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Abstract. A common problem with long-lived large industrial software
systems such as telecom and industrial automation systems is the high
complexity together with the lack of formal models describing the be-
havior of the system. This makes it hard to analyze different properties
of the systems runtime behavior and to predict how it is affected if the
system is changed. The complexity increases as new features are added
or changed during the system life cycle, so as the system evolve, it will
become harder and harder to predict the impact of adding new features
to the system.

We introduce the ART Framework which is based on the general idea of
introducing a formal model that is analyzable with respect to the system
properties in focus, i.e. timing and resource utilization. This model can
be used for predicting the impact caused by e.g. adding a new feature
or vast changes to the system. This enables the system developers to
identify potential problems with their design at an early stage and thus
decreasing the maintenance cost, but also via testing different design
alternatives efficiently increase the system reliability.

The framework primarily targets large industrial real-time control sys-
tems, but it is applicable on a wide range of software system where
complexity is an issue.

In order to analyze the model, we use simulation. Existing analytical
methods for timing analysis are not expressive enough to capture the
characteristics of the systems we consider. Moreover, other formal tech-
niques such as model-checking do not scale sufficiently to allow analysis
of industrial systems.

This paper presents the general idea and a process for how to construct,
validate, and use this type of models. The paper also presents the mod-
eling language and analysis tools included in the framework, as well as
a case study where the framework has been used in a real industrial
application.

1 Introduction

As large industrial software systems, such as process control systems, indus-
trial robot control systems, automotive systems, and telecommunication sys-



tems, evolve their software architectures typically degrade which cause high and
increasing maintenance costs. These systems typically have been in operation for
quite many years, evolved considerably since their first release, has a staff where
the most of the people where not involved the first development of the system,
and lacks a formal model enabling analysis of different system properties.

In these systems the maintenance operations are often performed in a less
than optimal manner due to e.g., time pressure, wrong competence, or nonex-
istent/incomplete documentation. As a result of these maintenance operations,
not only the size but also the complexity of the system increases. Eventually it
becomes hard to predict the impact a maintenance operation, such as adding a
new feature, will have on the system’s behaviour. As a consequence of the low
understandability of the system’s behaviour, the engineers are dependent on ex-
tensive testing, which is time consuming and costly. By introducing analyzability
with respect to properties of interest, the understandability of the system can be
increased and thus a decreasing maintenance cost is achieved and the life cycle
of the system is lengthened.

Many of the systems listed above has real-time requirements, which mean
that it is of vital importance that the system is analyzable with respect to
timing related properties, e.g. response times.

Introducing analyzability, and consequently introducing the possibility of un-
derstanding the impact that changes will have on the system behaviour with re-
spect to timing, can be done in two distinct ways: intrusively or non-intrusively.
In an intrusive approach the system is re-designed in order to make it analyzable.
An example of an intrusive approach is to redesign the system to fulfilling the
requirements of the fixed priority scheduling principle. The intrusive approach
is, however, associated with a high cost as it might require a considerable effort
to re-design the system. It is also associated with a high risk since errors might
be introduced that, in worst case, is not captured during testing.

A non-intrusive approach is to construct an analysable model of the system.
Hence, the system is kept intact and unchanged which minimizes the cost and
the risks. There is however risks with this approach as well. The model might
not be updated as the system evolves, e.g. due to time pressure.

The work presented in this paper focuses on the latter approach. Initially
a system model is constructed based on both the structure and the dynamic
behaviour of the system. The model is thereafter validated with respect to in-
teresting system properties and expected types of changes. Given that a model
has been constructed and validated, it can be used for Impact Analysis, i.e.
predicting the impact a change will have on the runtime behavior of the system.

The work originates in a case study at ABB Robotics in Sweden, where a
statistical model describing the temporal behaviour of a large industrial real-
time system was constructed [1]. The work resulted in the development of the
ART Framework, a probabilistic modelling and analysis framework, including a
modelling language and analysis tools. The system studied at ABB is based on
VxWorks, a commonly used Real-Time OS [2].



Apart from Impact Analysis, there is another use of the tools presented in
this paper, regression analysis of system properties. In that case, no model is
analysed. Instead, measurements of the current implementation are made and
compared with measurements of previous versions of the real system. Unexpected
differences can point out potential problems and undesired behaviour. Since the
ART Framework makes such comparisons non-intrusive, this analysis can be
seamlessly integrated in a software development organisation.

In this paper we will:

— Provide a background to the work.

— Present the process and the methods used in our approach for both Impact
Analysis and Regression Analysis.

— Present the modelling language ART-ML.

— Present the probabilistic property language, PPL.

— Present an approach for validation of ART-ML models.

— Give a brief presentation of three tools.

— Present an industrial case study.

The paper is organized as follows: In the next section we present related work,
Section 3 presents the general approach, the ART Framework. Section 4 is an
overview of the two languages included in this framework, the modelling language
ART-ML and the property language PPL. Section 5 presents a methodology for
validation of ART-ML models. In Section 6 we present a set of tools developed
to support this approach. Section 7 describes an industrial case study where
the feasibility of this approach has been evaluated and finally, in Section 8, we
conclude the paper and give hints on future work.

2 Related Work

Dynamic Analysis is the area of analyzing data generated by a program at execu-
tion time and includes e.g. performance analysis, error localization and runtime
system monitoring. There are quite a lot of work within the area that relates to
this, since we base the ART Framework on the concept of analyzing observations
of the system, i.e. recorded data. Parts of the work within the Dynamic Analysis
community also deals with reconstructing architectural descriptions of systems,
based on observations.

For instance, a system called DiscoTech is presented in [4]. Based on run time
observations an architectural view of the system is constructed. If the general de-
sign pattern used in the system is known, mappings can be made that transforms
low level system events into high level architectural operations and from that
construct an architectural description of the system. The system presented is
designed for Java based systems. The type of operations that are monitored are
typically object creation, method invocation and instance variable assignments.
Automated, or mechanical, generation of models based on observations of the
system is very related to the construction of the structural model described in



Section 3.1. We intend to investigate automated generation/validation of ART-
ML models in future work.

