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Abstract. With the increased use of 5G wireless technology for commu-
nication in e-health systems, it also arises an imperative need to verify
if the application requirements in terms of resource capacity, deadlines,
etc. are met by the network, especially in cases of real-time critical use
cases. A promising aid to address this need lies in frameworks that allow
one to model and analyze such systems before they are implemented.
In our previous work, we have proposed a UML profile called UML5G-
Service Orchestration, backed by model checking, which allows one to
verify formally the static and dynamic behavior of 5G communication
using network slicing. In this paper, we extend its tool support, called
G5, which generates automatically UPPAAL timed automata models
from profile-based object diagrams, to enable automatic verification of
service orchestration, including fault-tolerance aspects with respect to
crashed hosts or links. We chose an industrial case study of two different
e-health applications that use 5G network slicing, for an evaluation of the
approach, which lets us identify the factors that impact its scalability.

Keywords: UML5G-Service Orchestration · Model checking · UPPAAL.

1 Introduction

The 5th generation of cellular wireless technology, 5G, bears the promise to
support a large set of e-health applications of various latency, reliability, and
bandwidth requirements. To accomplish this, 5G employs a technique named
end-to-end network slicing [15]. As the name suggests, the entire communica-
tion network is sliced into various chunks, the slices, each capable of supporting
various requirements, e.g., low latency, high reliability, etc. There are four stan-
dard network slices designed by 3GPPP, namely the Ultra Reliable Low Latency
Communication (uRLLC), Enhanced Mobile Broadband (eMBB), Massive Ma-
chine Type Communication (mMTC), and Vehicle to Everything, (V2X) [1],
which are accessed by the corresponding 5G user equipment (UE) to meet their
application requirements. In order for these network slices to support a variety
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of applications, several network functions (both application- and 5G-network-
specific ones) are chained in a particular manner to meet the application re-
quirements. In this work, we consider only virtualized counterparts of network
functions, that is, virtual network functions (VNFs).

In order to support end-to-end network slicing, the VNFs need to be allocated
on virtual machines (VM). When allocating these VNF instances on VMs, one
needs to ensure that the resource requirements of the VNFs (e.g., processing
power, RAM) are met by the capacities of the respective VMs. In addition,
when a UE (that is subscribed to a 5G network service provider) requests a
network slice, one needs to find a mapping that chooses among the replicas of
VNF instances available to constitute its network slice instance [6]. Next, since
these VNF instances can be in different VMs, one needs a routing scheme across
the hosts, such that the order of VNF chaining in a particular slice is respected.
The routing scheme should also consider the requirements in terms of bandwidth
and latency. Adding to the complexity, there also come the dynamic aspects of
the network arising from simultaneous slice requests, VNF sharing, etc. In this
paper, we consider the collective problem of allocation, mapping and routing,
assuming dynamic behavior of the network as mentioned above, and refer to it
as the dynamic 5G service orchestration (5G-SO) problem [2].

Although solutions for the 5G-SO problem do exist in the literature [22, 20],
there is a lack of frameworks that enable formal verification of the solutions at
design stage. In our previous work [18], we have proposed a UML-based mod-
eling framework, namely UML5G-Service Orchestration (UML5G-SO), which
facilitates modeling of the structure and behavior of 5G-SO systems, based on
a new profile that we define. We also proposed a method of verifying the UML
models by using the UPPAAL model checker [19], by which one can identify if a
particular allocation, mapping and routing satisfy the application requirements,
considering dynamic network behavior as mentioned above.

To enable model-checking of UML models for 5G orchestration, we extend
and improve our frameworks’ tool support, called G5, which can automatically
generate timed automata models from the corresponding UML5G-SO object
diagram description of the system. The tool then uses UPPAAL as a back end, to
verify if application requirements are met. The extension of the tool implements
the capability of verifying k fault-tolerance of the system [10], by simulating
scenarios of crashed hosts. In this paper, we also carry out an evaluation of the
tool, on a case-study containing two industrial e-health applications, and gather
insights with respect to factors that impact the tool’s scalability.

