired special sets of registers known
as performance monitoring counters (PMCs). The type and

number of micro-architectural events are absolutely dependent
on the underlying architecture and so is the number of PMCs.
Regardless of the architectural variations from platform to
platform there are events which are consistently available
between many models, but this number is quite low and the
terminology of event names are not identical across platforms.
In these cases, the operator is bound to rely on information
coming directly from vendor. Based on specific architectural
knowledge, the PMCs can be configured to record hardware
event metrics, but the limited number of physical counters
bound the number of events that can be monitored simultane-
ously.

Performance monitoring units (PMUs) are not only available
for CPUs, but also for other components of the computer such
as GPUs, network interface cards (NICs), network switches
etc [3]. By using these PMCs, micro-architectural events can
be monitored for resources in the processor pipeline, such
as the branch predictor unit (BPU), internal memory events,
off-core events, network resource utilization, network problem
etc even for the different components in parallel. The current
state of modern computers enables us to precisely trace an
applications’ resource-usage at run-time. In this paper, we
attempt to tackle the two following problems:

Application execution. An application typically displays an
exceptionally complex execution trace and will utilize several
resources simultaneously. Due to the complex execution trace,
it is difficult to assess what resources are most relevant to
the application’s performance. Some applications display a
performance that is closely tied to specific resources. We
call occurrence resource-dependency and can be critical to
understand when designing a system.

Performance monitoring counters. The number of avail-
able PMCs is limited compared to the number of PMU events
that can be observed so that it is difficult to assess which
events are important to monitor for a given application.

Other researchers have employed performance counters
for various purposes such as monitoring hardware capac-
ity, application performance, system health-check, and for
detection purposes. Many of these studies are limited to a
static and pre-selected set of hardware events. Jägemar et
al. [4] proposed a service associated with CPU scheduler for
an improved QoS through performance monitoring counters’
measurements. Danielsson et al. [2] used performance moni-
toring counters to identify resource dependence of application
in a multi-core system.

In this paper, we continue the topic of automatic detection978-1-7281-2989-1/2$31.00 ©2021 European Union

In 26th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA 2021), September 07–10, 2021, Västerås, Sweden.

of an application’s resource dependency, i.e., how much an
application’s performance depends on a specific resource. Our
paper presents a new approach that monitors all available
PMU events (both software and hardware) and builds resource-
dependency profiles for the system applications. Our approach
presents a holistic approach to measure and rank what PMU
events are most closely tied to an application’s performance.
We present our contributions as follows:

• A cross-platform method to monitor hardware re-
source usage by utilizing the Performance Monitoring
Unit (PMU) for large sets of performance events.

• A measurement approach to distinguish what hardware-
and software-resources have the highest impact on an
application’s performance for the large-scale performance
counter event sets.

We have structured the paper as follows. We start by provid-
ing a technical background to easily understand the technical
scope and contribution made through this work in Section II.
Next, Section III presents our approach to achieve the goal
of the study as well as giving a theoretical definition of our
work. Our implementation details are described in Section IV
and the experimental setup in Section V. We discuss our
results in Section VI and then present our conclusions in
Section VII. Finally, we relate our work to the state-of-the-
art in Section VIII and the anticipated future work concludes
the paper in Section IX.

II. BACKGROUND

In this section we describe the PMU and discuss the
differences between counters and events. We also discuss
application performance in a typical computer and how an
application’s performance is related to certain PMU events.

A. Performance Monitoring

The concept of performance varies for different applications
depending on their primary objective. For example, in network
applications, performance is usually measured in number of
packets sent per second whereas image processing applications
use the frames per second metric. These performance metrics
can in-turn depend on other hardware-related metrics such as
utilization and saturation for memory and CPU, Operation
rate and operation latency for file systems, disk utilization and
response time for disks, throughput, connections, error, TCP
re-transmits and TCP out-of-order packets for networks [5].