Another work related to the construction of ART-ML models is [5]. They
present a process for reconstructing software architectures, Symphony. The pro-
cess incorporates the state of the practice, is problem-driven and uses a rich
set of architectural views. It provides guidance for performing reconstruction.
Symphony consists of two stages. The first stage is to create a reconstruction
strategy, selecting what views to reconstruct. The second stage is the execution
of the strategy, i.e. to perform the reconstruction of the selected earlier views.

An approach for deterministic replay is presented in [3]. A common problem
when debugging real-time systems is to be able to reproduce an error in order
to find the source of this error, i.e. the bug. Due to behaviors such as task-
switches and interrupts, finding the bug by studying the code alone is very hard.
In their approach, they instrument a real-time system with software probes,
collecting various data describing the state of the system. After an error has
been observed, the data can be stored and used to replay the execution using a
debugger. This is very related to the ART Framework, since they use a similar
technique for recording, i.e. software probes, records similar things and has the
same overall purpose, to make it easier to develop complex dependable systems
reliability. There are clear differences as well. Compared to our work, they record
much more details of the execution of the system, but for a much shorter time.
They use this very detailed data to exactly reproduce an execution, in order
to find bugs, while the data recorded in the ART Framework is used to build
probabilistic models, enabling Impact Analysis.

There is a lot of work within the area of formal methods. Model Checking is
a technique for verifying different properties of models. For real-time systems, a
commonly used tool is Uppaal [6][7]. Uppaal is an integrated tool environment for
modeling, simulation and verification of real-time systems. Uppaal is suitable for
systems which can be modeled as a collection of nondeterministic processes with
finite control structure and real-valued clocks that are communicating through
channels or shared variables. Some major areas where this is applied include real-
time controllers and communication protocols where especially those in which
timing aspects are critical. A general problem with model checking is the state-
space explosion. The general idea behind Model Checking is to search all states
of the model for a certain condition. However, if the model contains a lot of
parallel processes and clocks, the number of states easily becomes overwhelming
and thus too large to search. Compared to the simulation approach in this work,
Model Checking gives a lot higher confidence, since all states of the model is
explored. However, the state space explosion problem limits the complexity of
the models that can be analysed, so in many situations Model Checking is not
an option and Model Checking has the same problems with model validity as
the simulation based approach in this work.

A tool-suite called STRESS is presented in [8]. The STRESS environment is
a collection of tools for analyzing and simulating the behavior of hard real-time
safety-critical applications. STRESS contains a modeling language where the



behavior of the tasks in the system can be modeled. It is also possible to define
algorithms for resource sharing and task scheduling. STRESS is in some ways
similar to the ART Framework, but there are a lot of differences too, as STRESS
is primarily intended as a tool for testing scheduling and resource management
algorithms. It does not allow probabilistic modeling like the ART Framework.

Another simulation framework called DRTSS is presented in [9]. DTRSS
is a high level simulation framework that allows its users to construct discrete-
event simulators of complex, multi-paradigm, distributed real-time systems. The
DRTSS framework contains a set of algorithms and protocols from which one can
pick the appropriate ones and build a simulator. New algorithms and protocols
can be added to the original set. It has support for searching for extremes in the
timing behavior of the simulated system. DRTSS is a part of the PERTS tool-
suite, which was developed at the University of Illinois at Urbana-Champaign.
The PERTS tool-suite has been commercialized by Tri-Pacific Software Inc. [10].

Analytical methods for dealing with probabilistic temporal attributes have
been proposed in the literature. In [11], an analytical method for temporal analy-
sis of task models with stochastic execution times is presented. However, sporadic
tasks cannot be handled. A solution for this could not easily be found. With-
out fixed inter-arrival times, i.e. in presence of sporadic tasks, a least common
divider of the tasks inter-arrival times can not be found.

Another analytical approach to probabilistic analysis is presented in [12].
Here they assume execution times and deadlines that both vary over time in
an unpredictable manner, while their arrival times are fixed. Basically, the task
model consists of a set of scenarios where every scenario is associated with a
probability. For instance, a task may arrive with a certain execution time and
deadline with a specified probability. Tasks execute probabilistically depending
on several factors, e.g. the scheduling algorithm. The paper proposes solutions
for Earliest Deadline First (EDF), and Least Laxity First (LLF). Even though
the computational complexity of this solution has not yet been established, it
seems, intuitively, that it is quite large.

3 Concepts of the ART Framework

The purpose of the ART Framework is to increase the maintainability, reliabil-
ity, and understandability of complex real-time software systems by introducing
analyzability. The core of the framework is the process describing how the model
is constructed and used. Since this process is general it can be instantiated using
any appropriate modeling and analysis method. The process is intended to be
integrated in the life-cycle process at software development organizations. The
general idea in the ART Framework is the use of a model for impact analysis of
timing and utilization of logical resources caused by maintenance operations, e.g.
changing an existing feature or adding a new feature. Models are constructed
through reverse engineering of an existing system’s implementation by iden-
tifying the architectural structure and by profiling of the runtime system, an
example being execution time distributions for features or tasks. We will start



with a brief overview of the process (Figure 1) and describe its individual steps
in more details later on in this paper. The process consists of five steps:

1. Construct (or update) a structural model of the system, based on system
documentation and the source code.

2. Populated the structural model with data measured on a running system.
This data is typically probabilities of different behaviors and execution times.

3. Validate the constructed model by comparing predictions made using the
model with observations of the real system. If the model does not capture
the system’s behavior sufficiently, the first two steps are repeated in order
to construct a better model and the new model is validiated. This process
should be repeated until a valid model is achieved.

4. Use the model for prototyping a change to the system, for instance if a new
feature is to be added, the model is used for prototyping the change.

