
Specification of Passive Test Cases using an
Improved T-EARS Language

Daniel Flemström1[0000−0001−8096−3592], Wasif Afzal1[0000−0003−0611−2655], and
Eduard Paul Enoiu1[0000−−0003−2416−4205]

Mälardalen University, Väster̊as, Sweden
{daniel.flemstrom}{wasif.afzal}{eduard.paul.enoiu}@mdh.se

Abstract. Test cases that only observe the system under test can im-
prove parallelism and detection of faults occurring due to unanticipated
feature interactions. Traditionally, such passive test cases have been chal-
lenging to express, partly due to the use of complex mathematical no-
tations. The T-EARS (Timed Easy Approach to Requirements Syntax)
language prototype was introduced to respond to this and has received
positive feedback from practitioners. However, the prototype suffered
from few deficiencies, such as allowing non-intuitive combinations of ex-
pressions and usage of temporal specifiers that quickly got difficult to
understand. This paper builds on the T-EARS prototype and input from
experienced testers on a previous iteration of the language. The collected
experience was applied to a new prototype using a structured update
process, including a set of system-level requirements from a vehicular
software system. The results include a new, improved grammar for the
T-EARS language and a description of the evaluation semantics.

1 Introduction

We trust vehicular software to be functional, safe and reliable on a daily basis.
Traditionally, a great number of software tests ensure that the software works as
specified. Intuitively, the more the tests can be run in parallel, the shorter each
testing cycle can be and more thorough the testing. One approach that has shown
promising results in dealing with this problem is passive testing using guarded
assertions (G/As) [12,22]. As in contemporary passive testing or monitoring, the
idea is to treat the input stimuli (that affects the system state) and the test
oracle (that decides if a system requirement is fulfilled or not) independently.
Consequently, if all necessary signals have been logged, passive testing allows
parallel evaluation and even off-line evaluation of G/As.

A weakness with most passive testing or monitoring approaches [3] is that
they rely on formal descriptions of test cases that tend to meet quite some re-
sistance from practitioners [5,2,7] for being too complex. Although there exist
predefined patterns and even graphical representations [7,2] to facilitate the for-
malization of either requirements or test cases, the problem of readability and
traceability remains. As a reaction to such difficulties, T-EARS (Timed Easy Ap-
proach to Requirements Syntax) was proposed as an engineer-friendly approach

2 D. Flemström et al.

to writing passive test cases [8]. The T-EARS language allows writing easy-to-
write and easy-to-read (executable) requirements and test cases for signal-based
systems such as vehicular systems. The initial versions of the approach and the
language were appreciated by the test engineers [9], but still suffered from hav-
ing an experimental (very open) grammar and automatic conversions that did
not always evaluate as the tester expected. Unexpected evaluation results were
especially common for the timing-related keywords.

The work in this paper aims to improve the T-EARS language, prototyped
in [8] and [4], so the language becomes more intuitive from a testing perspec-
tive. Primarily, these refinements concern the grammar and semantics of the
language. Other refinements include suggesting a set of boiler plates to decrease
the distance between the EARS patterns and the final corresponding passive test
cases. Finally, the intuition and usage of the temporal specification is addressed.

The results of these refinements have been implemented and evaluated in [11].
The industrial validation part of that paper analyzed 116 safety-related require-
ments from an ongoing industrial project at Alstom Transport AB. The refined
T-EARS language and the supporting tool-chain were found to be applicable for
64% of the studied requirements. Furthermore, an expert from Alstom Trans-
port AB performed two testing sessions to validate the applicability of the refined
T-EARS language in terms of requirements coverage and fault detection respec-
tively. The result from the first testing session showed that the translation to
T-EARS was stable for a number of requirements whereas some requirements
could not be evaluated due to certain signals not being logged, which is a com-
mon situation in testing at Alstom Transport AB. In the second testing session,
the expert injected faults in the SUT, known to be hard to find with traditional
testing. The G/As were able to detect all injected faults. In summary, the eval-
uation showed how passive testing with an improved language can be used to
understand requirements coverage and finding faults.

Whereas [11] focus on the overall approach and evaluation, this paper focus
on providing more detailed insights into the language and how we improved it.
The main contributions are (i) an Ohm grammar for the improved T-EARS
language and (ii) semantics descriptions for the improved T-EARS language.

2 Background

2.1 Passive Testing

Passive testing is an approach where the test cases only observes the system
under test (SUT). When a testable state is detected, further observations are
done to see whether the tested requirement is fulfilled or not. The concept has
been used in many variants in various domains [3]. Notably, most of these works
target non-vehicular software testing, such as protocol testing in web and telecom
applications and are based on formal specifications.

Specification of Passive Test Cases using an Improved T-EARS Language 3

2.2 Guarded Assertions

The concept of an independent guarded assertion (IGA) [12] or simply a guarded
assertion (G/A) was introduced as an approach for system-level, passive testing
of vehicular software. A G/A is defined by a guard expression, G, that decides
whether the assertion expression, A, is expected to be fulfilled or not.

Let’s consider the following illustrative vehicular requirement: “whenever the
brake pedal is pressed, the brake light should be lit”. Assuming that we success-
fully created a guard and an assertion expression for this example, the guard
expression G would decide whether the brake pedal is pressed or not (a se-
quence of time intervals where the guard is true), and the assertion expression
A would evaluate to true whenever the brake light is lit. For each guard interval,
as long as A is true, the test is considered to be passed. Conversely, if A is false
any time during the guard interval, the test had failed when A was false. Outside
the guard intervals, the result of the assertion expression is not evaluated.

A previous attempt to express such G/As can be found in the SAGA (Situation-
based Integration Testing of Automotive Systems using Guarded Assertions)
approach [8]. The SAGA approach is the prototype of a tool chain consisting
of an interactive test case editor and a description language i.e., the T-EARS
language mentioned in the next section.

2.3 Easy Approach to Requirements Syntax (EARS)

The purpose of the Easy Approach to Requirements Syntax (EARS) [16] is to
provide minimal syntax, helping the requirements engineer to write natural lan-
guage requirements that are less ambiguous, better structured, and less complex.