Computers perform tasks on the basis of a sequence of
instructions. In a classic Reduced Instruction Set Computer
(RISC) pipeline one Instruction is processed in one cycle, as
shown in Figure 1. In here the instruction goes through stages
from Instruction Fetch to Write Back. Modern computers

Fig. 1. RISC Pipeline for a Single Instruction

implement this RISC pipeline for instruction-level parallelism

to increase processor throughput. The classic RISC pipeline
splits the execution of an instruction into five stages that
are ideally able to work in parallel on different instructions.
An instruction begins with entering the first stage Instruction
Fetch (IF). The instruction will then move to the second stage
Instruction Decode (ID) once completing the IF stage, and
another instruction will enter the IF stage. The instruction is
completed once it has passed the write-back stage and is then
marked as retired. It is, therefore, often preferable to have
a high number of instructions retired for a given application
since it indicates that the application is performing a lot of
work. However, in case of application(s) executing busy-wait
loops, Instruction Retired as a performance metric is not
appropriate [6]. For example, in applications using sensors
and actuators, actuators usually check the state of sensors
which perform a busy-wait loop: this results in a large number
of Instructions Retired even if the perceived performance still
is low. Therefore, It is important to define the metric for
performance based on use case.

B. Performance Monitoring Unit
Modern computers have special built-in hardware in the

form of registers for performance monitoring. PMUs contain
model specific registers (MSRs) those can be configured to
monitor events. These hard-wired registers are also called
performance monitoring counters (PMCs) [5] [7] [8]. Each
core has its own set of counters. These counters count the
number of occurrences of a certain event during a specific
time-interval.

PMC’s are grouped into fixed-function counters and
flexible-function counters, where fixed-function counters are
hard coded and flexible-function counters can be programmed
to monitor any type of event. The number of available perfor-
mance counters varies depending on the hardware architecture,
for instance a typical Intel processors contain 3 fixed-function
and 4 flexible-function counters per PMU [7]. The event
is an observable activity, state or signal whose occurrence
can be from different sources such as hardware, software,
kernel etc [5]. One advantage of using PMCs is negligible
overhead of data extraction [9] for micro architectural events
like branch instructions retired, mis-predicted branches, cache
hits/misses or floating point operations. Usually the PMCs are
implemented through processor specific codes. These codes
along with other attributes of the events are provided by
vendor(s) in JSON files which is arch event definition file.

When an event occurs it generates data that can further
be utilized for statistical analysis as a metric or to generate
an alert. These metrics are result of evaluation or monitoring
processes and can be used by technicians for system tuning and
detection of faults. Events such as execution-time, application
memory-footprint size, memory-latency, and error status can
also present important insights. Events those are present over
majority of platforms are called architectural and events those
are model-specific are called non-architectural events.

C. Perf and PAPI
Perf is a performance analysis tool and the official Linux

profiler for both kernelspace and userspace. Perf was originally

2

developed for the monitoring of PMCs but evolved into a tool
capable of tracing kernel activities too [5]. Perf uses processor
specific raw hardware descriptors for the PMC events. These
codes can be translated into aliases (human readable event
names) by using an event mapping table [10]. The hardware
vendors provides these hardware-details in the form of JSON
files (arch event definition files), as shown in Figure 2. In
Linux, these JSON files can be located at tools/perf/pmu-
events/arch/<arch>. The information is then used by PAPI
which aims to provide consistent and OS independent access
to PMCs.

Performance Application Programming Interface (PAPI)
was introduced as an abstraction layer to access PMCs using
the Perf interface. Over the time PAPI has evolved into
component-based architecture, which can monitor data from
multiple components like CPU, thermal sensors, Network
etc [11] [12]. PAPI extracts perf events and maps them into
human readable names based on the underlying platform to
save users from low level architectural details.

These events are divided into two categories named presets
and native. Presets are events which are common and consis-
tent among majority of platforms (also called architectural).
However native events are specific to a given platform on
which they are running (also called non-architectural).

Due to rapid advancements in technology and version
changes static solutions require frequent checks and updates
which can directly influence the QoS in case of any delays
and negligence. So the study is aimed to extract event list
directly from underlying hardware such that the results are
not dependent to out of date/static list of events at any point
in time, as shown in Figure 2.

Fig. 2. Illustration of Perf and PAPI in Linux Architecture

D. Multiplexing

Modern computers contain a vast number n of performance
counter events. It is, however, not possible to simultaneously
monitor n events due to high architectural and operational cost.

Multiplexing is a technique that can be used to monitor
all events even if there are more events than counters. When
number of events exceeds the core-internal PMCs then the
technique is to configure core-external PMCs, if it is allowed.
But if core-external PMCs cannot be utilized then time division
multiplexing with core-internal PMCs is performed until full
event coverage is done.

