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Abstract

Local search has during the last years evolved into a powerful technique
for solving large combinatorial problems, often outperforming complete
algorithms. The classical approach for generic constraint solving in local
search is to provide a set of primitive constraints, which in turn can be
used to form more complex combinatorial structures. Unfortunately, for
several combinatorial structures there is no decomposition into binary
constraints which is acceptable in terms of space and/or time complex-
ity. Global constraints have been introduced in local search as time
and space efficient modelling components, capturing the properties of
common combinatorial substructures.

In this thesis we propose a compositional approach for global con-
straint design and implementation for local search. Traditionally, global
constraints have been implemented as monolithic entities, often using
a low-level language and requiring in-depth knowledge of the constraint
system itself. In this work we propose to use graph structures, filters and
cost components to create global constraints in a high-level C++ frame-
work called Composer . The composed constraints can then be used for
constraint solving in a generic, domain-independent local search solver.
We show the theoretical model of the framework, and give algorithms for
incrementally updating the costs and conflict levels of the constraints.
We also show how to compose several well-known global constraints,
and demonstrate by experimental results that a compositional approach
at global constraint modelling is not only possible in practice, but also
highly competitive with existing low-level implementations of constraint-
based local search.

i





To Veronica





Preface

Looking back after three years of graduate studies, I can honestly say
that although it has sometimes been hard work, it has also been very
interesting, rewarding, and fun. I’ve had a great time, and I’ve met a
lot of new people, of whom some will continue to be my friends for life.

First of all, I would like to thank my colleagues and friends Jan
Carlson and Waldemar Kocjan for their company during these years.
They have also endured with me during seemingly endless technical and,
well, not-so-technical, discussions during our longer-than-normal coffee-
breaks. Thanks, guys.

I am very grateful for the good advice and support my advisor Per
Kreuger has given me during my licentiate studies. I would also like to
thank my main supervisor Björn Lisper for support, help, and lots of
different perspectives.

The people at IDT, especially Markus Nilsson, Johan Erikson, Mikael
Sandberg, and the other people at the Computer Science Lab, as well as
my colleagues at SICS; Martin Aronsson, Jan Ekman, Anders Holst, and
my boss Björn Levin to mention a few, all deserve my deepest thanks.

To my former colleagues and class-mates Lars Bruce, Andreas Sjögren
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Chapter 1

Introduction

1.1 Introduction
The constraint satisfaction problem (CSP) is a well-known problem in
computer science. Informally, a CSP can be defined as follows.

Given a set of variables and constraints on these, is there an
assignment of values to the variables, such that all constraints
are satisfied?

A special case of a CSP is the propositional satisfiability problem, or
SAT for short. SAT can in turn informally be defined as follows:

Given a set of Boolean variables and logical clauses over
these, is there an assignment to the Boolean variables such
that all clauses are satisfied?

CSP and SAT has been studied in numerous books and articles. Both
CSP and SAT are core problems in computing theory and mathematical
logic. SAT was actually the first problem shown (by Cook in [10]) to
be NP-complete. This can be seen as an indication of the theoretical
importance of these problems. Graph coloring, scheduling, planning,
and assignment problems have also been formulated as SAT and/or CSP
instances with much success. Methods for solving CSP and SAT are also
fundamental in solving many practical problems including automated
reasoning, computer-aided design and manufacturing, machine vision,
databases, robotics, integrated circuit design, and computer network
design.

1



2 Chapter 1. Introduction

The study of systematic methods for constraint satisfaction evolved
from general systematic search methods in the field of artificial intelli-
gence during the 70’s and 80’s. A key step toward constraint satisfac-
tion was the development of logic programming languages like Prolog.
In fact, many constraint satisfaction systems are extensions of logic pro-
gramming, so-called constraint logic programming (CLP) systems.

Conventional constraint satisfaction methods have been shown to
work well on a large number of problems from real life, like scheduling,
planning and resource allocation problems. Unfortunately, these meth-
ods are in general time- and memory consuming, and because of this,
they are not always suitable. For example, a dynamic planning problem
is a planning problem, where the parameters change dynamically dur-
ing the execution of the plan. This calls for a planner, which is able to
recover from changes in the plan within reasonable time limits. Tasks
like this are not obviously well-suited for regular constraint satisfaction
methods.

Another approach for combinatorial problem solving is to use in-
complete search methods such as local search. Heuristic methods based
on local search for solving constraint problems have evolved during the
last fifteen years into becoming one of the most powerful techniques for
solving large combinatorial problems, often outperforming complete al-
gorithms. The classical approach for generic constraint solving in local
search is to provide a set of primitive constraints, which in turn can be
used to form more complex combinatorial substructures [73]. A natural
choice is to restrict the user to binary constraints only. Unfortunately,
for several common combinatorial structures there simply do not exist
a decomposition into binary constraints that is acceptable in terms of
space and/or time complexity. Global constraints have been introduced
in local search systems to provide time- and space efficient high-level
components capturing common combinatorial substructures.

One local search approach to constraint satisfaction is called iterative
improvement, in which a given candidate “solution” (which by no means
actually has to solve the problem) is improved in an iterative process.
The improvement is usually done by changing small parts of the solution,
choosing the one that looks best at the moment. Iterative improvement
and other related local search techniques also have the advantage that
a solution always is available during the search, a property commonly
known as anytime behavior.
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In this licentiate thesis we study the fusion of local search and global
constraints, which essentially are constraints encompassing a complex
structural component of the problem. Theoretically, any constraint is
simply a relation on the Cartesian product of the variables in the con-
straint. In practice, a global constraint is represented by a data structure
together with specialized algorithms, which efficiently update the data
structure of the global constraint. Traditionally, global constraints have
been used mainly in systematic search frameworks, to prune the search
space as much as possible during the search. However, in most local
search frameworks, a global constraint acts only as an efficient represen-
tation of a large set of more primitive constraints.

Local search methods for constraint satisfaction, such as steepest de-
scent, often aim at minimizing the number of violated constraints, by
changing the value of a single variable in the problem. When introduc-
ing global constraints, this approach has the disadvantage that a global
constraint, in effect encompassing the semantics of a large set of basic
constraints, contribute as little to the number of violated constraints as,
for example, a very simple constraint which imposes a restriction on a
single variable. This is unfortunate because the search gets unbalanced,
and the subproblem that the global constraint represents becomes diffi-
cult to solve.

In the main part of this thesis, we study the integration of global
constraints into a local search framework, addressing the problems de-
scribed above. We propose a compositional approach for modelling of
global constraints themselves, which gives us a high-level tool for inven-
tion and modification of global constraints. This process is very common
in real-life applications, where the provided global constraints often do
not fit the problem exactly. In our approach, we parametrize global con-
straints over key properties of their structure. To do this we use a generic
graph model, an approach that has previously been used successfully to
model a large number of global constraints [4]. The main benefit of a
parametrized model for global constraints is that practitioners can very
easily experiment with different cost functions and different structures,
and also create completely new global constraint, using composition of
structural components, with minimum work. Also, the resulting con-
straints are evaluated very efficiently using highly-optimized incremen-
tal algorithms. The user does not have to care about keeping costs and
conflict levels updated, which is handled by our implementation auto-
matically.
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1.1.1 Thesis Organization

This licentiate thesis is organized as follows. The first chapter gives a
brief introduction to the problems addressed and investigated in this
thesis. We also list some publications that have been written during the
thesis work. The second chapter is an introduction to the constraint
satisfaction domain and give some motivating examples of constraint
models and problems. In the third chapter, we begin by introducing
some concepts and formalism used for local search and constraint sat-
isfaction. We define neighbors of a solution, local transitions and cost
functions. In Chapter four, we introduce and motivate global constraints
as costs on graphs in a local search context, and define some global con-
straints and the cost of these. We show the virtual cost for the common
alldiff global constraint, and continue reasoning about costs for more
complex global scheduling constraints. In Chapter five, we describe an
implementation of the theoretic work of Chapter 4, and give some ex-
amples of problems that can be solved using this approach. We also
give experimental results on some benchmark problems. In Chapter six,
we describe some alternative approaches at constraint satisfaction us-
ing local search, and other related techniques. We conclude the thesis
in Chapter seven with a summary of the contributions of the licentiate
thesis work, and describe some possible future work.

1.1.2 Publications

The following papers have been published during the thesis work and
form the basis of this thesis.

1. Constraint Satisfaction using Local Search, SICS Technical Report
T2002:07.

2. Improving Cost Calculations for Global Constraints in Local Search,
poster paper, in Proceedings of the Eighth International Con-
ference on Principles and Practice of Constraint Programming,
September 2002, Ithaca, New York.

3. Designing Global Scheduling Constraints for Local Search: A Ge-
neric Approach, SICS Technical Report T2002:20.

4. Composing Global Constraints for Local Search, in Proceedings of
the 15th International Conference on Applications of Declarative
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Programming and Knowledge Management (INAP), March 4-6,
2004, Fraunhofer FIRST, Berlin, and University of Potsdam.

1.1.3 Contributions

I believe that this licentiate thesis has contributed with the following.

• A formalization of constraint-based local search. We give formal
definitions of many of the concepts of local search, which tradi-
tionally has been treated in a rather ad-hoc manner.

• A theoretical framework for global constraint cost and conflict com-
putation in local search. We show how cost functions on structured
graphs of filter constraints can be used to model global constraints.
We also show how costs and conflict levels can be computed both
from scratch and incrementally in this framework. Several impor-
tant global constraints are modeled in the framework to show its
expressiveness.

• An implementation of a local search solver and a global constraint
library, based on the theoretical model. We have implemented the
theoretical model for global constraints, and integrated the frame-
work in a generic local search solver. We have also modeled and
solved the Progressive Party Problem and the n-queens problem,
and compares our results with other results reported for constraint-
based local search implementations.





Chapter 2

Constraint Satisfaction

2.1 Basics of Constraint Satisfaction

Constraint satisfaction basically consists of assigning values to variables
while meeting certain requirements (constraints). This declarative ap-
proach at problem modelling is very generic, and constraint problems
are often concise and easy to understand. To clarify the concept of con-
straint satisfaction we will give two examples of problems that are easily
modeled using CSP’s.

Example 1 A graph coloring problem consists of assigning a given set
of colors to the vertices in a graph, such that no adjacent vertices (which
are connected via an arc) get the same color. Graph coloring problem can
quite easily be represented as a CSP. In this case, we let the vertices of
the graph and the colors correspond to variables and values respectively.
The arcs of the graph can be modeled using a constraint that prohibits
assignments of the same value to adjacent variables.

Example 2 In scheduling, constraints apply to variables representing
the starting times and durations for tasks. In addition, constraints may
be imposed on the non-overlapping of certain activities in the schedule –
for example, the simultaneous use of a single resource may be forbidden.

The most common constraint satisfaction model is the finite domain
constraint model (FD), where each variable has a domain of finite size.
In this thesis we will only discuss FD constraint models.

7
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2.1.1 Constraint Satisfaction

We now define the class of finite domain constraint satisfaction problems
(CSP). For more information, see the books by Marriott and Stuckey
[38], Tsang [72], and Apt [2]. To discuss constraint models in detail, we
first need to define some common concepts. We begin by defining the
domain of a variable in a CSP.

Definition 1. The domain of a variable is the set of possible values that
can be assigned to the variable. If x is a variable, then dom(x) denotes
the domain of x.

The next step is to define concepts regarding assignments of values
to variables. We do this by first defining an assignment of one single
variable, called a label.

Definition 2. A label is a tuple 〈x, v〉 where x is a variable and v ∈
dom(x) is a value in the domain of x.

More informally, a label is the state of a variable x after assignment
of the value v. The process of assigning values to variables using a
constructive method is often called labeling1. The notation var(`) will
be used to denote the set of variables assigned by the label `. We continue
by formalizing the simultaneous assignment of several tuples.

Definition 3. A k-compound label ` is a set of tuples with size k, si-
multaneously assigning k values to k unique variables.

We use var(`) to denote the variables in a compound label or an
assignment. Compound labels are mostly used to assign values to a sub-
set of the variables in a problem. In contrast to a complete assignment,
assigning all variables in a problem, we refer to a compound label that
does not necessarily assign all variables as a partial assignment.

Next, to reason about constraint satisfaction problems, we need to
formalize the concept of a constraint. We use the notation cS to denote
the constraint c on the set S of variables.

Definition 4. A constraint cx1,x2,...,xk
on the variables x1, x2, . . . , xk is

a set of k-compound labels for x1, x2, . . . , xk, representing the compound
labels that satisfy the constraint.

1The term enumeration is also common, in particular in the systematic constraint
satisfaction community.
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We say that a constraint cx1,x2,...,xk
has arity k, and refer to con-

straints with k = 1, 2 and 3 respectively as unary, binary and ternary.
As an example of a constraint, greater-than(x, y) is a relation that can
be seen as a binary constraint, with the intuitive meaning that x > y. If
the domains of x and y are both {1, 2, 3}, then the binary constraint cx,y

representing greater-than is conceptualized by the set of 2-compound
labels that satisfy the constraint, which are shown below.

cx,y = {`1, `2, `3}
where
`1 = {〈x, 2〉, 〈y, 1〉}
`2 = {〈x, 3〉, 〈y, 1〉}
`3 = {〈x, 3〉, 〈y, 2〉}

Definition 4 states that a constraint is a set of compound labels. This
representation of a constraint is hardly ever used in practice for space
and efficiency reasons. When discussing constraint satisfaction we will
sometimes talk about other representations of constraints, where the
tuples that satisfy it is not readily available.

Definition 5. The variables of a constraint cS , denoted as var(cS), is
the set S of variables in the constraint.

var(cS) = S

Next, we define the binary relation satisfies between a compound
label and a constraint. To do this we first need to define projections of
compound labels.

Definition 6. A compound label `b is a projection of a compound label
`a, written as projection(`a, `b) if and only if `a is a subset of `b.

projection(`a, `b) ≡ `a ⊆ `b

Definition 7. A compound label ` satisfies a constraint c if and only if
there is some compound label in c that is a subset of `.

satisfies(`, c) ≡ ∃`′ ∈ c : projection(`′, `)

This intuitively means that a partial assignment satisfies a given con-
straint if all variables involved in the constraint are assigned values that
are compatible with the constraint.
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For example, the compound label ` = {〈x, 3〉, 〈y, 1〉} satisfies the
constraint c representing the relation greater-than, where c is the set

{ {〈x, 2〉, 〈y, 1〉} {〈x, 3〉, 〈y, 1〉} {〈x, 3〉, 〈y, 2〉} }

of 2-compound labels that satisfy the constraint.

Definition 8. A compound label ` satisfies a set of constraints C if and
only if ` satisfies all constraints cS ∈ C where S is a subset of X.

satisfies(`, C) ≡ ∀c ∈ C.satisfies(`, c)

Having defined the important concepts of constraints and variable
assignments, we can now define constraint satisfaction problems them-
selves.

Definition 9. A constraint satisfaction problem is a triple (X,D,C)
where X is a finite set of variables {x1, x2, . . . , xn}, D is a function map-
ping each variable x ∈ X to a set of values dom(x1) = {v1,1, v1,2, . . . , v1,q},
and C is a finite set of constraints {c1, c2, . . . , cm}.

We will assume that n and m represent the number of variables and
the number of constraints respectively of a certain CSP.

In contrast to the partial assignments defined in 3, we define complete
assignments as follows.

Definition 10. A complete assignment for a CSP (X,D,C) is an n-
compound label ` where n = |X| and X = var(`).

Definitions 3 and 10 together state that if ` is a complete assignment,
then ` is also a partial assignment. However, every partial assignment
is not necessarily a complete assignment. In Chapter 4 we will look
on another representation of assignments useful in the context of local
search.

Definition 11. The state space S(Y ) of a set of variables Y ⊆ X and
a CSP (X,D,C) is the set of all possible assignments for Y :

S(Y ) = {` | var(`) = Y ∧ ∀y ∈ Y.v(y) ∈ dom(y)}

We call a state space where Y = X the total state space for a CSP
(X,D,C).
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Definition 12. The state powerspace SP(Y ) of a set of variables Y ⊆ X
and a CSP (X,D,C) is the set of all possible assignments for Z ⊆ Y :

SP(Y ) = {` | var(`) ⊆ Y ∧ ∀z ∈ var(`).v(z) ∈ dom(z)}

It is important to realize that the total state space is the state space
for all variables in a problem, that is, all possible total assignments of
all variables in the problem. The state powerspace of a set of variables
Y is the union of all state spaces on subsets of Y , or alternatively put,
all possible partial assignments of any variables in Y . Finally, the total
state powerspace is then all possible partial assignments of any variables
in the problem.

We can now define the concept of solutions to CSP’s.

Definition 13. A solution to a CSP (X,D,C) is a compound label `
that satisfies C, where for all tuples 〈x, v〉 in `, v is in the domain of x.

solution(`, (X,D,C)) ≡ satisfies(`, C) ∧ ∀x ∈ var(`).x ∈ dom(x)

2.1.2 Constraint Graphs

Any given CSP P = (X,D,C) can be represented as a constraint graph2.
In a constraint graph, each arc represents a constraint3. Because an arc
in a graph by definition is a pair of vertices, we first need to generalize
regular graphs to accommodate k-ary edges.

Definition 14. A hypergraph is a tuple (V, E) where V is a set of vertices
and E is a set of hyperedges. A hyperedge ε ∈ E is a set of vertices.

Having defined hypergraphs, we can now define the constraint hyper-
graph for a given CSP.

Definition 15. A constraint hypergraph for a CSP is the hypergraph
(X, E) where X is the set of variables in the problem and E is a set of
hyperedges, where each hyperedge εi ∈ E corresponds to a constraint ci,
and contains the set of variables that are present in ci.

2In fact, they are represented by an annotated constraint graph, where additional
information about constraints are annotated to the edges of the graph.

3If several constraints are on the same variables, these can be combined into one
single constraint representing the conjunction of the constraint on the variables in
question.
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The concept of constraint hypergraphs can be restricted to constraint
graphs, which are ordinary graphs with binary and unary edges only.

Definition 16. A constraint graph for a CSP is the undirected graph
(X,E) where X is the set of variables in the problem and E is the union
of the set of edges {s, e} where s, e ∈ c for some c, and the set {s} where
{s} = c.

The constraint graph of a general CSP P is also called a primal
graph of P. As an example of a constraint graph, consider the inequality
problem, where X = {a, b, c}, D = { a 7→ {1, 2, 3}, b 7→ {1, 2, 3}, c 7→
{1, 2, 3} } and C = {a 6= b, a 6= c, b 6= c}. This problem can be visual-
ized as the constraint graph ({a, b, c}, { {a, b}, {a, c}, {b, c} }), as shown
in Figure 2.1.

a

b c

a 6= b a 6= c

b 6= c

Figure 2.1: The constraint graph ({a, b, c}, { {a, b}, {a, c}, {b, c} })

Unfortunately, by transforming a constraint hypergraph into a regu-
lar constraint graph, we loose structural information about the original
constraints. This information can potentially be used to prune the search
space more aggressively by using specialized techniques for certain non-
binary constraints. Worse yet, there are constraint hypergraphs that
cannot simply be transformed into primal graphs. For example, con-
sider the parity problem on n Boolean variables x1, x2, . . . , xn. In this
problem, we have one single constraint on the n variables, which only
contains the n-compound labels where x1 ⊕ x2 ⊕ · · · ⊕ xn = true and ⊕
is the logical exclusive or operator with the normal properties, defined
as x⊕y ≡ (x∨y)∧ (¬x∨¬y). Parity information is not local to any two
variables. Therefore, the constraint hypergraph for this problem has no
semantic-preserving primal graph.
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2.1.3 Optimization and Partial CSP’s

Many real-life problems are natural to represent using a set of constraints
coupled with a function ordering the solutions to the problem with re-
spect to their usefulness. The constraint satisfaction problem is a model
without any gradation of solutions. To cope with this we extend the
CSP model to accommodate for an objective function grading solutions
to the problem.

Definition 17. A constraint satisfaction optimization problem (CSOP)
is a quadruple (X,D,C, f), where (X,D,C) is a CSP and f : dom(x1)×
dom(x2) × . . . × dom(xn) → R is a function mapping each complete
solution tuple to a numerical value.

The objective of solving a CSOP is to find the best (lowest or highest,
rated by f) complete assignment that satisfies all constraints.

The following definition applies to minimization problems. Maxi-
mization problems can be modeled as a minimization problem where f
is the negation of the objective function of the maximization problem.

Definition 18. A solution to a CSOP (X,D,C, f) is a complete assign-
ment ` that satisfies C, and where for all other complete assignments `′

that satisfies C, it holds that f(`) ≤ f(`′).

solution(`, (X,D,C, f)) ≡
satisfies(`, C) ∧
∀v.satisfies(`′, C)→ f(`) ≤ f(`′)

Many problems are easily expressed as constraint satisfaction prob-
lems, but sometimes we may still be interested in compound labels that
satisfy not all but some of the constraints in the problem. Next, we ex-
tend the model of CSP’s to formalize this concept into partial constraint
satisfaction problems.

Definition 19. A partial constraint satisfaction problem (PCSP) is a
quadruple (X,D,C,Â), where X is a set of variables {x1, x2, . . . , xn},
D : X → d is a function mapping each variable x ∈ X to a set of objects
d, C is a finite set of constraints on a subset of variables in X and Â is
a partial ordering among subsets of C.

The relation Â imposes an ordering of importance on the constraints,
so that we can satisfy as important constraints as possible. Intuitively,
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C ′ Â C ′′ means that the constraints in C ′ are more important than those
in C ′′.

Definition 20. Given a PCSP P = (X,D,C,Â), a compound label ` of
all variables in X is a solution to P if and only if there is no compound
label `′ 6= ` such that

{c | c ∈ C ∧ ¬satisfies(`′, c)} Â {c | c ∈ C ∧ ¬satisfies(`, c)}

2.2 Motivation

Many real-life problems can easily be expressed in CSP terms. In this
section, we give a few examples of problems that can either easily be
formulated as CSP’s or, in the cases where the formulation is too complex
to explain here, have successfully been formulated as CSP’s.

2.2.1 Some Benchmark Problems

In this section we take a closer look on a small set of combinatorial prob-
lems traditionally used to test constraint systems; the n-queens problem,
the magic square problem and the magic sequence problem. These prob-
lems have in common that they are easily modeled and straightforward
in design, and therefore of mostly theoretical interest. Nevertheless,
modelling these problems using constraints show the great generality of
a constraint-based approach at problem solving.

The n-Queens Problem

The n-queens problem is simply the problem of placing n queens on an
n×n chessboard, so that no two queens attack each other. The n-queens
problem is a classical search problem used to test both backtracking
search and local-search based algorithms.

We now model the n-queens problem using CSP notation. First,
observe that each solution to the n-queens problem must have the queens
placed on different rows and columns. Let the variables xi denote the
row position of the queen located at column i. The N -queens puzzle can
then be formalized as follows.
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Each queen placed on a row: xi ∈ {1, 2, . . . , n}

No two queens on the same row: ∀i, j, i 6= j → xi 6= xj

No two queens on the same diagonal:
∀i, j.i 6= j → i− j 6= xi − xj

∀i, j.i 6= j → i− j 6= xj − xi

As an example, the 3-queens problem can be expressed as the system
of inequalities below. Some redundant constraints have been removed to
clarify the model.

x1, x2, x3 ∈ {1, 2, 3}
x1 6= x2 x2 − x1 6= 1 x2 − x1 6= −1
x1 6= x3 x3 − x1 6= 2 x3 − x1 6= −2
x2 6= x3 x3 − x2 6= 1 x3 − x2 6= −1

We can visualize the 3-queens problem using the constraint graph
representation from Section 2.1.2. This graph is shown in Figure 2.2.

x1

x2 x3

c1 c2

c3

x1

x2 x3

6= 6=

6=

x
2
−

x
1
6=
1 x

3 −
x
1 6=

2

x3−x2 6=2

x
2
−

x
1
6=
−

1 x
3 −

x
1 6=

−
1

x3−x2 6=−2

Figure 2.2: The constraint graph for the 3-queens problem, where c1 ≡
x1 6= x2 ∧ x2 − x1 6= 1 ∧ x2 − x1 6= −1, c2 ≡ x1 6= x3 ∧ x3 − x1 6=
1 ∧ x3 − x1 6= −1, c3 ≡ x2 6= x3 ∧ x3 − x2 6= 1 ∧ x3 − x2 6= −1. The
corresponding multigraph, with multiple edges and constraints between
variables, is shown to the right.