While already successful for specifying requirements [14,15], we argue that
by evolving the syntax to be machine-interpretable, the quality of requirements
would increase, as well as the gap between requirements and testing would
reduce [17,24]. The T-EARS language [8,4,10] with the accompanied SAGA-
Toolkit is a first step towards such an extension of EARS.

2.4 The Ohm Grammar Language

Ohm1 and the Arc Ohm parser library are used for specifying the grammar
and semantics of a domain specific language. Such a language is defined by i) a
set of terminals, ii) a grammar and iii) a set of semantic rules. Firstly, a set of
terminals (such as keywords or numbers) defines what you can write, and a set
of rules define how you are allowed to combine the terminals into the different
constructs of the language.

While the grammar describes all acceptable strings for the described lan-
guage, it does not say anything about what it means. The interpretation (or
actual meaning) of the rules is called the semantics of the language.

4 D. Flemström et al.

T-EARS
prototype

Industrial
Requirements

Industrial Test
Engineers

Analysis

Generate
* Expressions
* Syntax Trees
* EvaluationGrammar

Updates

Discussions

1

2

3

Fig. 1: Method overview

3 Method

The work of the new T-EARS version started with the prototype in [8] and a case
study on the previous prototype [9] as input. The refinements were performed
during a number of iterations as illustrated in Fig. 1. Each iteration started
with (an updated version of) the T-EARS prototype. For the first iterations,
we systematically generated possible expressions and syntax trees by hand. For
each of those expressions, we (manually and independently) created a sketch of
the intuitive evaluation of the expression (according to our understanding and
discussions with test engineers at Scania and Alstom Transport AB). Possible
and required expressions were sorted into useful expressions and expressions that
should be forbidden (bad expressions). Further, to ensure the expressiveness of
he language, a set of 40 safety-critical requirements from Alstom Transport AB
and a complex requirement from Scania CV AB were used for the static evalu-
ation of the language updates. The set of useful expressions was then analyzed
against a set of evaluation questions concerning, e.g., usefulness, completeness
and intuitiveness. Based on this analysis, the prototype grammar, the translated
requirements, and the useful expressions were updated until the expressions and
the grammar was consistent. This process was repeated until the requirements
could be expressed as passive test cases using the updated language, leading to
test cases that were easy to understand and interpret. During parallel work with
industrial adoption of passive testing using the refined T-EARS language [11],
a set of tuning keywords were added to ignore false fails. With all refinements
in place, 116 safety critical requirements were analyzed in [11] to determine the
applicability of the final results.

4 Result: The Updated T-EARS Language

T-EARS provides six boilerplates as shown in Listing 1.1. Just as EARS, T-
EARS reasons about system states and system events. A system state can be

1 https://github.com/harc/ohm

Specification of Passive Test Cases using an Improved T-EARS Language 5

1 2 3 4 5 6 7 8 9 10

Fail

Pass

A

G

While G shall A within 1.5s

(a) BP-2:Asserting States

Fig. 2: State Boilerplate Example. Shadow= grace period of 1.5s

represented as a binary signal that is true when the system is in the specified
state and false when the system is considered to be in another state. State is
internally represented as a series of time intervals (while state is true), and events
are represented as a series of time-stamps. In the text, we use the binary signal
metaphor and intervals interchangeably.

’Bp -1’ = while true shall <sys response state A>
’Bp -2’ = while <sys state G > shall <sys response state A> within t
’Bp -3’ = when <events G> shall <sys response state A> within t
’Bp -4’ = when <events G> shall <response events A> within t
’Bp -5’ = when <events G> shall <sys response state A> for tf within tw
’Bp -6’ = when <events G> shall <sys response state A> within tw for tf

Listing 1.1: Resulting T-EARS Boilerplates, sys = system

The rest of this section outlines how each EARS pattern (one through six)
is realized in T-EARS. The observant reader will note that, while T-EARS,
in general, follows the EARS structure and usage of keywords, the syntax the

< system name > is not used in T-EARS. Instead, T-EARS assumes the system
name to be implicit by the signal expressions to facilitate automatic evaluation
of the final passive test cases. Further, when describing the patterns, the system
state and response are represented as intervals or states only. More details on
how to combine signals and operators to express such states and events using
logged data are covered separately in Sections 4.8-4.11.

Ubiquitous: A ubiquitous requirement describes a property of the system that
should always hold, e.g., “the big red emergency lamp should never be lit”. In
T-EARS this is realized by the first boiler plate. The result is a pass whenever
the state assertion A is true and failed for not(A).

State-Driven: A state-driven requirement describes a property of the system
that should hold as long as it is in a particular state. E.g., “while the vehicle is
moving shall doors be locked”. In T-EARS, BP-2 is used for such requirements.
Figure 2 shows that, in general, during the specified guard intervals (G==true
in Figure 2), a pass (P==true in Figure 2) is reported whenever the assertion
is true, and a fail(F==true in Figure 2) whenever the assertion is false. While

6 D. Flemström et al.

0 1 2 3 4 5 6 7 8 9 10

Fail

Pass

A

G

When G shall A within 1.5s

(a) BP-3: Asserting State Response

0 1 2 3 4 5 6 7 8 9 10

Fail

Pass

A

G

When G shall A within 1.5s

(b) BP-4: Asserting Event Response

Fig. 3: Event Boilerplates Evaluation Examples

passes are duly reported during the whole guard intervals, fails during each
within-period (yellow shadow in Figure 2) are ignored. The within period starts
at each guard interval and have the length specified after the within keyword.
Outside the guard intervals, the value of the assertion is ignored.