5. Analyse the updated model in order to identify any negative effects on the
overall system behavior, such as deadline misses or starvation on critical
message queues.

|

Step 1: Step 6:
—» Create or update [« Go ahead with
the structural model implementation
l Impact acceptable
Step 2: Step 5:
Populate the model Analyze impact of Impact not acceptable
using data measured alteration
on the real system Decide if acceptable.
Re-design the
feature/alteration
Step 4:
Step 3: Add prototype of new
Check if model is valid feature/alteration on
the model
Model is valid A new feature is to be added
A
A valid model exists, ready to be used

Fig. 1. The process of introducing and using a model for impact analysis

If the impact of the change on the system is unacceptable, the change should
be re-designed. On the other hand, if the results from the analysis are satisfactory
the change can be implemented in the real system. The final step when changing
the system is to update the model so that it reflects the implementation in the
real system by profiling the system in order to update the estimated execution
times, steps 1-3 in Figure 1.



3.1 Constructing the structural model

To construct a structural model of a system is to document the architecture
and behavior of the system in a notation suitable for analysis, at an appropriate
level of abstraction. The resulting model describes what tasks there are, their
attributes such as scheduling priority and their behavior with respect to timing
and interaction with other tasks using e.g. message queues and semaphores. To
construct this model requires not only studies of the system documentation and
code, but also to involve system experts throughout the complete process. This
is important in order to select what parts of the system to focus the modeling
effort on, since it is likely that some parts of the system are more critical than
others and thus more interresting to model. Other parts of the system can be
described in a less detailed manner, in the extreme case with no behavioural
description, only describing the execution time distribution.

Iterative reviewing of the model is necessary in order to avoid misunderstand-
ings, due to e.g. different backgrounds and views of the system. If the system
is large, this step can be tedious, several man months is realistic if the model
engineer is unfamiliar to the system, according to our experiences. An experi-
enced system architect can probably construct this structural model faster, but
since such experts often are very busy, it is likely that the model developer is
a less experienced engineer. In order to simplify the construction of the model,
reverse-engineering tools such as Rigi [RigiA][RigiB| or Understand for C++
[Understand] can be used. These tools parse the code and visualize the relations
between classes and files.

3.2 Profiling and populating the model

In step 2 of the process described in Figure 1, the system is profiled in order
to populate the model with execution times distributions and probabilities. The
runtime behavior of the system is recorded with respect to task timing, i.e. when
tasks start and finish, how the task preempt each other, their execution times
and the usage of logical resources such as the number of messages in message
queues. This requires the introduction of software probes, unless hardware probes
are used [13]. The problem with the latter approach is that it requires special-
purpose hardware. The output from the profiling is a stream of time-stamped
events, where each event represents the execution of a probe. Typically, the
execution of a probe corresponds to a task-switch or an operation on a logical
resource (e.g. message queue).

The measured data can be graphically visualized in order to increase the
understandability of the system. In Figure 2, two such graphs are depicted,
showing the temporal behavior of two tasks in a real system we have studied.
These tasks are complex and time-critical, communicating with many parts of
the system. Each graph shows the execution time and response time of task
instances during a specific time interval. A task instance, a job, is one execution
of a task. Each instance results in two dots in the graph corresponding to the task,
the execution time (stars) and response time (squares), for the corresponding
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Fig. 2. Visualization of observed execution and response times of two tasks

instance. In these graphs, we can observe a discrepancy around time 400. The
execution- and response-times of these instances of the tasks are very high, in
comparison to the other instances in the graphs. This could be a coincidence,
but most likely this is due to dependencies with other tasks, e.g. communication
or a response to a global state change in the system. The temporal behaviors
of these tasks are thus not independent. By introducing such dependencies in
the model of the system, the model will become more accurate with respect to
the implemented system. In this case, the cause could be that both tasks reacts
to a global state change, caused by a command from a human operator or a
message from another system. To update the model with this dependency, the
states and the various reactions on state transitions must be modeled as well,
either in detail or in a probabilistic manner.



3.3 Analysis of system properties

The analysis method decides what properties that can be analyzed and also
affects the confidence assessment of the result. The main focus of the ART
Framework is to support analysis of probabilistic system properties related to
timing and usage of logical resources.

A deadline property is a requirement on a response time, either on a par-
ticular task or features involving several tasks, i.e. end-to-end response time. A
deadline property can be formulated as hard, absolute requirements, or as a soft
deadline. An example of a formulation of a soft deadline is that at least 90% of
the response times of the instances of a task are less than a specified deadline
and that no more than two consecutive instances exceeds that deadline. The
PPL language, described in Section 4.2, can be used to formulate such proper-
ties. Other system properties related to timing can be e.g. if task X is preemting
task Y, and in that case, how often?

Resource usage properties are those addressing limited logical resources of a
system such as fixed size message buffers and dynamic memory allocation. When
analyzing such properties, the typical concern is to avoid ”running out” of the
critical resource. An example is the invariant that a data buffer must never be
empty. It could be a system requirement that the buffer always contains data,
in order to avoid blocking the reading task.

The analysis of system properties is done by recording a trace of the dynamic
behavior, either from a real system or from a simulation, and based on the
recording the properties can be evaluated, e.g. probabilistic properties such as the
soft deadline property described above can be evaluated by counting the number
of instances of a task for which the property holds and comparing it to the total
number of instances. Comparing to model checking, instead of an exhaustive
search of all possible scenarios, the output from a running system or a simulator
is analyzed. This gives a realistic picture of the system behavior, but the analysis
result is not necessarily safe, as this does not explore all possible situations.
However, we believe that this is a suitable solution for large and complex systems,
as industrial software systems often are. Even though a simulation might miss
some situations, it may still point out potential problems and thus guiding the
developers making the right decisions. Formal methods such as model checking
often has problems to manage the complexity of such systems, the state space
becomes too large to search. Traditional methods for response time analysis are
not suitable either [1], as they are too pessimistic and make assumptions that
often are violated by the real world system.