In solving the n-queens problem in practice, a mathematical model
based on binary arithmetic constraints such as the one above is very inef-
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ficient – the number of constraints is quadratic to the number of queens
used. Using the global4 constraint alldiff (introduced by Régin in
[52]) which simply state that a set of variables should take distinct val-
ues, we can represent a third of the constraints in the model as a single
global constraint. This is illustrated in Figure 2.3.

The formulation is then reduced to:

x1, x2, x3 ∈ {1, 2, 3}
alldiff({x1, x2, x3})

x2 − x1 6= 1 x2 − x1 6= −1
x3 − x1 6= 2 x3 − x1 6= −2
x3 − x2 6= 1 x3 − x2 6= −1

PSfrag replacements

f(L1)
f(L2)
f(L3)

L1
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L3

Figure 2.3: Using the alldiff constraint in the n-queens problem to
restrict assignments of queens to the same column.

We can actually model the n-queens problem using only 3 constraints
if we use a generalized version of the alldiff constraint, accepting a
constant term in addition to a variable. The constraint then states that
the value of each variable modified by the constant should be different
from the value of all other variables, modified by their constants. This
is illustrated in Figure 2.4. We show the new compact model below.

x1, x2, x3 ∈ {1, 2, 3}
alldiff({x1, x2, x3})

alldiff({x1 + 1, x2 + 2, x3 + 3})
alldiff({x1 − 1, x2 − 2, x3 − 3})

In Section 5.5 we use the model above using our local-search con-
straint tool Composer to solve the n-queens problem.

4A global constraint is a usually non-binary constraint for a complex property
with a specialized algorithm for achieving a level of consistency [72].
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Figure 2.4: Using a modified alldiff constraint with constant terms
in the n-queens problem. The two constraints restrict assignments of
queens to the same left/right diagonal.

The Magic Squares Problem

A magic square with order n is a n × n matrix, containing the integers
1, 2, . . . , n2. In a magic square, each row, column and main diagonal
must equal the same sum. The problem is to find magic squares for a
given n, and can be formalized as follows. A magic square A is an n by
n integer matrix for which it holds that the values in 1, 2, . . . , n2 occur
exactly once, and

magicsquare(A) ≡ ∃k :

∀i ∈ {1, . . . , n}.
n
∑

j=1

ai,j = k

∀j ∈ {1, . . . , n}.

n
∑

i=1

ai,j = k

n
∑

i=1

ai,i = k

n
∑

i=1

ai,n−i = k
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The constant k, which is the sum of all rows, columns and the two
diagonals, can easily be computed to k = n(n2 + 1)/2. We have not yet
modeled and solved the magic squares problem in our implementation,
but previous results by other researchers show that it is certainly possible
to do so using local search [9, 41].

The Magic Sequence Problem

The magic sequence problem is similar to the magic squares problem
in Section 2.2.1. A magic sequence of length n is a sequence of in-
tegers x0, x1, . . . , xn−1 between 0 and n − 1 such that for all integers
i ∈ {0, . . . , n− 1}, the number i occurs exactly xi times in the sequence.
For instance

6, 2, 1, 0, 0, 0, 1, 0, 0, 0

is a magic sequence since 0 occurs 6 times, 1 occurs twice, 2 occurs once,
and so forth.

The magic sequence problem can be modeled as follows. A magic
sequence a is an integer vector of size n for which it holds

magicsequence(a) ≡

∀i ∈ {0, 1, . . . , n− 1}.ai =
n
∑

j=1

equal(i, aj)

where the function equal is defined as

equal(x, y) =

{

1 if x = y
0 otherwise

2.2.2 Configuration Problems

Configuration is the design of an artifact, which is to be assembled from
predefined components, which can only be connected according to some
restrictions. The goal is to select a set of components such that the
specification of the artifact is satisfied. Configuration problems arise
in many practical applications of the areas of sales, engineering and
manufacturing.

Constraint systems are well suited to model configuration problems.
Typically, the variables represent components or attributes of the ar-
tifact, and the values represent different selections for a component or
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attribute. The constraints are used to form rules for selection of the
components.

Because of the generality of configuration problems, we will not in-
vestigate practical constraint models for this topic. Instead, we refer
the reader to [14], where configuration problems and models using local
search are investigated.

2.2.3 Scheduling and Planning

Scheduling and planning problems are well-suited to formulation using
constraint models. For example, work by Kreuger et al. [35, 34], Fox [15],
Sadeh et al. [56, 57], Le Pape [48], Smith et al. [66, 67, 68], Davenport
and Tsang [12], El Sakkout and Wallace [58], and Kamarainen [33] all
address scheduling and planning using constraints. Often, scheduling
problems are formulated with specialized constraints that encompass
the functionality of a large set of “basic” constraints, as described in the
articles by Beldiceanu [6] and Régin [52, 54].

The Progressive Party Problem

The progressive party problem is a well-known benchmark problem in
the constraint programming community, and have been used in several
generic constraint-based local search methods as well [73, 20, 42]. The
problem can be described informally as follows.

An evening party is to be organized in the setting of a yachting rally.
It has been decided that the visiting boats are going to visit the boats of
the organizers in turn. The crew of a host boat serves the guests on the
visiting boats, and every half-hour the guest boat move to a new host
boat. This will go on for a given number of time periods. Also, no guest
boat is allowed to visit the same host boat twice, and two crews must
never meet more than once.

More detail of the Progressive Party Problem can be found in Section
5.6, where we show how to solve the progressive party problem using an
implementation of constraint-based local search.

Below we now present two problems taken from CSPLib [24], an
on-line combinatorial problem library for constraint-based solving ap-
proaches.
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The Social Golfer Problem

The social golfer problem is described in CSPLib as follows.

The coordinator of a local golf club has come to you with
the following problem. In her club, there are 32 social golfers,
each of whom play golf once a week, and always in groups of
4. She would like you to come up with a schedule of play for
these golfers, to last as many weeks as possible, such that no
golfer plays in the same group as any other golfer on more
than one occasion.

The problem can be generalized to that of scheduling m groups of n
golfers over p weeks, such that no golfer plays in the same group as any
other golfer twice.

The Car Sequencing Problem

The car sequencing problem is mentioned in work by Parrello and Kabat
[49], Dincbas et al. [13], Gent [21], Régin [54] and Lee et al. [37]. In
CSPLib it is described as follows.

A number of cars is to be produced; they are not identi-
cal, because different options are available as variants on the
basic model. The assembly line has different stations which
install the various options (air-conditioning, sun-roof, etc.).
These stations have been designed to handle at most a cer-
tain percentage of the cars passing along the assembly line.
Furthermore, the cars requiring a certain option must not be
bunched together, otherwise the station will not be able to
cope. Consequently, the cars must be arranged in a sequence
so that the capacity of each station is never exceeded. For
instance, if a particular station can only cope with at most
half of the cars passing along the line, the sequence must be
built so that at most 1 car in any 2 requires that option.



Chapter 3

Constraint-Based Local

Search

In this chapter we will discuss how discrete combinatorial problems can
be solved using local search methods. In the context of constraints and
combinatorial problems, local search has nothing to do with searching
a local physical area. Instead, algorithmic local search refers to the
restricted subspace of the total search space the algorithm investigates.
As we will see in later chapters, local search is a highly efficient family
of search techniques for constraint problems.

The standard method of solving generic constraint problems is to use
a backtracking search, combined with pruning techniques to reduce the
search space. Completeness is achieved because the backtracking search
guarantees that a solution will be found if one exists. This property is of
course desirable, but also comes with a high price: because algorithms
of this type must guarantee that all solutions can be found, it is not
uncommon that execution times are in practice exponential in the size
of the problem.

On the other hand, heuristic methods for constraint satisfaction are
based on incomplete search algorithms, sacrificing completeness for speed1.
In comparison with complete search, a restricted local search, concen-
trated on promising areas of the state space, can in many cases provide
superior performance in terms of time and space requirements. In this

1Note that for the search to prove infeasibility or optimality of a problem we still
need complete search.
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chapter, we discuss theory and some generic methods for heuristic search,
and then apply these on local search in a constraint-based environment.

3.1 Basics of Local Search

The exact formalization of a local search algorithm includes specifying
algorithmically the subset of the state space to be investigated. For
example, iterative improvement is an algorithm subclass of local search
in which a single candidate solution is improved iteratively to find a good
enough solution. We will refer to the improvement as a transition from
one state to another. The initial solution is often randomly generated
or generated according to some orthogonal heuristic. Thus, the search
space of iterative improvement can be described by 1) an initial solution,
and 2) an improvement strategy. Very common is also an explicit utility
function, computing the “goodness” of a candidate solution.

Another example of what can be considered local search are so-called
genetic algorithms, which have much in common with iterative improve-
ment methods. In a genetic algorithm (GA), elements from a set of
genotypes are randomly modified (mutation on GA language) and/or
combined (crossover) with each other, resulting in an offspring set of
genotypes. A genotype represents a solution candidate – in many cases,
the genotype is simply a bit string representing the values (alleles in GA
theory) of the problem variables (genes). Note the similarity to iterative
improvement using multiple solution candidates instead of a single one.

3.1.1 The Travelling Salesman Problem

As an example of a practical application of local search, consider solving
the well-known Travelling Salesman Problem (TSP) using local search.
The problem can be stated informally as follows. Imagine a salesman
who has to visit all the cities in a country, returning at the end of the
trip to the city where he/she started. Because there is a cost (gasoline,
etc.) associated with traveling between each pair of cities, the salesman
wants to find a tour that is as short as possible.

We now state TSP formally. First, we need to define some auxiliary
terms. A path in a graph (V,E) is a sequence 〈v0, v1, . . . , vk〉 of vertices
vi ∈ V such that (vi−1, vi) ∈ E for i = 1, 2, . . . , k. The path contains
the vertices v0, v1, . . . , vk and the edges (v0, v1), (v1, v2), . . . , (vk−1, vk).
The path is simple if all vertices in the path are distinct. A path forms
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a cycle if v0 = vk and the path contains at least one edge. A simple
cycle that contains each vertex in V is a Hamiltonian cycle, which we
also refer to as a tour.

We associate a real-valued constant distance c(i, j) to each pair (i, j)
of vertices. Formally, TSP is defined as a pair 〈G, c〉 where G = (V,E) is
a complete graph2 and c : V × V → R is a distance function from edges
to reals. The goal of TSP is to find a Hamiltonian cycle p in G visiting
all cities and minimizes the sum of the distance of the edges in p. We
call a TSP undirected iff ∀i, j ∈ V.c(i, j) = c(j, i) and directed otherwise.
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Figure 3.1: The effect of a 2-interchange transition on a tour in solving
the TSP. The original tour is to the left and the resulting tour to the
right. Observe that the direction of traversal has changed in the lower
part of the tour.

A common approach for solving TSP using local search is to start
with a Hamiltonian cycle p0, constructed using some heuristic, and then
improve the tour using interchanges of edges in the tour. A very com-
mon interchange operator is the edge interchange operator of [11] (the
2-interchange transition), which deletes two edges from the tour, thus
breaking it into two paths. Then, the two paths are recombined to form
a new tour in the other possible way. See Figure 3.1 for an example of
a 2-interchange transition.

An extension of the 2-interchange transition is the 3-interchange tran-

2A complete graph is a graph where all pairs of vertices are connected via an edge.
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sition, which examines interchanges of 3 edges of the tour. Using these
transitions, we investigate resulting tours with reduced length until no
interchange yields any improvement. The resulting tour is called either
2-optimal or 3-optimal, depending on the type of transition used.

3.1.2 Iterative Improvement

Iterative improvement is a technique for local search where we locally
improve a state (or solution candidate), according to the value3 of the
state. This reparation is typically continued in several iterations, until
either a sufficiently good state is found, or after a fixed number of iter-
ations, when we abort the search. The initial state is commonly chosen
using either a heuristic or simply at random.

In the rest of this thesis, we will often discuss states in the search.
As a convention, we will use the letters u and v to denote such states
(and later assignments).

3.1.3 Costs and Cost Functions

We continue in this section by formally defining the meaning of a cost
function, which is applied to a state to yield its cost. We will use the
term “cost” throughout this text. As an example, in constraint-based
local search, we use a cost function based on the violated constraints in
the current state as a measure of value.

In general, the cost of a state is taken from some cost set. In order
to compare different states with each other, we want the cost set to be
totally ordered by a relation:

Definition 21. A cost set W is a set which is totally ordered by a
relation ≤.

A total order on a set W by a relation ≤ has the following properties.

• ∀x ∈W.x ≤ x (reflexivity)

• ∀x, y ∈W.x ≤ y ∧ y ≤ x→ x = y (antisymmetry)

• ∀x, y, z ∈W.(x ≤ y ∧ y ≤ z)→ x ≤ z (transitivity)

• ∀x, y ∈W.x ≤ y ∨ y ≤ x (linear order property)

3Some commonly used terms for this are cost, penalty, violation level and utility.
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The by far most common cost set is N ordered by the usual ≤ relation.
This is also the cost set we use in our local search implementation as
described in Chapter 5. However, it is important to realize that other
cost sets can be useful. Consider for example a heuristic that should as
usual minimize the violation of the constraints used, but also minimize
the unused capacity in a resource allocation problem. A sensible cost set
for this would be N

2 together with a user-defined relation ., where we
let the first attribute of an element in N

2 represent the violation of the
constraints, and the second the unused capacity of the resources. We
can now define the relation . as follows.

∀(u1, u2), (v1, v2) ∈ N
2.(u1, u2) . (v1, v2)↔ u1 < v1∨(u1 = v1∧u2 < v2)

If we consider local search with real-valued variables, the cost set can be
generalized to R

2 instead.
In the following definition we use S to denote the set of possible

states in a problem specification, similar to Definition 11 of state space
in Chapter 2.

Definition 22. Let S be a state space of a problem and W a cost set.
A cost function f is a function with type S → W which map states to
costs.

The difference between a cost function and an objective function
(from Section 2.1.3) is that a cost function is used to rate states, which
do not need to satisfy the constraints in the problem. Instead, the cost
is a measure of to which extent a solution satisfies the constraints. Or-
thogonally to this, an objective function is used to rate solutions to the
problem. We make this distinction because we are mainly interested in
solving satisfaction problems, although a cost function could of course
also model the objective value of solutions.

We refrain from defining states formally for now, because they can
in essence represent any possible collection of mutable data in a model
of a problem. Later in this thesis we will concentrate on the special case
where a state is an assignment of values to a set of variables.

In designing a local search method, the first thing usually done is to
specify a cost function. There often exist quite natural measures of a
state in the given problem, which can be used as a cost function, but
the natural choice may not be the optimal cost to use in practice. For
example, in constraint-based local search, an often used and natural cost
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function is to use the number of violated constraints for a given state.
However, if the problem contains very few constraints, or if some con-
straints span a large percentage of the total variables, this cost function
will not be very useful. The result is that we cannot differ between states
that satisfy the constraints partially to different levels. A more accurate
representation of cost in these cases would be to use a cost for each com-
plex constraint based on a set of equivalent, less complex, constraints.
In Section 4.2 we develop this idea further.

3.1.4 Neighborhoods and Transitions

The next important design decision made when implementing a local
search procedure based on iterative improvement is to decide upon a
transition function, to be applied to the current state in each iteration.
The transition function simply transforms a state into another state, and
is usually parametrized over some parts of the state to be modified. The
transition function induces a neighbor relation on the state space of the
problem – we say that a state v is a neighbor of (or adjacent to) a state
u if application of the transition function (with some parameters) on u
yields v. Note that this relation is directed. It is common that neighbor
relations are defined as undirected relations. The motivation for using
directed neighbor relations is that we need the direction when analyzing
adaptive memory-based transitions. These transitions restrict visits to
previously investigated states, making the neighbor relation unidirected
in practice.

In this thesis we also do not require the neighbor relation to be reflex-
ive and symmetric4 – in fact, irreflexivity is often a useful property, and
introducing Tabu search, breakout and other types of adaptive memory
often give us an asymmetric neighbor relation. Also, we will frequently
use a loose definition of a relation and allow this relation to change over
time in order to model more elaborate neighborhoods.

Formally, a neighbor relation is simply a binary relation on the set
of possible states, induced by the transition used. We use the notation

u
T
−→ v to denote that v is a neighbor of u given the transition T , and

u
T
−→∗ v to denote that we can reach v in zero or more steps from u using

T . We use the term neighborhood to denote the states reachable in a
single transition from a given state.

4A relation R is reflexive if R(a, a), irreflexive if ¬R(a, a), and symmetric if
R(a, b) ↔ R(b, a), for all a, b.
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Definition 23. The neighborhood nbhT (u) for a transition function T
and a state u is the set of states which are neighbors of u via T .

nbhT (u) = {u′ | u
T
−→ u′}

A property we are often interested in when using local search methods
is that any two states in the state space are reachable from each other.
This corresponds to that we (theoretically) can visit all states of the
problem. We can express this property formally by first defining the
transitive-reflexive closure of our neighbor relation for a given state.

Definition 24. The transitive-reflexive closure tcT (u) of a state u and
a transition function T is the set of states which are reachable from u
using T in zero or more steps.

tcT (u) = {u′ | u
T
−→∗ u′}.

Using this definition we can now state the wanted property easily as
follows.

Definition 25. A transition function T , on a state space S, is covering
S if and only if its transitive-reflexive closure of any state u ∈ S equals
S.

coveringT (S) ≡ ∀u ∈ S.tcT (u) = S

We will sometimes refer to a transition covering the state space im-
plicitly defined from the context simply as a state space covering transi-
tion.

Another interesting attribute of the neighbor relation is which states
can be reached in a given number n ≥ 0 of steps. We define the distance
between two states u and v with regard to a neighbor relation as the
minimum number of transitions that has to be done to get to v from u.

Definition 26. The distance distT (u, v) between two states u and v is

distT (u, v) =

{

1 if u
T
−→ v,

1 + minu′∈nbhT (u)(distT (u′, v)) otherwise.

Note that the distance between two states is at least 1, and in partic-
ular that dist(u, u) 6= 0. We chose this definition to be able to analyze
the cyclic behaviour of local search.
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3.1.5 Neighbor Selection

In theory, in each iteration of local search we first generate a repre-
sentation of the neighborhood of the current state using all parameter
instances for the transition function used, and then select the next state
using some criteria on the transition. The most primitive selection used
is to try all transitions, yielding all neighbors, and then select either
the first generated neighbor that improves the current cost or the best
possible neighbor. In practice however, generating and evaluating pos-
sibly all neighbors to the current state can be too expensive, in terms of
execution time, due to the size of the neighborhood. Real implementa-
tions of local search algorithms usually involve a custom-made neighbor
generation and selection phase for efficiency reasons.

Another orthogonal technique for gaining a more efficient neighbor-
hood analysis phase is to use incremental computation of the cost of the
neighbors. This usually involves computing only the difference in cost
that the application of the transition on the current state yields. We will
discuss this topic further in Section 5.4 and in Chapter 5.

3.2 Constraint-Based Local Search

In this section we will apply the methods outlined above to constraint
problems. Although we focus on satisfaction problems, optimization
problems solved using local search in practice use the same or very similar
techniques. It is easy to add an objective function for optimization of the
search along with the cost of the constraints. Optimization is however
not covered by this thesis.

We begin by formally defining assignments as they are usually used
as states in constraint-based local search. Although there exist many
variations of what an assignment really is, we will use one based on
functions.

Definition 27. An assignment v for a set of variables Y and a CSP
(X,D,C), where Y ⊆ X, is a function v : Y → V mapping each variable
in Y to a value.

We also have domains on all variables in the problem. We can view
the domains of the variables as unary constraints on these, and indeed
one approach at handling domains in local search is to treat them as any
other constraint. In this thesis we will instead use a more rigid model,
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where the domain constraints of the problem are guaranteed to always
remain satisfied. The advantage of this is that we can concentrate on
a smaller state space than if the domain constraints were soft, which in
turn allows us to limit the amount of memory used to maintain con-
straints and costs during the search. We call an assignment that fulfills
all domain constraints domain conforming, and restrict our search to
such states.

Definition 28. A domain conforming assignment is a state in which all
variables are assigned values in the domain of the corresponding variable.

dconf(u) ≡ ∀x ∈ var(u).u(x) ∈ dom(x)

Note that the definitions above are different from the one given in
Definition 3 used as an assignment in the CSP theory. We use the
notation `(u) to refer to the compound label definition of an assignment
u. We still use Definition 1 for the domain of the variables in the problem.

Most assignments used in local search has the additional property
that Y = X, and as in Chapter 2 we will refer to such assignments as
total. In this thesis we will almost exclusively use total assignments.
However, many of the topics that we discuss is also applicable to search
using partial assignments.

We use x and y, with optional subscripts, to denote individual vari-
ables in the following text. var(u) is used to denote the set of variables
in the assignment u and we use u(x) to denote the value of the variable x
in the assignment u. Values are usually denoted by a, b, c etc., optionally
with subscripts. For an explicit assignment we use the notation

{x1 7→ a1, x2 7→ a2, . . . , xn 7→ an},

denoting a function mapping the variable x1 to the value a1, x2 to a2

etcetera. We also use

u[x1 7→ a1, x2 7→ a2, . . . , xn 7→ an]

to denote the function obtained by simultaneously replacing the mapping
of the distinct variables x1, x2, . . . , xn to the values a1, a2, . . . , an in u.
For example, assuming that we have the assignment u = {x 7→ 1, y 7→
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2, z 7→ 3} we can deduce the following.

u(y) = 2

u[y 7→ 4] = {x 7→ 1, y 7→ 4, z 7→ 3}

u[y 7→ 4](y) = 4

u[w 7→ 4] = {x 7→ 1, y 7→ 2, z 7→ 3, w 7→ 4}

Replacing a mapping of a variable which did not previously exist in the
function naturally adds the mapping to the function.

We also use ‖u‖1 as notation for the norm
∑

x∈var(u) u(x) of an as-
signment u, where the ’+’ operator is defined on the values of the vari-
ables in var(u). Subtraction and addition of two assignments u and v
is defined if var(u) = var(v) as variable-wise subtraction and addition
of the values in the states, given that the operator ’−’ is also defined on
the possible values. For example, u− v yields

{x1 7→ u(x1)− v(x1), x2 7→ u(x2)− v(x2), . . . , xn 7→ u(xn)− v(xn)}

where n = |var(u)| = |var(v)|.
Given a constraint problem, we have a set of variables, a set of con-

straints, and domains on all variables in the problem. The objective is to
find an assignment of the variables (in the corresponding domains) such
that all constraints are satisfied. A common technique for constraint-
based local search is to define a cost function for the constraints in the
problem. The cost function assigns a cost to each assignment, which
we then can vary according to a strategy to try to find a solution to the
problem. Usually the cost is 0 when we have a solution to the constraints
in the problem.

The state space of a CSP is defined in Definition 11. In local search
it is often the case that we want to restrict the search to a subset of
the state space where a set of constraints are satisfied. We refer to
such constraints as structural constraints, and extend Definition 11 of
the state space of a constraint problem to take into account this notion.