1 2 3 4 5 6 7 8 9 10

Fail

Pass

A for 1s

A

G

When G shall A for 1s within 1.5s

(a) BP-5: Completed Response

1 2 3 4 5 6 7 8 9 10

Fail

Pass

A for 1s

A

G

When G shall A within 1.5s for 1s

(b) BP-6: Started Response

Fig. 4: Boilerplate Evaluation Examples

Event-Driven: An event driven requirement describes an expected response
to a (series of) discrete event(s). E.g, “when horn button is pushed shall the
horn honk”. T-EARS provides a few variations for this pattern for asserting
event responses or a state response. The first, BP-3 is used for asserting a
system state response within a timeout whenever an event occurs. The intuition
is that for each guard event, one pass is reported as soon as the assertion is
true. However, if the assertion is not true any time before the timeout t, a fail
is reported at g + t. Figure 3a shows how this boilerplate is evaluated for four
guard events. The yellow shadow shows the within t period occurring after each

Specification of Passive Test Cases using an Improved T-EARS Language 7

guard event. For the first guard event (at 2s) A becomes true just before the
within interval ends and a pass is reported. When second guard event occurs (at
4s), A is already true and a pass is reported immediately. For the third guard
event (g3 at 6s) , the system response A does not occur within t and a fail is
reported at g3 + t. Finally, the last guard (at 8.5s) is immediately pass since
A is already true. BP-4 is used for asserting a system event within a timeout
t as shown in Figure 3b. The semantics follows BP-3. A pass is reported if a
response event (A) occurs before the within period ends, and a fail is reported
at g+ t if no event occurred. For the first guard (2s) an event is found before the
within period(in yellow) ends. A pass is reported at that time. For the second
guard event (at 5s), there is an event a at 5s. Since this event occurred at the
same time as the guard event, it cannot be a response to that guard event and
is thus ignored. Instead next event in A that occurs at 6s yields a pass since it
is still inside the within period. For the third guard event (at 7s) no response in
A occurs and as for BP-3, a fail is reported at g + t (8.5s). There are also two
boiler plates for asserting a system state of a particular length. The first, BP-5,
requires the system state to be tf long and finish within tw. Figure 4a shows
three examples on how this boilerplate is evaluated. For the first guard event, A
is already true. The for 1s period is counted from guard and results in an event
if A stays true for 1.5s. This event is evaluated as in BP-3. For the next guard,
A becomes true at 5s, so we start counting the 1.5s from here. However, the
within period ends before the 1.5s could be completed. A fail is thus reported at
g + t as for BP-3. For the last guard event, A is not true long enough, but since
the within period ends first, this does not matter and a fail is reported at g + t.
BP-6 is used for asserting that a response state of (min) length tg is initiated
within tw from each guard event. Figure 4b illustrates the difference between
BP-6 and BP-5. With G and A the same, we note that for the second guard
event, we allow the for period (the arrows in the figure) to stretch outside the
within period (yellow shadow in the figure). As a consequence, the second guard
events results in a pass when A has been true for 1.5s after the guard event. For
the last guard event, we still get a fail, but the fail is reported because the for
period could not be fulfilled (slightly later than the BP-5 example).

Option: Some requirements are only applicable to certain configurations of the
SUT. E.g., “where the vehicle has a horn, [horn requirement]”. In T-EARS
this is accomplished by using the where < boolean expression > before a G/A
boilerplate. In contrast to a guard expression (that varies over the time covered
in the log-file), this is a single Boolean value that concerns the whole log-file.

Unwanted Behavior: Some behaviors are unwanted but still require a re-
sponse. E.g., “if oil pressure is critical then the motor should shut down”. In
T-EARS, there is no if, or then-keyword, however unwanted behavior can mod-
eled by using the existing boilerplates.

Complex: More complex requirements can be constructed by combining the
EARS patterns. E.g when the honk button is pressed while engine is running
shall horn honk. In the new version of T-EARS, nesting while and when ex-
pressions were removed in favor to stricter rules on how to combine states and

8 D. Flemström et al.

events to form guard expressions. Instead of nesting the when and while expres-
sion, above expression is expressed using the more structured rules of Events
and Intervals, as when honk button is pressed and engine is running shall horn
honk.

In the upcoming sections, we present the grammar developed to realize these
boilerplates.

4.1 Keyword Terminals

The terminals grammar block defines a rule for each keyword and also groups
the keywords into a logical group:

1 keyword =
2 / 1. 2. 3. 4. 5. */
3 where | and | for | true | const
4 | when | or | within | false | alias
5 | while | longer | inf | def
6 | shall | shorter | events
7 | than | intervals
8 | at
9 /*6*/

10 |allow|fail|ignore

Listing 1.2: Non-trivial Terminals

The first group of keywords outlines the G/A (e.g., where, when). The con-
junctions group (and, or) allows composing expressions. The third group consists
of the timing modifiers (for, within etc.). The fourth group has a set of built-in
constants (true, false, inf). The fifth group concerns structuring the expres-
sions (e.g., def, alias, const).

4.2 Structural Elements

The structural elements block defines the following main rules:

1 Constant =
2 const identifier "=" (Timeout | Num | Boolean)
3 IntervalsDef =
4 def intervals identifier "=" Intervals
5

6 EventsDef =
7 def events identifier "=" Events
8

9 Alias = alias identifier "=" identifier

Listing 1.3: Structural Elements

The purpose of the rule Constant in Listing 1.3 is to define named constants,
e.g., limits or timeouts. The constant is checked by the corresponding semantic
operation of the rule where the constant is used. A constant can only be de-
fined once within a test case context. The purpose of the rules IntervalsDef and
EventsDef is to structure sub-expressions into named expressions to increase
readability. A def expression can only be defined once using the same name.
Further, the keywords events, intervals facilitates type checking while typ-
ing the expressions in the interactive editor. The expression is evaluated where

Specification of Passive Test Cases using an Improved T-EARS Language 9

used (not where it is defined). The alias keyword renames an identifier. An
alias can be redefined, allowing the same alias in two G/As to have different
meanings. Since an alias is resolved where it is evaluated, using an alias inside
a named expression offers a primitive way of user-defined functions. Another
purpose of the alias keyword is to create abstractions for, e.g., release or variant
of a system without changing the test logic.

4.3 Basic Data Types

There are four basic types, Boolean, Float, Integer, and Time. Listing 1.4
shows how they are defined. The example shows the Boolean type. One sub rule
defines explicit usage (e.g., true,false) and one rule allows using an identifier
(e.g., −−constOrAlias). The identifier rule allows using a constant or alias (an
alias is a renamed constant). There is also a main rule for how identifiers can be
specified. The identifier–quoted allows strings in quotes that would otherwise be
forbidden.