Perf automatically performs multiplexing by giving a frac-
tion of time ta to each event, in a round robin fashion [8]. This

is done by switching frequency in Perf [13], and metrics are
calculated usually at the rate of 100 to 1000 hz using formula:

CT =
CR × ta

te
(1)

where CR is counter value when an event got its turn to be
monitored, te is the total time to monitor all the events and ta
is fraction of te when a particular event availed its turn to run.
Here, CT is an estimated value because it is not the count of
an event throughout the execution period of an application.

III. METHODOLOGY

We summarize our ranking approach into three steps, listed
as follows:

1) Event fetch – In this step, we execute an automatic
traversal of n (all) available PMU events in the hard-
ware architecture. Our fetch traversal step fetches the
available events directly from the underlying platform.

2) Application characterization using Multiplexing– Here,
we characterize an unknown application/process p using
rerun multiplexing for n PMU events. As a result of
multiplexing time-ordered series mi of n PMU events
are sampled and Pearson’s correlation coefficient for
each PMU event’s time series is calculated as ri.

3) Rank events – Finally, we sort the Pearson correlation
values and highlight the R most important PMU events
for application p.

A. Event fetch
Our method is focused on native events which is a main

distinction from other studies in which proposed static solu-
tions are dependant to a pre-compiled list of known events.
We initialize the PAPI engine to traverse through all the
available components (such as regular perf events and un-
core perf events) on the current hardware, as shown in the
Algorithm 1. We use the native event mask for event code
generation which is the address of physical register where
event details are stored.

With Enumeration flag set to 0, we traverse through each
object in event description file. Function getEventInfo()
returns the information of next event available. This event
information is then stored into a list. The event list is created
per component so that we can distinguish that which event
is configured on which component. When there are no more
events, getEventInfo() function returns 0 and loop exits. If
there are more components available which are active then it
moves to fetch events from that component. The process to get
events is repeated in the same way for the next component.
So in this way we iterate through the event list component by
component and fetch n events details from each component.

B. Application Characterization using Multiplexing
Monitoring n events enables us to visualize the complete

resource utilization profile of an application p. The obvious so-
lution is multiplexing such as temporal multiplexing described
in Section II-D.

Temporal multiplexing is prone to blind spots. These blind
spots are points in time when the event was not monitored

3

Algorithm 1: Get the PMU native event list
initialize PAPI();
setNativeEventMask();
num components = getNumComponents();
component = 0;
while component ≤ num components do

cmpinfo = getComponentInfo();
ENUM flag = 0;
* when ENUM flag is set to 0 it iterates through
all entries in descriptor file till the end of file *\

while
(event info = getEventInfo()) == TRUE
do
* Create Component wise event list *\
addEventsToCompEventList(event info);
* Move to next event *\

end
* Move to next component *\
increment(component);

end
* Create detailed list of native events for
characterization of application *\

and those times could be critical for an event evaluation. So
we propose to run the application and monitor first subset
sb of size no PMCs events where sb ⊆ n and re-run the
application with next subset sb of size no PMCs events and
so on. In this way we can run the application for Tr times
where Tr is total runs:

Tr = d n

no PMCs
e (2)

Algorithm 2: Re-run Multiplexing and Sampling of n
events

sb = no PMCs;
Quo = n / no PMCs;
Rem = n % no PMCs;
while Quo ≥ 0 do

sb = get next no PMCs from events(n);
characterizeApp(p, sb);
* Store metrics and calculate Pearsonś Correlation

coefficient*\
Quo = Quo - 1;

end
if Rem 6= 0 then

sb = get next (Rem) from events(n);
characterizeApp(p, sb);
* Store metrics and calculate Pearsonś Correlation

coefficient *\

So, in our method of rerun multiplexing for complete
coverage of events, we rerun the application quotient Quo
times for no PMCs events and then we run the application
one last time to monitor remainder Rem events, also shown

in Algorithm 2. Here Quo is n
no PMCs and remainder Rem

is n mod no PMCs.
Figure 3 shows the rerun multiplexing for core-internal

PMCs in multiples of no PMCs. If the total number of
events n is not a multiple of no PMCs then the difference
is only for last iteration where Rem events are monitored.
In each iteration, application is characterized by using the
program designed by Danielsson et al. [2]. Characterization
is performed with a sampling frequency freq for samples s
over the total execution time tp of application as

freq =
tp
s

(3)

At the end of characterization each PMU event is sampled
as time-ordered series, mi. All series are then collected in the
set M(p) = {mi : 0 ≤ i ≤ n} and, for each one of them, we
calculate Pearson’s correlation coefficient, ri, between mi and
the measured performance of p.