Definition 29. The state space SC′(Y ) of a set of variables Y ⊆ X and
a CSP (X,D,C), with respect to a subset C ′ ⊆ C of the constraints
in the CSP, is the set of all possible assignments for Y such that all
constraints in C ′ are satisfied:

SC′(Y ) =
{v : Y →

⋃

y∈Y dom(y) | ∀y ∈ Y.v(y) ∈ dom(y) ∧ satisfies(`(v), C ′)}
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As before, we are often interested in the case of a total state space,
where Y = X, with respect to some structural constraints C ′.

We also call a transition function on a state space domain conforming,
if it is not possible to break the domain constraints using the transition:

Definition 30. A transition function T on a state space S is domain
conforming on S if and only if its transitive-reflexive closure of any state
u ∈ S contains only domain conforming states.

∀u ∈ S.∀v ∈ tcT (u).dconf(v)

We now formally define a cost function used in the search to assign
costs to assignments.

Definition 31. Let SP(X) be the state powerspace of possible assign-
ments for the variables in a constraint satisfaction problem (X,D,C)
and CS be a cost set. A cost function f : SP(X) → CS maps each
possible assignment to an element in CS.

3.2.1 Transitions and the Neighbor Relation

Recall from Section 3.1 that the transition function is used to transform
a state into the neighbors of the state by varying certain parameters.
In constraint-based local search, the transition function is commonly
parametrized over the variables of the problem. Formally, the transition
function is a function on an assignment and parameters controlling which
variables should be varied, returning a new state. We use the earlier
notation of replacing mappings of variables for transition functions.

As an example of a transition function for use in constraint-based
local search, the transition of swapping the value of two variables in the
assignment u is defined as follows.

swap(u, x, y) = u[x 7→ u(y), y 7→ u(x)]

The swap transition has been shown to be very efficient for certain
combinatorial problems, see for example [69, 20, 19]. Also, proper set
up combinatorial problems with alldiff constraints can in some cases
be simplified by removing some alldiff constraints and using swap

transitions, ensuring that all states investigated respects the constraints
anyway.

Observe that swap does not always result in domain conforming
states. As an example of this, two variables x and y where dom(x) 6=
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dom(y) cannot in general be swapped without breaking the domain-
conforming property on the resulting state. We can use conditional state-
ments to restrict the transition function to domain conforming states.
This allows a swap to take effect only if the values to be swapped are in
the respective domains of the variables. Below is the corrected domain
conforming swap transition.

swap(u, x, y) =

{

u A if u(y) ∈ dom(x) ∧ u(x) ∈ dom(y)

u otherwise.

where A = [x 7→ u(y), y 7→ u(x)].

However, in general the swap transition is still not a state-space
covering transition. Starting in any state u we can only visit the part
of the state space where the variables take as values a permutation of
the original values of u. Take as example any alldiff constraint c.
For any CSP’s where some of the domains differ, the swap transition
is not state-space covering with respect to c. We correct this later by
combining modifications of the swap and the assignment transitions.

The simplest domain-conforming and state-space covering neighbor
function for use in integer constraint satisfaction is the 1-modification
transition function, in which we add or subtract 1 from/to the value of
a single variable, assuming that the resulting value is still in the domain
of the variable. This transition has been used previously in [73] and is
an extension of the flip transition of SAT local search, where the value
of a Boolean variable is simply negated. Formally, the 1-modification
transition function is defined as

modify1(u, x,m) =

{

u if u(x) + m /∈ dom(x)

u[x 7→ u(x) + m] u(x) + m ∈ dom(x)

where the parameter m ∈ {−1, 1} is used to denote the actual modifica-
tion of the current value. Note the domain-inclusion tests to ensure that
the result of the transition is a domain conforming assignment. We can
easily extend the transition function to investigate a change of at most
n by changing the allowed values of m to {−n, . . . ,−1, 1, . . . , n}.

The related assign transition is probably the most used neighbor
construct for generic constraint-based local search. It is natural to de-
fine, clear and simple, and works surprisingly well on many combinatorial
problems, despite its lack of structure-capturing properties. Several pro-
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blems are solved using this transition, or variants of it, in work by [42],
Codognet and Diaz [9], Galinier and Hao [20] and Nareyek [45].

We define the assign transition as follows.

assignn(u, x1, a1, . . . , xn, an) =











u if ∃i, j.i 6= j ∧ xi = xj

u if ∃i.ai /∈ dom(xi)

u A otherwise

where A = [x1 7→ a1, . . . , xn 7→ an].

Once again we check for domain inclusion of the changed value to ensure
a result respecting the domains of the variables. Note that we allow the
neighbor to take equal values for all or some of its variables. We could
force the assign transition to assign different values to all variables
present, but this would break the covering property of this transition,
and would not improve evaluation time significantly in practice.

Note also that that all variables assigned are distinct. The most
common incarnation of the assign transition is the special case where
n = 1, and a single variable is considered for change. The reason for this
is that the neighborhood size expands rapidly as n is increased – often, a
compromise between high guidance and rapid evaluation is to set n = 1.

Theorem 1. For any n where 1 ≤ n ≤ m where m is the number of
variables in the problem, the n-assign transition covers the state space
S of all possible assignments.

Proof. In each iteration we are given the possibility to change n variables
to any values in their domains. We can therefore reach any assignment
in dm

n
e iterations, where m is the number of variables whose values differ

from the current assignment.

As noted before, the swap transition is not a state space covering
transition. The reason for this is twofold. First, the swap transition
allows us to, in the best case, traverse a state space containing a permu-
tation of the assignments in the initial state. Second, the state space we
can traverse is even more restricted if the domains of the variables are
different – in this case, we cannot even traverse all permutations, since
a value of one variable may not be feasible for another variable.

One way to correct this problem is to use two transitions interleaved
with each other. If we choose to use both the swap and the assign1

transition, the properties of assign1 holds here as well.
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3.2.2 Cost and Conflicts

In this section we look closer on common cost functions used in constraint-
based local search. Since we are interested in generic local search for
constraint problems, we will exclusively use cost functions parameter-
ized over the problem instance used, which in the case of constraint-
based local search means a cost function which is parametrized over the
constraints in the problem.

The most obvious generic cost function is simply the number of vio-
lated constraints in the problem. We name this cost function the basic
cost function. We can formalize the basic cost function as follows.

Definition 32 (Basic Cost Function). The cost function f b defined
on a set of constraints C is defined as

f b(C, v) = |S| where S = {c | c ∈ C ∧ ¬satisfies(`(v), c) }.

Remember from Definition 7 in Section 2.1.1 that the predicate sat-

isfies is true if and only if the assignment v satisfies the constraint c.
Using the cost function to measure the value of assignments (assuming
that lower values equal better assignments), any given CSP can be stated
as a minimization problem

minimize f(C, v)

subject to vi ∈ dom(xi), 1 ≤ i ≤ n

where n is the number of variables in the problem. Note also that we
can tell if a given assignment v is a solution to the problem by testing if
f b(C, v) = 0, because this means that no constraints are violated.

The basic cost function is very primitive and not suited to constraint
problems in which global constraints are used. To remedy this we now
define the extended cost function, which we use in practice in the problem
solving parts of Chapter 5.

Definition 33 (Extended Cost Function). The cost function f e

defined on a set of constraints C is defined as

fe(C, v) =
∑

c∈C

wcfc(v)

where wc is a weight and fc(v) is the constraint cost of c.
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We use weights wc for the constraints to trim the balance of the local
search. This makes it possible to increase the weight on constraints that
are hard to satisfy. Increasing the relative weight of a constraint makes
it more rewarding to satisfy this specific constraint. Also, the weight
makes it possible to balance the total cost, by changing the weight on
constraints whose cost is not directly comparable with the cost of other
constraints. Observe that in the special case where wc = fc = 1 for all
constraints, the extended cost function is equal to the basic cost function.
We will address the problem of defining fc for specific constraints later
on.

We define the conflict level cl(C, v, x) of a variable x ∈ var(v) in a
state v to be the (possibly weighted) sum of the conflicts on x, for all
violated constraints in which x is present.

Definition 34 (Conflict Level). The conflict level cl on a set of
constraints C is defined as

cl(C, v, x) =
∑

c∈C

wcclc(v, x)

where wc is the constraint weight of c, and clc(v, x) is the conflict level
of x for the constraint c, given the assignment v.

The conflict level of a variable x for a constraint c indicates the extent
to which the current value v(x) of x contributes to the current cost fc(x)
of the constraint. Typically, the conflict level of a variable in a constraint
is therefore dependent on both the cost and the internal structure of the
constraint.

To exemplify conflict levels, assume an alldiff constraint with
a cost equal to the number of corresponding unique binary inequality
constraints that are broken by a given assignment. For example, for an
alldiff constraint over the variables x, y, z, w, an assignment

{x 7→ 1, y 7→ 1, z 7→ 1, w 7→ 1}

would have a cost of 6, corresponding to the unique violated binary
constraints

x 6= y, x 6= z, x 6= w, y 6= z, y 6= w, z 6= w

where the assignment

{x 7→ 1, y 7→ 1, z 7→ 2, w 7→ 2}
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would have a cost of 2, corresponding to the broken constraints

x 6= y, z 6= w

The conflict level of a variable for the alldiff constraint could be
defined as the number of other variables that take the same value as x.
This conflict level is equal to the amount the cost could be decreased if
x were assigned a non-conflicting value instead of its current value.

The conflict levels for the variables are important in problems where
the evaluation time of the neighborhood is high. In these cases, a pre-
processing stage where a small subset of the neighborhood is selected for
further evaluation can be very useful. In constraint-based local search,
the conflict level of a variable is often a good estimate of which variables
are most critical to modify. We use conflict levels to decrease the size
of the neighborhood significantly when solving some of the benchmark
problems in Chapter 5.

3.3 Local Minima and Plateaus

In finite-domain constraint-based local search, the discrete formulation
of the problem as a CSP sometimes makes the search spend considerable
amounts of time searching areas where no cost improvement is possible.
Also, since the search is based on local improvement, the search often
gets stuck in “basins” which are locally optimal, but do not represent
a solution to the problem. This behavior is well-known, and has been
reported for SAT by Frank et al. [17] and Hampson and Kibler [29].

Using the formal treatment of neighborhoods and transitions in Sec-
tion 3.1.4 we can define the characteristics of a special state subset, which
we call a plateau, where a primitive local search algorithm will get stuck.

Definition 35. A plateau with respect to a transition T and a cost
function f is a nonempty state space L where (1) T is covering L, and
(2) all states have equal cost.

plateauT,f (L) ≡ |L| > 0 ∧ coveringT (L) ∧ ∀u, v ∈ T.f(u) = f(v)

Note that we do not require a plateau to be the largest possible
plateau at one location, although in general these are the plateaus we
are interested in. This also means that most plateaus contain a lot of
sub-plateaus. We will define maximal plateaus later.
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Figure 3.2 shows a 2-dimensional constraint problem with five maxi-
mal plateaus, where height represents cost. For a 1-dimensional problem,
Figure 3.3 also illustrates three maximal plateaus, L1, L2 and L3.
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Figure 3.2: Five typical maximal plateaus in a visualization of a 2-
dimensional CSP where height represent costs of assignments.

Discussing plateaus in the search space, we are often interested in
the specific cost of the states in the plateau. We call this the level of a
plateau, and define it as follows.

Definition 36. The level f(L) of a plateau L is the value of the cost
function f for an arbitrary state in L.

The level of a plateau is well-defined due to that a plateau by def-
inition contains at least one state. To further define the special traits
of plateaus, we need to investigate the states that are adjacent to the
plateau, but not themselves members of the plateau. We call the set of
such states the border of the plateau.

Definition 37. The border BT (L) of a plateau L with respect to the
transition T is the set of states that are (1) not elements of L, and (2)
are adjacent, with respect to T , to at least one state in the plateau.

BT (L) = (
⋃

u∈L

nbhT (u)) \ L
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The border may be used to find out which kind of plateau we are
dealing with. If there are no states in the border of a plateau for which
the cost of the state and the level of the plateau are equal, we say that
the plateau is a maximal plateau.

plateauT,f (L) ∧ ¬∃u ∈ BT (L).f(u) = f(L)

A plateau where all states in the border have a higher cost than the level
of the plateau is a minimum, and would appear in three-dimensional
space, with height representing cost, as a valley in the cost surface. Two
minima are illustrated as L1 and L3 in Figure 3.3.

Definition 38. A minimum with respect to a cost function f is a plateau
where all states in the border of the plateau has higher cost, measured
by f , than the level of the plateau:

minimumf,T (L) ≡
plateauf,T (L) ∧ ∀u ∈ BT (L).f(u) > f(L)

Definition 39. A local minimum is a minimum L1 where there exists
another minimum L2 with lower level than L1.

local-minimumf,T (L) ≡
minimumf,T (L) ∧ ∃L′ : minimumf,T (L′) ∧ f(L′) < f(L)

In Figure 3.3, L1 is a local minimum. If a minimum is not a local
minimum, it is a global minimum. For decision problems that have a
solution, global minima are trivial to detect – an assignment û is in a
global minimum if f(C, û) = 0 for the set of constraints C in the problem.
This is under the assumption that the cost function f used is 0 when no
constraints are violated.

In Figure 3.3, the plateau L3 is a global minimum. Note that it is
possible for a search space to have several global minima, and also that
for optimization problems in general, global minima cannot easily be
detected in reasonable time.

Definition 40. A bench is a maximal plateau that is not a minimum.

benchf,T (L) ≡ plateauf,T (L) ∧ ¬minimumf,T (L)

Definition 40 states that a bench has at least one assignment with
lower cost in the border. This implies that a bench may be exited by
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a sufficiently elaborate search algorithm. A bench L2 is illustrated in
Figure 3.3.

In the empirical studies on random SAT instances by Frank et al. [17]
and Hampson and Kibler [29], most local minima tended to be small,
but the largest local minimum in problem instances with 100 variables
often exceeded 10000 assignments. In these publications, local minima
were also more frequent than benches, and benches tended to be much
larger than local minima.

In other publications by Larrabee and Tsuji [36] and Monasson et
al. [46], local minima were more frequently found in random problem
instances generated in the phase transition of satisfiability problems.
Phase transition occured when the number of clauses m divided by the
number of variables n roughly equals 4.3. Random problem instances in
phase transition have been shown to be especially hard to solve.

3.4 Plateau Traversal and Avoidance

Local search has been used as a heuristic method for solving hard sat-
isfaction and optimization problems for quite some time. These early
approaches for using local analysis and search were tightly coupled with
the specific problem instance, and hence the possibilities for reuse were
not obvious. However, in the last 15 years several local search techniques
usable for local minima avoidance and plateau traversal, applicable to
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a larger class of problems, have been developed. In this section we will
take a closer look on some of the most influential techniques.

3.4.1 Flat Transitions

If the local search only selects improving transitions, the search will
terminate with an empty neighborhood at the first plateau. One of
the most obvious strategies to escape benches is then simply to allow
transitions that neither increase nor decrease the cost of the search.
This allows the search to traverse a flat plateau, which in the case of a
bench hopefully leads the search to the edge of the bench, making escape
possible. This strategy has been shown to be practically a necessity for
many problems, and is used by Wu and Wah [76], Shang and Wah [65],
Schuurmans and Southey [60], Hoos and Stutzle [30], Galinier and Hao
[20], Walser [73] Frank et al. [17], Cha and Iwama [7], Morris [44],
Selman et al. [64] and Ekelin and Olovsson [14].

The first algorithms for SAT local search5 simply gave up when dis-
covering that no assignment in the neighborhood had a lower cost than
the current assignment, resorting to restart strategies or random walk
(Section 3.4.2). Gent and Walsh showed [23] that for random satisfia-
bility problems, the performance of local search degrades significantly
when forbidding such non-improving transitions.

A transition that does not affect the cost is called a flat transition.
The conventional way of handling plateaus is to pick a random flat tran-
sition, hoping that the sequence of randomized flat transitions will even-
tually allow the search to escape the plateau. The downside of this
approach is that no guarantee that we will escape a bench can be given.
Certain transitions will probably be searched numerous times, and no
detection of inescapable plateaus is possible with this method. There-
fore, flat transitions must be complemented with other techniques to be
useful for traversing plateaus.

3.4.2 Randomization

It is generally agreed that randomization of certain parameters may help
local search procedures overcome local minima. Stochastic behavior may
be introduced in numerous ways, one of the most basic being to introduce
random restarts in the search after a fixed number of transitions. Walser

5See Chapter 1 for an informal introduction to SAT.
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[73], Selman et al. [63], Gent and Walsh [22, 23] and Gu et al. [28] take
this approach.

Another common randomization strategy is to introduce random walk
in the search. Random walk is the occasional random transition (or
transitions) in the search space, the probability in each iteration for
taking a random transition depending on a parameter typically supplied
by the user of the search algorithm.

A third possibility is to change the neighborhood of an assignment
according to a probabilistic distribution. In the well-known WalkSAT
algorithm, introduced by Selman et al. [63], a successor assignment is
selected by picking an unsatisfied clause at random, and from this clause
selecting promising variables.

3.4.3 Exhaustive Plateau Search

One approach to escape plateaus may be to do a complete exploration
of the plateau, as reported by Frank et al. [17] and Hampson and Kibler
[29]. Thus, we can detect if the plateau is a bench and may be escaped
at all. This also means that we are guaranteed to escape all benches.

Either the plateau can be searched depth-first or breadth-first. How-
ever, Hampson and Kibler [29] concludes that for random 3-SAT prob-
lems, the plateaus when the number of Boolean variable n were greater
than 50 generally are too big to be searched exhaustively with breadth-
first search, at least within reasonable time. To our knowledge, there
has been no investigation if depth-first search is tractable for exploring
large plateaus. Also, plateau search for general CSP problems may be
intractable, simply because of the increased search space due to the in
general non-Boolean domains of the variables.

3.4.4 Tabu Search

A common technique to diversify the search when traversing plateaus
is to keep in memory the assignments already tried. This would give
us a way of avoiding multiple visits to a single assignment. Glover and
Laguna [25, 26] refer to this approach as tabu search, which is in fact a
general search technique. Tabu search is closely related to another class
of methods for search behavior learning called nogood recording [55].

Because the potential search space for a CSP can be huge, all transi-
tions already traversed are not kept in memory. For example, a relatively
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small problem with n = 10 variables, where each variable has a finite
domain containing 20 values, has a search space of 2010 ≈ 1.024 · 1013

possible assignments. In this example, it is infeasible to keep even 1%
of the possible assignments in memory. Instead, state memory is kept
in a circular list of size t. Also, usually the inverse6 of the transitions
done are stored instead of the actual assignments. This approach makes
the inverse of the past t transitions forbidden. The parameter t is called
the tenure size of the list. Such a list of forbidden transitions is called
a tabu list. In general constraint-based local search, the data stored in
the tabu list are variable-value pairs.

To avoid forbidding improving transitions that happen to be in the
tabu list, we add an aspiration criterion: if a transition that is in the tabu
list would yield an improvement, we disregard the fact that the transition
is forbidden and select it anyway. This situation can for example arise if
a sequence of transitions a, b,¬a is investigated, where ¬a is the inverse
of a and therefore tabu. Aspiration will occur if the result of these three
transitions is a completely new state that, due to cost irregularity, is
better than any previously investigated assignment.

Galinier and Hao [20] suggest using tabu search with constraint
weighting and individual cost of each constraint (a measurement of how
far the constraint is from being satisfied). Galinier [18] also reports
results of using tabu search for MAX-CSP7.

3.4.5 Dynamic Weighting

One class of highly successful techniques to handle local minima and
to some extent benches, especially for SAT, is based on the observation
that some constraints (clauses for SAT) are violated more frequently than
others in a plateau. The idea is to modify the cost function with added
dynamic weights for each constraint. This approach was first introduced
as a technique for SAT by Morris [44], and was further developed by
Selman and Kautz [62], Frank et al. [16] and Wah et al. [65, 75, 76].
Dynamic weighting for general constraint satisfaction is mentioned in a
paper by Galinier and Hao [20] in the context of tabu search. Note also
that this method has many things in common with the exponentiated

6The purpose of Tabu search is to prevent the search from visiting a state already
explored. Storing the inverse makes detection of transitions that may lead back to a
visited state trivial

7In MAX-CSP, the goal is to satisfy as many constraints in a given CSP as possible.
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subgradient method by Schuurmans et al. [61].
Modifying the extended cost function f e from Definition 33 with

dynamic constraint weights one yields the dynamic weight cost function
fw defined as follows.

Definition 41 (Dynamic Weight Cost Function). The cost function
fw defined on a set of constraints C is defined as

fw(C, v,Λ) =
∑

c∈C

λcwcfc(v)

where wc is a constant weight, fc(v) is the constraint cost of c, and
Λ = {λ1, λ2, . . .} is a set of dynamic weights, each λc associated with
constraint c.

The notation for the constraint weights is taken from the article by
Shang and Wah [65], where the constraint weights are called discrete
Lagrangian multipliers and a mathematical foundation for SAT local
search based on clause weights is given. The constraint weights as pre-
sented here are a generalization of the SAT method used in [65] to handle
general constraint satisfaction problems.

The idea of the dynamic constraint weight approach is to increase
the weights on the constraints that remain unsatisfied at a plateau. This
will eventually make an unsatisfied constraint c satisfied as the weight λc

increases, thus forcing the search trajectory to leave the local minimum
and continue the search.

The weights may be updated either at a plateau or after each itera-
tion. Frank [16] concludes that updating of the weights at each iteration
is the approach converging fastest for SAT. Contrary to this result, Shang
and Wah [65] come to the conclusion that the weights should be updated
only at plateaus and local minima.

The weights are either updated additively (as in the articles by Wu
et al. [76, 74, 75]) or multiplicatively (as done by Schuurmans et al. [60,
61]). Also, to prevent Λ from becoming unbalanced, some normalization
mechanism is necessary.





Chapter 4

A Model for Global

Constraints

4.1 Introduction

In this chapter, we investigate a model usable to express the structural
properties of global constraints, and how to use this to compute a cost.
Historically, the most common approach at constraint-based local search
has been to express all properties of a solution to the problem using a
set of primitive constraints [73]. For example, to express that a set of
n variables should all take disjoint values, the classical model is to use
n(n − 1)/2 binary inequalities between all variables. This technique is
possible for many global constraints, but for some more complex con-
straints like the family of cumulative scheduling constraints, this is not
possible in practice, because of either a combinatorial explosion in the
size of equivalent primitive constraints, or due to restrictions on the
actual primitive constraints used.

Recently, the usability of local search constraint satisfaction has im-
proved radically with the introduction of global constraints [45, 20]. In
this work a separate cost representing the degree of violation for each
global constraint is computed. The sum of the cost of the constraints in
the model is then used to form the total cost of the problem.

The problem with this way of handling global constraints is twofold.
First, the construction of a cost function for a global constraint is far
from trivial, and requires knowledge of the implementation of the solver

45
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in question. Second, the cost function of all constraints, global and prim-
itive, must be comparable with each other, or else the solver efficiency
will suffer from the resulting imbalance.

In this chapter we present a new approach at designing global con-
straints for local search. We define a global constraint using filter con-
straints (taking the inverse role of primitive constraints), which are ap-
plied to a graph of arcs and vertices, created from the constraint data
and the current instantiation of the variables in the problem. The fil-
ter constraints correspond to a set of primitive constraints, and therefore
provide global constraint costs based on a common basis. This makes de-
signing constraints whose costs are compatible with each other an easier
task.

4.1.1 Chapter Outline

The chapter is organized as follows. We first describe the model of global
constraints as cost functions on structured networks of filter constraints,
and give an overview of how the cost computation can be done from
scratch. We use the global constraint alldiff as a running example
for how we can model a global constraint using our approach. Next, we
discuss how the conflicts of the variables in a constraint can be computed
from scratch. We continue by demonstrating the flexibility and usability
of our approach by modelling constraints from three important global
constraint groups using the methods in this thesis. One of these families
consist of global constraints for cumulative scheduling, which we discuss
in more detail. As part of this we introduce a special subcost function,
which can be used to reduce evaluation time for cumulative scheduling
constraints.