Due to the size of the recorded trace, tool support is necessary and therefore
we have developed the PPL analysis tool, which evaluates properties formulated
in the PPL language. The language is described in Section 4.2. The ART Frame-
work contains graphical front-end tools, making PPL relatively user friendly.
This is described in Section 6.



3.4 Validating the Model

The third step in the process is to validate the model, i.e. to determine whether
or not the constructed model is a correct description of the system with respect
to the system properties that the model is intended to describe. This is typically
done by comparing observations of the system’s behaviour with the predictions
derived from the model.

This is however not trivial, since a direct comparison of the traces is not
feasible. The comparison must be made on a higher level of abstraction, by com-
paring system properties. The properties are evaluated as described in Section
3.3, with respect to both the predictions based on the model and measurements
of the real runtime system.

In order to facilitate future usage of the model, it should be easy to keep the
model and the system consistent as the system evolves. The effort of adjusting
the model to reflect the impact of a maintenance operation should not be similar
to constructing the initial model, the necessary change in the model should be
intuitive and similar to the change in the system. Therefore, it is necessary to
verify that the model is robust with respect to typical, foreseen, changes of the
system. Model validation and robustness is further discussed in Section 5, where
we present a methodology for establishing the validity of a model.

3.5 Using the Model for Impact Analysis

Given that a model has been constructed and validated, it can be used for pre-
dicting the impact an maintenance operation will have on the runtime behavior
of the system. The change is prototyped in the model and simulations of the
updated model are made, generating execution traces. These are analyzed (as
described in Section 3.3) in order to evaluate important system properties. This
analysis can, in a very early phase, indicate if there are potential problems asso-
ciated with the change that are related to timing and usage of logical resources.
If this is the cases the designers should change their design in order to consume
fewer resources. Since the change is not implemented yet, this means in practice
to impose a resource budget on the implementer.

If the impact of the change is acceptable, and is implemented, the model
should be updated in order to reflect the implementation. This corresponds to
steps 1 to 3 in the process in Figure 1, i.e. updating the model structure, profiling
and validation.

3.6 Regression Analysis and Trend Identification

Two other uses of the measured data are regression analysis and trend identifica-
tion. The regression analysis is to analyze the current release of the system with
respect to certain invariants. This is very close to regression testing, but instead
of testing the functional behavior, timing and resource usage is analyzed.

The use of trend identification is to compare different releases of the system
with respect to the system properties of interest to study how the evolution of the



system affects them. There might be trends that will cause problems in future
releases, e.g. execution times are increasing for each release as more features are
added. If such a trend is allowed to continue, eventually overload situations will
occur. If this is observed early, the appropriate measures can be taken before
actual problem occurs. If a model has been developed, the Impact Analysis,
described in Section 3.5, can be used in order to predict how an extrapolation
of a trend will affect the system.

In order to use this in a development organization, measurements of new
releases needs to be made. This would typically be made during the system
testing. The only change would be that after each test case, an execution trace
is stored. This trace is analyzed and compared with earlier releases, using a highly
automated tool. Based on a set of rules, typically defined by system experts, the
tool decides if there are alarming differences and in that case instructs the tester
to notify a system expert. A tool supporting this is presented in Section 6.3.

4 ART-ML and PPL Languages

In this section we describe our approach of the modeling and analysis. First
we will present the ART-ML modelling language, the notation which we use to
construct probabilistic models. We will also present the Probabilistic Property
Language, PPL, which is used to formulate the system properties that we wish
to analyze.

4.1 The Modeling Language ART-ML

The ART-ML language describes a system as a set of tasks. Each ART-ML task
consits of two parts, the attributes and the behavior. The attributes describe
static properties of the tasks, such as name, scheduling priority and optional
periodicity. The behavior part of a task is described in an imperative language,
C extended with ART-ML primitives, and describes the temporal and to some
extent the functional behavior.

Models written in ART-ML are translated into C using a translator and
then compiled and linked together with the ART-ML C-library. The resulting
executable is a synthesis of the ART-ML model, i.e. a specialized simulator
program for that model only. When this simulator is executed, it produces an
output in the form of a trace. Next follows an example, an ART-ML model of a
task reading a hardware sensor and sending the readings to a message queue.

Apart from tasks there are two other elements in the ART-ML language:
Message Queues and Semaphores. They can be accessed from the behavior part
of tasks through ART-ML functions, such as sendMessage. Next follows the basic
elements of an ART-ML model explained in detail.

Task A task consists of three parts, a name, a set of attributes and a behav-
ioral description. The attributes are the scheduling priority and how the task



TASK SENSOR
TASK_TYPE: PERIODIC
PERIOD: 2000 us
PRIORITY: 1
BEHAVIOR:
execute((0.40, 1000),(0.54, 1300), (0.06, 1400));
sendMessage (CTRLDATAQ, MSG_A, NO_WAIT);
chance(0.19){
execute ((0.60, 200), (0.40, 230));
sendMessage (CTRLCMDQ, MSG_B, FOREVER);

END

Fig. 3. A Typical ART-ML task

is activated, one-shot, periodically (with or without offset) or sporadically. The
behavior is described in C, extended with ART-ML primitives and routines.

Within the task behavior it is possible to call ART-ML routines that corre-
spond to typical OS services, such as sending and receiving messages to message
queues and semaphore operations. There is also a special statement for consum-
ing execution time, execute. The execute-statement is used for modeling sections
of code from the real system by their execution time only.

The execution time of the section is described using a discrete probability
distribution, i.e. a list of possible execution times, where each execution time
is associated with a certain probability of occurrence, see Figure 3. This allows
probabilities to be used to describe variations in the execution time. Depending
on the selected level of abstraction when constructing the model, an execute-
statement can represent a whole task or a smaller section of code.

When a task performs an execute it supplies a probability distribution as
parameter. An execution time is chosen according to the distribution and the task
is put into executing state for that amount of time. During this time, the task
can be preempted by other tasks in the system. The task can not be preempted
unless executing a kernel routine such as execute, send, sem_take, delay etc. The
execution time and probabilities used in an execute statement is assumed to be
from measurements (i.e. profiling as dicussed in Section 3.2) of the real system.