1 Boolean = (true | false) --bool
2 | identifier --constOrAlias
3

4 identifier ="’" idstring_quoted "’" --quoted
5 | idstring
6 // --
7 idstring = ~digit ~keyword letter+ (specialChar | alnum)*
8 idstring_quoted = (specialChar | mustQuoteChar | alnum)+
9 specialChar = ("_" | "/" | "[" | "]" | "." | "|" | ":")

10 mustQuoteChar = "-" | "+" | " " | "(" | ")"
11

12 sign = ("+" | "-")
13 TimeUnit = ("s"~"h | "ms"~"h")

Listing 1.4: Basic Data types

Examples of such strings are strings that contain spaces or keywords. The
support rules below row 7 in Listing 1.4 shows the details of, e.g., sign and string
handling. The tilde operator followed by the letter h (at line 13 in the listing)
prevents the time unit to be confused with the keyword shall.

4.4 Signals Data Type

In a signal based system, the input and output consists of a set of (single value)
signals that vary over time. Example signals are actuator readings, signals from
other subsystems, and even sampled continuous values such as speed or temper-
ature. These signals can be recorded into log files and fetched by name when
building T-EARS expressions. Using the T-EARS editor[8,11], it is also possible
to manually construct abstract signals to allow executable examples for higher-
level requirements. In T-EARS, there are also several ways to manipulate signals
as described by the Signals grammar block:

1 Signal =
2 Signal SigOP Signal --sigOpSig
3 | SignalFunction --func
4 | (true | false | NUM) --constant

10 D. Flemström et al.

5 | identifier --sigAliasConst
6 | "(" Signal ")" --parentheses
7

8 SigOp =
9 ("+" | "-" | "/" | "*")

10

11 SignalFunction =
12 derivative "(" (Timeout ",")? Signal ")"
13 | abs "(" Signal ")"
14 | bitmask "(" IntegerOrConst "," Signal ")"
15 | count "(" Events "," Intervals ")"
16 | maxVal "(" NonemptyListOf < Signal , ","> ")"
17 | select "(" Signal "," Signal "," Signal ")"
18 | exists "(" identifier ")"

Listing 1.5: The Signal Datatype

The rules Listing 1.5 defines the Signal data type. Besides the main rule
Signal, there are two support rules: SigOp defines trivial mathematical opera-
tions on two signals, and, SignalFunction, that defines all built-in functions that
return a value of type Signal.

In more detail, the Signal data type is represented by a series of samples [time,
value] pairs and is denoted with the letter S (Signal). In the examples below, we
use the notation S = [s0, . . . , sm] for a signal with m + 1 samples, where each
sample ([time,value] pair) is noted as si = [ti, vi]. Logs may be sampled with
a variable sampling rate, so the value between one sample is considered to be
constant until the next sample.

When evaluating mathematical expressions (line 2, −−sigOpSig), the signals
are projected on a common timeline. The operator (e.g., plus or minus) is then
applied on each sample along the common timeline. The −−func sub-rule at
line 3 allows more advanced signal processing in the functions listed by the
support rule SignalFunctions. The currently provided functions are derivative,
a forward approximating derivative with an optional threshold to smooth out
the result over several samples as sn(i) = vn+i−vn

tn+i−tn
. The threshold t makes sure

to increase i from 1 until i : t < tn+i − tn. Increasing the threshold widens the
delta in the approximation. The abs function processes each sample of a signal
as vn = abs(vn). The bitmask function returns vn = vn ∧ bitmask, applied on
each sample of a signal. The count function takes two arguments: one Events
and one Intervals argument. The result is a signal with the number of events
during the interval of ri as value. The value is constant during each interval of
ri. The maxVal function takes a list of Signals and returns a new Signal with the
largest sample value at each sampled point in time. The select function selects
samples from the second or third signal argument depending on the first signal
argument’s value. Where the first signal argument equals true, the sample from
the second signal is used. Otherwise, the sample from the third signal argument is
used. If the first expression is constant, only the used signal needs to be defined.
The exists function returns a signal that is constant true if there exists a signal
with the name of the given identifier. Typically, the last two functions, select
and exists, are often used together to enable default values for optional signals.

Specification of Passive Test Cases using an Improved T-EARS Language 11

0 1 2 3 4 5 6 7 8 9 10

not RA

RA or RB

RA and RB

RB

RA

(a) Intervals Conjunctions

0 1 2 3 4 5 6 7 8 9 10

between(5s,7s)

between(P1,0.2s)

between(1.5s,P2)

between(P1,P2)

P2

P1

(b) The between Function

Fig. 5: Interval Operations and Creation. R denotes Intervals, P denotes events

The sub-rule at line four in the listing (−−constant) defines a pseudo-signal
with a constant value. The signal is defined over the logged min and max time.
It is possible to specify a binary or a numerical value.

If an identifier is specified (−−sigAliasConst, sub-rule at line five), this may
refer to a signal name to fetch from a loaded log file, an alias, or a named
constant. If the identifier is an alias, the alias is resolved until a signal name or a
constant is found. A constant (sub rule −−constant) is interpreted as a signal
with a constant value over the entire log file.

4.5 Intervals Data Type

The syntactical rules for Intervals are presented in Listing 1.6.
1 Intervals =
2 IntervalsExpr TimeFilter*
3 ((and|or)
4 IntervalsExpr TimeFilter*)* --conj
5

6 TimeFilter =
7 longer than Timeout --atLeast
8 | shorter than Timeout --atMost
9

10 IntervalsExpr(Interval Expression) =
11 | "(" Intervals ")" --parentheses
12 | IntervalFunction --func
13 | Signal RelOp Signal --relop
14 | (true | false) --boolean
15 | definedIntervals --definition
16 |"[" ListOf <Interval , ","> "]" --list
17

18 Interval = "[" Timeout "," Timeout "]"
19

20 RelOp = ("==" | "!=" | "~=" | " >=" | ">" | " <=" | "<")
21

22 IntervalFunction =
23 not "(" Intervals ")"
24 | between "(" (Events|Timeout) ","
25 (Events|Timeout) ")"

Listing 1.6: The Intervals Datatype

The first rule at lines 1–4 in Listing 1.6, together with the support rule
(TimeFilter at lines 6–9), allows filtering intervals shorter or longer than a spec-
ified threshold. The filters can be defined in any order. The rule at lines 1–4

12 D. Flemström et al.

also defines the two possible conjunctions (and,or) between intervals, shown in
Figure 5a. The intuition is the same as and/or between binary signals (high in-
side an interval and low outside). Intervals can also be constructed by the two
built-in support functions (line 12: −−func, and lines 22–25: IntervalFunction).
Currently, there are two such functions defined. The function not returns the
two-complement of an interval series. The function between can be used for con-
structing intervals from Events or from one event and a constant, to create fixed
length events, as illustrated in Fig. 5b.