The rest of the paper is organized as follows. In Sec. 2, we overview the pre-
liminaries of UML 2.0 timed-automata, UPPAAL model checker, and introduce
the dynamic 5G service orchestration problem. Sec. 3 details our case study and
its requirements. Our G5 tool is explained in Sec. 4, where we also provide an
example of the workflow, illustrate the underlying UPPAAL models, and our
experimentation results. Next, we present a brief discussion of gained insights in
Sec. 5. We compare our contribution to related work in Sec. 6, and provide the
concluding remarks and directions of future work in Sec. 7.
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Fig. 1: An example of an UPPAAL timed automaton of a traffic light

2 Preliminaries

2.1 UML Modeling

The Unified Modeling Language (UML) [12] is a widely-used modeling language,
also adopted in industry, for describing structural and behavioral artifacts of
complex systems. The existing UML diagrams can be extended by UML Pro-
files, allowing the definition of stereotypes, tagged values and constraints for cap-
turing domain-specific concepts. In our previous work [18], we have introduced
a UML5G-SO profile that enabling modeling and analysis of 5G-SO configura-
tions. For readability of our current work we include the profile description in
Fig. 5. One can employ our UML5G-SO profile to create class and object dia-
grams depicting the structure, as well as state-chart behavior of 5G-SO systems.
The framework is explained in detail in our previous work [18].

2.2 Timed Automata and UPPAAL

A timed automaton (TA) is a finite-state automaton extended with real-valued
variables, called clocks, suitable for modeling real-time systems [7]. UPPAAL [8]
is a tool for modeling, simulation, and model checking of real-time systems,
which uses an extension of TA as the modeling formalism. Fig. 1 depicts a
simple UPPAAL TA model of a traffic lights example. Two circles labeled Red

and Green, called locations, model the two colors of the traffic light. A clock
variable x that measures the elapse of time is used in the invariants (Boolean
expressions over clocks) on locations (e.g., x<=10) to enforce an upper bound
of delaying in each location, respectively. The directed lines used to connect
locations are called edges, and can be decorated by guards. Guards are Boolean
conditions over clocks or discrete variables, and enable traversing the respective
edge once they evaluate to true. In UPPAAL, locations denoted by encircled c
are called committed locations, and require that time does not elapse in those
locations and the next edge to be traversed must start from one of them. Clocks
can be reset over edges, e.g., x:=0 in Fig. 1, whereas discrete variables can be
assigned values, accordingly, via updates on the edges, or via functions that
are implemented in the declaration of the TA, by a subset of the C language.
A network of UPPAAL TA, B0 ‖ ... ‖ Bn−1, models a parallel composition
of n UPPAAL TA that can synchronize via synchronization channels (i.e., a!
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is synchronized with a? by handshake). In Fig. 1, the edges are labeled with
channels named STOP and GO, which synchronize this TA with other TA of the
model.

The UPPAAL queries that we verify in this paper are: i) Reachability: E♦p
means that there exists a path where p is satisfied by at least one state of the
path, and (ii) Leads to: p q, which means that whenever p holds, q must hold
thereafter, (iii) Invariance, A�p, stating that p should be true in all reachable
states for all paths.

2.3 Dynamic 5G Service Orchestration

The dynamic 5G Service Orchestration (5G-SO) has been defined in our previ-
ous work [18], and here we give a short description. First, the concept of Overlay
Network (ON) describes a set of virtual machines connected via virtual links (di-
rectly or not), configured on top of a common physical hardware infrastructure.
The ON is used by a set of 5G User Equipment (UE) that requests network
slices for its application. A network slice (NS) is defined as a sequence of Vir-
tual Network Functions (VNFs). VNFs are software implementations of network
functions, e.g., a firewall, which can be deployed on, e.g., virtual machines [20].
The order (sequence) in which VNFs are chained to achieve certain functionality
is called VNF Forwarding Sequence (VNFSeq).

In order to enable network slicing and fault tolerance, we assume a service
provider that provides multiple replicas of the VNF instances that are hosted in
various hosts in the ON. A VNF allocation is an assignment of VNF instances to
hosts, ensuring that the respective VNF instance resource requirements matches
the resource capabilities of the host. The 5G UE subscribes to its respective
service provider, and is given access to various 5G network slices it requests for.
A mapping maps all VNFs that form a UE’s NS instance to VNF instances.
The final step is to define a routing by which a path across the hosts where the
corresponding VNF instances are allocated such that the mapping is respected.