4.2 A Model of Global Constraints

In this section we describe the model of global constraints using filter
constraints on a graph, constructed from the constraint parameters.

The term global constraint was invented to name nontrivial con-
straints spanning a varying number of variables, such as the well-known
global constraints element, alldiff, and cumulative. However, several
global constraints cannot easily be directly represented using primitive
constraints.

No formal definition of a global constraint exists and informally
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speaking, any non-binary constraint can be considered a global con-
straint [3]. By tradition, global constraints are often associated with
nontrivial constraints with specialized algorithms for domain reduction
in a constraint programming environment. In a local search context
however, a global constraint is a software component with the following
characteristics:

• The constraint is dependent only on a set of input variables, a
current state, and auxiliary information passed to the constraint
at an initialization phase

• The constraint can on demand produce a cost, reflecting to which
level the constraint is violated in the current state. A violation
degree of zero is traditionally used for a satisfied constraint.

• The constraint can, given a variable present in the constraint, pro-
duce a conflict level for the variable. This level measures the num-
ber of conflicts in the constraint that the given variable is involved
in. Another way to express this is that the conflict level indicates
how much of the violation level of the constraint the variable causes
in the current state.

Since constraint evaluation take place each iteration, the constraints
should be optimized to compute their costs and conflict levels as fast as
possible.

4.2.1 Constraint Representation

We represent a global constraint as a directed graph on which we post a
filter constraint, and a cost function on the filtered graph, which com-
putes a cost for the constraint. The goal is to have a constraint cost that
is comparable with the cost of a set of primitive constraints. In general,
we assume that if a constraint is satisfied, it has a cost of 0. Formally,
we can describe a global constraint by the following four components:

1. One or more vertex generators, creating the vertices in the graph,

2. A graph structure, maintaining a set of arcs on the vertices,

3. A filter constraint, attached to the arcs in the graph, and

4. A cost function that computes the final cost and the conflict levels
of the variables for the constraint.



48 Chapter 4. A Model for Global Constraints

This division of a global constraint into components gives us an expres-
sive high-level model, which also can be implemented efficiently, as shown
in Chapter 5. Beldiceanu pioneered the representation of a global con-
straint as a graph with certain properties in [4], where a classification
of global constraints and their declarative meaning is given. Here we
extend this framework for direct use in a constraint-based local search
implementation, presented in Chapter 5. The main difference in the con-
straint model is that in this thesis, we use a cost function instead of the
graph properties of [4] to express the global properties of the constraint.
The cost function in our work computes a cost for the constraint, as
opposed to the graph properties of [4], which expresses when the con-
straint is satisfied or violated. The concept of dynamic global constraints
of [4] is not used in this thesis – instead, costs can be constructed using
a combined cost, forming a cost from several subcosts. This is an exten-
sion of the dynamic properties used in [4], and is necessary to compute
a complete cost for many global constraints.

We are also primarily interested in that the framework of this thesis
can be efficiently implemented as a direct component usable to model
global constraints. As a part of this we also investigate incremental
cost and conflict computation of global constraints, two areas of great
importance in a local search implementation.

4.2.2 Cost Computation

A naive cost computation from scratch for a constraint can be done as
follows. The algorithm sketched below would be very inefficient if it was
used in each iteration of the local search procedure. It is only used for
initialization of the cost and conflict levels of a constraint. The algorithm
used after initialization is incremental, and described in detail in Section
5.4.

1. Create the vertices of the graph from the input:

V1 = vg1(a1, a2 . . .)

V2 = vg2(b1, b2 . . .)

...

where Vi are the resulting vertex vectors, vg i are the vertex genera-
tors, and a1, . . . , b1, . . . are some of the arguments to the constraint.
These can be domain variables, vectors, integers, pairs, etc.
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2. Create the arcs on the vertices from step 1:

A = gs(V1, V2, . . .)

where A is an arc set, gs is the graph structure used, and V1, V2, . . .
are the set of vertices used as input to the graph structure.

3. Filter the arc set by applying a filter constraint:

A′ = [A[k] | k ∈ {1, . . . , |A| ∧ fc(A[k], v) = true]

where A′ is a final arc set, fc is a function taking an arc and the
current assignment v and returning a Boolean. Sometimes, the
filter constraint is also dependent on other constant parameters as
well. We do not show this here for simplicity.

4. Apply the cost function to the resulting final arc set:

c = cf (A′)

where c is the final cost of the constraint and cf is a cost function.

We use a different notation for the cost function cf used in this chap-
ter as a final step in computing the cost for a constraint, and the cost
function fc of chapter 3, associated with a global constraint c. The for-
mer take a final arc set as argument, while the latter take an assignment
as argument.

Conflicts for the variables are also computed using the components
for cost computation. Because this involves the actual components of
the constraint to a higher degree, we describe the conflict computation
later in Section 4.2.9.

4.2.3 Notation and Constraint Arguments

We use meta-variables to refer to subsets of vertices and arcs produced
by the generators. As an example of our model, we use the global con-
straint alldiff, which ensures that a set of variables take disjoint
values. We will use a model for the alldiff constraint based on the
direct binarization of the constraint into inequalities. This is not the
most efficient representation of the constraint, but serves the purpose of
demonstrating how to model a constraint in the framework presented in
this thesis. In Chapter 5, a more efficient model of cardinality constraints
is investigated.

We specify the arguments of a global constraint as follows.
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Constraint: alldiff
Arguments: X : vec dvar

For our alldiff constraint, the specification says that the con-
straint takes a vector (array) of domain variables as argument. In gen-
eral, an argument to the global constraint is specified as x : t where x
is a variable and t is the type of x. In some cases we will use arguments
with polymorphic types, specified as x : t. This means that t is a type
variable for x, and denotes any possible type. The two basic types we
use are integer domain variables, denoted as dvar, and integer constants
denoted as int. We also have two constructed types; records, denoted
as 〈a : t1,b : t2, . . .〉, and vectors, denoted as vec t. Here a and b are
names used to refer to the attributes of the record, and t, t1, t2 . . . refer
to any constructed or basic type. We use the syntax x.p to project the
attribute named p from the argument x of record type.

4.2.4 Vertex Generators

The vertex generators produce vertices for the constraint network used
to represent a global constraint. A vertex generator takes some of the
arguments to the global constraint, and generates a set of vertices. Nor-
mally, the arguments are vectors of variables. Each global constraint has
at least one vertex generator. The different vertex generators we use in
this thesis are shown in Table 4.1. The Identity vertex generator sim-
ply returns the argument as vertex vector. We will usually leave out the
vertex generator specification if it is of this type, and use the argument
directly as a reference to the vertices in the constraint.

The Attribute vertex generator creates a vertex vector by extract-
ing the given attribute with name p from all elements of the vector. The
Expand vertex generator on a vector of type vec t1 uses an additional
function M : t1 → vec t2 to generate a new vector of type vec t2, by
applying M on all elements in the vector, and appending the results.
The vertex generator Union creates a vertex vector by applying the
supplied function M : t1 → vec t2 to all elements in the input vector,
and appending only those elements that are not present in the already
constructed vector. The effect is the same as to use Expand, and then
remove duplicate elements, leaving the first occurrence.

In the specification of alldiff, we could use the vertex generators
as follows.

Vertices: V=Identity(X)
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Identity(L) = L
Attribute([a1, . . . , an], p) = [a1.p, . . . , an.p]
Expand([a1, . . . , an],M) = append(M(a1), · · · ,M(an))
Union([a1, . . . , an],M) = append(M(a1), A2, A3, . . . An)
where A2 = M(a2)−M(a1), A3 = (M(a3)−M(a2))−M(a1), . . .

Table 4.1: The vertex generators used to produce the vertices in the
constraint network for a global constraint.

We can leave out the Identity vertex generator in this case. We there-
fore use the identifier X to refer to the set of nodes in the continued
specification of alldiff.

4.2.5 Graph Structures

Graph structures produce the directed arcs of the constraint network.
In this thesis we use binary arcs only. The reason for this is that bi-
nary filter constraints are quite expressive and allow modelling of many
global constraints [5]. A graph structure takes either one or two vectors
of vertices, and produces a set of arcs between the vertices. The graph
structures used in this work are described in Table 4.2. In an implemen-
tation of the framework described here, explicit representation of the
arcs would be space and time inefficient. In Chapter 5, which presents
an implementation based on the graph model of global constraints pre-
sented this chapter, we use a more efficient implicit representation of
arcs to decrease memory and time requirements.

As an example of using graph structures, we now continue the spec-
ification of the alldiff constraint by stating the arc generator to be
used. X is the vector of vertices (and variables) generated using the
vertex generator Identity in Section 4.2.4.

Structure: A = CliqueLt(X)

The specification above takes the vector X and uses the CliqueLt graph
structure to produce a set A of arcs between all tuples of variables, where
the leaving vertex is present before the entering vertex in the vector X.
For the alldiff constraint, if X = [a, b, c, d], the generated set of arcs
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Name Arcs generated Example

Loop Arcs (xi, xi) on all vertices xi.

Path
Arcs between all adjacent pairs
(xi, xi+1) of vertices in the vector.

CliqueLt

Each vertex xi in the vertex vector
is connected to a vertex xj in the
vertex vector if and only if i < j.

Clique
The set of arcs (xi, xj) where xi, xj

is in the vertex vector.

ProductEq

Arcs between vertex xi in the first
vertex vector, and vertex wi second
vector. The vectors must have the
same length.

Product

Arcs from each vertex in the first
vector to each vertex in the second
vector.

Table 4.2: The graph structures used to produce the arcs in the con-
straint network for a global constraint. Each graph structure takes either
one or two vectors of vertices, and connects these using directed arcs.
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A from CliqueLt would be

A = {(a, b), (a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, d), (c, e), (d, e)}.

This corresponds directly to the binarization of the alldiff constraint
into inequalities.

4.2.6 Filter Constraints

A filter constraint is a primitive constraint that is applied on the arcs
in the graph of the constraint. The roles of the filter constraints are
to filter the set of arcs, as an intermediate step in computing the cost
of the global constraint. We use general unary and binary constraints
as filter constraints in this thesis, but in theory any arity for the filter
constraints is of course possible. Unary constraints are posted on binary
arcs leaving and entering the same vertex, and are represented as binary
constraints. Formally, we define a filter constraint fc for a CSP (X,D,C)
as a function fc : A × S(X) → bool, taking an arc from the arc set A
as produced by the graph structure, and an assignment v from the state
space S(X), and returning a Boolean value.

In this thesis, a filter constraint is specified in terms of two vertex
meta-variables, denoted as x1 and x2, which specify the vertex the arc
is leaving and entering respectively. We do this to be able to express the
semantics of the filter constraint function fc. We specify the semantics
using arithmetic, numerical relations, logical negation, conjunction, and
disjunction. When posting a filter constraint, we also specify a source set
of arcs, to which the filter constraint should be attached. This generalizes
to filter constraints of higher arity, where the vertex placeholders are
enumerated as x1, x2, x3, . . ..

In the first part of this chapter, we will use equality filter constraints
exclusively, corresponding to primitive inequality constraints. Later on
when discussing scheduling constraints, we will form more complex in-
tersection filter constraints, operating on tasks. As an example of a
filter constraint, we denote an equality filter constraint on two variables
simply as v(x1) = v(x2).

We now continue with an example of the filter constraints in the
specification of the alldiff constraint. Because we are interested in
how many pairs of variables are equal, we express the filter constraints
on the arcs using an equality constraint as follows.
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Filter: A′ = {A : v(x1) = v(x2)}

This specifies that binary equality constraints should be applied on all
arcs in A. We now have an encapsulated binarization of the alldiff
constraint, and the only thing left to do is to compute a cost on the
filtered arcs.

4.2.7 Regular Cost Functions

The last component we need in order to specify a global constraint for-
mally is the cost we compute from the final graph, obtained when filter-
ing the arcs from the graph structure and the vertex generators. The cost
of a constraint is formalized by a cost function cf of type AS → int,
where AS is the set of all possible arc sets. In many cases we can con-
struct a cost function directly from a property p on the arc set, and a
cost modifier cm. Such a cost is called a regular cost. The property
p : AS → int samples a trait of an arc set (AS is the set of possible
arc sets) and returns an integer, and the cost modifier cm is a function
of type cm : int → int, which is applied to the integer result of the
property. The result of this application is returned as the cost of the
constraint.

The properties we use in this thesis are the cardinality property
|A|, computing the size of an arc set A, and a weighted sum property
∑

(i,j)∈A w(i, j), computing a sum of constant weights for a set of arcs.
In the implementation, we provide specialized versions of the weighted
sum property to decrease execution time. The two special versions we
provide compute weighted sums only dependent on the leaving and the
entering vertices respectively.

A cost modifier can be any function of the correct type. To get a
cost that is comparable with other constraint costs, one must however
select the cost modifier carefully. In our experiments we have used mostly
threshold cost modifiers of the type cm(x) = max(0, x−k) for a constant
k. The linear correspondence between the property value and the cost
makes the cost closely related to the value of the property of the final arc
set. This is important if we want to have a cost that is comparable with
costs of other constraints. If the cost modifier is the identity function,
i.e. cm(x) = x, we will leave this out and use the property directly to
express the cost.

Now again consider the alldiff global constraint. We want to
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express that the cost of the constraint is the number of violated binary
inequalities. We can do this using the following specification.

Cost: |A′|

Here we simply use the cardinality of the set of final arcs A′, correspond-
ing to how many equalities are satisfied – this is of course the same as
counting the number of inequalities.

To conclude our example, the global constraint alldiff restricts a
set of variables from taking the same values. We can express an alldiff
constraint on n variables semantically with n(n−1)/2 binary inequalities,
restricting each possible pair of unique variables from taking the same
value. Using this observation, we base our model (shown in Table 4.3)
of the alldiff constraint on binary equalities between the pairs of
variables in the constraint.

Constraint: alldiff
Arguments: X : vec dvar
Structure: A = CliqueLt(X)
Filter: A′ = {A : v(x1) = v(x2)}
Cost: |A′|

Table 4.3: The alldiff constraint.

Since we do not specify a vertex generator, the Identity vertex gen-
erator is implicitly used, constructing vertices directly from the argu-
ments (variables) given to the constraint. The CliqueLt graph struc-
ture gives us arcs between each pair of unique vertices. We use an
equality constraint as the filter constraint, because we want to count
the number of equal variable pairs to see if the constraint is violated
or satisfied; if the number of satisfied equalities is zero, then the global
alldiff constraint is satisfied, and if the constraint is violated, the
cost for the constraint should be the number of equal variable pairs. We
can express this using an identity cost function on the cardinality
property of the set of filtered equality arcs.

4.2.8 Combined Costs and Subcosts

For several global constraints, the regular cost of the previous section
is not generic enough to express a suitable cost. One example is the
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gcc constraint1 of [53]. This constraint takes a set of variables X and
two sets of integers L,U denoting lower and upper capacity. Each lower
and upper capacity is associated to a unique value in the union of the
domains of the variables in X. The gcc constraint is satisfied when, for
all values a, the number of variables taking a value a is in the interval
(La, Ua):

∀a ∈
⋃

x∈X

dom(x).La ≤ |{x | x ∈ X | v(x) = a}| ≤ U [a]

An obvious way to compute a cost for this constraint is to accumulate
several costs on the individual values, and then use the sum of these
costs as the final cost of the constraint. In several other constraints as
well, there is a need to be able to partition the cost computation into
several smaller cost computations.

To remedy this situation, we introduce combined costs fΣ and sub-
costs. A combined cost consists of a partition function pf and a subcost
function f . The partition function pf partitions a final arc set A′ into
a vector of arc subsets pf (A′). The maximal size of this vector must
be statically computable, and each arc set must have a fixed location
in the vector. We can then apply the subcost function f on each arc
set in pf (A′), and take the sum of the subcosts as the total cost of the
constraint:

fΣ(A′) =
∑

p∈pf (A′)

f(p).

If we need to use the index of an arc subset, we will use the notation
∑

pi∈pf (A′) f(pi) where i is the index of the arc subset pi. The subcost f
is a normal cost function, and is therefore often regular and constructed
using a property and a cost modifier. In the specification of a constraint,
the notation to use a combined cost is shown below, with an example
from the gcc constraint. In the specification of the cost for the con-
straint, we use A to refer to the final arc set.

Partition :
∑

pi∈entering(A′) f(pi)

In general, we are not forced to use addition to combine subcosts,
and can use other operators that are associative, commutative and in-
vertible. These properties are necessary for the incremental computation

1gcc is an abbreviation of Global Cardinality Constraint.
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to be efficient [77]. In this thesis we only use addition to combine sub-
costs, although other operators, such as maximum and product, can
certainly be useful. Note that this means that we use a similar notation
for combined costs using addition, and weighted sum properties – their
meaning should be clear from context.

The two partition functions that we use in this thesis are shown in
Table 4.4. The entering and leaving partition functions generate the
sets of arcs that all enter/leave the same node xi. This is usable in sit-
uations like the one described for the cardinality family of constraints
above. We call the vertex that the arcs in an entering arc subset en-
ters the focus vertex of the arc subset, and vice versa for the leaving

partition function.

Partition Functions
entering[i] = {(y,X[i] | (y,X[i]) ∈ A′} for i ∈ {1, . . . , |X|}
leaving[i] = {(X[i], y | (X[i], y) ∈ A′} for i ∈ {1, . . . , |X|}

Table 4.4: Partition functions used to partition final arc sets A′ for
subcost computation. X is the vertex vector.

As an example of a constraint using subcosts, see the gcc constraint,
described in Section 4.3.2.

4.2.9 Conflict Computation

In this section we take a closer look on how the conflicts clc(v, x) on
a variable x for a constraint c can be computed. The conflicts have to
be collected for all constraints in the problem, to form the total conflict
level of a variable. This is done using addition, as shown in Section 5.4.1.

The conflict level of a variable present in a constraint is computed
at the same time as the cost of the constraint. The basic idea for this
computation is to distribute the cost over the vertices in the final arc
set to form the conflict level of a vertex. The cost is distributed to the
vertices in the graph in the computation of the cost function, and the
cost of a vertex is then in turn distributed equally on the variables that
are used to form the vertex. In the common case where a vertex is a
variable, this distribution is of course trivial. In the case where a vertex
is a record, the full cost of the vertex is distributed to each element in
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the record. Another way to do this would be to divide the cost by the
total number of elements in the record before distribution.

The conflict level is computed differently depending on if the cost
used for the constraint is regular, combined, or specialized. In the case
of a specialized cost function, this function is responsible for computing
both the cost and the conflict levels of the constraint.

Conflict Level on Regular Costs

For a constraint c with a cost function that is regular, we distribute the
cost on the vertices present in the final arc set to form the conflicts.
Computing the conflicts from scratch can be done as shown below.

1. The cost cf (A′) of the constraint is computed for the final arc set
A′ as before.

2. For each vertex x, the conflict level as contributed by the constraint

c is computed as clc(v, x) = cf (A′) |A
′′|

|A′| , where A′′ = {a | a ∈

A′ ∧ (a = (x, y) ∨ a = (y, x)}.

For the alldiff constraint, if the final arc set for an assignment v and
a vertex list of [a, b, c, d, e, f ] is

A′ = {(a, b), (a, c), (b, c), (d, e)},

the cost f as computed by the cardinality property would be 4. This
cost would then be distributed on the vertices as

clc(v, a) = 4 · 2/4 = 2

clc(v, b) = 4 · 2/4 = 2

clc(v, c) = 4 · 2/4 = 2

clc(v, d) = 4 · 1/4 = 1

clc(v, e) = 4 · 1/4 = 1

clc(v, f) = 4 · 0/4 = 0

This corresponds exactly to the number of violated binary inequalities
on a variable.
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Conflict Level on Combined Costs

The conflict level clc(v, x) of a variable x for a constraint c using a
combined cost is computed differently. For such a constraint, the cost is
distributed on the vertices present in the final arc set as shown below.

1. The partition function pf partitions the final arc set A′ into a set
of arc sets pf (A′).

2. The subcost f is applied on each arc set p ∈ pf (A′).

3. In the computation of f , the contributed subconflict level clp(v, x)
of x becomes available. clp(v, x) is computed as for any normal
cost.

4. For each vertex x, the conflict level clc(v, x) on x as contributed by
the constraint c is computed by taking the sum of the subconflicts
levels for x:

clc(v, x) =
∑

p∈g(A′)

clp(v, x)

4.3 Capacity Constraints

In this section we take a closer look on some global constraints used to
compute capacity and cardinality.

4.3.1 The capa Constraint

The capa constraint [20] takes a vector of variables X and a vector of
integers W with equal size, and two integers a and k. The constraint
enforce that the sum of the weights of the variables taking the value a
is less than or equal to k.

∑

i:v(X[i])=a

W [i] ≤ k

We can state the constraint as a loop graph with the unary constraint
v(x1) = a. We use the Loop graph structure to do this, and use a cost of
the sum of the weights of the variables, reduced by k. The formulation
is shown in Table 4.5.
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Constraint: capa
Arguments: X : vec dvar

W : vec int
a, k : int

Structure: A = Loop(X)
Filter: A′ = {A : v(x1) = a}
Cost: max(0, (

∑

(X[i],X[i])∈A′ W [i])− k)

Table 4.5: The capa constraint.

Constraint: gcc
Arguments: X : vec dvar

L : vec int
U : vec int

Vertices: X = Identity(X)
D = Union(X,dom)

Structure: A = Product(X,D)
Filter: A′ = {A : v(x1) = x2}
Partition:

∑

pi∈entering(A′) f(pi)

Subcost: f(pi) = max(L[i]− |pi|, |pi| − U [i])

Table 4.6: The gcc constraint.



4.3 Capacity Constraints 61

4.3.2 The gcc Constraint

The gcc constraint [53], where gcc is an abbreviation of Global Cardi-
nality Constraint, takes a vector of domain variables X and two vectors
of integers L,U of same size as the number of elements in the union
of the domains of X. In our implementation, this union must form a
closed interval of integers. The two vectors L,U contains lower and up-
per bounds for the values that can be assigned to the variables in X.
The gcc constraint is satisfied when, for all values a, the number of
variables taking a value a is in the interval (La, Ua):

∀a ∈
⋃

i∈{1,...,|X|}

dom(X[i]).L[a− l] ≤ e(a) ≤ U [a− l],

where v is an assignment, e(a) is the number of variables taking the value
a, e(a) = |{i | i ∈ {1, . . . , |X| ∧ v(X[i]) = a}|, and we find a index a − l
for L and U by normalization with l = min(

⋃

i∈{1,...,|X|} dom(X[i]))+1.
The gcc constraint is specified in our graph model in Table 4.6. For a

violated constraint, we use a subcost for each value that is proportional
to the distance from the lower or upper bound of the constraint. We
create the total cost by using a combined cost computing the sum of the
entering subcosts.

4.3.3 The wcc Constraint

The wcc constraint is a version of the gcc constraint from Section 4.3.2
where we limit the sum of the weights of the arcs for each value. This is
also a generalization of the capa constraint. The constraint takes three
vectors X,W,K as input; X contains domain variables, X and W has
the same size, and K must have the same size as the number of elements
in the union of the domains of X, which must form a closed interval of
integers. K contains capacities for the values of the variables, and W
contains vectors of integers, which have the same size as K, containing
weights for the arcs of the constraint.

The constraint ensures that for each value a, the sum of the weights
W [i][a] of the variables xi taking the value a is less than or equal to
K[a]:

∀aj ∈
⋃

x∈X

dom(x).
∑

xi∈X|v(x)=a

W [i][j] ≤ K[j],
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where i, j are sequence numbers of the variables and the values respec-
tively – j this the ordinal number in the closed interval formed from the
domains of the variables.