The −−relop rule at line 13 together with the rule RelOp at line 20 defines
how signals and relational operators are combined to form Intervals. The signals
are projected onto a common timeline (each unique sample time from both
signals) and each sample is compared using the operator. Again, it should be
noted that values are not interpolated between samples. The rule at line 16
(−−list) and line 18 (Interval) defines manual specification of an intervals series.
The time can be specified numerically, but also by using named constants.

4.6 Events Data Type

The Events data type describes how to compose a series of system events. The
rules for the Events data type are presented in Listing 1.7.

1 Events =
2 Intervals ForExpression --intervalFor
3 | Events and Intervals --andIntervals
4 | Intervals and Events --intervalAnd
5 | Events or Events --eventsOr
6 | Events ("+"|"-") Timeout --nudge
7 | EventFunctions --function
8 | definedEvents --definition
9 |"[" ListOf <Timeout , ","> "]" --list

10 | "(" Events ")" --parenthesis
11

12 EventFunction =
13 risingEdge "(" Intervals ")"
14 | fallingEdge "(" Intervals ")"
15 | cycle"(" (Events ",")? Timeout ")"

Listing 1.7: The Events Datatype

0 1 2 3 4 5 6 7 8 9 10

A for 1.5s

P1 and A

A

P1 or P2

P2

P1

Fig. 6: Evaluation Examples of the Event Rules

Specification of Passive Test Cases using an Improved T-EARS Language 13

The first rule at line 2 in Listing 1.7 (−−intervalFor) defines events as a
response to a timeout on an interval. The result is one event for each interval,
long enough to reach the timeout as P = [rs+t]∀r : rs+t < re, where R is a series
of intervals with each interval starting at rs and ending at re. The next two rules
at lines 3–4 (−−andIntervals,−−intervalAnd) defines the and operator between
Intervals and Events. The intuition is that the events occurring during an interval
are kept. Note that the rule P1 and P2 is removed from the language. The reason
is that events are represented by high resolution timestamps and would need to
be identical to yield any results, which is not realistic. A workaround is to replace
P with acceptable intervals around each event in P , as in the following example:

W = between(P − t, P + t) (1)

P and Q⇒ Q and W (2)

The interval W represents an interval that is reasonably close to P . The points
in Q that reside in any of these intervals will be kept. It should be noted that
if the interval is constructed using the points of Q instead, the result would be
the points in P that match an interval. Also, the time t needs to be sufficiently
small to not create overlapping intervals in W .

Line 5 in Listing 1.7 (−−eventsOr) shows the only conjunction between
Events. The expression P1 or P2 would evaluate to all events in P1 and P2,
sorted and with duplicates removed.

Line 6 (−−nudge) shows how each event can be pushed forward or backward
in time. The expression P1 + t would evaluate in a series events [p + t] ∀p ∈ P1.

For more complex Events operations, there are some built-in functions that
takes other data types as input and returns Events (Line 8 (−−function) and
lines 12–15 (EventFunction). Currently, there are three such functions defined.
The first two concerns edge detection. Detecting the edges of signals or intervals
is common in creating events based on signal or interval features. Since intervals
are conceptually treated as a binary signal, rising edge and falling edge corre-
spond to each interval’s start and end. The last function is requested by test
engineers to ensure that cyclic events are correctly sent on the CAN bus. The
first argument is an optional event series. The cycle will start at the first event
in this series and continue as long as the last logged sample (in the currently
loaded log). The second argument defines the cycle width.

The rule −−list on line 9 in Listing 1.7, allows to hand-craft en Event series
by assigning individual time points to an Events. These time points may be
either specified as (milli) seconds or by using a constant or alias for a constant.

Finally, the −−definition rule allows for using a defined events-expression.
When evaluated, any level of aliases are resolved and eventually, the defined
Events expression is evaluated.

4.7 Boolean Expressions

The EARS pattern Option is realized by the where keyword and a Boolean
expression. This Boolean expression decides if the G/A should be evaluated at
all or not. The grammar for Boolean is shown in Listing 1.8.

14 D. Flemström et al.

1 BoolExpr = BoolExpr (and|or) BoolExpr --conj
2 | BoolExpr ("==" | "!=") BoolExpr --eq
3 | Num RelationalOperator Num --op
4 | BooleanFunction --func
5 | Boolean --boolean
6 | identifier --constOrAlias
7 | "(" BoolExpr ")" --para
8

9 Boolean = (true | false)
10 BooleanFunction =
11 exists "(" identifier ")" --exists

Listing 1.8: The BoolExpr Datatype

4.8 Guarded Assertion Rules

There are two types of guarded assertions: The State G/A, observes the system
state and expects some requirements to be held during this time. These are
specified using the while keyword as shown in line 4 in Listing 1.9. The second
type is the Event G/A that reacts to events and checks a requirement in response
to the events. Event G/As are specified using the When keyword as shown in line
5 in Listing 1.9. Both rules are build up by a guard rule and an optional assertion
rule.

1 GA = ((identifier "=")? Config? GuardedAssertion)
2 Config = where BoolExpr
3 GuardedAssertion =
4 while Intervals (shall IntervalAssertion)?
5 | when Events (shall EventsAssertion)?
6

7 IntervalAssertion = Intervals (within Timeout)?
8

9 EventsAssertion =
10 Intervals for Timeout within Timeout
11 | Events within Timeout
12 | Intervals (within Timeout)? (for Timeout)?

Listing 1.9: Guarded Assertions

The Events assertion is a bit more complicated with three rules. The first rule
at line 10 in Listing 1.9 shows the case when the response to an event is that
the system enters the state (described by Intervals) for a time (first Timeout
expression). If the system is kept in the asserted state for that time, a pass
is emitted for the guard at that time(g + t). If the system does not enter the
asserted state, a fail is emitted as soon as the asserted state does not hold. The
above must have been completed before the within period of the guard ends.