Fig. 3. Illustration of rerun multiplexing in comparison to temporal multi-
plexing of Hardware Events for PMCs

C. Ranking Events
We determine the most relevant events automatically by

sorting them according to the correlation coefficient. The
correlation between a specific event count and the number
of instructions retired shows the application’s resource depen-
dence. In a way, the relation can simply be drawn by taking
the difference of total instructions retired and total count of
ith PMU event but Pearson’s correlation coefficient can show
the linear relationship between two variables.

Pearson’s correlation coefficient is sensitive to outliers but
in our case it is assumed to be natural even if the event
data is not distributed evenly across the timeline. Because it
still shows there was any one or more points of times when
this event has significant resource demand. However further
research is required to know the exact points in time to profile
the behaviour.

IV. IMPLEMENTATION

We implement the proposed solution using Linux run-
ning Ubuntu 4.13.0-21-generic and g++ 7.2.0. PAPI library
version 5.7.0.0 was used to iterate through all event codes.

As first step, we need to decide the sampling frequency
freq, see Equation 3. Instead of applying fixed sampling

4

frequency to every observed process/application, we calculate
the sampling frequency based on the process’s execution time
tp of p. The process is time stamped before and after the
execution and difference between the two gives execution time
tp of p. For symmetric samples, we have opted to use a
sampling size of s = 1ms to calculate the freq by using
Equation 3. Since the tp is calculated in micro seconds (µs),
this sampling rate was experienced well to get enough number
of samples as well as enough time to monitor the probe effect
of an event.

To characterize an application for any number of events, a
modification was made to the solution provided by Danielsson
et al. [2] so that we can dynamically populate the event sets
and feed those to PAPI engine and monitor n PMU events. In
each iteration, a subset sb of events is monitored leaving the
ones those were not able to attach. The reason a event cannot
be attached is that the event is specified in the JSON event
file, but not implemented on the actual hardware.

Once the characterization is done, Pearson’s correlation
coefficient of each PMU event’s metrics are calculated. Their
coefficients ri are then sorted to rank the events such that
higher the coefficient the higher the rank, with 0 being lowest
and 1 being highest.

V. EXPERIMENTS

We list some of the basic internal memory properties of our
test computer in Table I. Algorithm running on our experiment
platform returns a total of 175 native events. We exemplify
some of the events in Table II.

TABLE I
HARDWARE SPECIFICATIONS INTEL® CORETM I5 8250U

Feature Hardware Component
Core 4xIntel® CoreTM i5-8250U CPU (Kaby Lake)

1.6GHz
L1-cache 32 KB 8-way set assoc. I-cache/core

32 KB 8-way set assoc. D-cache/core
L2-cache 256 KB 4-way set assoc. cache/core
L3-cache 6 MB 12-way set assoc. Inter-core shared cache

TABLE II
SOME EVENT FROM NATIVE EVENT LIST

Event Code Event Name Description
0x4000006e perf::LLC-STORES Last level cache store

accesses
0x40000073 perf::DTLB-LOADS Data TLB load ac-

cesses
0x4000007d perf::BRANCH-LOADS Branch load accesses
0x40000089 INSTRUCTION RETIRED Number of instructions

at retirement
0x400000ca DSB2MITE SWITCHES Number of DSB to

MITE switches
0x400000cc FP ARITH Floatingpoint

instructions retireds
0x400000d3 SW PREFETCH Software prefetches

Then we continue the experiment by choosing a test appli-
cation, in our case it was a malware for side channel attacks
known as Meltdown [14]. The reason to choose malware was

they are naturally designed with a distinctive behaviour to
achieve their purpose as compared to other general purpose
applications. It is quite normal for a malware to stay unnoticed
for a long time and trigger the hardware events suddenly
in a specific time or environment. Due to their unexpected
behaviour it is more promising to catch any unusual activity
in the event behaviour to visualize it as outlier or anomaly.

Running the community version of Meltdown variant on
4xIntel® CoreTM i5-8250U CPU (Kaby Lake) 1.6 GHz a total
of 175 native events from 2 components (perf event and perf
event uncore) using PAPI. These non-architectural events are
combination of available hardware and software events. For
instance ix86arch::BRANCH INSTRUCTIONS RETIRED is a
hardware event whereas perf::PAGE-FAULTS is a software
event.