The dynamic 5G-SO problem that we consider in this paper assumes simul-
taneous slice requests, VNF sharing, and comprises the allocation, mapping, and
routing steps together. We assume a fixed allocation, and configurations describe
the set of possible mappings and routings. In addition, we consider that a con-
figuration is a solution to our 5G-SO problem, only when it satisfies the slice
requirements in terms of bandwidth and latency.

3 Case-study Description

Next, we describe in detail a case study of modeling and verifying the require-
ments of selected e-Health applications. Applications and system requirements
are provided by industrial partners of the EU Celtic Health5G project [3].
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3.1 eSense: Alkit’s Home-based Rehabilitation Training System

For many medical conditions, including chronic diseases such as Chronic Ob-
structive Pulmonary Disease (COPD), physical exercise and rehabilitation train-
ing is of utmost importance. In order to obtain optimal effect, exercises have to
be performed in a structured way and with continuity for the patient. To im-
prove the efficiency of care and the situation for patients, home-care solutions
are needed. Such a solution for home-based rehabilitation, containing planning,
monitoring, feedback, follow-up and video communication services is being de-
veloped by Alkit Communications AB [26], in Sweden.

Fig. 2: eSense: Alkit’s Home Rehabilation System

The system is described in Fig. 2. As shown, the home-based rehabilitation pro-
cess consists of four main steps supported by the system: a) Activity planning,
b) Physical exercises, c) Monitoring, analysis, and follow-up, d) Interventions.
These steps are illustrated in Fig. 2. In the activity-planning phase, a medi-
cal professional (typically a physiotherapist) decides what physical exercises are
suitable for a specific patient and which difficulty level is appropriate, based on
the patient’s health status. The plan is created in a web-based planning tool.
When the planning is done, a patient can start performing the planned exer-
cises at home, supported by an exercise home terminal based on gamification
and body-tracking. The patient’s performance is monitored by the system and
performance metrics are calculated and uploaded to a back-end server infras-
tructure. The patient’s status can be assessed by analyzing the uploaded data,
which can trigger interventions by the medical professionals via video-mediated
communication.

Application Requirements and the need for 5G Network Slicing: The main re-
quirements of the application are: a) high bandwidth (≥ 10Mbps), and b) low
latency (≤ 100ms) communication between the patients’ homes and the care
giver’s facilities. At present, the communication infrastructure used in patients’
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homes is 4G. However, the application has stringent requirements in terms of
bandwidth, latency, and reliability due to using both live video and patient data,
and could benefit from the emerging 5G network infrastructure and its net-
work slicing technology that promises to guarantee such requirements. Hence,
we elaborate a proposed way of employing 5G network slicing to support the
application. To accomplish the latter, we consider using a 5G network slice,
named eSenseSlice to serve our purpose. Inspired by the work of Vassilaras et.
al [27] and taking into consideration the application’s functionality, we define the
VNFSeq of eSenseSlice as: BBU −UPF − EPA− EC − CPF −DN (C ), where
BBU denotes the Base-Band Unit VNF, UPF is the User Plane Function, EPA
is the Edge Processing and Caching VNF, EC stands for Edge Caching, CPF is
the Control Plane Function, and DN (C ) is the Data Network Cloud VNF.

3.2 Wireless Hospital Patient Monitoring Using e-Health Band

Currently, continuous vital sign monitoring is being performed for patients only
inside hospital intensive care units (ICUs). However, for some patients, like the
patients after surgery (but not in ICUs), frequent vital sign monitoring is neces-
sary to detect sudden changes in their health conditions. At present, these vital
signs are examined by nurses in a routine basis, which is often hectic and not
so effective if there is shortage of nurses. Hence, there is a need to enhance the
efficiency of the vital-sign monitoring. However, in most critical scenarios, an
automatic detection of the emergency scenario by continuous vital sign monitor-
ing and automatic alerting of the caregiver is beneficial. In order to accomplish
this, a reliable wireless communication coverage is also required.

