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Abstract—In Machine Learning systems, several factors 

impact the performance of a trained model. The most important 

ones include model architecture, the amount of training time, 

the dataset size and diversity. In the realm of safety-critical 

machine learning the used datasets need to reflect the 

environment in which the system is intended to operate, in order 

to minimize the generalization gap between trained and real-

world inputs. Datasets should be thoroughly prepared and 

requirements on the properties and characteristics of the 

collected data need to be specified. In our work we present a case 

study in which generating a synthetic dataset is accomplished 

based on real-world flight data from the ADS-B system, 

containing thousands of approaches to several airports to 

identify real-world statistical distributions of relevant variables 

to vary within our dataset sampling space. We also investigate 

what the effects are of training a model on synthetic data to 

different extents, including training on translated image sets 

(using domain adaptation). Our results indicate airport location 

to be the most critical parameter to vary. We also conclude that 

all experiments did benefit in performance from pre-training on 

synthetic data rather than using only real data, however this did 

not hold true in general for domain adaptation-translated 

images. 

Keywords— avionics, safety-critical, machine learning, deep  

neural networks, dataset, synthetic data, domain adaptation 

I. INTRODUCTION 

Data-driven development methods show great promise in 

producing accurate models for perception functions such as 

object classification, detection and semantic segmentation, 

however most of them lack the holistic view needed for being 

implemented in dependable systems. Within the field of 

machine learning (ML), deep neural networks (DNN) are 

increasingly used for this purpose. A substantial part of the 

accuracy and robustness of a trained model is due to the data 

it was trained on, yet most research today focuses on model 

architecture development. It is therefore the intention of this 

paper to emphasize the dataset side of the problem by 

regarding the way datasets (used for model training) are being 

created. In this paper, we focus primarily on synthetically 

generated data (SD), for two reasons. Firstly, because it is a 

more controlled environment in which experiments can be 

performed, without the risk of creating hazardous aviation 

manoeuvres. Secondly, due to the high cost of capturing real 

world data (RD), alternative more practical sources of data 

need to be found. To affirm the relevance of these 

excavations, we note that it has been shown in previous work 

by Gaidon et al. [1] that introducing synthetically generated 

data into the dataset trained upon increases the accuracy of 

the model. There are several ways in which to structure a 

training scheme, e.g., initial training on synthetic data, then 

finalizing the training in a second step on real captured data, 

but one can imagine several other ways. 

We propose a method for creating datasets in a structured 

manner, for use in safety-critical systems where a visual 

perception function is automated by the introduction of data-

driven methods such as DNNs. This is achieved by using real-

world aviation data, extracting relevant statistical artefacts, 

apply sampling methods, render synthetic images to include 

in the dataset, train and evaluate performance and finally 

iterate this loop to build a more complete dataset resulting in 

a robust model. 

The overarching quest of this paper is to find solid ground 

for dataset creation and curation for robust model 

development in systems where visual perception is 

automated. The appropriate setting for such a system would 

likely be a support system from which the output is displayed 

for a pilot, to alleviate some of the workload during the 

intensive approach phase. We are not including here any 

tracking function where time series of outputs from this type 

of model would be aggregated into trackable objects, i.e. a 

limitation similar to that made in the CoDANN reports [21], 

[22]. It is highly conceivable that multiple sensor modalities 

(e.g. visual, infrared) could work complementary, as infrared 

sensors work especially well in after-dark conditions as well 

as in weather situations including light to moderate fog. We 

have decided to restrict our study to simulated visual sensors 

only, because of lack of sufficiently realistic sensor 

simulation, and hence no weather conditions including fog, 

nor nighttime operations have been part of this study’s 

operating design domain. 

This paper is organized as follows: In Section II, we 

present the steps of the curating method we devised to gain 

insights into the intricacies of different data sampling 
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methods and model training schemes. In Section III, we 

present the results of the experiments we performed to 

validate the method. In section IV we introduce related work 

and in Section V we discuss the strengths and weaknesses of 

this particular implementation. Finally, Section VI concludes 

the paper. 

II. CURATING METHOD 

In this section, the different steps of the method are 

explained. 

The first step is to identify a source of data describing the 

operating design domain (ODD) of interest. In our case we 

introduce Automatic Dependent Surveillance-Broadcast 

(ADS-B) system  data for this purpose. For more information 

regarding ADS-B and how it works, refer to e.g., Ali et al. 