The second Event Assertion rule in line 11 in Listing 1.9 shows the case when
an assertion event is expected as a response to a guard event. If an assertion event
can be detected before the within period of a guard ends, a pass is emitted for
that guard at that time. If no event is detected, a fail is emitted at the end of
the within period. If the guard events are very close in time, the same assertion
event can satisfy several guards.

The third rule in line 12 in Listing 1.9 shows the case when a state of a
particular length is required to start within the specified time. The difference to
the rule in line 10 is that the assertion for-period does not need to be finished

Specification of Passive Test Cases using an Improved T-EARS Language 15

before the within period of the guard ends. If the system is already in the asserted
state, time is counted from the start of the guard.

4.9 Miscellaneous Modifiers

The statement ignore < | > timeout tells the evaluation core to ignore any
fails before or after the specified time. This is used when there are disturbances
at startup or shut down of the system under test. There is also a statement
Allow timout fail that makes the G/A ignores fails of the specified length. It
is typically used to rule our sampling errors that may lead to fails due to the
assertion appears to change before the guard due to sampling errors.

4.10 Timing Considerations

Another core feature of T-EARS, partially present in the early prototypes, is
the possibility to specify timing information in logical expressions. Using the
keyword for, the length of an interval could be specified and using the keyword
within, timeouts, or grace times could be specified. Further research, however,
revealed that longer expressions with the timing keywords applied to each sub-
expression were difficult to comprehend or even evaluate correctly. One culprit
was that the for keyword filtered out intervals longer than the specified timeout,
regardless of the expression context, which sometimes yielded very confusing
results. The reason is that we, as human readers, have different expectations
on what effect for has, depending on the expression context. Our solution is to
separate different filtering expectations into different keywords. The construction
longer than and shorter than as described in Section 4.5 filters intervals with
respect to length, regardless of the current context. Concerning the for keyword,
the new grammar considers the perception of relative time base: Consider the
expressions R for 10s. Regarding R as a binary signal, the expression evaluates
to one event each time the signal has been true for 10 seconds. At first glance,
this seems to be an exact definition, but putting the expression into different
contexts reveals some interesting properties.

In the context of a guard expression, we expect (R for 4s) to be “mea-
sured” from the start of each interval in R, resulting in a series of events, say
[p1, p2, . . . , pn]. In the assertion context, however, there is an implicit assump-
tion that the assertion evaluation is a consequence of a guard event (or interval)
and hence, (R for 4s) is expected to be measured from each pi in the guard
expression, i.e., the time for the associated guard. As a consequence of the po-
tential for confusion, the new T-EARS restricts the usage and the meaning of the
for keyword, as described in Section 4.5 and 4.8. Mixing the for keyword with
the within keyword makes things even more complicated. Further, the effect of
within..for is different from the effect of for..within on an expression.

4.11 General Structure of a T-EARS Test Case

Putting the pieces together, Listing 1.10 illustrates a minor test case:

16 D. Flemström et al.

1 // ------------- REQ 558-S1------------
2 // While the vehicle is underway with a speed more thatn 10 km/h,
3 // the doors shall be locked.
4

5 // ////// Abstract G/A /////////
6 //def intervals MOVING = [[5s,30s],[100s,300s]]
7 //def intervals DOOR_LOCKED = [[6s,31s] ,[120s,300s]] // PASS ,FAIL
8

9 //// G/A Concretization (Can be centralized in a main def file) /////
10 // System version 1.2.4
11 const DOORS = 1
12 const DOOR_LOCKED_MASK = 8
13

14 def intervals MOVING =
15 MWT_Standstill == false and MWT_BUS2_Speed > 10
16 def intervals DOOR_LOCKED =
17 bitmask(DOOR_LOCKED_MASK ,MWT_door_lock) == DOOR_LOCKED_MASK
18

19 // G/A Definition(s)
20 ’558-S1’ = where DOORS > 0
21 while MOVING == true
22 shall DOOR_LOCKED == true within 3s

Listing 1.10: General Structure of a T-EARS Script

In the example (Listing 1.10), there are three regions of particular interest.
The first region (Line 1–7) contains requirement information and example data
for an abstract G/A, followed by a region with structural elements (lines 10–17)
that make G/As easier to read. These connect the abstract signals to expressions
of actual log data. If aliases, constants, and definitions are common to many
G/As, they are typically put in a shared file instead. The last region of interest
at lines 19-22 is where the actual passive test case is defined. Any number of
named G/As can be specified.

5 Discussion on T-EARS Improvement

The early prototypes of the T-EARS language allowed experimenting with a
great variety of expressions that could be defined and evaluated against real
industrial requirements. Many of these were useful, while others turned out to
be less useful. In this work, the goal is to promote useful expressions while sup-
pressing less useful ones and updating the language to be more complete and
intuitive. Thus, the goal here concerns updates of the language constructs to im-
prove readability without losing expressiveness. We achieved this goal through
a minimal set of top-level boilerplates, introducing strong typing, restricting
the usage of timing keywords, and defining new keywords to avoid ambiguous
definitions. Although the sum of keywords and language constructs added out-
grew the ones removed, the result is a language that more clearly corresponds
to the EARS patterns. Instead of automatic conversions between events and in-
tervals, there are now only a few well-defined ways of constructing expressions
between the types. One operation that was explicitly removed was (Event and

Event). Since this would require the timestamps to be precisely matching, allow-
ing such an operation would, in practice, only add confusion to the test cases.
When the new restricted grammar was applied to old T-EARS expressions, it

Specification of Passive Test Cases using an Improved T-EARS Language 17

revealed quite a few misunderstandings regarding events/intervals. Concerning
the expressiveness, the first three EARS patterns (Ubiquitous, State-Drive, and,
Event-Driven) are (still) wholly covered by the G/A boilerplates. The fourth
EARS pattern (Option) was a strong suggestion from the testers in the case
study [9]. The testers wished to have conditionally evaluated G/As depending
on configuration information and other G/As. Here rudimentary support was
added for Boolean expressions and constants. However, it is still not possible
to use the activation or result of a G/A to turn on / off others’ evaluations.
The fifth EARS pattern can be accomplished but the keywords if and then

may introduce confusion around states or events and are thus not included in T-
EARS. The sixth EARS pattern (complex) allows mixing while and when which
generated expressions that were inherently difficult to understand. The complex
EARS pattern is instead realized in T-EARS using the well defined composi-
tion rules of Events and Intervals. Another vital requirement from the testers
was user-defined functions. Albeit rather crude, this is now possible in T-EARS
since the definitions are evaluated late, and aliases can be used as parameters
for the definitions.