As mentioned, an execute-statement corresponds to a section of code in the
real system. Figure 4 depicts the code that is modelled by the first execute-
statement in Figure 3. There are three different functions/blocks of code, (A, B
and C), for the sake of simplicity having constant execution times (C4, Cp and
C¢). They can be executed in three different ways, A, A-B or A-B-C depending
on the conditions cond1 and cond2. These conditions are not known in the model,
due to the necessary level of abstraction, but statistical data from observations
of the system can be used to derive the different executions times and calculate
the probabilities of the different cases. This execution time distribution is used
to form the execute statement, as depicted in Figure 3 and Figure 4. This allows



AQO // C = 1000 us

if (condl) // Ptrue = 0.60
{
B() // C = 300 us
if (cond2) // Ptrue = 0.10
{
cO // C = 100 us
}
}

Fig. 4. The code corresponding to the first execute-statement in Figure 3

the model to accurately describe the execution time of the tasks in the system,
without making it unnecessary complex.

Another ART-ML specific statement is the chance statement, non-deterministic
selection with probability. It is a variant of the classic IF-statement, but instead
of checking if the value of an expression non-zero, as in C, the argument ex-
pression is compared with a random number, linearly distributed in the interval
[1-100]. The probabilistic selection is evaluated as True if the value of the ex-
pression is less than the random number. In that case, just as in C, the next
statement /block is executed. If the value is equal or larger than the random num-
ber, any else-statement/block is executed. The chance-statement is related to
the execute-statement, but instead of probabilistic selection of execution times,
chance allows probabilistic selection of different behaviours. A chance statement
can be used for mimicking behaviors observed in measurements of the real sys-
tem, where the exact cause is not included in the model, e.g. exteral stimuli. For
instance, in the measurements of the system we can observe that when a certain
task executes, it sometimes sends a message to a particular message queue. This
can be modeled using a chance statement and a statistical probability derived
from the measurements.

Message queue An ART-ML message queue is a fixed size FIFO bulffer, stor-
ing messages sent by tasks. A message contains only an integer. That should be
sufficient since ART-ML message queues are only intended to model communi-
cation events and not to tranfer large amounts of data. Other tasks can read
the messages from the message queue, in a FIFO manner. A message is sent to
a message queue using the ART-ML library routine sendMessage and reading a
message is done by calling recvMessage.

To use a message queue in a model, it must be declared. The syntax for
declaring a message queue is as follows:

MESSAGEQUEUE name size;

Semaphore An ART-ML semaphore provides mutual exclusion between tasks
and conforms to the concept of the well known binary semaphores proposed by



Dijkstra in the 1960’s. A semaphore is declared and identified with its name. A
semaphore is locked using the sem_wait library routine (corresponding to djik-
stra’s P, or wait) and released using sem_post routine (corresponding to djikstra’s
V, signal). The syntax for declaring a semaphore is:

SEMAPHORE name;

4.2 The Probabilistic Property Language

The objective of the Probabilistic Property Language, PPL, is to allow formu-
lation of queries on system properties related to timing and resource utilization.
An analysis tool has been developed for evaluating PPL queries with respect to
an execution trace.

PPL queries are used to express probabilistic system properties. Instead of
presenting the formal syntax and semantics of PPL, the language is presented
using a set of examples. The formal syntax and semantics can be found in [14].

The quintessential PPL query A property that verifies that all instances of
task A always meet a (hard) deadline of 10 time units is expressed as follows:

P(A.response < 1000) =1

If it is not critical that every instance of a task meet its deadline, we say that
the deadline is soft. In the probabilistic property language we can express a soft
deadline as:

P(A.response < 1200) = 0.75

PPL includes relation operators, =, <, <, >, >, the logical operators and,
or, not, the arithmetic operators +, —, %, /, abs and statistical functions such as
max, min, average, median. In the data model PPL uses, the following data are
available for using in queries:

— start - the time the task instance started

— end - the time the task instance was finished

— exec - the execution time of the task instance

— response - the response time of the task instance, i.e. end-start
— probeN - the value of probe N when the task started

The last field, probeN, corresponds to the value of the general probe N at
the time of the current task instance started. The sematics of such probes is
dependant on the instrumentation of the system, typically such probes are used
to monitor logical resources of different kinds, such as the current utilization of
a buffer, or the current number of unanswered requests.



PPL queries using the instance operator The instance operator is used for
distinguish different instances of the same task from one another, or to specify
properties over the same instance number of different tasks. A mentioned earlier,
a task instance is one job, one exection of the task. Separation is a property that
specifies the minimum distance in time between two consecutive instances of a
task.

P(A(i+1).start — A(i).end >=1000) =1

Another example of the instance operator is the following property, specify-
ing an advanced soft deadline, that two consecutive instances must not violate
the deadline:

P(A(i).response > 1000 and A(i 4+ 1).response > 1000) = 0

If we would like to specify that more, for example ten, consecutive instances
must not miss their deadline then we would get a very large expression. To
simplify such properties we can add intervals rather then single integers in the
instance operator. The property below is the same as the one above but with a
sequence. It states that A(i) and A(i+1) must not miss their deadline.

P(A(i+[0..1]).response < 1000) = 1

Queries using functions and unbounded variables In order to search for a
relation between instances of different tasks, the function following can be used.
Below we specify a property checking if there are any situations where the two
closest instances of A and B, in that order, have execution times above certain
limits.