[5]. ADS-B contains lots of data from the real-world air 

traffic domain which is suitable for the use-case of visual 

runway detection. 

The second step entails performing statistical analysis of 

the data to extract relevant statistical properties related to the 

ODD. In this paper we investigate three different sampling 

methods for acquiring these properties. 

The third step is to sample synthetic data from simulated 

environments using parametrically controlled simulator 

configurations (called scenes) according to the statistical 

properties acquired is previous step. 

The fourth step includes the training of the model, 

including evaluation of accuracy using a relevant metric. In 

our case, the task being object detection, the appropriate 

metric is the commonly referred AP score used by MS-

COCO [13] and variants thereof. 

The fifth step is to introduce variations of parameters to 

discern whether the trained model is robust towards these 

variations. In our study we vary parameters we hypothesize 

might impact performance. These variations are used to 

produce new datasets in which we vary each parameter 

individually, creating a test dataset for each parameter. We 

use these test sets to determine how far from the originally 

produced training set our model will work. 

The sixth and last step includes using the results from the 

variational experiments and expand the training dataset in the 

appropriate dimensions. This step is preferably iterated to 

build a subsequently more complete training dataset, 

eventually resulting in a more robust model. 

 

Up until this point, we have been working entirely in the 

simulated domain. There is a serious question one need to ask 

here, is this of any use in the real world? 

To answer this question we have put effort into validating 

the applicability of using simulated visual imagery in real-

world scenarios. This investigation is further expanded to 

include domain-translated synthetic images using domain 

adaptation techniques [2]. In the following sections, we go 

into detail of each of these areas to describe the method in the 

context of our use-case. 

A. Sampling methods for accurate data distributions 

There are several simulated environments that can be used 

for sampling of images. One of them is X-Plane [3]. In 

X-Plane many parameters are configurable including scenery 

(latitudes from 60 degrees south to 74 degrees north), 

weather, aircraft position and attitude to name a few. To 

decide what subspace of images to sample from in this rich 

simulated world, real-world references are needed. We 

therefore start by collecting positional data from real-world 

commercial aircraft, ADS-B, where positional information is 

emitted regularly from the majority part of commercial 

aircraft. OpenSky Networks [4] hosts a historical database 

with a convenient querying interface. ADS-B data is not 

directly useful; it needs to be filtered to only include landing 

scenarios (for the scope of this work). Firstly, a cylindrical 

crop-out centered on the desired runway was defined, with a 

radius of about 16.6 km (9 nautical miles, NM). Secondly, a 

vertical descent of at least 2.5 m/s (500 ft/min) was added 

along with a maximum altitude of 3000 m (10000 ft) to 

exclude aircraft taking off and cruising. Finally, an ILS-

condition discarding tracks not inbound for the particular 

runway was applied, along with a final outlier filter for 

anomalous height data, resulting in a clean set of ADS-B 

points from inbound aircraft using Instrument Landing 

System (ILS) or Visual Flight Rules (VFR) approaches. With 

this data point cloud, we analyze the distribution of these 

points to understand how to accurately draw samples from it. 

Three different methods are investigated. For each method, 

we create a dataset of images, train a model and measure its 

accuracy.  

The sampling of different scenes is achieved using the 

Scenic probabilistic programming language developed by 

Fremont et al. [6], where scenes can be defined in a 

parametric way. Scenic can then be asked to draw samples 

from the defined scene, whilst randomizing the parameters of 

the scene according to set intervals and distributions. For 

example, the aircraft position can be one such parameter; 

weather and time-of-day are other examples. Scenic 

communicates directly with the appropriate simulator 

backend, X-Plane 11 for aviation or CARLA [7] for 

automotive in our case, which is responsible for rendering the 

scenes. 

a) Sampling method 1: Continuous Normal 

In this method, we divide the filtered dataset into bins 

based on distance to runway, each bin spanning 1NM of 

distance. A total of eight bins are created. For each bin i we 

estimate the mean and standard deviation of the altitude and 

lateral position. 

Looking at the lateral position (i.e. perpendicular distance 

to extended centerline), see Fig. 1, we can fit a continuous 

polynomial function for the mean µLat(d) and standard 

deviation σLat(d) as a function of distance to runway d using 

linear regression. When we create the dataset we randomize 

d using uniform sampling, and from this we use said 

functions to find the representative µLat(d) and σLat(d) for this 

distance and then finally draw the aircraft’s lateral and 

vertical position from a normal distributions N(µLat(d), 

σLat(d)) and N(µAlt(d), σAlt(d)) respectively. A total of 8000 

samples are drawn using Scenic, which configures X-Plane 

with a scene for each sample, resulting in a unique image each 

time. Annotation information of the runway’s position in the 

image is calculated at the time of generation and included in 

the dataset.  