Fig. 3: e-Health Band: Wireless Patient Monitoring inside Hospitals

The wireless patient monitoring system is described in Fig. 3. The sensing
devices are the e-Health bands (5G-enabled devices) that monitor the vital signs
to detect emergency, and use a Healthband slice to push the alarm. Along with
the alarm signal, they can also transmit some vital data that help the diagnosis,
namely the blood type, possible allergy, etc.
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VNF CPU (GHz) RAM (GB) BCET(ms) WCET (ms)

BBU 3.3 3 1 13

EPA 3 5 2 9

EC 3 6 5 8

CPF 2.2 2 3 5

UPF 2 1 2 10

DN(c) 3 8 10 15

DN(e) 3.1 5 5 10

Table 1: VNF Resource Requirements

Link Bandwidth (MBps) Latency (ms) Link Bandwidth (MBps) Latency (ms)

L1 300 5 L5 500 25

L2 200 5 L6 300 40

L3 400 5 L7 200 10

L4 200 5 L8 400 10

Table 2: Resource Capacities of Links

Application Requirements and the need for 5G Network Slicing: The main re-
quirements of the application are: (i) low latency (less than 150 ms for transmit-
ting the alarm signals), and (ii) data size less than 1 MBps. In order to support
such application requirements, while co-existing with many different applications
that share the network, especially during critical scenarios like health parame-
ter deviations, a healthband slice is employed for the communication. Just like
the previous case, we define a healthband slice as the following VNF chain:
BBU − UPF − DN (e) − CPF , where DN(e) is the Data Network Edge VNF,
while all the other VNFs are the same as before.

The VNF resource requirements of the respective VNFs used by both appli-
cations are tabulated in Table 1. The requirements so reported are in prescribed
ranges as described by the literature [21].

Host category Processing Power (Ghz) RAM (GB)

VNF Hosting Nodes 3.5 32

Routing Nodes 0.3 1

Table 3: Resource Capacities of Hosts

3.3 Overlay Network

To be able to analyze the case study applications mentioned above, we consider
an overlay network with a set of hosts and links connecting them. We also assume
that the VNF instances are allocated in multiple copies in the hosts and various
slices access them on demand.
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The overlay network that we employ for our analysis is depicted in Fig. 4.
As shown, we have a set of eight hosts, out of which four are referred to as
Computation Hosts (CH), CH1 to CH4, and four are called Routing Hosts
(RH), that is, RH1 to RH4, connected via virtual links L1 to L8. As the name
suggests, only CH have capabilities of processing VNFs, while RH are just for
routing purposes. The host capabilities are tabulated in Table 3 [4], and the
link capabilities are tabulated in Table 2 [6]. A 5G UE of type eSense or HB

HB

eSense

5G UEs

CH1
CH4

CH3

RH1

CPF1, DN(c)1

BBU1,  UPF1, EPA1, 
DN(e)1, EC1

CPF2, DN(c)2

Overlay Network

L1

L2

L8

L7

L6

L4

L3

CH2

RH2

L5

RH3

RH4

BBU2,  UPF2, EPA2, 
DN(e)2, EC2

Fig. 4: Case-study Scenario

accesses this overlay network while requesting its respective slice. In this paper,
we assume that each UE can be activated multiple times, but there exists a limit
on the maximum number of activations. We also assume that the same category
of UE and their activations share the respective slice instances. For example,
all eSense UE and their activation share an eSense network slice instance, say,
BBU1 −UPF 1−EPA1 −EC1 −CPF1 −DN (c)1 , and all healthbands and their
activation share the same healthband slice instance with the VNFSeq given as
BBU2 −UPF2 −DN (e)1 − CPF2 .