In Figure 4, we exemplify our characterization approach
by utilizing the famous meltdown exploit as test application
where InstructionsRetired is used as performance metric.
It is good to mention that these micro-architectural events are
sensitive to the nature of application. Moreover, the selection
of sampling frequency may significantly affect the results
received.

We run the application 50 times and calculate the median
of the Pearson’s correlation coefficients. We list the events
that displays the highest correlation coefficients in Table III.
The micro-architectural events occur at very low level and
fast enough that any slight change in sample size affects the
counter value significantly. Here, each run presents a high
probability of counter value fluctuations, therefore, we rely
on median of coefficients to present sound results.

TABLE III
LIST OF MOST RELEVANT PMU EVENTS

Rank Event Name Coefficient
01 BR INST RETIRED 0.84
02 ix86arch::BRANCH INSTRUCTIONS

RETIRED
0.79

03 perf::BRANCH-LOADS 0.52
04 perf::DTLB-LOADS 0.51
05 INSTRUCTION RETIRED 0.51
06 perf::L1-DCACHE-LOADS 0.36
07 perf::BRANCHES 0.31
08 perf::BRANCH-INSTRUCTIONS 0.31
09 perf::PERF COUNT HW BRANCH

INSTRUCTIONS
0.30

10 TLB FLUSH 0.28
11 BR MISP RETIRED 0.25
12 BACLEARS 0.25
13 IDQ UOPS NOT DELIVERED 0.22
14 ix86arch::MISPREDICTED BRANCH

RETIRED
0.20

15 MOVE ELIMINATION 0.19
16 perf::INSTRUCTIONS 0.18
17 perf::PERF COUNT HW INSTRUCTIONS 0.18

VI. DISCUSSION

We perform measurements for all available hardware
events on a computer and rank their relationships to-
wards an application’s performance using Pearson cor-
relation coefficient. For the sake of this study we

5

Fig. 4. Characterization of Application based on PMU events

6

measure all hardware events regardless of their nature
and redundancy. During event gathering, redundant event
names were also observed whose one reason could be
the presence of aliases such as BR MISP RETIRED
and ix86arch :: MISPREDICTED BRANCH RETIRED .
They seem to be same as per available information but were
listed under different event codes.

Though, temporal multiplexing can give a reasonable cover-
age of events but it is prone to blind spots. Not only the blind
spots, counter value is also important to understand, which
is an estimation based on the fraction of time it receives in
round robin fashion. So for these two reasons there is high
probability to miss the information as well as a chance of
failure to observe the cascading effect of resource utilization
at all. It is good to mention that cascading effects may only be
observed through start-to-end or extended timeline processing.
In contrast to temporal multiplexing our suggested rerun based
multiplexing gives the complete picture of event behaviour for
entire event range by utilizing all available PMCs.

As we do not parse the event description, it is required
for once by the engineers to know the platform specific
InstructionsRetired event name from the acquired list of
PMU events. This event name is then used as a benchmark
to measure other PMU events during the characterization of
application. It was also an option to take execution time as
predictor but execution time may not be consistent all the
times due to variable number of context switches in general
purpose operating systems. And if the multiplexing is based
on rerunning the application then it might not give us the
same execution-time every time. So it is more reliable to take
InstructionsRetired as predictor for performance.

During each iteration, each event set tried to attach a
subset of events but for some it was not possible such as for
TLB prefetch misses, stalled cycles and blocking loads. The
sampling for these events was not successful for Meltdown
as a test application but there is a good chance that those
events can be monitored for some other application. Another
reason could be that those events were listed is arch event
definition file (JSON) by vendors but were not available on
actual hardware. Moreover, we left the costumed assignment
and distribution of events to default between different cores.

Sampling frequency for the events that can be monitored
was set to 1 ms which gave us around 50 samples each
of test application as shown in Figure 4. Top most rele-
vant events in Figure 4 shows that at the start there was
high InstructionsRetired rate and then a sudden drop.
The number of InstructionsRetired was quite consistent
until just before the end of application where an exponential
increase was observed for all relevant events. At first glance, it
looked like an outlier but with a careful code analysis of test
application the pattern of timeline was logical. In the start,
higher activity was observed due to the exploit happening
trying to crack down into kernel module from user space.
Afterwards the utilization was smooth until the time just before
the end of application’s execution while reading the pre-fetch
memory. The pattern did not show any distinction until it
reached the point which according to the code is when the test

malware application tried to remove its backtracks by calling
a cleanup function. Due to this massive activity a spike is seen
for high resource utilization.