P(A(i).exec > 1100 and B(following(A(i))).exec > 1700) > 0

The probabilistic statements may contain an unbounded variable. For in-
stance, the probability may be unbounded which gives as result the probability
of the statement being true. A property that specifies the probability of meeting
a deadline equal to 10 time units is:

P(A.response < 10) = X

We can also use unbounded variables inside a P-expression. The probabilistic
property that answers with what deadline D that is met with a probability of
0.9 is:

P(A.response < D) >=0.9



The statistical function can be used in a P-expression or as standalone
queries, such as this one:

avg(A.response)

Queries on message queues Correctness criterion for real-time systems may
not only be specified in terms of explicit temporal requirements. As discussed
earlier in this paper, the correctness of a system may be defined in terms of
non-empty message queues. The size of message queues is monitored by probes.
The invariant property that a message queue monitored by “probe21” is never
empty when a new instance of taskX starts can be formulated as follows:

P(taskX .probe21 > 0) =1

It is also possible to specify conditions on a probe that must be true at all
times, by replacing the name of the task with a wildcard character.
P(x.probe21 > 0) =1

The PPL language is supported by two tools available within the framework.
The Tracealyzer tool contains a PPL terminal, where it is possible to formulate
and run queries with respect to an execution trace. This is the preferred tool for
experimenting with PPL. The ExpertRules application is a dedicated front-end
application for PPL, allowing designed to run a batch of queries on two different
execution traces and present the results side-by-side. The tools are presented in
Section 6.

5 Validation of models

Validating a model is basically the activity of comparing the predictions from
the model with observations of the real system. However, a direct comparison is
not feasible, since the model is a probabilistic abstraction of the system. Instead,
we compare the model and the system based on a set of properties, comparison
properties. The method presented in Section 3.3 is used in order to evaluate
these comparison properties, with respect to both the predictions based on the
model and measurements of the real runtime system. If the predicted values
match the observed, we considered the model observable equivalent to the real
system. A typical comparison property can be the average response time of a
task. It is affected by many factors and characterizes the temporal behavior of
the system. Selecting the correct comparison properties is important in order
to get a valid comparison. Moreover, as many system properties as practically
possible should be included in the set of comparison properties in order to get
high confidence in the comparison. The selected system properties should not
only be relevant, but also be of different types in order to compare a variety of
aspects of a model. Other types of comparison properties could be related to



e.g. the number of messages in message queues (min, max, average) or pattern
in the task scheduling (interarrival times, precedence, preemption).

Even if the model gives accurate predictions, there is another issue to con-
sider, the model robustness. If the model is not robust, the model might become
invalid as the system evolves, even if the corresponding updates are made on the
model. Typically, a too abstract model tends to be non-robust, since it might
not model dependencies between tasks that allow the impact of a change to
propagate. Hence, it may require adding more details to the model in order to
keep it valid and consistent with the implementation. If a model is robust, it
implies that the relevant behaviors and semantic relations are indeed captured
by the model at an appropriate level of abstraction.

5.1 Observable Property Equivalence

In order to determine the validity of a model, the model has to be compared
with the real system. We have defined a validation method, where this is done
by investigating if the model is equivalent to the real system with respect to a
set of system properties. To do that we have to specify a set of system properties
that are to be compared, as described in Section 5.

Definition 1 R = Rec(X, E,d)
The function Rec returns a recording of the execution of X, in the environment
E, with the duration d time units. a

In this definition, X is either the real implemented system, executing on
the real hardware, or model of a system executed in a simulator. The resulting
recording is a list of timestamped events related to tasks-switches and operations
on logical resources. The environment E specifies the configuration of the system
and any external stimuli that is to occur.

Definition 2 V = Fval(P, R)
The function Fval evaluates the property P with respect to the recording R. The
resulting value, V, is either a boolean or a real value. a

In this work, we use the PPL query language to formulate the comparison
properties, but since the framework is general, in other instancations of the
framework other formalisms could be used, e.g. temporal logics. PPL was ex-
plained in detail in Section 4.2.

Definition 3 If M is a model of the system S and P is a set of comparison
properties; iff Vp € P : Eval(p, Rec(M, e, d)) = Eval(p, Rec(S,e,d)) then S and
M are equuialent with respect to P. a

Since we decide on equivalence based on a comparison between properties
of the observed behaviour, we refer to this equivalence relation as Observable
Property Equivalence.



As the model is a probabilistic abstraction of the system and not able to make
perfect predictions, it might be desired to have a certain amount of tolerance in
the equivalence relation. Using PPL, this tolerance can be encapsulated within
the formulation of the system properties, but is is also possible to specifiy this
tolerance in the tool ExpertRules (presented in Section 6.3).

5.2 Model Robustness

In this section we propose a method for ensuring the robustness of an ART-ML
model. We refer to this activity as sensitivity analysis. To exemplify the im-
portance of model robustness, imagine a system containing a binary semaphore
protecting a shared resource. A timeout occurs if a task has been waiting on
the semaphore for a certain predefined time. If the timeout occur, the execution
time of the task is increased due to the error handling necessary. However, in all
previous versions of the system, this timeout has never occurred. If the timeout
is left out when constructing the model of the system the model still seems ac-
curate since the timeout never occurs. However, as a result from changing the
system, e.g. increasing the execution time of another task, the timeout will in
some cases occur. Since the timeout was not included in the model, the system’s
behavior will diverge from the behavior predicted based on the model.

Our approach to sensitivity analysis is influenced by system identification.
System identification is a technique used in the domain of control theory [15]. By
measuring and observing the input-output relationship between signals in the
process a model can be determined in terms of a transfer function. Validating
models based on the system identification approach is somewhat related to test-
ing. Typically, output signals predicted using the model is compared with the
output signals of the physical process. Hence, the model is regarded as correct if
the analysis and the physical process generate approximately the same output,
if fed with the same input.

Testing the model with different input signals and comparing the prediction
with the signals produced by the actual system is fine if the process is contin-
uous in its nature. It is fair to assume that we can interpolate the behavior in
between the tested signals. However, computer software is not continuous; they
are discontinuous systems meaning that the behavior may change dramatically
as a result of small changes in the system. A model of a software system can
thus quickly become invalid when the system evolves, if the model is not robust
with respect to typical changes. By analyzing the impact on the system caused
by different changes, it is possible to determine if the model is sensitive to such
changes, i.e. less robust.