Constraint: wcc
Arguments: X : vec dvar

W : vec vec int
K : vec int

Vertices: X = Identity(X)
D = Union(X,dom)

Structure: A = Product(X,D)
Filter: A′ = {A : v(x1) = x2}
Partition:

∑

pj∈entering(A′) f(pj)

Subcost: f(pj) = max(0, (
∑

(xi,aj)∈pi
W [i][j])−K[j])

Table 4.7: The wcc constraint.

4.3.4 The nbdiff Constraint

The nbdiff constraint takes two vectors with equal size X,Y of vari-
ables and an integer k as arguments, and check that the number of
variables with the same index taking the same value is less than or equal
to k.

∣

∣{i | v(X[i]) = v(Y [i])}
∣

∣ ≤ k

The name nbdifferences (abbreviated as nbdiff) for the constraint
was introduced in [20] and is a bit misleading – the constraint actually
makes sure that the number of equalities is less than or equal to k.
To make the name of the constraint more natural, the meaning can be
reformulated as

∣

∣{i | v(X[i]) 6= v(Y [i])}
∣

∣ ≥ |X| − k.

We can represent the constraint as a graph with the variables as
vertices, and arcs with an associated equality constraint v(x1) = v(x2)
between the tuples. We use the Identity vertex generator, and the
ProductEq graph structure to form the graph.
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Constraint: nbdiff
Arguments: X : vec dvar

Y : vec dvar, k : int
Structure: A = ProductEq(X,Y )
Filter: A′ = {A : v(x1) = v(x2)}
Cost: max(0, |A′| − k)

Table 4.8: The nbdiff constraint.

4.4 Non-Overlapping Scheduling Constraints
In this section we investigate some global constraints useful for non-
overlapping, non-preemptive resource scheduling. The basic unit in sch-
eduling is the task, which models an activity with an integer start time
and a positive integer duration. To handle tasks we introduce the data
type task as an alias for a record of type 〈s : dvar, d : dvar〉 where
for a task x, x.s denote the start time and x.d denote the end time.

To express the different resource constraints used for scheduling and
cumulative constraints, we will invent new filter constraints capturing
these properties. The most basic filter constraint for scheduling is the
overlap constraint, equivalent to the temporal overlapping relation be-
tween two tasks x and y.

overlap(x, y) ≡ v(x.s) < v(y.s) + v(y.d) ∧ v(y.s) < v(x.s) + v(x.d)

This filter constraint is used primarily for non-overlapping scheduling.
We will consider other types of scheduling filter constraints in Section
4.5.

4.4.1 The ordered-tasks Constraint

The ordered-tasks constraint on a set of n tasks handles a set of
n− 1 binary precedence relations between tasks on the form v(X[i].s) +
v(X[i].d) + K[i] ≤ v(X[i + 1].s), where the vector K contains integers,
corresponding to the setup time between the tasks. The constraint takes
a vector of records T : vec 〈t : task, k : int〉 as argument. For an
element in T , T [i].t denote a task and T [i].k denote the setup time be-
tween tasks. We handle this constraint by building a path including
all vertices using the Path graph structure. The vertices are produced
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using the Identity vertex generator. We then use a special-made fil-
ter constraint, returning the logical negation of the precedence relation
above. We use a regular cost function; the identity cost modifier on the
cardinality property.

Constraint: ordered-tasks
Arguments: T : vec 〈t : task, k : int〉
Structure: A = Path(T )
Filter: A′ = {A : v(x1.t.s)+v(x1.t.d)+x1.k > v(x2.t.s)}
Cost: |A′|

Table 4.9: The ordered-tasks constraint.

4.4.2 The serialized Constraint

The serialized global constraint ensures that the tasks in a vector
do not overlap in time. A serialized constraint on n tasks is seman-
tically equivalent to n(n − 1)/2 non-overlapping constraints, restricting
all possible pairs of tasks from overlapping. We use a negated variant of
this as the basis for our model of the serialized constraint.

Constraint: serialized
Arguments: T : vec task
Structure: A = CliqueLt(T )
Filter: A′ = {A : overlap(x1, x2)}
Cost: |A′|

Table 4.10: The serialized constraint.

The representation of serialized shown in Table 4.10, is similar
to the one used for the alldiff constraint. We use the filter constraint
overlap on the arcs. As vertices of the constraint graph, we use the
tasks themselves, using the Identity vertex generator. Again, we use
the CliqueLt graph structure, and apply the overlap filter constraint
on the arcs. The rest of the formulation of serialized is in analogy
with the model for alldiff.

In Section 4.5.1 we will investigate yet another possible way to model
the serialized constraint in our framework.
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4.4.3 The disjoint-tasks Constraint

The disjoint-tasks constraint takes two vectors of tasks, and en-
sures that no task in the first vector intersects with a task in the second
vector. The formulation of the constraint as graph properties on a struc-
tured network is straightforward and shown in Table 4.11. We use the
Identity vertex generator to produce one vertex for each task. The
graph structure used is Product, which produces an arc between each
vertex in the first vector and each vertex in the second vector. We again
use overlap as the filter constraint, and count the number of overlaps
as a measure on the cost of the constraint. The disjoint-tasks
constraint is a variant of the serialized constraint [5].

Constraint: disjoint-tasks
Arguments: T1 : vec task

T2 : vec task
Structure: A = Product(T1, T2)
Filter: A′ = {A : overlap(x1, x2)}
Cost: |A′|

Table 4.11: The disjoint-tasks constraint.

4.5 Cumulative Scheduling Constraints

In this section we take a closer look on a set of global constraints com-
monly referred to as cumulative constraints. In these constraints, we are
interested in restricting the number of tasks executing simultaneously.
Formally, we associate a nonnegative integer height x.h to each task x,
and for all points in time t restrict the sum of the heights of the tasks Xt

executing at t to be in an interval
∑

x∈Xt
x.h ≤ k, where k is the upper

capacity bound. This is a generalization of a serialized constraint,
for which the upper bound is 1, and all heights are 1.

To handle tasks with height we use the data type htask, an alias
for a record of type 〈s : dvar, d : dvar, h : int〉. We will use the same
notation as for vertices of type task, and also refer to the height of a
task x as x.h.
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4.5.1 A Filter Constraint for Cumulative Scheduling

The filter constraint overlap is severely limited and is not general
enough to handle more generic cumulative resource constraints. This
is partially due to the fact that overlap is a binary constraint on two
tasks only and cannot handle more tasks combined with a resource which
does not have an upper capacity bound of 1.

One possible solution for this is to introduce a filter which tests if a
task is active at a certain time point. The only time points where the
resource usage in a schedule will change are at the start and end times
of the tasks. These can be considered the critical time points of resource
schedules. The idea is captured by the start-active filter, which is
shown below. The start-active filter constraint between two tasks is
true whenever the second task is active at the time point when the first
task becomes active.

start-active(t, y) ≡ t ≥ v(y.s) ∧ t < v(y.s) + v(y.d)

One problem with the approach above is that it introduces symmetrical
filtered arcs between tasks due to the ordered nature of the arcs – the
imaginary edges we want to count are unordered. We can remove such
symmetries by using a total order on the tasks. Some of the symmetries
are actually removed by using the partial order that the start times
impose on the tasks. We show later how we can remove all symmetries
by extending this order.

In the following discussion we restrict our attention to upper-bounded
capacitated scheduling constraints with nonnegative heights. Given these
assumptions, the start time points of the tasks are the only time points
where the resource usage increases. For capacitated scheduling with up-
per bounds only, it is enough to investigate these to find out when the
resource usage is higher than the available capacity.

We can now use start-active as a filter, in order to form the sets
of arcs, which are intersecting with the start time points of a tasks.
The basic idea here is to compute, for each task start, the set of binary
task collisions that is directly dependent on the start of the task. On
these sets, we can then apply different cost modifiers removing the cost
of the allowed number of filtered arcs, and capturing the violation of
the constraint. This can be done using a connected graph on the tasks,
with a combined cost on the leaving arc sets of the start-active filter
constraint. For the serialized constraint, this would correspond to
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the following cost, where A′ is the final arc set, essentially allowing the
execution of at most one single task at each critical time point.

∑

pi∈leaving(A′)

max(0, |pi| − 1)

The basic idea is that each new task that becomes active corresponds
to n binary task overlaps, where n is the number of tasks active at the
start of the new task. We then subtract from n the number of allowed
tasks at the time point.

4.5.2 Removing Symmetrical Arcs

If we use the start-active filter constraint as above, we get a cost that
is not directly comparable with primitive binary constraints for tasks
that start at exactly the same time. This is because the time ordering is
partial and cannot remove all symmetries – if n tasks start at the exact
same time, we get n identical sets of leaving arcs.

As an example of this, consider the two situations shown in Figure
4.1. We have a vector of tasks T = [TA, TB, TC]. The situation to
the left yields the following partition of the final arc set into a vector of
leaving arc sets.

leaving[1] = {(TA, TA)}

leaving[2] = {(TB, TA), (TB, TB)}

leaving[3] = {(TC, TA), (TC, TB), (TC, TC)}

The cost expression for the serialized constraint results in a cost of
1 + 2 + 3 − 3 = 3. In contrast, the situation to the right in Figure 4.1,
which should be considered equal since the numbers of binary overlaps
are the same, gives us the following set of leaving arc sets.

leaving[1] = {(TA, TA), (TA, TB), (TA, TC)}

leaving[2] = {(TB, TA), (TB, TB), (TB, TC)}

leaving[3] = {(TC, TA), (TC, TB), (TC, TC)}

The cost resulting from this situation is 3 + 3 + 3− 3 = 6, which is not
equal to the number of binary overlaps. This is because the partial start
time order does not break symmetries between tasks starting at the same
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Figure 4.1: Two equivalent schedules which yield different cost unless
corrected.

time – for example, the pairs (TA, TB) and (TB, TA) both correspond
to the overlap {TA, TB}.

To remove the remaining symmetries we impose an arbitrary order
¹ on the tasks with equal start time, and include a task y with start
time equal to the leaving task x in the leaving arc set if and only if
y ¹ x. In our implementation we take this order from the order of the
task vector, as generated by the vertex generator. This order can be
determined statically for a task vector.

To incorporate the order in the framework we define the extended
filter constraint start-active¹ as shown below.

start-active¹(x, y) ≡ strict-start(v(x.s), y)

∨ equal-start(v(x.s), y) ∧ y ¹ x

The new filter constraint first breaks symmetries using the strict-start

filter:

strict-start(t, y) ≡ t > v(y.s) ∧ t < v(y.s) + v(y.d)

If the start times of the two tasks are equal,

equal-start(t, y) ≡ t = v(y.s) ∧ t < v(y.s) + v(y.d),

we instead use the new ordering relation to break the remaining symme-
tries.

The new serialized constraint alt-serialized is formulated
in Table 4.12.

4.5.3 The cumulative-1 Constraint

In this section, we generalize the serialized constraint to the re-
stricted k-capacity cumulative constraint cumulative-1, where the
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Constraint: alt-serialized
Arguments: T : vec task
Structure: A = Clique(T )
Filter: A′ = {A : start-activeT (x1, x2)}
Partition:

∑

p∈leaving(A′) f(p)

Subcost: f(p) = max(0, |p| − 1)

Table 4.12: The alt-serialized constraint.

resource can handle at most k tasks at the same time. The semantics
of the constraint prevent more than k tasks from executing at each time
point.

Note again that if some tasks are active at a single time point t,
they are also intersecting with each other. This allows us to state the
semantics of cumulative-1 as follows.

cumulative-1(T, k) ≡
∀s ∈ T. |{t|t ∈ T ∧ start-active¹(s, t)}| ≤ k

This ensures that for each critical time point, the number of overlapping
tasks should be less than or equal to k. The total order ¹ is as before
arbitrary and of no consequence for the semantics of the constraint – we
use it only to break ties between tasks starting at the exact same time
point.

The cumulative-1 constraint is formulated using graph properties
in Table 4.13. We use a cost for cumulative-1 based on the number of
tasks which are active at the start time of a tasks, which we then reduce
by the number of active tasks that are allowed. This cost is similar to the
one used for alt-serialized in the previous section. We produce the
vertices of the constraint using the implicit Identity vertex generator,
and use the Clique graph structure to get a graph with arcs between
any pair (i, j) of vertices. We apply the start-active filter constraint
with the order from V on the arcs, and use a combined cost on the
leaving arc subsets. We use a threshold cost on the cardinality of these
arc subsets, reduced with at most k allowed active tasks, to form the
total cost.

The cost of a cumulative-1 constraint is comparable with the cost
of a serialized constraint. This is because we once more count the
number of binary task overlaps. When the capacity of the constraint k
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Constraint: cumulative-1
Arguments: T : vec task, k : int
Structure: A = Clique(T )
Filter: A′ = {A : start-activeT (x1, x2)}
Partition:

∑

p∈leaving(A′) f(p)

Subcost: f(p) = max(0, |p| − k)

Table 4.13: The cumulative-1 constraint.

is greater than zero, the cost is reduced so that for any time point, k
active tasks count only as one when computing overlaps. This is best
demonstrated with an example.

We use a cumulative-1 constraint with a capacity of k = 2 on
a vector of tasks T = [A,B,C,D,E, F ]. We use the Identity vertex
generator and get the vertex vector V = [A,B,C,D,E, F ]. The graph
structure Clique generates a set of arcs A={(x, y)|x, y ∈ V }.

On A we apply the binary constraint start-activeT (x1, x2), giving
us the set of final arcs A′. Now suppose we have the total assignment of
tasks with the following start- and end times.

Task A B C D E F
start 0 1 4 8 8 9
end 7 3 9 13 15 13

The execution profile of these tasks is shown to the left in Figure 4.2.
To the right, a corresponding execution profile for a serialized con-
straint is shown. Note that the two costs should be the same. The
application of the partition function leaving(A′) on the set of final arcs
A′ yields the following vector of arc subsets.

leaving[1] = {(A,A)}

leaving[2] = {(B,A), (B,B)}

leaving[3] = {(C,A), (C,C)}

leaving[4] = {(D,C), (D,D)}

leaving[5] = {(E,C), (E,D), (E,E)}

leaving[6] = {(F,D), (F,E), (F, F )}
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Figure 4.2: The number of binary overlaps of the infeasible schedule
for a cumulative-1 constraint with capacity 2 is equal to the cost of
the serialized constraint on the right, where some tasks have been
merged.

Applying the subcost function cf (p) = max(0, |p| − k), where k = 2,
on all arc subsets pi yields

f(p1) = max(0, |{(A,A)}| − 2) = 0

f(p2) = max(0, |{(B,A), (B,B)}| − 2) = 0

f(p3) = max(0, |{(C,A), (C,C)}| − 2) = 0

f(p4) = max(0, |{(D,C), (D,D)}| − 2) = 0

f(p5) = max(0, |{(E,C), (E,D), (E,E)}| − 2) = 1

f(p6) = max(0, |{(F,D), (F,E), (F, F )}| − 2) = 1

The total cost of the cumulative-1 constraint thus becomes 1+1 =
2, which is the same as the one for a serialized constraint and the
tasks shown to the right in Figure 4.2.

4.5.4 The cumulative Constraint

The cumulative constraint is a generalization of the cumulative-1
constraint, where we associate a nonnegative integer height x.h with each
task x. The constraint ensures for the given vector of tasks that for any
point in time, the sum of the heights of the tasks executing at that time
is less than or equal to the capacity k of the constraint.

A straightforward way to handle the cumulative constraint is to
split each task x with a height greater than 1 into x.h different tasks of
height 1 with equal start and end times. The task splitting makes it pos-
sible to treat the constraint exactly as we did with the cumulative-1
constraint. In Figure 4.3 this approach is shown by an example.

The formulation of the cumulative constraint using this approach
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Figure 4.3: Splitting of tasks into tasks with height 1.

is shown in Table 4.14. Here, we use a similar approach as we did for the
cumulative-1 constraint. The difference is that we use tasks of type
htask with an associated height, and that we use the Expand vertex
generator to produce x.h vertices for a task x using the split function
shown below.

split(x : 〈s : dvar, d : dvar, h : int〉) = [〈x.s, x.d, 1〉, . . . , 〈x.s, x.d, 1〉]

where |split(x)| = x.h.

Constraint: split-cumulative
Arguments: T : vec htask, k : int
Vertices: V = Expand(T, split)
Structure: A = Clique(V )
Filter: A′ = {A : start-activeV (x1, x2)}
Partition:

∑

p∈leaving(A′) f(p)

Subcost: f(p) = max(0, |p| − k)

Table 4.14: The split-cumulative constraint.

4.5.5 Implicit Task Splitting

The downside of the expansion of tasks shown in the previous section is
that the number of tasks we have to handle increase significantly. This
can in turn have severe effects on performance. Therefore, we propose to
handle the splitting of tasks implicitly by computing the numerical result
of this operation. We do this by the specialized cost function VSplit.
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This cost function takes a leaving arc subset on vertices of type htask
and the maximum capacity k of the constraint as an extra parameter,
and computes the cost of the corresponding split task set for the task
with is focus vertex of the arc subset.

To see what cost VSplit computes, we first assume that we use
the previous model of cumulative and that we have expanded the
vertices (of tasks) V in question into a vector V ′ of virtual tasks, as in
the previous section. As before we use the order from the vector of tasks
to remove symmetries from the cost computations. We now have the
following. For each task ti ∈ T with a height of ti.h, we have ti.h virtual
tasks t1i , t

2
i , . . . , t

ti.h
i , each with a height tji .h of 1. We assume that the

virtual tasks are ordered as t1i ¹ t2i ¹ · · · ¹ tti.h
i , and also that if ti ¹ tj

then ∀q ∈ {1, . . . , ti.h}, r ∈ {1, . . . , tj .h}.t
q
i ¹ trj for all tasks ti, tj , that

is, the order of the source tasks ti, tj extends to the virtual tasks as well.
This order can be determined statically from the orders of the vectors
that split produces, since t.h is constant.

In the following discussion we assume that we use the same structure
and cost as for the split-cumulative constraint. Each virtual task
tji is now the focus of a leaving arc subset pj

i = leaving(A′)[ord(tji )],

where A′ is the final arc set and ord(tji ) denote the ordinal in ¹ for tji ,
used for indexing in the vector of arc subsets. The cost computed for a
task ti should then be

∑

j=1,...,ti.h
f(pj

i ) where f is the subcost function
of the constraint. For the cumulative constraint we have that the
subcost is f(p) = max(0, |p| − k). This gives us that the total cost for
one task ti should be

∑

j=1,...,ti.h

max(0, |pj
i | − k).

Now let T 0 be the set of virtual tasks, except those expanded from
ti, which are active at ti:s starting time point.

AT = {tj | tj ∈ T \ {ti} ∧ start-active¹(ti, tj)}

T 0 = Expand(AT , split)

According to our ordering ¹ we now have the following, where T j is
the set of tasks which are active and ordered before tj

i when considering
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virtual task tji .

T 1 = T 0 ∪ {t1i }

p1
i = {(t1i , x) | x ∈ T 1}

T 2 = T 1 ∪ {t2i }

p2
i = {(t2i , x) | x ∈ T 2}

...

T j = T j−1 ∪ {tji}

pj
i = {(tji , x) | x ∈ T j}

...

T ti.h = Ati.h−1 ∪ {t
ti.h
i }

pti.h
i = {(tti.h

i , x) | x ∈ T ti.h}

Note that the leaving arc subsets pj
i are unique. We also have that

|T 0| =
∑

tj∈T\{t}∧start-active(ti,tj)
tj .h, and from this we get that

|p1
i | = |T 0|+ 1

|p2
i | = |p1

i |+ 1 = |T 0|+ 2

...

|pj
i | = |pj−1

i |+ 1 = |T 0|+ j

...

|pti.h
i | = |T 0|+ ti.h

For the cumulative constraint, the costs computed for the virtual arc
sets are

f(p1
i ) = max(0, |T 0|+ 1− k)

f(p2
i ) = max(0, |T 0|+ 2− k)

...

f(pi
i) = max(0, |T 0|+ i− k)

...

f(pti.h
i ) = max(0, |T 0|+ ti.h− k)
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The costs above have a very regular structure. This gives us the means
to compute the expanded cost directly, without actually performing the
task splitting. We get three cases for computing this value VSplitk(pi)
for a non-expanded arc subset pi.

1. |T 0| + ti.h ≤ k, where the sum of the heights of the tasks in the
leaving arc subset of ti is less than or equal to k. In this case, the
cost f(pi) = 0.

2. |T 0| ≥ k, where the sum of the heights of the tasks in the leaving
arc subset of ti excluding ti itself is greater than or equal to k. In
this case the cost is f(pi) = (ti.h)(|T 0| − k) + (ti.h)(ti.h + 1)/2,
because |T 0| ≥ k implies that f(pj

i ) is always positive:

f(p1
i ) = |T 0|+ 1− k

f(p2
i ) = |T 0|+ 2− k

...

f(pj
i ) = |T 0|+ j − k

...

f(pti.h
i ) = |T 0|+ ti.h− k

3. |T 0| < k < |T 0| + ti.h. In this case, for j ≤ k − |T 0|, f(pj
i ) = 0,

and for j > k − |T 0|, f(pj
i ) > 0, so we have the following.

f(p1
i ) = 0

...

f(p
k−|T 0|+1
i ) = |T 0|+ j − k = 1

f(p
k−|T 0|+2
i ) = |T 0|+ j − k = 2

...

f(pti.h
i ) = |T 0|+ ti.h− k

Thus, the cost for this case is f(pi) = (|T 0|+ ti.h−k)(|T 0|+ ti.h−
k + 1)/2.

Since |T 0| =
∑

tj∈T\{t}∧start-active(ti,tj)
tj .h can be computed with-

out expansion, we can compute the cost of VSplit for one task ti without
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expanding it. This approach avoids the negative effect on performance
resulting from explicit expansion of the tasks, and instead computes the
result of cost computation on this expanded set of tasks directly. This
new formulation of the cumulative constraint is shown in Table 4.15.
At present, VSplit is not incrementally computed.

Constraint: cumulative
Arguments: T : vec htask, k : int
Structure: A = Clique(T )
Filter: A′ = {A : start-activeT (x1, x2)}
Partition:

∑

p∈leaving(A′) f(p)

Subcost: f(p) = VSplitk(p)

Table 4.15: The cumulative constraint.

4.5.6 The cumulative Constraint with Cyclic Time

We can further extend the family of cumulative constraints with a cyclic
cumulative constraint called cyclic-cumulative. The constraint en-
sures that for all time-points 0 ≤ i ≤ `, where ` is the cycle length, the
sum of the heights of all tasks running at time i is less than or equal to
the capacity k of the constraint. In addition, any task x ending after the
cycle length should wrap around, and be considered to end its execution
at time s.a + d.a− `.

Constraint: cyclic-cumulative
Arguments: T : vec htask, k : int, ` : int
Structure: A = Clique(T )
Filter: A′ = {A : cyclic-start-active(T,`)(x1, x2)}
Partition:

∑

p∈leaving(A′) f(p)

Subcost: f(p) = VSplitk(p)

Table 4.16: The cyclic-cumulative constraint.

We describe the cyclic-cumulative constraint in Table 4.16. We
can model the constraint by using the cyclic-start-active filter con-
straint, which handles the eventual wrap around of tasks in time. The
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cyclic-start-active filter constraint can be described as below.

cyclic-start-active¹,`(A,B) ≡ start-active¹(A,B)

∨ v(x.s) < v(y.s) + v(y.d)− `

The formulation is otherwise in analogy to the one for the cumulative
constraint shown in Table 4.15.

In designing global constraints for local search, one should aim at
using a cost for the constraints based on the same “common ground”
as the primitive constraints in the system. We believe that a cost basis
in the form of a set of primitive constraints, which all constraint costs
are based on, fulfills this property. More specifically, we have designed
the framework so that the cost of a global constraint is based on a set
of satisfied filter constraints. We have decided to use generic unary and
binary constraints as filter constraints.