 
Fig. 1 Definitions of used notation for aircraft position and distance to 

runway. 

b) Sampling method 2: Discrete Normal 

This method divides the airspace into the previously 

described 1 NM bins. Similar to method 1 we calculate the 

discrete (µk
Lat, σk

Lat) as well as (µk
Alt, σk

Alt) for each bin k. The 

difference is in using the discrete µk and σk values to draw 

samples from bin k, so for each bin we: 

• Randomize runway distance d using uniform sampling 

within the bin.  

• Use the representative µk
Lat and σk

Lat for bin k and then 

draw the aircraft’s lateral position from the normal 

distribution N(µk
Lat, σk

Lat). 

• Similarly, use the representative µk
Alt and σk

Alt for bin k 

and draw the vertical position from a normal distribution 

N(µk
Alt, σk

Alt). 

• Repeat until a sufficient number of samples has been 

created for bin k, such that the total number of samples is 

equal to that of other sampling methods, 8000 images in 

total. 

c) Sampling method 3: Perturbation 

This method randomly selects an existing ADS-B point 

and perturbs its position with a random offset (uniformly 

distributed within a box of size 40 m vertically and 40 x 40 m 

in the horizontal plane). 

TABLE I DATASETS FOR SAMPLING METHOD EXPERIMENTS. 

d)  Reference Method: Raw 

For reference, an equal sized dataset was created from the 

raw ADS-B data points, without any augmentation or 

randomization. In all these sampling methods (used for 

creating DS1-DS6), other parameters (listed in Table II) were 

kept fixed at the following values: 

• Time of Day: 14.00 (local time) 

• Pitch: 0 degrees 

• Roll: 0 degrees 

• Yaw: Aligned with runway 

• Clouds: None 

• Number of sampled images: 8000 

• Aircraft Type: AirBus A320 

Datasets used in this experiment are listed in Table I. 

One model was trained for each dataset DS1-DS3 

corresponding to sampling methods 1-3 and one model was 

trained on DS4 corresponding to the reference method. These 

four models were then tested on two datasets, DS5-DS6, both 

using the reference sampling method where ADS-B points 

are taken without augmentation. 

B. Parameter impact scan 

The parameters considered in this paper are, apart from 

the geospatial coordinates discussed above, time of day, 

attitude angles, weather (clouds), and finally airport location. 

The impact of said parameters was evaluated using the 

following approach. 

 TABLE II DATASETS USED FOR PARAMETER SCAN 

EXPERIMENTS. 

First, two models were trained on datasets from 

experiment A yielding the highest overall accuracy (in our 

case method 3 (DS3)), and using the reference method (Raw, 

DS4). Both these models were then exposed to the datasets 

DS7-DS13 listed in Table II in turn and the accuracy 

measures on each set were collected. Note that the trained 

models have not been shown any image data containing these 

augmentations during training, meaning we expect to see a 

drop in performance if the test dataset deviates significantly 

from what it has been trained on. 

ID Dataset context Size ADS-B data source 

DS1 M1: Continuous Normal 
sampling 

8k January 2021, LPPT 
(Lisbon Airport) 

DS2 M2: Discrete Normal 
sampling 

8k January 

2021, LPPT 

DS3 M3: Perturbation 8k January 

2021, LPPT 

DS4 Reference: Raw 
(Raw ADS-B points) 

8k January 
2021, LPPT 

DS5 Small Test 
(raw ADS-B points) 

4k February 

2021, LPPT 

DS6 Large Test 
(raw ADS-B points) 

24k March-April 

2021, LPPT 

ID Parameter 

varied 

Parameter Range Distribution 

type 

DS7 Time of Day 06.30 to 19.00 local 

time 

Uniform 

DS8 Attitude Roll -7 to +7 degrees Uniform 

DS9 Attitude Pitch 0 to 10 degrees above 
horizon 

Uniform 

DS10 Attitude Yaw -20 to +20 degrees from 
runway heading 

Uniform 

DS11 Weather Clouds Category 0 to 5 
(X-Plane’s definition) 