The robustness of a model can be analyzed using a sensitivity analysis. The
basic idea is to test different probable alterations and verify that they affect the
behavior predicted by the model in the same way as they affect the observed
behavior of the system. Performing a sensitivity analysis is typically done after
major changes of the model, in the validation step of the process. The process
of performing sensitivity analysis is depicted in Figure 5. First a set of change
scenarios has to be elicitated. The change scenarios should be representative
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Fig. 5. The Sensitivity Analysis

for the probable changes that the system may undergo. Typical examples of
change scenarios are to change the execution times of a task, to introduce new
types of messages on already existing communication channels or change the
rate sending messages. The change scenario elicitation requires, just as develop-
ing scenarios for architectural analysis, experienced engineers that can perform
educated guesses about relevant and probable changes.

The next step is to construct a set of system variants S = (S, ...,.S,) and
a set of corresponding models M = (Mj, ..., M,,). The system variants in S are
versions of the original system, Sy, where n different changes have been made
corresponding to the n different change scenarios. The model variants in M are
constructed in a similar way, by introducing the corresponding changes in the
initial model M.

Note that these changes only needs to reflect the impact on the temporal
behavior and resource usage caused by the change scenarios, they do not have
to be complete functional implementations. For instance, if the new feature is
some sort of service offered by a server task to a client task, the implementa-
tion necessary would be to introduce two new messages on the communication
channel, a request and a reply, and some minor changes in the tasks. When the
request message is received by the server, it should consume a realistic amount
of time (e.g. by executing an empty for-loop) and then send a reply message.
The client should send requests at the appropriate times and waits for the reply.
These changes are therefore easy to implement.

Each model variant is then compared with its corresponding system variant
by investigating if they are equivalent as described in 5.1. If all variants are



equivalent, including the original model and system, we say that the model is
robust.

6 The Tools

This section presents three tools within the ART Framework, supporting the
process described in Section 3.

— An ART-ML simulator, used to produce execution traces based on an ART-
ML model.

— The Tracealyzer, a tool for visualizing the contents of an execution trace and
also allow PPL queries to be executed on the data.

— ExpertRules, a tool for comparing two execution traces, using a predefined
set of PPL queries.

6.1 The ART-ML Simulator

The ART-ML Simulator has a graphical front-end with an integrated model
editor, making it easy to use. The front-end is bascially a simple text editor,
but with an additional button, simulate. When clicked, the simulation process
starts. It contains three steps:

— Translating the model from ART-ML to ANSI C.

— Compiling the translated version of the model and generating an executable
file

— Running the resulting executable

Detailed information of every phase of the simulation process is presented to
the user. Before the simulation starts, the user can specifiy different parameter
for the simulation, such as the simulation duration, the file name and output file
type (text or binary).

There is also online support which can be obtained through the “Help” com-
mand in the menu. It contains detailed descriptions about the ART-ML language
syntax, examples, and the simulation parameters.

6.2 The Tracealyzer tool

The Tracealyser has two main features, visualization of an execution trace and
a PPL terminal, a front-end for the PPL analysis tool. Figure 8 depicts the user
interface of the Tracealyzer. The left part contains a window presenting a section
of the execution trace. It is possible to navigate in the trace by using the mouse
or the scrollbar. It is also possible to zoom in and out.

The leftmost part of the trace shows how the tasks execute, over time. The
shaded boxes correspond to uninterrupted execution of a task. The point in
time between two boxes corresponds to a task-switch. It is possible to select a
task instance, by clicking on it. This will display information about the selected



instance in the textbox named ”Selected Task Instance” in the right part of the
window. A selected task instance is marked with a red frame. This information
presented includes the name of the task, the execution time and response time
of the instance and the average execution and respose times for the task. If more
statistics about the different tasks is desired, it is possible to generate a report,
containing a lot of information about all tasks.
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Fig. 6. The Tracealyzer Tool

The upper right part of the window contains a lists, labeled probes, showing
a list of the probes that have been found in the trace. Selecting one of the probes
in the probe list will display the value of the probe over time, next to the tasks.
Since a probe can monitor various things, the meaning of a certain probes is
defined by the developer that puts the probes in the system. The probes shown
in the screenshot of the Tracealyzer monitors the number of messages in different
message queues. It is also possible to save a list of the task instances to a text
file. This way, the data can be imported into e.g. Excel and visualized in other
ways than the ones provided by the Tracealyser. For instance, Figure 9 were
created using this feature together with a common office application.

Apart from visualizing the data in an execution trace, the Tracealyzer also
contains a PPL terminal. It is basically a front-end for the PPL analysis engine.
The terminal contains two fields, one input where PPL queries can be typed and
one output where the result is presented.



6.3 ExpertRules

ExpertRules is a tool for comparing execution traces with respect to different
system properties. These properties are formulated as PPL queries. The applica-
tion has three uses: Impact Analysis, Regression Analysis and Model Validation.
In the Impact Analysis case, execution traces from simulation of two slightly
different models are compared. One of the models is considered ”valid” and
used as reference. The other model contains a prototype of a new feature or
other changes. By comparing these traces, the impact of the new feature can be
analyzed. Impact Analysis is discussed in Section 3.
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Fig. 7. The ExpertRules Tool

In the Regression Analysis case, no data from simulation of models are used.
Instead, two execution traces measured from two versions of the real systems
are analyzed and compared, in order to identify trends and alarming differences,
which might be a result of undesired behavior in the system. Regression Analysis
is discussed in Section 3.6.

The application uses a set of rules, typically specified by a system expert,
in order to judge what differences in system properties between system versions
(execution traces) that are alarming and which one that can safely be ignored.
The name of this tool, ExpertRules, comes from this use of the tool.

When used for model validation, a trace from simulation is compared with a
trace measured from the real system. This way, it is possible to gain confidence
in the model validity. This is discussed in Section 5.