As mentioned previously, we begin by assuming an allocation of the VNF in-
stances to various hosts as shown in Fig. 4. The allocation respects the resource
constraints and capabilities of both VNFs and hosts. In our earlier work [17], we
describe how one can verify the resource allocation using object constrained lan-
guage (OCL) queries in the USE tool. Given the allocation, we now exemplify a
routing scenario of Slice 2, which we later verify to see if it can meet the applica-
tion requirements. Since BBU2 and UPF2 are located in the same host, that is,
CH4 , there is no routing in the first step, however since the next VNF instance,
DN (e)1 , is located in CH1 , we need to find a routing path between CH4 and
CH1 , and since there are no direct link connections, we need to traverse RH1 and
RH4 through links L1 , L8 and L4 . After executing DN (e)1 in CH1 , we need to
find the route to reach CH3 , where CPF2 is located in CH4 . There are two op-
tions for this: a) a path through RH1 ,RH4 ,RH3 , using links L1, L8, L7, L3, or b)
a path through RH1 ,RH2 , and RH3 , using links L1, L5, L6, L3. Whichever route
we choose, we need to ensure that the respective links have enough bandwidth
capacities to serve the request from Slice 2, as well as ensure that the overall
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VNF processing time in hosts and their respective routing latency do not affect
the end-to-end latency requirements. This analysis is often time consuming, and
most often impossible to carry out manually. Hence, in this paper, we propose
the G5tool that can automate such analysis, while ensuring solution correctness
via back-end model checking.

4 Modeling and Verification Using the G5 Tool

In this section, we show how our framework and prototype tool can be used
to gain formal-verification-based insight into the case-study presented above.
In previous work [18], we have introduced a first version of the G5 tool3 to
demonstrate how one can design software, allowing engineers to interact with
verification tools without any knowledge of formal methods. In this paper, we
present an updated and extended version of the tool, with features including:

– Finding a mapping: with the click of a button the user can ask the G5 tool to
search for a mapping that fulfills all requirements of the provided instance.
This is effectively done by enumerating all possible mappings (and routings),
and stopping when a solution is found.

– Verifying properties: certain provided queries can be checked on a system
(with a mapping), e.g., checking that the system does not deadlock, as well
as other invariance and liveness properties. These queries can be verified on
TA models that are checked by the UPPAAL model checker.

– K-fault tolerance checking: the tool supports checking fault-tolerance by re-
moving one host (at a time) and seeing if the resulting system still has
a feasible configuration. The method used by G5 is to generate each sub-
system (with a host removed) one-by-one, and do the same kind of search
as in finding a mapping.

An overview of the steps involved in using the tool is shown in Fig. 6 (a).

4.1 Example Workflow

To demonstrate how the tool can be used, we consider the case study from Sec-
tion 3. We begin by creating the overlay network (with hosts, links, VNFs, user
equipment and slices) in USE, a UML-based specification environment [5]. An
excerpt (showing hosts and links) is shown in Fig. 8. The next step is to load
the instance (as a soil-file) in the G5 tool. Our object diagrams have an associ-
ated behavioral representation that is captured by a restricted version of UML
state chart, referred to as restricted state charts (RSC) (which are predefined
as patterns and have TA semantics, see Sec.4.2). This enables one to automati-
cally generate the corresponding TA models from the UML counterparts. Once
the TA models are generated, one can find a mapping such that the system is

3 https://github.com/ptrbman/GGGGG
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Fig. 5: UML5G-SO Profile [18]

(a) Flow chart depicting the usage
of the G5tool

(b) Screenshot of the G5 tool after running
k-fault tolerance check.

Fig. 6
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feasible, that is, in which all deadlines are met. We use G5 for this and find the
following mapping:

S1 : BBU 1 → UPF 1 → EPA1 → EC 1 → CPF 2 → DN (c)2

S2 : BBU 1 → UPF 1 → DN (e)1 → CPF 1

We can verify that the given mapping fulfills the pre-defined queries, e.g.,
check if each request is eventually serviced (leads to), all requests are completed
within their respective latency and bandwidth bounds (invariance), no deadlock
etc., and see that this indeed is the case. More interestingly, we can check the
k-fault tolerance [10] of a system. This will show us that if RouteHost4, assumed
crashed, is removed, the resulting system has no valid configuration (see Fig. 6
(b)). It is interesting that any one computation node can fail, and the system
can still work, but if a particular routing host is removed the system fails. This
indicates that an extra link could allow the system to gain a k-fault tolerance
with k = 1. Indeed, if we add a link from RouteHost1 to RouteHost3 and re-run
the k-fault tolerance check, all cases are denoted as SAT.