To measure how many filter constraints are violated, we use the graph
properties of a global constraint as input to the cost expression, in order
to obtain a cost.





Chapter 5

A Global Constraint

Library

5.1 Introduction

In this chapter we will investigate a library for modeling global con-
straints in constraint-based local search, based on the framework pre-
sented in Chapter 4. Global constraints in local search can be seen as
high-level modelling components, designed to reduce evaluation time and
space complexity. Traditionally, they have been implemented as mono-
lithic entities, often using a low-level language and requiring in-depth
knowledge of the constraint system itself. In this chapter we show a
compositional model of global constraints, in which we use graph struc-
tures, filters and cost components to create global constraints using a
high-level C++ framework called Composer . The composed constraints
can then be used for constraint solving in a generic, domain-independent
local search solver. We show how to compose several well-known global
constraints, and also show by experimental results that a compositional
approach for global constraint modelling is not only possible in practice,
but also highly competitive with existing low-level constraint-based local
search implementations.

The classical approach for generic constraint solving in local search
is to provide a set of primitive constraints, which in turn can be used to
form more complex combinatorial substructures [73]. A common choice
is to restrict the user to binary constraints only. Unfortunately, for sev-

79
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eral common combinatorial structures there simply is no decomposition
into binary constraints that is acceptable in terms of space and/or time
complexity. Global constraints exist in local search systems to provide
time- and space efficient high-level components capturing common com-
binatorial substructures.

In the local search transition evaluation, we are interested in how a
small change in a state can be re-evaluated efficiently. Incremental evalu-
ation address this problem, and for global constraints it is often possible
to write code for incremental evaluation of properties of the constraints.
One such constraint is the well-known alldiff constraint, restricting
all variables present to take disjoint values. The natural decomposition
of this constraint reduces to n(n − 1)/2 binary inequality constraints,
where n is the number of variables. The incremental evaluation of a de-
composed alldiff constraint, where we assume a change of the value
of one single variable, must consider exactly n− 1 binary constraints for
re-evaluation, since a single variable is connected to n−1 other variables
via inequality constraints in such a decomposition. This gives us that
re-evaluation has a time complexity of O(n), which should be compared
to the constant O(1) time requirements for a global alldiff constraint.
Also, a decomposition has the space complexity of O(n2), where a global
constraint implementation of the alldiff constraint could be imple-
mented using O(n) space.

A compositional approach for modelling of global constraints gives
us a high-level tool for invention and modification of global constraints.
This process is very common in real-life applications, where the provided
global constraints often do not fit the problem exactly. In our approach,
we parametrize global constraints over key properties of their structure.
To do this we use a generic graph model, an approach that has previously
been used successfully to model a large number of global constraints [4].
The main benefit of a parametrized model of global constraints is that
practitioners can very easily experiment with different cost functions and
different structures, and also compose completely new global constraint
with a minimum of work. Also, composition of constraints is not only
simple to model, but the resulting constraints are evaluated very effi-
ciently using highly-optimized incremental algorithms. The user does
not have to care about keeping costs and conflict levels updated, which
is handled by the Composer system automatically.



5.1 Introduction 81

5.1.1 Host Environment

Although high-level constraint composition is a very attractive approach
for global constraint implementation, there will always be a need for a
strong host programming language as a support system for small custom-
made implementation details of the constraint system. Therefore, we
have implemented Composer as a template library for C++, which give
us support of the full C++ language together with the standard template
library. Also, this makes the integration of the constraint system into
external software painless and transparent.
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Figure 5.1: Design of the constraint composition framework. A con-
straint object is instantiated by selecting a structural component, a filter
constraint and a cost component. Also, each composed constraint inher-
its properties from an abstract constraint class used by all constraints in
Composer .

The basic structure of a composed constraint in Composer is shown
in Figure 5.1. A constraint is created using template instantiation of the
classes used to represent components in the framework. The constraint is
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represented by the structural class selected, which also inherits constraint
generic properties from the abstract constraint class Constraint. If
one wants to implement specialized constraints from scratch without the
aid of Composer , this interface can be inherited to simplify the imple-
mentation.

The implementation of Composer as a template library has two main
purposes. First, it provides the generality needed for such a component
- it is easy to extend the library with more objects which will interact
with the system, and second, it maintains the efficiency that is absolutely
crucial in local search constraint solving. Using templates allow us to in-
line and eliminate function calls that would otherwise affect performance
substantially. To use inheritance for component construction would re-
quire a virtual method call for each component evaluation, something
that could be fatal for the solver performance. For example, in a single
typical iteration it is not uncommon that a filter constraint is evaluated
10,000 times. Because the nature of the filter is to compute a simple
expression, the actual virtual method call overhead would be a larger
amount of the total execution time than the filter evaluation itself. This
is of course unacceptable in a local search library, where main focus is on
speed of evaluation. In addition, templates make inlining of these crucial
method calls possible, something that further increase the performance
of our method.

In complex template libraries, by nature the template instantiations
can become quite messy. To overcome this obstacle and to simplify the
interface to Composer , the user can also specify global constraints in a
configuration file using a specification language. This language uses a
syntax that is simplified from the complexities of template instantiation,
and hides a lot of implementation-specific details that are of no interest
to the user.

5.1.2 Chapter Outline

The rest of the chapter is organized as follows. First, Section 5.2 gives an
overview of the architecture of the Composer local search system. Next,
Section 5.3 gives an introduction to constraint composition in Composer .
Section 5.3 and Section 5.4 discusses the algorithms for incremental up-
date of the cost and conflict of a constraint. Sections 5.5 and 5.6 present
two example applications, showing that constraint composition is indeed
useful in practice.
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5.2 The Composer Architecture

An overview of the architecture of Composer can be seen in Figure 5.2.
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Figure 5.2: Overview of the architecture of Composer .

The Composer system can basically be divided in three layers.

1. The Constraint Composition Framework layer of Composer con-
tains the implementation of incremental expressions, the compo-
nents used to model global constraint, and some primitive functions
that are used throughout the system.

2. The Predefined Constraints layer contains constraint that are al-
ready implemented, for example arithmetic constraints, and global
constraints like those investigated in this thesis. It it important to
point out that the predefined global constraints in this layer are
composed as any other global constraint described in this thesis.
Also, any monolithic global constraints would be located here –
currently, no such constraints exist in Composer .
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3. The Local Search System layer contains all the components that
is needed to solve problems using local search on the constraint
in the inner layers. Here, we have the mechanisms for basic local
search like transitions, conflict and cost evaluation of a constraint
system, state variables, etc. Also, metaheuristics like Tabu search
and other history-based components are located here.

Most parts of the first and second layer has been discussed Chapter
4. The third layer is discussed in Chapter 3. In this section, we will
therefore focus on the parts of the first layer, regarding incremental
expressions, that have been left out.

5.2.1 Incremental Computation of Expressions

One of the cornerstones of Composer is incremental evaluation of basic
expressions of the form

X = f(Y1,Y2,Y3,...,Yn)

where f is a generic function and Y1,Y2, . . . ,Yn are integer variables. A
resulting directed acyclic graph (DAG) of functions on the form above
has been shown previously to be well-suited to incremental evaluation
[47, 1, 40]. In general, we assume that there exist an efficient algorithm
to compute X once a single input variable Yi has changed. Composer
provides many such functions useful for expressing relationship between
variables in the problem model. Infix functions such as addition, subtrac-
tion and multiplication are also present for simplicity, and are converted
into the form above. Also, observe that the expression X = f() de-
notes that X should take the constant value computed by f (which take
no arguments).

More complex expressions can also be used. These will be flattened
into basic expressions on the form above by introducing new variables.
For example, the expression

X = f(g(Y),Y*(Z+10)) - 20

is converted into the following expressions

X = sub(T1,20)
T1 = f(T2,T3)
T2 = g(Y)
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T3 = mult(Y,T4)
T4 = add(Z,10)

forming the dependency DAG shown in Figure 5.3.

X

T1

T2

T3

Y

T4

Z

10

20

Figure 5.3: The dependency DAG for the flattened form of the incre-
mental expression X = f(g(Y),Y*(Z+10)) - 20.

Only acyclic expressions are allowed. All basic expressions, con-
straints and variables as well as modifications are posted into a model,
which keeps track of expression evaluation and updates, and also pro-
vides support methods for local search.

5.2.2 State and Non-state Variables

In Composer we distinguish between state and non-state variables. A
state variable is subject to change from the search component. Non-state
variables are simply entities whose values are entirely dependent on the
values of the state variables in the model. In any incremental expression,
the left-hand side variable must be a non-state variable, and the right-
hand variables can be either state or non-state variables. The reason to
differ between state and non-state variables is that Composer automat-
ically computes a conflict level for each state variable X, indicating in
how many conflicts X is present.

5.2.3 Incremental Functions

As an example of an incremental function, Composer provide the vecOp
operator, which applies a given associative and commutative binary oper-
ator⊕, for which an inverse⊕−1 exist, on all its arguments Y1,Y2, . . . ,Yn
and gives the result Y1⊕ Y2 ⊕ . . . ⊕ Yn. The folding of ⊕ over a set of
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variables can be incrementally evaluated in time O(f⊕ +f⊕−1) where f⊕
and f⊕−1 is the time of computing r = x⊕y and x = r⊕−1y respectively.
For many common operators, such as addition and multiplication, this
time is O(1) giving such functions nice incremental properties.

For functions which do not have an inverse, such as max, argmax1

and relatives, Composer provides efficient O(lg n) incremental imple-
mentations using a sorted structure.

We also include extreme value functions based on the usual vecOp
operator. The worst case time complexity to compute the inverse of an
extreme value operator such as max is O(n) where n is the number of
arguments. To see this consider the case where we want to compute the
maximum value of a set of variables S. We know that the last maximum
was 6, and that a single variable x ∈ S has changed from 6 to 3. To find
the maximum of S \ x we now need to investigate all elements of S \ x
to find the new maximum, and therefore the time complexity is O(|S|).

However, considering that the only case in which we have to inves-
tigate all elements of S \ x to find the new maximum is when the old
maximum is equal to the old value of x, and the new value of x is smaller
than the old value, this may still be a useful method – all other changes
can be updated in constant time. The reasoning is similar for min,
argmax and argmin. Composer therefore provides two different meth-
ods for computing these functions - either using the inverse operator
version emin, emax etc., or using a binary tree implementation min,
max and so on.

5.2.4 Motivation

The usefulness of incremental expressions can be demonstrated by an
example. In train scheduling [35] a train traversing a sequence of stations
can be elegantly modeled using variables denoting departure di from
station i, traversal time from station i to station i + 1, arrival ai+1 at
station i + 1, and stop time si+1 at station i + 1, and so on until the
last station k. However, there exists a very tight relationship between
these variables. Consider the case where the traversal time is known in
advance and constant. We get the following equations.

∀1 < i ≤ k.di = ai−1 + si−1

∀i.ai = di + ti

1argmax computes the index to an argument that has a maximal value.
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Because ti is constant, we get a single departure variable d1 and a set
of stop time variables si on which all the other variables depend. Using
incremental expressions, these relationships can be declaratively mod-
eled and automatically used. The Composer system takes care of the
handling of the dependent variables and the distribution of conflicts, so
that state variables automatically are assigned a proper conflict level.
The relationships above can be modeled in Composer as follows.

a[0] = d[0] + t[0];
for(int i=1;i<=k;i++)
{
d[i] = a[i-1] + s[i-1] ;
a[i] = d[i] + t[i] ;

}

The incremental back-bone of Composer also gives the global con-
straints an environment which helps in modelling many combinatorial
problems. In fact, composed global constraints are compiled into special
incremental functions and are fully integrated in the incremental frame-
work of Composer . Because of this it also becomes very easy to post
global constraints on non-state variables, which are efficiently computed
by the system during run-time. For example, consider the train schedu-
ling application above. We can for example impose that all trains on a
single track should be serialized in time, which can be done as follows.

vector<vector<int> > start(Tracks);
vector<vector<int> > dura(Tracks);
for(int i=0;i<Traversals;i++)
{
start[track[i]].push_back(d[i]);
dura[track[i]].push_back(t[i]);

}
for(int i=0;i<Tracks;i++)
{
serialized(model,start[i],dura[i]);

}

The code fragment above first creates two vectors for each track i,
one with the start time and the other with the duration of all traversals
on track i. Then, a serialized constraint is posted on the tasks
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represented by the start and duration of the traversals on that track.
Observe that start[i] is composed of non-state variables as shown
in the previous example. Composer will now automatically assign a
violation level to the state variables that start[i] depends on, making
guided local search possible.

The composition of the serialized constraint is similar to the
one used for the primitive alldiff constraint. The formulation of the
serialized constraint used above is shown in Figure 5.4.

constraint Serialized (vec[var] x, vec[int] d)
{

structure = Clique;
filter = TSOverlap<vector<int> >(d);
partition = Leaving;
subcost = AtmostC<1>;
property = Card;

}

Figure 5.4: A serialized constraint specification in Composer .

In [40] an extended version of the incremental expressions used here
is described, in which cycles in the dependency graph can in certain
cases be resolved during runtime. This allows a limited form of recursive
behavior of the equations and increase the expressiveness of the network
somewhat. Presently, we do not support cyclic dependency graphs, but
plan to incorporate this feature in the future. The main reason not
to allow cyclic dependencies is that they require online detection and
unnesting of cycles, imposing a substantial overhead on the evaluation
of the incremental expressions.

5.3 Constraint Composition Using Composer
In this section we will discuss how to compose global constraints using
the Composer template library. More on the formal model of global
constraints can be found in Chapter 4.

5.3.1 Introduction

In the Composer model, a global constraint is parametrized over its graph
structure, its filter constraint, and its cost. A global constraint is com-
posed by selecting three components corresponding to the parametrized
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properties above. The structure component uses the variables and pa-
rameters of the global constraint to construct an arc set. Although we
often use binary arcs and constraints in Composer we are not limited to
this and can use any uniform arity we want.

The filter component is then used to select a final set of critical arcs
– the arcs that satisfy the filter constraint. We can then apply our
cost component to the set of critical arcs to form the total cost of the
constraint.

5.3.2 Composition Language

Constraints in Composer are either composed using the raw implemen-
tation template classes, or specified in a separate source file using the
Constraint Composition Language. The specification file is then com-
piled into one C++ function for each constraint, in which all template
instantiations and initializations are done automatically. The function
also posts the constraint into a provided constraint model. The resulting
code can then be compiled using a regular C++ compiler and included
in the project.

A constraint is specified by a constraint block, defining the name
of the constraint and necessary parameters for the components used. In
comparison with C++ a simplified and slightly different syntax is used
for the parameter description. A parameter is described by a type and
an identifier, where the type is either a basic type (integer or variable)
or a vector of types, denoted by vec[T]. All vectors are passed as a
pointer by default, basic types are passed as value.

The composition of the constraint is done using a list of attribute
descriptions – for example, the graph structure of the constraint is de-
scribed by the structure attribute. An attribute is set by specifying
an attribute, the = operator, and a value for the attribute (which is
a component for use in the constraint). The value of an attribute is
a component name, possibly extended with a parenthesized list of ac-
tual arguments to the component itself. The actual arguments are usual
C-style expressions and are emitted as-is from the compilation.

The binarization of the alldiff constraint in Composer is shown
in Figure 5.5. We use the variables of the constraint as nodes and form
arcs between all subsets {x, y} of two variables, using the CliqueLt
structure. The equality constraint VarEqVar is used as filter compo-
nent. Semantically this constraint is a binary constraint on two variables,
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which is true if and only if the values of the two variables are equal. A
linear threshold cost component AtmostC<0> with a threshold level of
0 on the cardinality of the resulting set is used as a total cost for the con-
straint. The component AtmostC<k> computes the value max(0, v−k)
where v is a property value, in this case the cardinality of the final set
of equality arcs in the graph.

constraint PrimAllDiff ( vec[var] x )
{

structure = CliqueLt;
filter = VarEqVar;
cost = AtmostC<0>;
property = Card;

}

Figure 5.5: The primitive alldiff constraint.

The result of compiling the specification of Figure 5.5 is shown in
Figure 5.6. Note that a lot of implementation detail has been hidden
from the user, who only has to specify which components to use to form
the global constraint. Still, the raw template library as provided by
Composer is very high-level, and the translation of a specification file
into C++ code is very straightforward. The very high level composi-
tional approach at global constraint design is one of the main features
of Composer .

void PrimAllDiff(Model &model,vector<state* > *x)
{

typedef Card<AtmostC<0 > > cost_PrimAllDiff ;
typedef CliqueLt<VarEqVar,

cost_PrimAllDiff> type_PrimAllDiff ;

vector<int> Y1=toIntVec(x);

type_PrimAllDiff * con =
new type_PrimAllDiff(&Y1 ,&model) ;

con->setFilter(VarEqVar(con));
model->post(con);

}

Figure 5.6: The compiled primitive alldiff constraint.
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Composer provides many other cost functions and properties, al-
though we will mostly show variations of the ones above. Of course, the
user is free to invent new cost functions and properties by writing new
template classes.

The second type definition states that the AllDiff type is a com-
position of the CliqueLt graph structure, a VarEqVar filter, and the
previously specified cost component Cost. The CliqueLt component
forms arcs between all subsets {x, y} of variables, and the VarEqVar
constraint filters away all arcs for which the variables have disjoint val-
ues. The rest of the code instantiates the constraint with the compo-
sition classes. In this case we need to tell that the model in where the
constraints should be posted is model and that the variables of the
constraints are in X. The constraint above will act exactly as the bi-
narization of the alldiff constraint – Composer will automatically
compute the constraint cost and the conflict level of each present vari-
able. In this case the Card component will compute a conflict level

c(X) for a variable X and a critical arc set A as c(X) = 2v|S|
|A| where

S = {(X, y) ∈ A} ∪ {(z,X) ∈ A} and v is the cost of the constraint.
Although the model for alldiff shown in Figure 5.5 is brief and

concise, it has one drawback. It is essentially a decomposition of the
constraint into binary inequalities, and the space complexity of O(n2)
and incremental time complexity of O(b · n), where b is the number of
variable changes, is of course the same as for the decomposition. We can
however do better than this, given that a more clever implementation of
the alldiff constraint would have a space complexity of O(n+ v) and
an incremental time complexity of O(b), where v is the number of values
for all variables. In Composer we can use the concept of partitioned costs
to partition the cost of a constraint into smaller, more manageable parts.
A partitioned cost is computed by combining several distributed cost
computations in the final graph, which we refer to as subcosts. The exact
distribution of subcosts is dependent on which combined cost we use.
The subcost components themselves are also composed of a property and
a cost expression. The property samples a trait of the arc set, returning
an integer, and the cost expression is then applied to the integer, giving
us the full cost of the constraint.

As we will see, using subcosts on all arcs entering or leaving a subset
of the nodes of the graph is often useful. We therefore provide the two
combined costs Entering and Leaving, each of which take a subcost
component C as a template argument. The combined cost components
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apply C on each subset Ai of arcs entering or leaving a single node
respectively, and compute a total cost by by incremental evaluation of
C(A1) + C(A2) + · · · + C(An). This can be done in time O(b) where b
is the number of changed subcosts.

In the specification language, the subcost attribute can in addition
take an identifier enclosed in brackets to the left of the = operator, used
for instantiation of the subcosts with different parameters depending on
their order. This identifier is compiled into an integer variable, which
at runtime will indicate the sequence number of the currently initialized
subcost. This variable can then be used in the right-hand side expression
of the attribute specification to assign specific parameters to the different
subcosts.

For the alldiff constraint a straightforward representation is a bi-
partite graph with the variables as one node partition and the possible
values as the other one. The arcs of the graph correspond to an assign-
ment of a variable to a value. In such a model we can update the cost
very efficiently by keeping track of how many variables are connected to
a single value. In Composer we can model the alldiff constraint as an
efficient bipartite structure with a combined cost as shown below. The
Bipartite structure is an optimized version of the Product struc-
ture on graphs with variable and value nodes. The composition of the
alldiff constraint below uses O(n) space and O(1) time for a single
variable change.

constraint AllDiff ( vec[var] y )
{

structure = Bipartite ;
filter = VarEqC ;
combined = Entering ;
subcost[i] = QuadAtmostC<1>;
property = Card ;

}

Figure 5.7: A bipartite alldiff constraint with subcosts.

5.4 Incremental Cost and Conflict Computation

An important characteristic of local search is the efficiency of the cost
computation. Typically, a neighbor is constructed by changing the value
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of one or or a small number of variables in the problem. One way of
speeding up the cost computation is to take advantage of this small dif-
ference between a neighbor and the current solution in the computation
of the new cost. This is the basis of incremental cost computation; re-
computing only the parts of the cost that have actually changed [47, 1].
A local search procedure should use this technique to speed up the cost
computation.

In this section we show how to use incremental cost computation for
constraints described as cost functions on graphs in Composer , signifi-
cantly reducing computation time. In general, we assume a change of
the current assignment v to v[x 7→ a] for a variable x and a value a,
where a 6= v(x). Any change of v can be realized by applying transitions
of this form in sequence.

Incremental computation can basically be divided in coarse-grained
and fine-grained incrementality [77]. In coarse-grained incrementality,
care is taken to only recompute sub-expressions that actually changes. In
fine-grained incrementality, we try to modify the actual sub-expressions
to obtain more efficient incremental properties.

The coarse-grained incrementality approach is taken in the papers
of Alpern et al. [1], Michel and Hentenryck [42], and Yellin and Strom
[77], where generic networks of expressions are incrementally evaluated.
The nodes of these networks consist of variables or functions, depending
directly on a set of arguments, also represented as nodes. Using this
approach, one can guarantee that the minimum number of nodes are
actually re-evaluated. In general, the networks have to be acyclic to be
evaluated efficiently using incremental methods.

In Composer , the possibility to obtain coarse-grained incrementality
is restricted to three levels; the expression level, where we form a network
of expressions similar to those in the papers referred in the previous
paragraph; the global level, where we compute the total cost and conflict
level for all constraints, and the constraint level, where the cost and
conflict level for a single constraint may be incrementally computed.
The expression level is described in Section 5.2.1. We discuss the two
other levels in Section 5.4.1 and 5.4.2.

In the fine-grained incrementality approach, care is taken to re-evaluate
nodes in the network efficiently. For example, if one of the nodes com-
putes a sum of its arguments, and only one of the arguments has actually
changed, the new sum can be recomputed in constant time, instead of
the linear time to the number of arguments that a complete re-evaluation
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requires. Fine-grained incrementality is investigated in articles by Paige
and Koenig [47] as well as in the papers of Michel and Hentenryck [42]
and Yellin and Strom [77].

In Composer , fine-grained incrementality is used in all places where
it can be motivated. For example, cardinality and plain and weighted
sums are implemented using fine-grained incrementality, as shown for
these properties in Section 5.4.2. It is important to point out that fine-
grained incrementality can not be motivated for certain expressions –
the actual cost of incremental computation should not exceed the cost
of recomputing an expression. Therefore, we do not evaluate filter con-
straints and cost modifiers incrementally, since these tend to be very
small and can be efficiently evaluated from scratch.

5.4.1 Total Cost and Conflicts

Coarse-grained incrementality on the local search engine level is obtained
by recomputing the cost and conflict levels only for those constraints,
which are posted on variables that have actually changed.

In our local search system, we use the extended cost function from
Definition 33, which computes for an assignment the weighted sum of
the costs of the individual constraints in the problem. Fine-grained
incrementality is obtained by recomputing the sum as shown below.

fe
n(C, v, x, a) = fe

o +
∑

c∈C∧x∈var(c)

wc ∆fc(v, x, a),

where fe
n(C, v, x, a) denote the new extended cost of the problem given

the transition v[x 7→ a]. f e
o is the old extended cost, which is saved in

each computation, ∆fc(v, x, a) is the difference between the new cost of
the transition v[x 7→ a] for the constraint c, and the old cost of c, given
the assignment v.