Pearson’s Correlation is normalized measurement of covari-
ance to reflect the linear relationship between two variables.
It is sensitive to outliers but in our case we assume outliers
as legitimate points for evaluation. Even if the event data is
not normally distributed across the timeline, it shows there
was any one (or more) point of time when this event had
significant resource demand. However further research can be
done to know the exact points in time where the event leaves
it marks and profile their behaviour.

Table III shows BR INST RETIRED and ix86arch ::
BRANCH INSTRUCTIONS RETIRED as most rel-
evant events which means that application was taking many
branches. There was also high relevance to perf :: DTLB −
LOADS which is a count of event when it reads from TLB.
This observation actually brings the most interesting insight
about the test application. A TLB load is lookup for actual
physical memory address while using virtual memory. During
this lookup, access privileges are also checked and if there is
any permission violation it throws an exception. So the high
relevance to this event indicates a distinctive behaviour of test
application which we already know that it tries to access kernel
memory from user space and in that case there should be
high exception rate. Such knowledge can further be used for
categorisation and profiling of applications. Moreover, results
showed that application is L1-Dcache bound too. So based on
these event ranks engineers can automatically find out resource
dependence during the execution of any application. Other-
wise, it is based on operators’ skills, experience and knowledge
base only. The knowledge which comes from experience is
valuable but it is good to keep in mind that human-driven
approach is prone to mistakes, errors and insufficient skill set.

VII. CONCLUSION

The study has successfully presented a solution to char-
acterize any application p by sampling n base PMU events.
The rerun based multiplexing enabled us to see the start-
to-end event behaviour of event. Each sampled PMU event
provided a time-ordered series, on which Pearson’s correlation
coefficients, ri was calculated. Based on these correlations,
ranking of events was performed to shortlist the most rel-
evant PMU events for an application from the performance
perspective. For experimental purposes a malware was tested
for which our proposed service successfully listed the most
relevant events. This knowledge can be further used for QoS,
tuning and detection purposes. For instance, the results showed
that Meltdown was taking many branches and it was reading
highly from TLB and L1 DCache. Such kind of ranking of
relevant events is indeed a useful tool for engineers to get
better insights of health, performance and resource dependence
of an application.

VIII. RELATED WORK

The study is in continuation to the work done by Danielsson
et al. [2]. The researchers determined the resource depen-
dence of an application based on architectural events called

7

PAPI presets which are common across many platforms. One
of the limitations of their study was to explicitly feed the list
of event names for the characterization of program with an
eventual focus for last-level caches only. Whereas our study
is focused for all native events to automatically extract from
the underlying platform.

Rodrigues et al. [15] have used PMCs to dynamically
estimate the power consumption by finding a minimal set of
hardware events as a predictor. This study is restricted to a
very small set of pre-selected hardware events based on human
intelligence only. Also it lacks the statistical endorsement of
selection of baseline events set. Moreover, the study used
simulators instead of bare-metal environment which may jeop-
ardize the accuracy of collected data. In contrast, our approach
is aimed for bare-metal environment to capture as many as
possible events by direct extraction from underlying platform.

There are other studies who have used PMCs to estimate
the power and bandwidth consumption [16] [9] [17] and
to check the performance of application in terms of CPU
load [18]. Another study has used performance counters for
safety and security of the systems by proposing an attack
mitigation model [19]. But as per our knowledge, other studies
did not automatically monitor all events regardless of which
platform they are coming. Moreover, another interesting study
was performed by [20] on Blue Gene/PTM super computer to
monitor massive number of PMU events (256 concurrent 64b
counters). Although the capability to monitor performance was
increased but it is not very commonly available architecture
across many SMEs (Small and Medium Enterprises).

IX. FUTURE WORK

The study can be extended in many ways such as detection
of faults, failure and malicious activity. Based on the hardware
dependence a behavioural analysis of metrics can finger print
any process. One of the biggest challenges is not only the low
number of counters, but is to measure the events based on
their nature such as configure the sampling frequency based
on the nature of event to be monitored.

Occurrence of some events is not as frequent as others and
for some the measurement cost at low frequency is too high.
So a model built on top of event nature would improve the
reliability of solution. Also, it would be interesting to test the
measurement with other AI or statistical methods when the
data distribution in non-linear.