4.2 TA Semantics

In order to check requirements on a specific system, we need semantics defining
how the system should behave. As described in previous work [18] this is per-
formed by assigning a TA template to each UML restricted state chart (RSC)
pattern that models the intended behavior. The RSC patterns that we use to
capture behavior are relatively close to TA, despite lacking explicit clocks to
measure time. Table 5 shows how some state-chart and TA concepts relate to
each other and in Fig. 7 we show a RSC model and its corresponding TA counter-
part. While the translation is mostly straightforward there are some differences.
For instance, while the states of the state charts do form the locations in TA,
pseudo-states are excluded while forming the TA. Moreover, additional locations
are included that aid synchronization and capturing errors.

Given the TA semantics, it is then possible to encode queries in TCTL (Timed
Computation Tree Logic) which can be verified in UPPAAL. We give some ex-
amples in Table 4.

Natural Language TCTL Query

A generated request is eventually served. RC1 .rq  RC1 .rqComplete

No request has a missed deadline. A� not MO1 .MissedDeadline

Table 4: TCTL example queries

An important artifact of this translation is that two extra arguments must
be provided to the process as a whole: the number of executors and maximum
queue length. The former refers to a component that handles each UE request,
and a bound must be provided, which is not lower than the maximum number of
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parallel requests of the system. The latter refers to the queue length of each host
VNF queues, respectively, and must also not be lower than the maximum number
of queued tasks for all hosts. As in bounded model checking, a too low value will
yield incompleteness, but a too high value becomes a scalability problem.

(a) UML state chart model (b) TA model

Fig. 7: Modeling of the Computation Host

Fig. 8: Overlay Network as shown in the USE tool.

4.3 Scaling

When checking our system, we have identified some factors that potentially have
an impact on the verification’s run-time: (a) number of executors (b) length of
message queues (c) number of activations of user equipment (d) number of user
equipment. These factors have to be provided by the user and are artifacts
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UML State Chart UPPAAL TA

States Locations

Edges Edges

Parameters V ariables

Call events Synchronization channels

T ime events Invariant+ Guard

Table 5: Relationship between TA and UML state chart notions

of the modeling, with no clear counterpart in the original system. Therefore,
“good” values must be found for these parameters — good in the sense that
they should prove sufficient to ensure that all faulty scenarios are found, but not
too large to hinder the verification. We present here an experimental evaluation,
to assess the impact of these factors. We do this by searching for an allocation
in a modification of the example presented above (obtained by removing the
second user equipment) in different scenarios by: (a) only increasing the executor
count, (b) only increasing length of message queues, (c) increasing the number
of activations and executors, and (d) increasing the number of user equipment
(performed by just copying one of the existing ones) and executors. In (c) and
(d) the number of executors must be increased as otherwise the system would
not work as intended.

Note that in scenario (a) and (b), the set of solutions is constant, while
in (c) and (d) the solutions are reduced (as the load of the system increases).
As upper bound, 100 and 1000 were chosen for the number of executors and
queue length, respectively. For the activations and user equipment, the upper
bound was increased until memory-out was reached (thus halting the search).
The results for (a) and (b) are presented in Fig. 9, and for (c) and (d) in Table 6.

1 2 3 4 5 6

Activations 0.09 0.11 1.3 66.7 2906.2 M/O

User Equipment 0.4 34.2 679.0 M/O - -

Table 6: Runtime (in seconds) for Nr. of activations and user equipment.

We can see that the increase in run-time with an increased queue length is minor,
but that the number of executors greatly affects the complexity. It is also clear
that the underlying model checking does not scale well with an increasing number
of user activations and user equipments, as already a value of six activations or
four user equipments leads to a memory out.

5 Discussion

Our major contribution is a framework backed by tool support that allows a
5G engineer to model the system in the UML world, without needing to know
anything about the underlying formal model, thereby improving the usability of
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Fig. 9: Scaling of Queue length and Executor count.

the approach. Our approach allows to verify by model checking if a particular
configuration of a 5G-SO system can meet application requirements in terms
of bandwidth and latency. Another salient feature of our tool is that we are
able to also verify the fault-tolerant behavior of the system, by implementing
k-fault detection. These features are novel and unique, since no other automated
approach to date provides them.Note that when considering this approach, we
are only interested in finding a remapping option, without altering the initial
VNF allocation that we have assumed. There are also approaches that would
consider a reallocation of VNFs, however compared to a remapping, the former
might be a costly option.