The conflict level is computed as in Definition 34. Using fine-grained
incrementality, this can be computed as

cln(C, v, x, a) = clx
o +

∑

c∈C∧x∈var(c)

wc ∆clc(v, x, a),

where cln(C, v, x, a) is the new conflict level of x after the transition
v[x 7→ a], clx

o is the old conflict level for x, saved after each computation,
wc is the constraint weight of c, and ∆clc(v, x, a) is the difference in
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conflict level we get by the transition v[x 7→ a] for c, given the assignment
v.

5.4.2 Individual Constraints

For global constraints to be practically useful in local search, we need
to be able to incrementally evaluate the effect of variable changes on a
constraint. To do this, we use an implementation model in where the
graph structure is the master component of a global constraint, evalu-
ating possible changes and propagating these to the other components.

In this model, an instantiated graph structure is a global constraint.
For a transition v[x 7→ a] where a 6= v(a), we can simply reapply the
filter to those arcs that contain x, and incrementally recompute the cost
of the transition v[x 7→ a]. Only costs, subcosts and property values are
updated incrementally – the status of the filter constraints and the cost
modifiers are computed more efficiently from scratch.

On the constraint level, incremental computation for a constraint c
and a variable assignment v[x 7→ a] is done as shown in Algorithm 5.1,
which computes the difference ∆fc(v, x, a) between the old and the new
cost for the constraint. We do this by applying the incremental version
of the cost function ∆cf of the graph model on the set of arcs on vertices
containing x, whose filter constraint has a changed Boolean state.

Yx ← the set of vertices that contains x.
AY ← the set of arcs that contains any vertex in Y .
∆A← [AY [k] | k ∈ {1, . . . , |AY | ∧ fc(AY [k], v) = true], the set of arcs
in AY whose filter has changed state.
return ∆cf (∆A).

Algorithm 5.1: Incremental cost computation of the difference
∆fc(v, x, a) between the old and the new cost.

For the Product graph structure, a more efficient computation of
which arcs are affected can be done if we take into account the actual
filter constraint used. If we have an equality filter constraint on a Prod-

uct graph on variables and disjoint values, denoting that a variable take
a certain value, we can compute the affected arcs more efficiently than
in the general case. In this case, at most two arcs are affected by a
transition v[x 7→ a]: one arc connecting the variable to its old value, and
one arc connecting the variable to its new value. We have the following
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two cases.

1. If the values form an interval, we can use direct indexing of a vector
V representing the value vertices to find the two arcs:

∆A← {(x, V [v(x))], (x, V [a])}

This can be done in O(1) time.

2. If the values do not form an interval, we can represent them as a
sorted sequence, and find the value vertices in O(log n) time, where
n is the number of value vertices in the graph.

A hybrid method where we search a binary tree of intervals is also pos-
sible, but in the worst case this method also has a time complexity of
O(log n). In our system, only the first case is implemented as the spe-
cialized graph structure Bipartite.

Algorithm 5.1 has a time complexity of O(|AY | + g(|∆A|)) where
g(|∆A|)) is the time complexity for computing the cost difference of the
affected arc set ∆A.

In computing incrementally the value of the cost function ∆cf (∆A),
we have three cases depending on if the cost function is regular, com-
bined, or specialized.

Regular Costs

For a regular cost function, ∆cf (∆A) is computed as shown in Algorithm
5.2. Here, the set of arcs A+, which became satisfied, and the set A−,
which became violated, are extracted. A new property value is then
computed using the value difference ∆p(A+, A−) of the property, and
the old property value po. The cost delta ∆cv can then be obtained
by computing the value of cost modifier cm for the new property value,
and by subtracting the old cost value cv o. During the process, we also
update po and fo, for use in the next computation.

The conflicts of the vertices are also computed in Algorithm 5.2. To
do this, we need to keep track of the number of arcs, which satisfy the
filter constraint, and how many of these arcs are connected to the vertices
in the graph. This is done incrementally in the algorithm. Unfortunately,
the actual number of conflicts on the vertices in the arc set have to
be recomputed for all vertices in A′ ∪ A−, where A′ is the full set of
arcs satisfying the filter. This is because the conflict of each vertex
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/* added and deleted arcs */
A+ ← {a | a ∈ ∆A ∧ satisfied(a) ∧ ¬was-satisfied(a)}
A− ← {a | a ∈ ∆A ∧ ¬satisfied(a) ∧was-satisfied(a)}
/* Update old property value */
po ← po + ∆p(A+, A−)
/* Compute cost difference */
∆cv ← cm(po)− cvo

/* Update old cost */
cvo ← cm(po)
/* Update # arcs in arc set */
arcs ← arcs + |A+| − |A−|
/* Next step needed for conflict computation */
for all vertices x in A+ ∪A− do

Update the number of final arcs ax on x
end for
/* A′ is the set of arcs which currently satisfy the filter */
for all vertices x in A− ∪A′ do

/* Compute conflict level difference */
∆clc(v, x)← cvo ax/arcs− clox
*/ Update old conflict level */
clox ← cvo ax/arcs

end for
return ∆cv

Algorithm 5.2: Incremental update of ∆cf (∆A) for a regular cost func-
tion.
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is dependent on the cost of the constraint, and also on the number of
arcs that are connected to the vertex. In the general case, some of these
parameters change in each iteration, implying that we have to recompute
the conflicts for these vertices. We can exclude arcs not in A′ ∪ A−

because they have not been in A′ for at least two iterations. Therefore,
their conflict contribution both was and is 0, and doesn’t have to be
recomputed. Given that the cost modifier can be computed in constant
time, the worst-case time complexity of the general incremental update
of a regular cost function is O(f(|A+| + |A−|) + |A−| + |A′|), where
f(|A+|+ |A−|) is the time complexity of the property function. For the
properties in this thesis, f ∈ O(n). This makes the incremental update of
the regular cost limited by the fact that we need to update the conflict
levels of all vertices in the filtered and deleted arcs. If this conflict
computation is disabled, the time complexity is reduced to O(f(|A+|+
|A−|) + |A+|+ |A−|), which is at most linear to the number of changed
arcs for the properties in this thesis.

For many constraints, the regular cost only works as a subcost which
can improve the time complexity substantially. If the maximum number
of arcs in the arc subset is limited to at most n, and only a constant
number of subcosts are affected by a transition, the total complexity can
be reduced to O(n), which is perfectly acceptable for many problems.

In the implementation of this framework, the conflict level computa-
tion is also simplified in certain cases. If the cost computed is cardinality
without a cost modifier, cf (A′) = |A′|, the conflict level of Section 4.2.9
can be simplified to

clc(v, x) = cf (A′)
|A′′|

|A′|
= |A′′|

where A′′ = {a | a ∈ A′ ∧ (a = (x, y) ∨ a = (y, x)}. A′′ is called ax in
Algorithm 5.2 and updated incrementally. Transforming this function
to compute the difference in conflict level yield the following lines for
updating the conflict level difference.

for all vertices x in A− ∪A+ do
/* Compute conflict level difference */
∆clc(v, x)← ax − clox
*/ Update old conflict level */
clox ← ax

end for
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In this way we can skip the actual conflict computation and only keep
track of ax. We only investigate the vertices in arcs in A− ∪ A+ in-
stead of A− ∪ ∆A, reducing the time complexity of the algorithm to
O(f(|A+| + |A−|) + |A+| + |A−|), which again is at most linear to the
number of changed arcs for the properties in this thesis. Today, the user
can select a special version of the cost function to get this more effi-
cient implementation, but automatic optimization of this computation
is certainly possible.

Combined Costs

For a combined cost function, ∆cf (∆A) is computed as shown in Al-
gorithm 5.3. First, the cost value delta ∆cv is set to 0, and then the
modified arc set ∆A = A+ ∪A− is partitioned using the partition func-
tion g. The cost delta ∆cv is then updated by simply adding the cost
delta ∆cf p(p) to ∆cv for each modified partition p. The conflict lev-
els of the variables are distributed and updated as part of the subcost
computation.

Using a combined cost can in some cases reduce incremental eval-
uation time significantly as noted in the previous section. The time
complexity of Algorithm 5.3 is O(|∆P | · f(max(|p|)) where f(max(|p|))
is the time complexity for the subcost f for the maximum modified arc
subset p ∈ ∆P .

For certain graph structures and filter constraints, a constant number
of arcs are updated for each transition, giving us a total time complexity
of O(f(1)). See Section 5.4.2 for more info. If we can compute the
subcosts ∆fp(p) in linear time to the size of the change, we reduce the
time complexity of the full constraint to O(1). This can be done for
certain cardinality constraints, see Section 5.4.2.

∆cv ← 0
∆P ← g(∆A)
for each p in ∆P do

∆cv ← ∆cv + ∆fp(p)
end for
/* ∆clp is computed and distributed in the subcost function */
return ∆cv

Algorithm 5.3: Incremental update of a combined cost function
∆cf (∆A).
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Special Cost

Finally, if the constraint uses a special cost function, like the VSplit

cost of Section 4.5.5, the corresponding function ∆cf for computing the
difference in incremental cost and conflicts, is used.

Incremental Property Computation

The values of the properties are also updated incrementally. This is
often trivial. We show here how this can be done for the cardinality
and weighted sum properties. The cardinality value of a set can be
incrementally updated in constant time by computing

∆card(A+, A−) = |A+| − |A−|,

and the corresponding computation for the weighted sum is

∆wsum(A+, A−) =
∑

a∈A+

w(a)−
∑

a∈A−

w(a).

Because w is constant, we can store it locally. The computation of
∆wsum(A+, A−) has a linear time complexity of O(|A+|+ |A−|).

5.5 The n-Queens Problem

In this section we will investigate a model and algorithms for solving the
n-queens problem, a classical combinatorial puzzle that has been used
extensively as an example in the constraints community. In this problem,
n queens are to be placed on a chessboard of dimensions n × n so that
no queen can be attacked by another queen. The simplest instance of
the n-queens problem with a solution is the 4-queens problem.

All results were obtained on a 1 GHz Pentium III with 256 Mb of
memory, running Redhat 9 with Linux kernel version 2.4.20. gcc version
3.2.2 dated 20030222 (Red Hat Linux 3.2.2-5) was used to compile the
models.

5.5.1 A Constraint Model

We have solved the n-queens problem in two different ways – one using
a simple 1-assignment neighborhood, and one using a more elaborate
2-swap neighborhood. Both models are similar in that each queen is



5.5 The n-Queens Problem 101

Model model;

statevector queen(Queens,"Queen_",0,Queens-1);

vector<int> X(fromto(0,Queens-1));
vector<int> pos(fromto(0,Queens-1));
vector<int> neg(fromto(Queens-1,0));

alldiff(model,&X);
alldiff(model,&X,pos);
alldiff(model,&X,neg);

model.randomize();
model.close();

Figure 5.8: A first model of the n-queens problem.

represented by a state variable with domain 0..n − 1. The restriction
on the positions of the queens significantly reduces the size of the state
space. In the first model, we use three alldiff constraints to model
that no two queens on the board may attack each other as shown in
Figure 5.8. The constraint

alldiff(model,&X,M)

states that for all variable pairs (xi, xj) in X where i 6= j, the constraint
xi +mi 6= xj +mj should hold where mi,mj ∈ M. The Composer system
automatically computes a cost and a conflict level for each composed
constraint. The model presented here is the same as the one stated in
Section 2.2.1.

constraint AllDiff ( vec[var] y ,vec[int] m )
{
structure = Bipartite;
filter = VarPlusEqC(m);
cost = Entering;
subcost[i] = QuadAtmostC<1>;
property = Card ;
}

Figure 5.9: A bipartite alldiff constraint with an offset vector M.
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A generic alldiff constraint with an offset vector is composed in
Composer as shown in Figure 5.9. The difference from the alldiff
constraint in Figure 5.7 is shown in boldface, and is simply a replacement
of the trivial equality constraint v(X) = k with an equality constraint
with offset, v(X)+c(X) = k. This shows quite clearly the expressiveness
of the global constraint composition approach of Composer. This new
composition of the alldiff constraint also uses O(n) space and O(1)
time for a single variable change.

5.5.2 A First Local Search Algorithm

The local search algorithm used for the first model of the n-queens prob-
lem is shown in Algorithm 5.4. Line 1 declares place-holders for a variable

int Q,V;
while(model.violation()!=0)
{

Q = model.getMaxConflicting();
V = model.getMinCostValue(Q);

model.assign(Q,V);
}

Algorithm 5.4: Search component for the n-queens puzzle using assign-
ment transitions.

and a value, Q and V. The next line states that the search should con-
tinue until no constraints are violated. Remember that Composer will
update the constraint violations and conflict levels automatically using
incremental algorithms. The next line

Q = model.getMaxConflicting();

fetches a random variable with maximum conflicts, and the line

V = model.getMinCostValue(Q);

finds the value V for Q which minimizes the violation of assigning V to
Q. Finally,

model.assign(Q,V);

places queen Q on row V and updates all conflict levels and the violation
of model.
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Size n Init (s) Solve (s) Iter.
8 0.06 0.06 30

16 0.05 0.02 465
32 0.05 0.02 152
64 0.06 0.04 218

128 0.06 0.05 193
256 0.08 0.21 368
512 0.08 0.87 671

1024 0.10 2.14 834
2048 0.12 7.81 1346
4096 0.21 27.35 2336
8192 0.36 100.39 4259

16384 0.76 386.06 8179

Table 5.1: Experimental results in CPU time for 11 runs of the n-Queens
Problem.

5.5.3 Results

In Table 5.1 we show the best results obtained by running n-queens
11 times for each instance using our first model. The results are clearly
competitive with those found in [9]. Compared with the results obtained
by Michel and Hentenryck in [42], our results are similar. We however
managed to decrease the number of iterations by roughly 50%, but on the
two largest problem instances, Composer is marginally slower in terms of
CPU time than what is reported by Michel and Hentenryck. However,
the results for [42] are not directly comparable with our results. The
results by Michel and Hentenryck are obtained on a 1.1 GHz Linux PC,
compared to the 1 GHz Linux PC we used for our results. Also, a low-
level monolithic implementation of global constraints was used in [42].
It is important to keep in mind that Composer is a fully generic global
constraint composition library – in fact, Composer maintains a lot of
data structures that are necessary to keep this flexibility.

We noted that the search was prone to becoming trapped in local
minima and was not very robust in terms of consistency of results, which
led us to try another method of solving the problem.
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5.5.4 A Swap-Based Local Search Algorithm

For the second algorithm we decided to use variable swaps as the lo-
cal transition instead of assignments. This approach has previously
been shown to be very successful for several hard combinatorial pro-
blems [9, 20, 69]. If we initialize the queens as a random permutation
of 0..Queens − 1 and always use swaps between two variables as the
transition, it is easy to see that the first alldiff constraint becomes
redundant since it will be satisfied in all visited states. Thus, the second
model only differs from the first in that we remove the first constraint,
and use a random permutation instead of the fully random initialization.

int Qi,Qj;
int oldV,iter;

Tabuvector tabu(model.arity(),&iter);

for(iter=0; model.violation()!=0; iter++)
{

Qi = model.getMaxConflicting(tabu);
Qj = model.getMinCostSwapWith(Qi,tabu);

oldCost = model.violation();

model.swap(Qi,Qj);

if(model.violation() >= oldCost)
{
tabu.insert(Qi,Tenure);

}
}

Algorithm 5.5: Search component for the n-queens puzzle using value
swaps.

In the new algorithm, in each iteration we first select at random one
of the queens s with maximum number of conflicts. We then find the set
of queens t which minimizes the resulting cost of swapping queen s and
t. We then randomly select one of these queens and swap the positions
of s and t. We also use a tabu component from Composer to diversify
the search on plateaus and to escape local minima. In this case the tabu
component consists of a vector T of size n in which element Ti stores
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the iteration count when queen i was marked as tabu. This arrangement
makes it possible to check if a queen qi is tabu in constant time, simply
by checking the current iteration count against Ti.

The code for solving the second model is shown in Algorithm 5.5.
The line

Tabuvector tabu(model.arity(),&iter);

declares a tabu vector with size equal to the arity of the problem, which
uses the integer variable iter as the iteration count. The next line

for(iter=0; model.violation()!=0; iter++)

initializes the iteration count, loops until the violation of the constraints
in model is zero, and increases the iteration count by one each iteration.
The lines

Qi = model.getMaxConflicting(tabu);
Qj = model.getMinCostSwapWith(Qi,tabu);

first fetches a randomly chosen variable Qi with maximum number of
conflicts, disregarding the variables which are tabu in tabu, and then
selects a second random variable Qj for which swapping Qi and Qj yields
the least violation possible, once again disregarding variables declared
as tabu. Finally, the lines

oldV = model.violation();
model.swap(Qi,Qj);
if(model.violation() >= oldV)
{
tabu.insert(Qi,Tenure);

}

first saves the previous violation of the model, and then commits to the
value swap between Qi and Qj. If the new violation is greater or equal
to the previous one, we then declare Qi tabu. We use a tabu tenure of
10 which we fixed with minor experimentation.

Previous work on the n-queens puzzle has been successful in using
a first-descent strategy instead of a conflict minimizing one [69]. We
therefore modified our search procedure to select an improvement im-
mediately if one existed. The new procedure is equal to the one shown
in Algorithm 5.5, except that we use the line
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Qj = model.getImprovingSwapWith(Qi,tabu);

to select a second queen. This method works exactly as the one above,
except that as soon as a swap which improves the current violation is
found, the method returns with this one immediately.

5.5.5 Results

Composer Adaptive search
Size n Init (s) Solve (s) Total (s) Iter. Solve (s) Iter.

8 0.03 0.00 0.03 2 0.00 6
16 0.03 0.00 0.03 11 0.00 9
32 0.04 0.00 0.04 40 0.00 14
64 0.04 0.00 0.04 25 0.00 22

128 0.04 0.00 0.04 29 0.00 36
256 0.04 0.01 0.05 54 0.01 63
512 0.04 0.04 0.09 121 0.06 116

1024 0.06 0.16 0.22 213 0.22 216
2048 0.08 0.84 0.93 421 0.82 409
4096 0.15 4.48 4.62 806 3.23 805
8192 0.27 20.82 21.09 1593 13.12 1577

16384 0.52 89.96 90.48 3153 59.25 3118
32768 1.01 371.89 372.9 6279 276.09 6215

Table 5.2: Experimental results in CPU time of 11 runs of the n-Queens
Problem using the second model and conflict minimization.

The results of the swap-based steepest-descent algorithm is shown in
Table 5.2 together with results obtained by using the Adaptive Search
algorithm from [9]. The results reported are median results of 11 runs.
As can be seen, the results show that using a generic framework for
global constraints is not only feasible but also highly competitive with
those results previously obtained in [42] and [9]. The results of the
modified first-improvement algorithm shown in Table 5.3 also support
this. Note that the number of iterations has increased but the runtime
of the new algorithm is generally smaller than the conflict minimizing
algorithm. Also, keep in mind that Adaptive Search uses a low-level
encoding of the problem in contrast with Composer. The results of Table
5.2 and 5.3 clearly outperform those reported by Michel and Hentenryck
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[42]. A probable explanation of this is that we use a neighborhood
based on variable swaps, which is much more powerful than the variable
assignment neighborhood of Michel and Hentenryck.

Composer
Size n Init (s) Solve (s) Total (s) Iter.

8 0.02 0.00 0.02 4
16 0.02 0.00 0.02 8
32 0.02 0.00 0.02 59
64 0.02 0.00 0.02 30

128 0.02 0.00 0.02 65
256 0.02 0.00 0.02 119
512 0.02 0.01 0.03 253

1024 0.03 0.02 0.05 498
2048 0.04 0.10 0.14 1014
4096 0.07 0.39 0.46 1975
8192 0.13 1.51 1.64 3975

16384 0.25 7.35 7.60 7942
32768 0.51 35.74 36.25 15906

Table 5.3: Experimental results in CPU time of 11 runs of the n-Queens
Problem using the second model and conflict improvement.

5.6 The Progressive Party Problem

The progressive party problem is a well-known benchmark problem in
the constraint programming community, and have been used in several
generic constraint-based local search methods as well [73, 20, 42]. The
problem can be described informally as follows. An evening party is
to be organized in the setting of a yachting rally. The organizers have
decided that the visiting boats will visit the organizers’ boats (the host
boats) in turn, where the crew of the host boat stays aboard and serves
the guests on the guest boat. Every 30 minutes, each guest boat will
move to a new host boat. A guest boat must never visit a host boat
twice, but does not have to visit all host boats. Also, the capacities of
the host boats must never be exceeded, lest the host boat sinks. This
will go on for a given number of time periods. The organizers have also
decided two guest crews must never meet more than once. In Table 5.4
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the different boats and their crews and capacities are shown. We also
show the spare capacities of each boat, which is simply the number of
guests that can safely be taken aboard.

i ki ci si i ki ci si i ki ci si i ki ci si

1 6 2 4 12 10 3 7 23 7 4 3 33 6 2 4
2 8 2 6 13 8 4 4 24 7 4 3 34 6 2 4
3 12 2 10 14 8 2 6 25 7 2 5 35 6 2 4
4 12 2 10 15 8 3 5 26 7 2 5 36 6 2 4
5 12 4 8 16 12 6 6 27 7 4 3 37 6 4 2
6 12 4 8 17 8 2 6 28 7 5 2 38 6 5 1
7 12 4 8 18 8 2 6 29 6 2 4 39 9 7 2
8 10 1 9 19 8 4 4 30 6 4 2 40 0 2 -2
9 10 2 8 20 8 2 6 31 6 2 4 41 0 3 -3
10 10 2 8 21 8 4 4 32 6 2 4 42 0 4 -4
11 10 2 8 22 8 5 3

Table 5.4: Configuration of the Progressive Party Problem. Each boat
i has a total capacity ki (the total number of people allowed on board
at the same time), and a crew size ci. The spare capacity si of a boat is
formed by subtracting the crew size from the total capacity, si = ki− ci.

5.6.1 The Model

We have solved the progressive party problem using the Composer sys-
tem and composed global constraints. The problem instances we have
considered are listed in Table 5.5, where the first 6 instances are well-
known and previously studied in a local search context [42, 20]. Instance
7 to 11 are new and has not been investigated as far as we know. We
will see that these instances become increasingly harder to solve. Also,
we have tried to solve the progressive party problem for as many time
periods as possible, making the problem increasingly hard.

The experiments were carried out on a 1 GHz Pentium III with 256
Mb of memory, running Redhat 9 with Linux kernel version 2.4.20. gcc
version 3.2.2 dated 20030222 (Red Hat Linux 3.2.2-5) was used to com-
pile the models.

The model we have used is shown in Figure 5.10. We use a matrix
of states boat of dimension p× g, where p is the number of periods to
run the problem, and g is the number of guests available. boat(i,j)
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Config Host boats S C ratio
A 1-12,16 100 92 0.92
B 1-13 (orig.) 98 94 0.96
C 1,3-13,19 96 92 0.96
D 3-13,25,26 98 94 0.96
E 1-11,19,21 95 93 0.98
F 1-9,16-19 93 91 0.98

G 1-11,21,22 94 92 0.98
H 1-9,16-18,22 92 90 0.98
I 1-9,15-17,22 91 89 0.98
J 1-11,22,23 93 92 0.99
K 1,3-11,21-23 91 90 0.99

Table 5.5: Progressive Party Problem analysis for different host config-
urations. S is the total spare capacity of the host boats, and C is the
total number of guest crew members in the instance.

represents which host boat guest j is assigned to in period i. We also use
the auxiliary vectors size which holds the crew size of the guests, and
spare which holds the spare capacities of the host boats. The model
consists of three types of composed global constraints. First, the capa
constraint states that for all time periods, the capacity of the host boats
should not be exceeded. The capa constraint is actually a restricted
version of a generalized weighted cardinality constraint [42] (which is
also easily expressed using Composer , see the wcc constraint in Section
4.3.3), and is shown in Figure 5.11. This constraint is equivalent with
the inequalities

∀v.
∑

x∈X|x=v

wx ≤ cv,

where X is the set of variables in the constraint. The nbdiff constraint
states that in the two vectors X and Y, at most k = 1 pairs Xi, Yi may
be equal. The constraint is equivalent to the following.

|S| ≤ k, S = {i | X[i] = Y[i]}

In this problem, we post a nbdiff constraint for all pairs of guest boats
i, j where i < j. The constraint makes sure that the number of periods
when boat i and j meets are less than or equal to 1.
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statematrix boat(Periods,Guests);
vector<int> X(Periods), Y(Periods);
for(int p=0;p<Periods;p++)
{

capa(model,boat(p),size,spare);
}
for(int i=0;i<Guests;i++)
{

for(int j=0;j<Periods;j++)
{
X[j] = boat(j,i);

}
alldiff(model,&X);

}
for(int i=0;i<Guests;i++)
{

for(int j=i+1;j<Guests;j++)
{
for(int k=0;k<Periods;k++)
{

X[k]=boat(k,i);
Y[k]=boat(k,j);

}
nbdiff(model,&X,&Y);

}
}

Figure 5.10: A model of the progressive party problem.