Finally, a word about timing. While the early T-EARS prototypes used the
for-keyword as a filter (keeping all intervals longer than the specified timeout),
the tester’s expectations differed depending on where the keyword was specified.
In some cases, an event was expected after the timeout. In other cases, intervals
of precisely the length of the timeout. Further, when the for expression was
used in an assertion, their semantic meaning was unclear. The remedy was to
remove the filtering semantics altogether and introduce keywords for filtering
(longer than, shorter than), while the for keyword was restricted to a few
consistent meanings. Further, moving the within keyword from individual sub-
expressions to the G/A boilerplate reduced confusion. Consider the example:
R1 for 10s and P1 within 2s or P2 within 4s. In the example, it is not clear
where the time starts. Using the left-hand side of the sequence operator, or the
guard as the time base for the timing specifications within the evaluation of the
timeouts became consistent with the expectations of the testers’ intuition.

6 Related Work

This work relates to passive testing, specification of test cases, and the tool sup-
port for the use of passive testing and specification of such test cases. We rely on
the work of independent guarded assertions [22,12] introduced for increasing the
testing parallelism in the vehicular domain. An earlier approach to guarded asser-
tions has been evaluated by Rodriguez Navas et al. [22] and a model-checker has
been used for both modelling and test case execution. In this paper, we improve
upon this by translating these test cases directly from requirements. Regard-
ing the testability of such requirements, Pudlitz et al. [19,20] used a markup
language by relying on annotations of the natural language. Different from this
approach, our improved T-EARS language is using a temporal specification of
requirements. All these approaches are similar to the passive testing technique as

18 D. Flemström et al.

it is outlined by Cavalli et al. [3] and also relate to run-time verification [13,23].
Since the use of these techniques relies on the formal specification of test cases,
several researchers have attempted to use patterns and graphical models for the
formalization of both requirements and test cases [2,7,25,1]. The specification
of passive testing using the improved T-EARS takes another route by focusing
on simplicity and closeness to the requirements text. T-EARS is based on an
Easy Approach to Requirements Syntax (EARS), proposed by Rolls-Royce for
the creation of semi-structured natural language requirements [16]. EARS has
been used in several domains and has been shown to be useful for handling real-
world requirements [14,15]. Regarding the tooling for the specification of passive
test cases, several researchers have focused on providing support for specifica-
tion patterns [6,18] and creating monitors and guarded assertions in Matlab [26].
Related to runtime monitoring, Rabiser et al. [21] developed a domain-specific
language for defining and checking constraints at runtime.

7 Conclusion and Future Work

We have presented an updated T-EARS language grammar together with a semi-
formal specification of the semantics behind the language. The update consists of
a careful re-definition of the grammar and semantics for e.g., test case structure
and temporal specification. By restricting the possible G/A patterns to a few
well-defined boilerplates, the language and its new evaluation core now have a
closer correspondence to the EARS patterns. These boilerplates also match the
intuition of the testers better. The intuition is also increased by making the
notation of timeouts context-dependent, i.e, the guard time domain is now a
natural base for the assertion time domain.

Although T-EARS has taken a significant step forward, there are still some
features deferred to future research. The first one primarily concerns the ac-
companied evaluation-core of the T-EARS language. While not necessary from
an evaluation point of view, other attempts to create more user-friendly speci-
fication languages provide semantic mappings to proven temporal logic such as
MITL or LTL. Creating such a mapping for T-EARS would allow certified eval-
uation tools rather than JavaScript that is used today. Such a mapping would
also move the T-EARS evaluation from the offline to the online domain. An-
other issue is that, while the grammar supports specifying negative time like
when PG shall PA within − t, the current semantics do not. Finally, speci-
fying an evaluation aggregation policy for passive testing is needed to allow a
drill-down analysis approach on the increased number of results.

Acknowledgement

The work in this study has received funding from the European Union’s Hori-
zon 2020 research and innovation program under grant agreement Nos. 871319,
957212; from the Swedish Innovation Agency (Vinnova) through the XIVT project
and from the ECSEL Joint Undertaking (JU) under grant agreement No 101007350.

Specification of Passive Test Cases using an Improved T-EARS Language 19

References

1. Asteasuain, F., Braberman, V.: Specification patterns can be formal and still easy.
In: International Conference on Software Engineering and Knowledge Engineer-
ing (SEKE’01). pp. 430–436. Knowledge Syst Inst Grad Sch, Knowledge Systems
Institute (2010)

2. Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualitative,
real-time, and probabilistic property specification patterns using a structured en-
glish grammar. IEEE Transactions on Software Engineering 41(7), 620–638 (2015)

3. Cavalli, A.R., Higashino, T., Núñez, M.: A survey on formal active and passive
testing with applications to the cloud. Annals of telecommunications (3), 85–93
(2015)

4. Daniel, F., Eduard, E., Wasif, A., Daniel, S., Thomas, G., Avenir, K.: From natu-
ral language requirements to passive test cases using guarded assertions. In: Inter-
national Conference on Software Quality, Reliability and Security (QRS’18). pp.
470–481. IEEE Computer Society (2018)

5. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifica-
tions for finite-state verification. In: International Conference on Software Engi-
neering (ICSE’99). pp. 411–420. Association for Computing Machinery (1999).
https://doi.org/10.1145/302405.302672

6. Filipovikj, P., Jagerfield, T., Nyberg, M., Rodriguez-Navas, G., Seceleanu, C.: In-
tegrating pattern-based formal requirements specification in an industrial tool-
chain. In: International Computer Software and Applications Conference (COMP-
SAC’16). vol. 2, pp. 167–173. IEEE Computer Society (2016)