The analysis technique that we employ is exhaustive model-checking that pro-
vides guarantees over all possible system behaviors. However, exhaustive model-
checking does not offer the level of scalability demanded by 5G networks, as
the technique suffers from the well-known state-space explosion problem. Due to
this, we are limited by the number of parallel UE requests that we can analyze
in our system. Currently, our G5 tool can handle one UE with a maximum of
three activations, two different UEs with one activation each, or one UE with
two activations and the 2nd UE with one activation. We acknowledge that this
is a small number for a complex 5G network setting. Nevertheless, this paper
introduces the only current tool backed by model checking that is applied on an
industrial eHealth use case that uses 5G network slicing.

To mitigate the scalability of model checking, there is a multitude of ways, so
we mention some of them in the following. One solution can come by optimizing
our TA models. We find that a major source of our model’s complexity stems
from the use of executor TA that handle parallel requests. For each request, we
need a free executor to handle it, yet adding them in large numbers in our TA
model makes the latter too large to be handled. Hence, we could investigate
how can one eliminate such executor TA in the model, and incorporate other
ways to handle parallel requests. Moreover, currently our UE TA can pick up
any free executor available, providing multiple parallel options to choose from,
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which also contributes to exploding the state space. In future tool refinements,
we can avoid this by providing a rule to pick a particular executor, say each
UE picks up the executor with the lowest id. In addition, if we are interested in
worst-case analysis, we can ignore the BCET of the VNFs, which will optimize
the TA models and reduce the state space.

Another source of complexity that we can remove in future work is the fact
that we are using enumeration of all multiple routing options, checking them
one by one, which makes the verification’s complexity explode, based on the
many TA models that we need to verify, as each routing configuration has a
corresponding TA model that we need to check. Therefore, one possible way
around is using a more intelligent solution, say by using artificial intelligence to
generate only the best possible mappings, for instance, using the approach in
[16]. This reduces the number of configurations that we need to analyze, thereby
improving scalability. Moreover, if scalability is more important than providing
exhaustive guarantees, one can employ techniques like statistical model checking,
e.g. UPPAAL SMC [9] which can provide probabilistic guarantees to the system.
Although not exhaustive, such methods can handle complex systems.

6 Related Work

In the literature, there exists a lot of work aimed at providing optimal solutions to
the 5G-SO systems. However, to the best of our understanding, not much efforts
have been invested in building design-time analysis frameworks that allow a 5G
engineer to model such a system and analyze if a particular solution can meet
the application requirements, taking into account a variety of dynamic inputs
like varying network load, VNF sharing, rerouting options, etc. (at the level of
abstraction that we are interested in).

However, in recent years, there have been some endeavors focused on provid-
ing modeling and analysis support for network slicing, VNF chaining, etc. One
such framework is the Gym framework [25] and work by Peuster and Karl [24],
which model the description of VNFs and VNF chaining in isolation, and analyze
if application requirements are met. In another interesting work [14], the authors
propose a mathematical model for network slicing based on combinatorial designs
such as Latin squares and rectangles and their conjugate forms. Although the
approach is supported by mathematical modeling to support network slicing, due
importance is given only to network slice description and providing optimized
solutions to maximize the utilization of the network components, and decrease
the average delay from slice request to slice activation. In contrast to our work,
these approaches model VNFs, their chaining, and network slicing at a different
abstraction level, without considering a system perspective, or 5G-specific sce-
narios, and have a different focus compared to ours. Another interesting work
in the literature is the NESMO framework (Network Slicing Management and
Orchestration) [11]. The framework automates network slice design, deployment,
configuration, activation, and lifecycle management in multiple network infras-
tructure resource domains. Although this work considers a lot of intrinsic factors



16 Kunnappilly et al.

that we do not consider in our framework, the aim is not to verify any 5G-SO
solutions, so it does not solve the same problem as ours.