Discrete 
Uniform 

DS12 Airport OTHH (Hamad 
International Airport) 

N/A 

DS13 Airport LFPO (Paris Orly) N/A 



C. Synthetic real data mixing 

As previous work has shown, synthetic data may be used 

to improve the performance of deep learning models on real-

world applications [1]. We leverage the SD in our 

experiments for object detection using the Faster RCNN [8] 

detector with Feature Pyramid Network backbone [9] in the 

aviation and automotive domain for detecting runways 

respective car detection. The result from the automotive 

domain is included in this paper since some of the 

experiments could not be performed in the aviation domain 

due to limitations of the used datasets. Also, detecting control 

ground vehicles are of importance for diversification of the 

runway environment. 

The SD is used to pre-train the detector which is then fine-

tuned and evaluated on RD. Our SD in the automotive 

domain was sampled from the CARLA car simulator [7] with 

domain randomization in mind and furthermore 

automatically generated 2D amodal bounding boxes for the 

cars in each scene. The RD data in the automotive domain 

consisted of the Cityscapes [10] and KITTI [11] datasets with 

accompanying amodal 2D bounding box annotations. In the 

aviation domain, we had 10 video sequences of an aircraft 

landing at Stockholm Skavsta Airport (ESKN), recorded 

from the perspective of the aircraft. One frame per video 

sequence second was extracted and the runways were 

manually annotated with 2D bounding boxes. 

In the automotive domain, we used a total of 8000 

synthetic images that were used to pre-train the detector. This 

pre-trained state was then fine-tuned on a smaller portion of 

the RD. For the Cityscapes dataset, we evaluated the effect of 

training with the addition of SD by performing a cross-

validation schema across the 21 cities we had annotations for. 

5 cities were used for training, 3 for validation and 2 for 

testing in each iteration. We performed a similar cross-

validation schema for the data in the aviation domain but 

across the 10 video sequences, where 7 were used for 

training, 2 for validation and 1 for testing. For the KITTI 

dataset, we split the train, validation and test sets using cross-

validation over all samples, where 800 samples were used for 

training, 748 for validation and 748 for testing. The validation 

set was used to checkpoint the weights during training that 

performed the best on that portion of the data, and the size of 

the training set were intentionally smaller than the size of the 

available samples in the automotive domain to better reflect 

the dataset size one may have available in a domain where a 

large dataset is difficult to come by. 

D. Domain adaptation methods for data augmentation 

Due to the reality gap between the synthetic and real-

world data, we use a cycle consistent generative adversarial 

network framework to increase the realism of the images as a 

means of domain adaptation (DA). In our data preparation 

phase, the CycleGAN framework [12] is trained to map the 

domain of the SD to the RD domain, which can be used to 

create a domain adapted synthetic dataset, which we denote 

as SD(DA) in this paper. This results in two generators, 

generator A which learns a mapping from the synthetic 

domain to the real-world domain, and generator B which 

learns the mapping in the opposite direction. These mappings 

were learned for both real-world data sets in the automotive 

domain but were omitted in the aviation domain due to the 

limitations of the datasets in that domain. For the Cityscapes 

dataset, we utilized the extended version of the dataset which 

does not contain bounding boxes to get a better representation 

of the real-world domain. While it may seem counterintuitive 

to use a large real-world dataset when the original problem is 

the difficulty of collecting real-world data, the data used for 

learning the domain adaptation does not have to be annotated. 

III. RESULTS 

A. Sampling methods for accurate data distributions 

Sampling method 1 (Continuous Normal) measured the 

mean and standard deviation in each of the eight bins of ADS-

B data points, for both the altitude and the lateral 

displacement from the extended centerline. For lateral 

displacement it is easy to find a suitable model for how the 

mean and standard deviation changes over distance d to the 

runway, see Fig.  2. We note here that the mean displacement 

converges to about -8 m, which seems to be an offset issue 

with accurately representing the centerline position. For the 

altitude parameter the mean follows a steady linear decline, 

whereas the standard deviation does not show a clear 

correlation with distance, see Fig.  3. 

 
Fig.  2 Third degree polynomial Regression fit of standard deviation (top) 

and mean (bottom) of lateral displacement (w.r.t. extended centerline) as 

functions of distance to runway. 

 
Fig.  3 Polynomial Regression fit of mean altitude (first degree 

polynomic) and third degree polynomial fit of standard deviation of aircraft 
altitude as functions of distance to runway.  