7. Filipovikj, P., Nyberg, M., Rodriguez-Navas, G.: Reassessing the pattern-based
approach for formalizing requirements in the automotive domain. In: International
Requirements Engineering Conference (RE’14). pp. 444–450. IEEE Computer Soci-
ety, Los Alamitos, CA, USA (08 2014). https://doi.org/10.1109/RE.2014.6912296

8. Flemström, D., Gustafsson, T., Kobetski, A.: Saga toolbox: interactive testing of
guarded assertions. In: International Conference on Software Testing, Verification
and Validation(ICST’17). pp. 516–523. IEEE Computer Society (2017)

9. Flemström, D., Gustafsson, T., Kobetski, A.: A case study of interactive devel-
opment of passive tests. In: International Workshop on Requirements Engineering
and Testing (RET’18). p. 13–20. Association for Computing Machinery, New York,
NY, USA (2018). https://doi.org/10.1145/3195538.3195544

10. Flemström, D., Gustafsson, T., Kobetski, A., Sundmark, D.: A research roadmap
for test design in automated integration testing of vehicular systems. In: Interna-
tional Conference on Fundamentals and Advances in Software Systems Integration
(FASSI’16) (2016)

11. Flemström, D., Jonsson, H., Enoiu, E.P., Afzal, W.: Industrial scale passive test-
ing with t-ears. In: Conference on Software Testing, Verification and Validation
(ICST’21). pp. 351–361. IEEE Computer Society, Los Alamitos, CA, USA (04
2021). https://doi.org/10.1109/ICST49551.2021.00047

12. Gustafsson, T., Skoglund, M., Kobetski, A., Sundmark, D.: Automotive system
testing by independent guarded assertions. In: International Conference on Soft-
ware Testing, Verification and Validation Workshops (ICSTW’15). pp. 1–7. IEEE
Computer Society (2015). https://doi.org/10.1109/ICSTW.2015.7107474

13. Leucker, M., Schallhart, C.: A brief account of runtime verification. The Journal
of Logic and Algebraic Programming 78(5), 293–303 (2009)

https://doi.org/10.1145/302405.302672
https://doi.org/10.1109/RE.2014.6912296
https://doi.org/10.1145/3195538.3195544
https://doi.org/10.1109/ICST49551.2021.00047
https://doi.org/10.1109/ICSTW.2015.7107474

20 D. Flemström et al.

14. Mavin, A., Wilkinson, P.: Big ears (the return of ”easy approach to require-
ments engineering”). In: International Conference on Requirements Engineering
(RE’10). pp. 277–282. IEEE Computer Society, Los Alamitos, CA, USA (10 2010).
https://doi.org/10.1109/RE.2010.39

15. Mavin, A., Wilksinson, P., Gregory, S., Uusitalo, E.: Listens learned (8 lessons
learned applying EARS). In: International Requirements Engineering Conference
(RE’16). pp. 276–282. IEEE Computer Society, Los Alamitos, CA, USA (09 2016).
https://doi.org/10.1109/RE.2016.38

16. Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy approach to requirements
syntax (ears). In: International Requirements Engineering Conference (RE’09). pp.
317–322. IEEE Computer Society (2009)

17. Merz, F., Sinz, C., Post, H., Gorges, T., Kropf, T.: Bridging the gap between test
cases and requirements by abstract testing. Innovations in Systems and Software
Engineering pp. 1–10 (2015)

18. Miao, W., Wang, X., Liu, S.: A tool for supporting requirements formalization
based on specification pattern knowledge. In: International Symposium on Theoret-
ical Aspects of Software Engineering (TASE’15). IEEE Computer Society (2015).
https://doi.org/10.1109/TASE.2015.13

19. Pudlitz, F., Brokhausen, F., Vogelsang, A.: What am i testing and where? compar-
ing testing procedures based on lightweight requirements annotations. Empirical
Software Engineering 25(4), 2809–2843 (2020)

20. Pudlitz, F., Vogelsang, A., Brokhausen, F.: A lightweight multilevel markup lan-
guage for connecting software requirements and simulations. In: International
Working Conference on Requirements Engineering: Foundation for Software Qual-
ity (REFSQ’19). Springer, Berlin, Heidelberg (2019)

21. Rabiser, R., Thanhofer-Pilisch, J., Vierhauser, M., Grünbacher, P., Egyed, A.:
Developing and evolving a dsl-based approach for runtime monitoring of systems
of systems. Automated Software Engineering 25(4), 875–915 (2018)

22. Rodriguez-Navas, G., Kobetski, A., Sundmark, D., Gustafsson, T.: Offline anal-
ysis of independent guarded assertions in automotive integration testing. In:
International Conference on Embedded Software and Systems (ICESS’15). pp.
1066–1073. IEEE Computer Society (2015). https://doi.org/10.1109/HPCC-CSS-
ICESS.2015.251

23. Selyunin, K., Nguyen, T., Bartocci, E., Grosu, R.: Applying runtime monitoring
for automotive electronic development. In: International Conference on Runtime
Verification (RV’16). pp. 462–469. Springer, Berlin, Heidelberg (2016)

24. Sneed, H.M.: Bridging the concept to implementation gap in software sys-
tem testing. In: International Conference on Quality Software (QSIC’08).
pp. 67–73. IEEE Computer Society, Los Alamitos, CA, USA (08 2008).
https://doi.org/10.1109/QSIC.2008.48

25. Walter, B., Hammes, J., Piechotta, M., Rudolph, S.: A formalization
method to process structured natural language to logic expressions to de-
tect redundant specification and test statements. In: International Require-
ments Engineering Conference (RE’17). IEEE Computer Society (2017).
https://doi.org/10.1109/RE.2017.38

26. Zander-Nowicka, J., Schieferdecker, I., Marrero Perez, A.: Automotive val-
idation functions for on-line test evaluation of hybrid real-time sys-
tems. In: Autotestcon. pp. 799–805. IEEE Computer Society (2006).
https://doi.org/10.1109/AUTEST.2006.283767

https://doi.org/10.1109/RE.2010.39
https://doi.org/10.1109/RE.2016.38
https://doi.org/10.1109/TASE.2015.13
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.251
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.251
https://doi.org/10.1109/QSIC.2008.48
https://doi.org/10.1109/RE.2017.38
https://doi.org/10.1109/AUTEST.2006.283767

	Specification of Passive Test Cases using an Improved T-EARS Language