REFERENCES

[1] Marcus Jägemar, Andreas Ermedahl, Sigrid Eldh, and Moris
Behnam. A scheduling architecture for enforcing quality of
service in multi-process systems. In Emerging Technologies
and Factory Automation (ETFA), 2017 22nd IEEE International
Conference on, pages 1–8. IEEE, 2017.

[2] Jakob Danielsson, Tiberiu Seceleanu, Marcus Jägemar, Moris
Behnam, and Mikael Sjödin. Resource depedency analysis in
multi-core systems. In 2020 IEEE 44th Annual Computers,
Software, and Applications Conference (COMPSAC), pages 87–
94. IEEE, 2020.

[3] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra.
Collecting Performance Data with PAPI-C. Springer, Berlin,
Heidelberg, 2010.

[4] Marcus Jägemar, Andreas Ermedahl, Sigrid Eldh, and Moris
Behnam. A scheduling architecture for enforcing quality of
service in multi-process systems. 22nd IEEE International
Conference on Emerging Technologies and Factory Automation
(ETFA), pages 1–8, 2017.

[5] Brendan Gregg. Systems Performance : Enterprise and the
Cloud Second Edition. Pearson, 2nd edition, 2020§.

[6] Stijn Eyerman and Lieven Eeckhout. System-level performance
metrics for multiprogram workloads. IEEE Micro, 28(3):42–53,
2008.

[7] Intel. Intel® 64 and ia-32 architectures software developer’s
manual. Technical report, Intel, 2016.

[8] Andrzej Nowak and Georgios Bitzes. The overhead of profil-
ing using PMU hardware counters. Technical Report CERN
Openlab Report, CERN, 2014.

[9] Stéphane Eranian. What can performance counters do for
memory subsystem analysis? In ACM SIGPLAN workshop
on Memory systems performance and correctness: held in
conjunction with the Thirteenth International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems (ASPLOS’08), pages 26–30. ACM, 2008.

[10] Linux Foundation. pmu-events, 2021.
[11] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra.

Collecting performance data with PAPI-C. In Tools for High
Performance Computing 2009, pages 157–173. Springer, Berlin,
Heidelberg, 2010.

[12] Matthew Johnson, McCraw Heike, Shirley Moore, Phil Mucci,
John Nelson, Dan Terpstra, Vince Weaver, and Tushar Mohan.
PAPI-V: Performance Monitoring for Virtual Machines. 41st
International Conference on Parallel Processing Workshops,
194-199:189–204, 2012.

[13] Stephane Eranian, Eric Gouriou, Tipp Moseley, and Willem
Bruijn. Linux kernel profiling with perf. Technical report, Perf,
2015.

[14] Lipp Moritz, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
Meltdown: Reading kernel memory from user space. pages
973–990, 2018.

[15] Rance Rodrigues, Israel Koren, Annamalai Gracioli, and Sandip
Kundu. A study on the use of performance counters to estimate
power in microprocessors. IEEE Transactions on Circuits and
Systems II: Express Briefs, pages 882–886, 2013.

[16] Rafia Inam, Mikael Sjödin, and Marcus Jägemar. Bandwidth
measurement using performance counters for predictable multi-
core software. IEEE 17th International Conference on Emerging
Technologies & Factory Automation (ETFA 2012), pages 1–4,
2012.

[17] Rance Rodrigues, Annamalai Arunachalam, Koren Israel, and
Kundu Sandip. A study on the use of performance counters
to estimate power in microprocessors. IEEE Transactions on
Circuits and Systems II: Express Briefs 60, pages 882–886,
2013.

[18] Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl, and Björn
Lisper. Towards feedback-based generation of hardware char-
acteristics. 7th International Workshop on Feedback Computing,
2012.

[19] Alberto Carelli, Alessandro Vallero, and Stefano Di Carlo.
Performance Monitor Counters: interplay between safety and se-
curity in complex Cyber-Physical Systems. IEEE Transactions
on Device and Materials Reliability 19, pages 73–83, 2012.

[20] Valentina Salapura, Karthik Ganesan, Alan Gara, Sexton
Gschwind, John James C., and Robert E. Walkup. Next-
generation performance counters: Towards monitoring over
thousand concurrent events. ISPASS 2008-IEEE International
Symposium on Performance Analysis of Systems and software,
139-146:189–204, 2008.

8