Fig.  4 - Fig.  6 show the lateral spread of the three generated 
datasets as well as the underlying ADS-B data set used as 
input for all sampling methods. Note that sampling method 3 
(Perturbation) shows a wider spread close to the runway than 
the other ones. It also captures some of the late turn 
approaches, which is not the case in methods 1 and 2. Method 
2 (Discrete Normal) is showing a greater spread at large 
distance compared to method 1 (Continuous Normal). Method 



3 does not generate the mirrored points (large negative values 
at great distances) since they are not found in the original 
dataset. Methods 1 and 2 implicitly assume a symmetric 
spread since we model the spread with a normal distribution. 

 
Fig.  4 Sample method 1 (Continuous Normal) generated dataset (blue) 

compared to the reference method (Raw) generated dataset (red). Diagram 

shows lateral spread as a function of distance to runway. 

 
Fig.  5 Sample method 2 (Discrete Normal) generated dataset (blue) 

compared to the reference method (Raw) generated dataset (red). Diagram 
shows lateral spread as a function of distance to runway. Note the large 

lateral spread far from runway. 

 
Fig.  6 Sample method 3 (Perturbation) generated dataset (blue) compared to 
the reference method (Raw) generated dataset (red). Diagram shows lateral 

spread as a function of distance to runway. Note the large lateral spread close 

to runway. 

MODEL PERFORMANCE 

The neural network used throughout this work is the 

Faster RCNN two-stage detector described earlier. The 

model was initialized in the same way for all experiments in 

this section (i.e. the ResNet-50 [14] backbone is pretrained 

on ImageNet dataset [15]). Fig.  7 and Fig.  8 show the detection 

accuracy results measured by the MS-COCO [13] Average 

Precision (AP) metric commonly used for object detection. 

AP is the average precision over multiple Intersection-over-

Union (IoU) levels spanning from 0.5 to 0.95 in 0.05 

increments. AP(distant) refers to objects of small size (< 

32x32 pixels), i.e. the detections made at great distance from 

the runway. Similarly, AP(close) refers to the AP of objects 

of large size (> 96x96 pixels) and hence include detections 

made in closer proximity to the runway. There is a small 

increase in accuracy for sampling method 3 (Perturb) in both 

datasets when focusing on the close detections, AP(close), 

which could be due to its comparatively wider spread of data 

points in this distance range. This effect is similarly seen in 

the AP(distant) for method 2 (Discrete Normal) which shows 

the widest spread of data of all sampling methods at large 

distances. This leads us to believe that great variety in the 

dataset is important for the model to generalize.  

 

 

 

It should also be mentioned that in general our trained 

detection models perform better with larger objects, which is 

most likely due to the IoU threshold criteria being harder to 

meet with smaller objects (1 pixel offset on a small object 

reduces the IoU more than in the case of a larger object).  

Fig.  7 Comparison of the four models (same network trained on datasets 
DS1 – DS4) tested on dataset DS5, which is similar to DS1 but 

independently prepared. 

Fig.  8 Comparison of the four models (same network trained on datasets 

DS1 – DS4) tested on dataset DS6, which is similar but larger than DS1, 

independently prepared. 



B. Parameter impact scan 

The impact of varying different parameters is shown in 

the diagrams below, Fig.  9 and Fig.  11. Note that we are testing 

our two trained models on data with parameter variations it 

has never seen. Starting with the airport location, we see a 

dramatic drop in performance (AP) when shifting from 

Lisbon Airport (LPPT) to Paris-Orly (LFPO) and even worse 

when testing with Hamad International Airport (OTHH), 

where performance plummets to fractions of that of the 

reference airport. In Fig. 10 we include visual samples of the 

three airports as rendered in X-Plane and subjectively one 

might argue that LPPT and LFPO are more similar than LPPT 

and OTHH. 

 

Considering the other parameter variations, the results are 

far less dramatic. Although several parameters are clearly 

affecting the performance, not all are equally important from 

an AP score drop point of view. If breaking this down further  

the attitude variations were found to contribute to dataset 

diversity at close distances, whereas environmental 

conditions (clouds, time of day) had a greater diversifying 

effect over larger distances. For more details, see Tagebrand 

and Gustafsson Ek [16]. 

 
Fig.  10 For reference, we include samples of each airport environment. (a) 

is sampled from Lisbon Airport, (b) from Hamad International Airport and 

(c) from Paris-Orly Airport. 