Using UML to model and analyze 5G-SO solutions is, comparatively, a less
explored field. In a recent work [23], the authors model 5G network slices,
namely, resource-driven, service-driven, deployment-driven views, using differ-
ent UML diagrams. However, the modeling is not backed by formal verification
like we present in this paper. Recently, there has also been work that uses various
UML diagrams to depict the information model definitions for representing the
manageable characteristics of the managed entities (so-called Network Resource
Models [NRMs]) [13]. However, unlike our work, the focus of this work is on au-
tomating RAN slicing, and not on providing a UML-based framework backed by
model checking, which allows a 5G engineer to model and verify 5G-SO solutions.

7 Conclusions and Future Work

In this work, we present improved tool support for modeling and verifying 5G-SO
configurations, which we evaluate on a relevant industrial case-study of e-Health
applications. The tool relies on UML modeling that is empowered by UPPAAL
model checking. Our tool, G5, enables a 5G engineer who does not necessarily
have prior knowledge of formal models and model checking to verify the UML
models of 5G orchestration, by automatically generating underlying formal TA
models that are checked by UPPAAL. Applying the tool on the case study has
lead to gaining useful insight on the approach, as well as its limiting factors.

Since we are using exhaustive model-checking (which is prone to state space
explosion problem) to analyze our models, currently our framework may not scale
to larger case studies. However, we have provided ideas to tame scalability of
verification, either by optimizing our UPPAAL models to reduce the state space,
or by employing artificial intelligence techniques, like reinforcement learning or
evolutionary algorithms, to guide the search and generate only an optimal subset
of the viable SO configurations that need to be analyzed under current scenarios.
This could reduce the system workload and speed up model checking, as well
as improve its scalability. Another way is to employ statistical model-checking
instead of exhaustive model-checking, which can handle large systems, at the
expense of verification exhaustiveness and exact guarantees. Since end-to-end
network slicing in 5G systems is not yet fully standardized and available, some
improvements of our framework and tool might be needed in the future. However,
since our UML5G-SO profile can be easily extended, we do not foresee significant
issues with extending the framework.

Acknowledgement

This work is supported by the EU Celtic Plus/Vinnova project, Health5G -
Future eHealth powered by 5G, which is gratefully acknowledged.



Title Suppressed Due to Excessive Length 17

References

1. 5G evolution: 3GPP releases 16 & 17 overview. https://www.ericsson.com/en/re
ports-and-papers/ericsson-technology-review/articles/5g-nr-evolution,
accessed: 2020-07-24

2. 5G Transformer Project. http://5g-transformer.eu, accessed: 2020-07-24
3. EU Celtic Plus Health5G Project. http://health5g.eu, Accessed: 2021-05-14
4. Open Air system Requirements. https://gitlab.eurecom.fr/oai/openairinter

face5g/-/wikis/OpenAirSystemRequirements, Accessed: 2021-05-17
5. USE: UML-based Specification Environment. https://sourceforge.net/projec

ts/useocl/, accessed: 2020-07-24
6. Alameddine, H.A., Qu, L., Assi, C.: Scheduling service function chains for ultra-

low latency network services. In: 2017 13th International Conference on Network
and Service Management (CNSM). pp. 1–9. IEEE (2017)

7. Alur, R., Dill, D.: Automata for Modeling Real-time Systems. In: Automata, lan-
guages and programming, pp. 322–335. Springer (1990)

8. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. vol. 3098,
pp. 87–124. Springer (2004)

9. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal smc
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10. Deng, W., Karaliopoulos, M., Mühlbauer, W., Zhu, P., Lu, X., Plattner, B.: k-Fault
tolerance of the Internet AS graph. Computer Networks 55(10), 2492–2503 (2011)

11. Devlic, A., Hamidian, A., Liang, D., Eriksson, M., Consoli, A., Lundstedt, J.:
Nesmo: Network slicing management and orchestration framework. In: 2017 IEEE
International Conference on Communications Workshops (ICC Workshops). pp.
1202–1208. IEEE (2017)

12. Douglass, B.P.: Real time UML: advances in the UML for real-time systems.
Addison-Wesley Professional (2004)
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