5.6.2 A Local Search Algorithm

The local search procedure used is shown in Algorithm 5.6. In short, we
use a simple hill-climbing modification in which the best move is always
selected, and where ties are broken randomly. As before we use the
single-assign neighborhood and use a tabu structure, this time over the
variables and values, to diverge the search. As parameters we use a tabu
tenure of initially 2. This tenure is increased or decreased as the search
proceeds in order to not hinder the exploration of new states. We also
use a limited backtracking mechanism to improve performance on very
hard problem instances. Every time an new best state is found, a state
memory is cleared and initialized by the line
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int G,H,iter,bestsofar,oldV;

Tabumatrix(model.arity(),Hosts,&iter,&bestsofar);

for(iter=0; model.violation()!=0; iter++) {
oldV = model.violation();

G = model.getMaxConflicting();
H = model.getMinCostValue(tabu);

model.assign(G,H);
tabu.insert(G,H,Tenure);

if(model.violation() < oldV && Tenure > 2)
Tenure --;

if(model.violation() >= oldV && Tenure < TenureLimit)
Tenure ++;

if(model.violation() < bestsofar) {
model.hist_clear();
model.hist_store();
nonimproving=0;

} else {
nonimproving++;
if(model.violation()==bestsofar)

model.hist_store();
}
if(nonimproving>Backtrack)
model.hist_restoreProportional();

if(iter>MaxTries)
model.randomize();

}

Algorithm 5.6: The search component for the progressive party problem.
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constraint Capa ( vec[var] y, vec[int] c, vec[int] k )
{

structure = Bipartite;
filter = VarEqC ;

/* sum of subcosts of entering arcs on all nodes */
cost = Entering ;

subcost[i] = AtmostVariant(k[i]);
property = WSum1<WVector>(c);

}

Figure 5.11: A bipartite capa constraint with subcosts.

model.hist_clear(); model.hist_store();

The state history component also keeps track of the frequency of the
states, and whenever Backtrack transitions have been done, a state
in the state memory is chosen with probability inversely proportional
to the frequency of the state, and the search backtracks to this state.
This will ensure that the search restarts from a good state and also
that all currently best states are kept in memory for future backtracking
reference.

To improve performance even more, we also use a restarting mecha-
nism which restarts the search from scratch whenever MaxTries itera-
tions have passed. We added this feature when we noted that the search
got stranded in areas where no improvement seemed possible. With the
restarting mechanism, we were able to get the local search to terminate
with a solution in every sample run of every instances of the problem
tested.

5.6.3 Results

Table 5.4 shows the different host configurations used when solving the
progressive party problem using Composer . We fixed Backtrack to
2000 and MaxTries to 100000.

The resulting median CPU times and iterations of 101 sample runs of
PPP are shown in Table 5.6 and 5.7. For the first 6 host configurations
we see a clear improvement over the results reported in [73, 20, 42] using
similar neighborhoods. The local search algorithm does not differ in
any substantial way from those used in [20, 42], which clearly shows
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Periods
Cfg 1 2 3 4 5 6 7 8 9 10

A 0.01 0.02 0.02 0.04 0.06 0.10 0.18 0.31 0.69 5.23
B 0.01 0.03 0.05 0.09 0.16 0.27 0.58 2.51 14.9
C 0.01 0.03 0.05 0.10 0.15 0.27 0.57 2.28 22.2
D 0.01 0.03 0.06 0.11 0.19 0.31 0.66 2.52 20.8
E 0.02 0.05 0.11 0.20 0.40 1.14 6.94
F 0.02 0.06 0.13 0.26 0.55 1.81 18.3
G 0.02 0.05 0.11 0.22 0.47 1.41 46.1
H 0.02 0.06 0.13 0.24 0.61 2.26 118
I 0.02 0.06 0.14 0.31 1.11 49.5
J 0.04 0.20 0.51 4.46
K 0.04 0.18 0.62 3.03

Table 5.6: Median CPU time of 101 runs of the Progressive Party Prob-
lem using restart solving.

Periods
Cfg 1 2 3 4 5 6 7 8 9 10

A 0.01 0.03 0.06 0.10 0.16 0.25 0.45 0.83 1.86 13.2
B 0.02 0.07 0.13 0.24 0.43 0.72 1.57 6.63 37.2
C 0.02 0.07 0.14 0.26 0.40 0.73 1.57 6.20 55.2
D 0.03 0.09 0.16 0.28 0.50 0.84 1.81 6.60 51.6
E 0.05 0.14 0.30 0.55 1.14 3.25 17.8
F 0.05 0.15 0.37 0.73 1.54 4.92 46.2
G 0.05 0.13 0.29 0.59 1.33 3.92 116
H 0.04 0.16 0.34 0.66 1.76 6.51 291
I 0.05 0.16 0.39 0.88 3.16 124
J 0.10 0.57 1.47 11.5
K 0.11 0.54 1.78 8.09

Table 5.7: Median iterations of 101 runs of the Progressive Party Prob-
lem using restart solving, in units of 103 iterations.
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the feasibility of high-level constraint modelling using global-constraint
composition. The results reported in our work and those reported in
[73] are not directly comparable, since Walser uses linear constraints
exclusively to model PPP. This also demonstrates the need for efficient
global constraints in constraint-based local search.

Periods
Cfg 1 2 3 4 5 6 7 8 9 10

A 0.01 0.01 0.01 0.02 0.03 0.04 0.06 0.13 0.43 4.42
B 0.01 0.02 0.03 0.04 0.06 0.11 0.29 1.52 21.0
C 0.01 0.02 0.03 0.04 0.06 0.11 0.30 1.92 52.1
D 0.01 0.02 0.03 0.05 0.07 0.12 0.37 1.83 51.4
E 0.02 0.03 0.05 0.08 0.22 0.58 7.04
F 0.02 0.03 0.07 0.10 0.24 1.46 53.4
G 0.02 0.03 0.05 0.09 0.24 1.05 60.1
H 0.02 0.03 0.06 0.10 0.31 1.66 144
I 0.02 0.04 0.06 0.14 0.59 60.3
J 0.06 0.08 0.21 3.32
K 0.07 0.10 0.24 4.31

Table 5.8: Median CPU time of 101 runs of the Progressive Party Prob-
lem using incremental solving.

In Table 5.7 we see the number of iterations used to compute a so-
lution for PPP using our local search algorithm. These results compare
fairly well with those reported in [20, 19], although we have a higher
iteration count where the number of periods are less than 9. This is
probably due to the incremental nature of the local search algorithm in
[20, 19]. Note also that on the hardest problem instance on period level 9,
we have generally a lower iteration count than reported by Galinier and
Hao, which can probably be accredited to our backtracking mechanism
which focuses the search on promising areas.

We also tried a similar strategy as in [19] of incremental solving for
PPP, where we first solved the problem for 1 time period, then for 2 time
periods, this time reusing the found solution as an initial solution, then
for 3 time periods, again reusing the found solution for 2 time periods,
and so on. The variables were all randomly initialized in the beginning.

The results in CPU time for this approach is shown in Table 5.8. A
comparison with the previous approach shows that for almost all hard
problem instances of a configuration, where the number of time periods
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Periods
Cfg 1 2 3 4 5 6 7 8 9 10

A 0.01 0.02 0.03 0.04 0.06 0.10 0.17 0.32 1.18 10.6
B 0.02 0.04 0.07 0.10 0.16 0.31 0.79 4.08 50.5
C 0.02 0.04 0.06 0.10 0.15 0.30 0.81 4.68 126
D 0.03 0.05 0.07 0.13 0.19 0.35 1.04 4.79 124
E 0.05 0.09 0.14 0.23 0.62 1.65 17.2
F 0.04 0.09 0.17 0.27 0.66 4.08 128
G 0.04 0.09 0.14 0.24 0.66 2.98 146
H 0.05 0.08 0.15 0.29 0.85 4.54 354
I 0.05 0.10 0.16 0.40 1.67 148
J 0.16 0.23 0.62 8.34
K 0.19 0.30 0.69 11.0

Table 5.9: Median iterations of 101 runs of the Progressive Party Prob-
lem using incremental solving, in units of 103 iterations.

was the maximum tried for that configuration, the incremental approach
was slower than the previous approach. For instances where the number
of time periods was not the maximum number tried for the configuration,
the incremental approach was generally faster. The iteration results of
Table 5.9 support this.

A possible explanation of these results might be that the more clever
initial solution of the incremental solver algorithm gave the search a good
starting point, which for easier problems was close to a solution. For
harder problem instances, where the number of local minima are more
frequent and the number of true solutions are fewer, the initial solution
was too good, and the search became more prone to get trapped in local
minima.





Chapter 6

Related Work

In this chapter we will discuss several related methods and systems for
constraint satisfaction using local search.

6.1 Localizer and Friends

Localizer [40] is a full-blown language for local search. The language
has over the years evolved into first Localizer++ [41], a C++ library,
and later Comet [42], once again a language, but more based on object
orientation than the original language. All the variants of Localizer are
based on incremental expressions called invariants. These invariants are
an extension of traditional incremental expressions, as found in [77, 1] as
well as in our work, with cyclic invariants. Cyclic expressions increase
the expressive power of incremental expressions to include limited form
of recursion. However, no clear incremental advantage is gained by these
structures. In traditional incremental expressions, the evaluation of an
expression always yields a correct value due to strict acyclicity require-
ments. Cyclic invariants however introduce the possibility of run-time
failure, and a cycle detection procedure must be included, thus degrading
evaluation performance. In general, Localizer is more of an implementa-
tion language for local search procedures than our work, which is more
aimed towards declarative constraint solving using local search.

117
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6.2 INC

INC [77] is a language purely designed for incremental evaluation based
on very high level languages such as SETL. In INC, a program is a net-
work of nodes, representing incremental functions. This network forms
a directed acyclic graph (DAG) of the nodes and their dependencies,
and is topologically sorted before execution. This guarantee that at the
evaluation of a node, all of its arguments have either already been eval-
uated (incrementally) or should not be evaluated at all. This yield a
form of course-grain incrementality [1]. On the other hand, fine-grain
incrementality is obtained by finite differencing techniques [47] used in
the nodes themselves. For example, a sum can be recomputed efficiently
if the last result and the changed input terms are available.

The data types of INC are the primitive types; integers, booleans,
chars and reals, and constructed types. Two constructed types exist;
tuples and multisets. A form of higher-order functions exists in the
hierarchical components of INC, which is computational nodes with ex-
changeable subcircuits performing parametrized computation.

Composer and INC differ at a high level in that INC is a general-
purpose language, not directly aimed at constraint satisfaction and local
search, where Composer is a library specifically made for this purpose.
At a more detailed level, Composer helps the global constraint designer
and provides many features useful for local search, where no help is given
by INC. Nevertheless, many features of INC would be highly useful in
a local search setting. For example, the multiset types are very user-
friendly and useful in modelling, although incremental operations on set
types are in some cases too expensive.

6.3 Adaptive Search

In [9], the local search algorithm Adaptive Search is presented. This
algorithm takes a CSP on a special form as input, and performs local
search using single variable assignments and Tabu search. This algorithm
is similar to what is used in Algorithm 5.6 for the progressive party
problem. A problem is specified by a set of variables with associated
domains, a set of constraints with associated error functions (more on
this later), a combination function, and a cost function for minimization.
Constraints are present mainly in the form of error functions, which in
practice is the same as the cost of a constraint in Composer . The conflict
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level for a variable x is computed by combination, using the combination
function, of the costs of the constraints in which x of the constraints in
which x is present. In practice, variations of summation is used as both
cost and combination functions.

The main difference between Composer and Adaptive Search is that
in the former, a full framework of incremental graph components is avail-
able to help the user in global constraint modelling, while in the latter
the user has no help from the system, and is forced to re-implement effi-
cient incremental error functions, combination functions and ad-hoc cost
functions for use in the algorithm. Also, the user is stuck with the de-
sign choices made in Adaptive Search, and has no choice of local search
algorithm to use. This can be a major drawback in certain problems,
and make Adaptive Search practically useless for more structured pro-
blems such as TSP and harder constraint problems, which in practice
requires extended neighborhoods and much more elaborate transitions
than those provided in Adaptive Search.

6.4 Wsat(OIP)
The algorithm Wsat(OIP) developed by Walser [73] is an extension of the
SAT local search algorithm Walksat [63] to handle more general integer
optimization problems called over-constrained integer programs (OIP’s).
Global constraints are not used in the system.

An OIP consists of hard and soft inequality constraints, wherein the
optimization objectives are represented by the soft constraints. If all
inequalities are linear an OIP can be formulated in matrix notation as

Ax ≥ b, Cx ≤ d, x ∈ D

where Ax ≥ b is the hard (regular) constraints, Cx ≤ d is the soft
(objective) constraints, and D is a vector of domains.

Given a tuple (A,b, C,d,D), the OIP minimization problem is

min
x

‖Cx− d‖

subject to Ax ≥ d
x ∈ D

where ‖x‖ :=
∑

i max(0, vi), and the objective is to find a feasible solu-
tion with minimal soft constraint violation.

The Wsat(OIP) algorithm basically works as follows:
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1. Choose a violated constraint c at random. If both soft and hard
constraints are violated, choose a hard constraint with probability
phard.

2. Let S be the variable-value pairs that would improve c’s score. For
integer variables, the values at most d steps away are considered.

3. Remove forbidden pairs from S and calculate a total score for each
pair in the updated S. Forbidden pairs are typically tabu.

4. The local move that improves the total score most is chosen greed-
ily. If several moves give the same improvement, choose the vari-
able chosen i) least frequently, and ii) longest ago.

5. If the total score cannot be improved, choose with probability
pnoise a random assignment from S, and with probability 1−pnoise

the best one.

The hypothetical total score of an assignment x is calculated as

score(x) = ‖b−Ax‖λ + ‖Cx− d‖.

where the norm ‖x‖ =
∑

i max(0, vi) holds. The vector λ ≥ 0 is used
to weight the hard constraints, where ‖x‖λ =

∑

i λi max(0, vi). The soft
constraints have no weights to keep the score of a feasible solution the
same as the value of the cost function for the same solution. The score of
a violated constraint α is calculated as λα(bα−aαx) for a soft constraint,
and cαx− dα for a hard constraint. A tabu mechanism with tenure size
t is used to diversify the search.

6.5 GCSP

The algorithm GCSP, described in articles by Clark et al. [8] and Tomov
[71], is the analogy of the GSAT algorithm of Selman, Levesque and
Kautz [64] and Gu [27, 28] for general constraint satisfaction. The GCSP
algorithm begins by a random generated assignment of values to the
variables, and then uses the steepest descent heuristic to find the single
variable-value assignment that locally maximizes the number of satisfied
constraints. After a fixed number of cycles, search is restarted from a
new random assignment. The search continues until we find a solution
or we have done a fixed number of restarts.
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6.6 The Min-Conflict Heuristic
The min-conflict heuristic introduced by Minton et al. [43] is a general
purpose heuristic for constraint satisfaction. The general intuition is to
resolve conflicts in the current assignment by reassigning labels that are
involved in constraints not satisfied.

Definition 42 (Conflict). Given a CSP P = (X,D,C), where C is a
set of binary constraints, and a compound label `, a label 〈x, v〉 ∈ ` is
in conflict with regard to (X,D,C) and ` if x is involved in a violated
constraint.

conflictP,`(〈x, v〉) ≡ 〈x, v〉 ∈ ` ∧ ∃cS ∈ C : x ∈ S ∧ ¬satisfies(`, cS)

A variable x is in conflict if and only if there is a label 〈x, v〉 in conflict.

Definition 43 (The Min-Conflicts Heuristic). Select a variable that
is in conflict and assign it a value that minimizes the number of conflicts.
Break ties randomly.

The min-conflicts heuristic can be used either in a local search frame-
work as the one we described in Section 3.1, or in a hybrid method based
on complete backtracking.

Hill-climbing using the min-conflicts was first tried by Minton et al.
[43]. The idea is simple. Start with a complete assignment, a hill-
climbing algorithm would iteratively apply the heuristic for selecting
the new variable to improve. This method can be extended with other
techniques as well.

Min-conflicts Informed Backtracking

The min-conflict heuristic can also be applied to a backtracking scheme
as described in Minton et al. [43]. Here the heuristic serves to guide
the selection of variables and values during search. The basic idea is
to use a regular backtracking method, augmented with a variable and
value selection scheme which selects variables and values according to
the min-conflicts heuristic. Note that a similar approach with a heuristic
counting the number of constraint violations would be possible.

MC-log

MC-log by Clark et al. [8] is based on the min-conflict hill-climbing
method described in Section 6.6, but adds the ability to escape local
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minima. Unlike GCSP, MC-log does not consider all variables but in-
stead selects randomly a variable in conflict with a constraint. The local
neighborhood for this variable consists of alternative values for it. Unlike
min-conflicts hill-climbing, MC-log does not select the neighbor that
minimizes the number of conflicts, but ranks all neighbors according to
the number of conflicts, and selects one according to a probabilistic selec-
tion function. This function is logarithmic so the ’best’ value is chosen
most often, but not exclusively as with min-conflicts. More precisely,
the ith ranked value where i = int(log2(1/r)/w), r is a random number
uniformly distributed in [0, 1] and w is some fixed weighting.

Weak-commitment

The algorithm weak commitment (WC) is an extension of the informed
backtracking algorithm introduced by Yokoo in [78]. In the weak-com-
mitment algorithm, all variables are given tentative values as in the
informed backtracking algorithm, and variables are added one by one to
the consistent partial solution. Where a variable choice is never aban-
doned in informed backtracking (unless it turns out to be hopeless),
in weak commitment we commit to the partial solution as long as it
can be extended. When there exists no value for one variable that sat-
isfies all constraints between the partial solution, we instead abandon
the whole partial solution, and start constructing a new partial solution
from scratch, using the current value assignment as new tentative initial
values.

Nogood learning

In [55], Richards and Richards describes the effect of modifying weak-
commitment with a nogood learning method called “learning-by-merging”,
and by adding forward-checking [72]. Also, the result of removing the
nogood learning part of WC is demonstrated, somewhat surprisingly, to
give better results than the WC with nogood learning on random prob-
lem instances of 3-SAT and graph 3-colorability, using constraint checks
and steps as measure of performance.
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6.7 More Related Work
Global constraints in local search has been investigated by Nareyek,
who uses an approach where a selected constraint improves the cur-
rent assignment in a local manner [45]. He also gives ad hoc costs for
some global constraints including ordered-tasks and a version of the
serialized constraint.

Galinier and Hao [20] describes a general constraint solver using lo-
cal search. The solver handles a small set of global constraints, in-
cluding alldifferent, capa and nbdifferences, and is based on
hill-climbing and tabu search. Galinier and Hao give costs for the con-
straints used in their work and demonstrate it on some combinatorial
problems. They also propose to use the minimum number of variables
that need to be modified for a constraint to be satisfied as the cost of
the constraint.

Petit, Régin and Bessière use cost-based filtering for systematic con-
straint programming [50]. The authors also propose two general cost
policies for global constraints. The first is to use the minimum number
of variables needed to be modified as the cost. The second is to use the
number of violated binary constraints that can be used to represent the
global constraint as cost. In our work we extend the second approach to
constraints that are hard to represent using binary constraints only.

A classification of global constraints as graph properties on struc-
tured networks of elementary constraints [5] has previously been done.
Beldiceanu [4] gives a framework for describing global constraints as
properties of graphs. We discuss this work in Section 4.2.1.

Schaerf [59] experiments with a combination of local search and look-
ahead techniques, from the systematic constraint solving area, for sche-
duling and constraint satisfaction.

Stützle [70] investigates the use of Tabu search [26] and the min
conflicts heuristic [43] for random CSP’s and graph coloring problems.
He concludes that Tabu search gives better results for most random
problem instances than random walk.

Jussien and Lhomme [32] introduces an algorithm called path-repair,
based on local search combined with systematic search, operating on
partial assignments using filtering and tabu-search to remember conflicts
during the search.





Chapter 7

Conclusions

In this chapter we conclude our work and discuss some possible future
work.

7.1 Conclusions

In this thesis we have investigated a framework for modelling of global
constraints for local search as a cost function on a graph of filter con-
straints. We have presented a generic approach for the design of global
constraints for in local search. We used a representation of a global con-
straint as a cost function on a structured network of filter constraints,
and showed how to efficiently compute a cost for a constraint repre-
sented in this way. We also gave algorithms for incremental cost and
conflict computation. To demonstrate the generality and usability of
our approach we showed how to represent several important global con-
straints using our method. We believe that this work further increases
the usability of constraint-based local search algorithms.

We also proposed a compositional approach for global constraint
modelling and implementation, and shown that such an approach is not
only feasible but also highly competitive with existing low-level, non-
compositional approaches for constraint solving using local search. The
main point of a compositional approach for constraint modelling is that it
allows great flexibility in experimentation with modification and creation
of new constraints at a very low run-time overhead. In compositional
constraint design, global constraints are parametrized over three main

125
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properties of their structure; their graph structure, their filter constraint
and their cost components. We have also integrated the global con-
straint composition mechanism into a generic local search library, Com-
poser , which provides much help in designing local search algorithms
for combinatorial problems. Using the parametric approach at global
constraint implementation, we have composed several useful global con-
straints using Composer. We showed that a compositional approach is
very competitive with existing methods on two hard problems.

We believe that the results in this thesis clearly shows the benefits
of a less monolithic and more modular approach at global constraint
design for local search, and that such an approach can be competitive
with existing low-level monolithic implementations of global constraints
for local search.

To conclude, we think that composed global constraints in local
search can significantly increase the usability of local search methods
for modelling and solving of hard combinatorial problems in scheduling,
planning and other related areas.

7.2 Future Work

We plan to proceed with this work by implementing a fully integrated
local search language, capable of modelling the global constraints in
this work and more, and to give empirical results showing the accuracy,
generality and efficiency of our approach.

Several other future research directions in the area of local search
and stochastic methods have also been discussed. We aim to investigate
the following topics:

Applying local search to industrial problems We plan to investi-
gate the behaviour of Composer on large-scale industrial problems
problems in domains such as dynamic planning and scheduling
tasks. This may lead to the development of more powerful generic
components and constraints for constraint-based local search.

Investigating exhaustive plateau search As far as we know, no com-
plete method for exploring plateaus except breadth-first search
has been tried. Experiments with other search techniques such
as depth-first search and A*-search might be more successful at
exploration than breadth-first search.
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Hybrid local search A number of approaches for combining heuristics
and local search with traditional systematic techniques has been
done [59, 43, 39, 32, 31, 51, 55]. We plan to investigate if the work
we have done on cost calculations and improvement heuristics can
be used in a systematic constraint solver.
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