 

 
Fig.  11 Two models have been trained on datasets DS3 and DS4 

respectively and then both tested on datasets DS7 – DS11. 

C. Synthetic real data mixing 

The results of mixing the real-world data with the 

corresponding synthetic data can be seen in Table III 

represented as the mean AP score achieved by the detector.  

Table III also contains the results from training with only 

real-world data as a baseline reference. We observe an 

increase in performance across all datasets when pre-training 

on the synthetic datasets before fine-tuning, averaged on the 

10 cross validation iterations. Fig.  12, Fig.  13 and Fig.  14 

illustrate the distribution of the performance (from the cross-

validation scheme) of the detector using boxplots for the two 

car datasets and the data set in the aviation domain. We can 

conclude that the performance difference in the automotive 

domain in terms of the median AP is statistically significant 

under a 2-sided Wilcoxon signed-rank test at p = 0.05. The 

null hypothesis that their median performance is the same can 

therefore be rejected with confidence. However, the 

performance improvement that we observe in the aviation 

domain is not statistically significant under the same 

statistical hypothesis test. More details on these results are 

presented by Haddad [17]. 

TABLE III MEAN AVERAGE PRECISION  RESULTS OF 

SYNTHETIC DATA AND DOMAIN ADAPTED DATA 

EXPERIMENTS. 

Dataset RD SD + RD SD (DA) + RD Legend: 

RD: Real Data 

SD: Synthetic 

Data 
DA: Domain 

Adaptation 

transformed 

Aviation data 78.53 79.47 N/A 

Cityscapes 45.36 47.17 46.19 

KITTI 62.97 63.41 63.63 

 

Fig.  9 Two models have been trained on datasets DS3 and DS4 
respectively and then both tested on datasets DS12 (Hamad Airport) and 

DS13 (Paris-Orly Airport).  



 
Fig.  12 Average Precision results for aviation domain dataset (across all 10 
experiment folds in cross-validation). For this dataset, it was not possible to 

assert the performance increase with statistical significance. 

 
Fig.  13 Average Precision results for automotive domain Cityscapes 
dataset (across all 21 experiment folds in cross-validation). For this dataset, 

it was possible to assert the performance increase with statistical 

significance when comparing RD and RD+SD models (gray vs green box). 
 

 
Fig.  14 Average Precision results for automotive domain KITTI dataset 

(across all 10 experiment folds in cross-validation). For this dataset, it was 
possible to assert the performance increase with statistical significance 

when comparing RD and RD+SD models (gray vs green box). 

D. Domain adaptation methods for data augmentation 

Table III shows how using the domain adapted synthetic 

data (SD(DA)) for pre-training compares to not using any DA 

(SD). We observe a decrease in performance on the 

Cityscapes dataset and an improvement in performance on 

the KITTI dataset, which is also observed in Fig.  13 respective 

Fig.  14 when comparing the green and the purple box plots. 

Although we observe an improvement when utilizing DA on 

the KITTI dataset, we cannot reject the null hypothesis that 

the median performance between using and not using DA on 

the synthetic data is the same. 

Some visual examples of domain adaptation are shown 

for Synthetic CARLA domain to real-world KITTI domain 

(Fig.  15) as well as Synthetic CARLA domain to real-world 

Cityscapes domain (Fig.  16) for visual reference. 

 
Fig.  15 Domain adaptation transformation from simulated environment 
with the CARLA simulator (top) to the real-world captured KITTI domain. 

Presumably, black cars are more common in real-world German cities than 

in our simulations where vehicle color was uniformly randomized. 

 
Fig.  16 Domain adaptation transformation from simulated environment 

with the CARLA simulator (left) to the real-world captured Cityscapes 

domain (German cities). 

IV. RELATED WORK 

Fremont et al. [6] propose the Scenic probabilistic 

language and describe the use of this to find corner cases in 

the automotive domain. Schäfer et al. [4] describe the 

development of OpenSky, which is a network of ADS-B 

sensors, based on low-cost hardware and built with the 

intention of helping researchers perform big data analysis 

within the aviation domain. Adrien et al. [1] propose a real-

to-virtual cloning method resulting in the Virtual KITTI 

dataset. They also address training on synthetic data, fine-

tuning on real-world data and find it to improve performance 



in their automotive experiments. Domain adaptation is 

investigated in several fields. Wang et al. [18] show 

successful adaptation of visible images to thermal infrared in 

automotive traffic scenarios, Palladino et al. [19] use the 

same technique for adapting related image domains in MR 

medical imaging, whereas Choi et al. [20] presents StarGAN, 

allowing multi-domain image-to-image translations. Richter 

et al. [23] use domain adaptation to enhance the photo-

realism of computer-generated graphics by extracting extra 

information from the generated images such as surface 

normals, distance, albedo, glossiness and extra lighting 

information. 