The ExpertRules application is a front-end to the PPL analysis engine. The
user of ExpertRules selects a configuration file, containing a predefined set of



system properties, formulated as PPL queries. These properties are the point-
of-view for the comparison. Then, the user selects two execution traces and
starts the analysis and comparison process. The properties are evaluated with
respect to the two traces and the results are presented. Finally, a property can
be associated with a guard. A guard is a condition on the result from a property.
Guards are used to formulate the rules on how much a property is allowed to
before the user is notified.

7 An Industrial Case Study

We have applied the framework on an industrial control system. The system we
have investigated is a robot control system, developed by ABB Robotics. It was
initially designed in the beginning of the nineties. In essence, the controller is
object-oriented and consists of approximately 2 500 000 LOC divided on 400-
500 classes organized in 15 subsystems. The system contains three nodes that
are tightly connected, a main node that in essence generates the path to follow,
the axis node, which controls each axis of the robot, and finally the I/O node,
which interacts with external sensors and actuators. In this work we have studied
a critical part with respect to control in the main node. The controller runs
under the preemptive multitasking real-time operating system VxWorks from
the company Wind River [2].

Maintaining such a complex system requires careful analyses to be carried
prior to adding new functions or redesigning parts of the system not to intro-
duce unnecessary complexity and thereby increasing both the development and
maintenance cost.

7.1 The model

We have modeled some critical tasks for the concrete robot system in the main
computer (see Figure 8). The axis computer periodically sends requests to the
main computer and expects a reply in the form of motor references within a
certain time. There are three tasks in the main computer that are responsible
for generating these motor references: A, B, and C. The tasks B and C have high
priority, are periodic, and runs frequently. A executes mostly in the beginning of
each robot movement and has lower priority. The final processing of the motor
references is performed by task C. Task C sends the references to the axis node.
Moreover, task C is dependent on data produced by task B. If the queue between
them becomes empty, task C cannot deliver any references to the axis node.
This state is considered as a critical system state and the robot halts. Task
A sends data to task B when a movement of the robot is requested. If the
queue between task A and task B gets empty, the robot movement stops. In
this state, task B sends default references to task C. The complete case study is
presented in [16]. All comments have been removed and variable names have been
changed for business secrecy reasons. The model is not complete with respect to
all components in the system.



Axis
Taska | ! | Taskp Quevez | taskc computer

Fig. 8. The task structure of the critical control part of the system

7.2 The results

The model we made is quite an abstraction of the existing system. There were
approximately 60 tasks in the system which was reduced to six in the model.
This level of abstraction was selected since there were three tasks of particular
interest which was modeled in detail. The rest of the tasks were modeled with
respect to CPU utilization only, no behavior was described. The axis computer
was modeled as a task with zero execution time. The 2.500 KLOC in the existing
implementation was reduced to 200 LOC in the model.

A more detailed model would not only represent a more accurate view of the
system, it will also prune the state-space which the simulator has to consider.
For instance, by introducing some dependency between tasks, the size of the
statespace is reduced. This allows the simulator to explore a larger fraction of
the possible behaviours of the system during a given the amount of simulation
time and thus improving the confidence in the simulation result.

Despite the course-grained model, the result when comparing response times
produced by the simulator and the response times measured on the system is
quite good. In Figure 9, the response times from the simulation and the real
system are plotted. The resemblance is obvious. However, at the time of this
case study, no tools that would allow a more formal comparison were available,
such as PPL and the supporting tools presented in Section 6.

7.3 Validation results

The results from the case study indicates that we have made one valid model
out of many which may be valid for the system in its current state. However,
we can not assume the model to be completely correct. In order to validate the
model and establish confidence in the model we must develop a set of change
scenarios as described in Section 5. Our initial list of scenarios was:

— add/remove tasks to the system,

— add/remove functional behavior in an existing task,

— change the behavior of existing functionality, i.e. changing execution times,
— change the priority of existing tasks,

— change message queue sizes,

— add shared resources,

— change the period time of a task, and

— change the triggering condition of a task.
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Fig. 9. Response time distribution of a task, simulation and measurement on real
system.

After interviewing engineers at ABB Robotics, the list was reduced to only
include the most likely changes: add/remove tasks to the system, add/remove
functional behavior in an existing task, change the behavior of existing function-
ality, and change the priority of existing tasks.

We developed four different cases out of the scenarios:

Case 0: No change at all,

Case 1: Add a new task called dummy with a short, varying execution time
and low priority,

Case 2: Raise the priority of the dummy task drastically, and

— Case 3: Increase the period time for the dummy task and extend its execution
time

We model changes in a task’s functional behavior by changing its execution
time.



In general, by observing the results we see that the model indeed capture
the temporal behavior of the system quite well. The simulations follow the mea-
sured system over the change scenarios. However, there are small differences in
execution times between the model and the system. Consequently, we need to
tune the execution time distributions in the model as it is too coarse grained.
Moreover, we had to model yet another composed task since the priority of the
dummy task is within the range of the low priority composed task.

The complete result from the validation is provided in appendix E in [14].

8 Conclusions and Future work

In this paper we have presented the ART Framework; the general ideas, the
languages ART-ML and PPL, the three tools within the framework and an
approach for validating ART-ML models. We have presented a process for use
the ART Framework for Impact Analysis and we have also presented how the
framework can be used for Regression Analysis of timing properties. We beleive
that this approach is very useful for analysing properties of complex real-time
systems, related to timing and resource utilization.

The next step in this work is to perform an industrial case study evaluating
the benefit of performing Regression Analysis, as described in 3.6, and a contin-
uation of the case study presented in 7, on modeling and analysis, using a more
advanced model and the (new) tools presented in 6.

One problem with the approach described in this paper is the error-prone
work of constructing the model. Instead of manually constructing the whole
structural model, tools could be developed that mechanically generate at least
parts of it, based on either a static analysis of the code, dynamic analysis of the
runtime behavior or a hybrid approach. This is also part of our future work.
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