V. DISCUSSION 

It is clear from our results that the airport location is the 

one parameter most important to vary to achieve a 

generalizing detection model for our use-case. Other 

parameters include weather effects like clouds and the dusk-

and-dawn-like effects we see when varying the time of day of 

our flights. 

It should be noted that the ADS-B data sourced for 

generating these datasets is applicable to Airbus A320 aircraft 

only. It should be tested whether these results still hold for 

other aircraft types. Weather and time of day show greater 

impact on distant detections, attitude more so on close-up 

scenarios. Other environmental conditions than clouds and 

time-of-day should be considered, in particular rain and fog. 

Rain was in the scope of our initial effort, but due to 

unforeseen simulator issues, rainy images did not render 

correct textures and hence this part had to be discarded. 

Extending the cloud variation to include more sinister 

weather conditions like different types of fog would add more 

important data to our parameter scan. 

Although the investigated sampling methods did not incur 

large differences in performance when compared, they 

importantly provide the means for applying the curating 

method to our use-case by parametrizing the input data. 

Paired with parametrically controlled simulation scenes we 

can start the iterative process of completing the dataset for 

our use-case. As found in our parameter scan, the airport 

location parameter was the lowest hanging fruit, and with 

relative ease we can teleport to a new location, in the sense 

that we use the statistical properties (distributions) drawn 

from one ADS-B dataset (belonging to one airport) and then 

apply on a different airport, enabling the use of this method 

for data generation also where ADS-B data is more scarce. 

We were also able to, using the results from the sampling 

method models, hypothesize that great variation in position is 

important for training a more general model. 

Synthetic data collected from simulators showed 

promising results in both aviation and automotive domains, 

even though the performance improvement in the aviation 

domain was not statistically significant in our experiments.  

We hypothesize that we would observe more significant 

performance improvements if we evaluated the detector on 

real-world aviation data from a runway that we have not fine-

tuned the detector on already for example. One can argue that 

doing so is a more realistic real-world scenario since we 

cannot assume that we will have access to images of all 

runways in our training set if we were to deploy such a model 

in the future.  

Domain Adaptation as a data augmentation method did 

not show improved results, which might be due to problems 

getting the model to converge well enough for the domain 

translation step. We did observe problems with some images 

being translated into non-existing scenes, such as cars 

melting into the pavement or vanishing backgrounds and 

buildings. We did explore other methods for DA initially but 

resorted to CycleGAN due to availability and its success in 

previous work. DA using GANs is nevertheless a promising 

field and deserves being studied in the future in the context 

of increasing realism of synthetic images for object detection.  

VI. CONCLUSIONS 

The method of scene randomization works really well in 

the automotive domain, due to the ease of controlling the 

simulator environment. The Scenic tool for handling scene 

randomization is an idea worth expanding into other domains. 

We have successfully done so for the aviation domain, by 

including several aircraft and environment parameters, 

however extending this to also control ground vehicles, other 

aircraft and other scene-impacting parameters would allow 

further diversification of the runway environment. 

An obvious next step is to generate a diverse training 

dataset where many of these parameters are varied, and verify 

whether this in fact does boost detector performance. The 

sampling methods investigated in this paper have parameters 

such that we can control the width of the approach flight paths 

to increase diversity where needed. 

Using this more diverse synthetic dataset for the aviation 

domain would enable revisiting some of the other 

experiments, resulting in more precise outcomes. Sourcing 

more real-world data from the aviation domain would greatly 

benefit such future experiments.  

We proposed a data curating method in this paper with 

steps to systematically and iteratively build a complete 

dataset for a specific use-case’s ODD in the synthetic data 

domain. We showed that training on synthetic data always 

improves the performance of the model, but real-world data 

will still always be needed as a last fine-tuning step. Domain 

adaptation is a cumbersome tool for augmenting images and 

this technique did not show significant improvements to our 

detection results, but further investigation is needed before 

any firm conclusion can be reached regarding this method. 
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