
en

lation
etrics
trics,

s of the
ses con-

tools
 [3].
sed as

riented
 and
vel-

. SDE
new
e hier-
s are
Change Measurements in an SCM process

Ivica Crnkovic, ivica@sw.seisy.abb.se, ABB Industrial Systems, Västerås, Swed
Per Willför, dat95pwr@idt.mdh.se, Mälardalens Högskola, Västerås, Sweden

Abstract. An SCM database contains data which can be used as input for Soft-
ware Metrics. Both data for Size-Oriented Metrics, and information for Process-
Oriented Metrics are available from SCM systems. This paper describes mea-
surements taken from an SCM database used at ABB Industrial Systems. The
SCM tool is change-oriented and collects information about changes in Change
Request (CR) documents. As CRs are under version control, the measurements
taken on them give information not only about the amount and type of changes
but also about the change process behavior. The measurements, generated from
CRs by a tool, are used during the development process and in the final analysis
of the project. The paper presents some of the measurements showing typical
cases of lifecycle models.

1 Introduction

There are a number of different Software Metrics and they can be classified in re
to the relevant development process, products or resources [1]. Typical product m
are size metrics (number of lines of code, number of documents, etc.), quality me
etc. Process metrics are a result of measurements related to the different phase
development process. Process measurements help us to understand the proces
cerned, to control them, improve and predict them [2].

Can SCM tools provide information for process metrics? The answer is yes for
which integrate a Process Management with SCM, for example ClearGuide
Change-oriented tools provade information about changes which can also be u
input to process measurements.

This paper describes a metrics tool and measurements performed on a change-o
SCM tool, designated Software Development Environment (SDE), developed
used at ABB Industrial Systems [4]. Different metrics showing the behavior of de
opment projects are presented.

2 Change Management in SDE

2.1 SDE basic characteristics

SDE is a software package intended for use in the development of large systems
is based partly on RCS[5]. Using slightly modified RCS commands and certain
commands related to RCS files, SDE enables easy and fast browsing through th
archical system structures and versioned files. The SDE and RCS command
encapsulated in GUI-applications.

2.2 Change Management

SDE provides support in the management of Software Development Processes.
Change Management is a part of the support. Any change in SDE is under change-set
control. A basic item of SDE Change Management is a Change Request (CR), an
entity which describes a logical change to be made in a software system. Change
Requests are created from Requirement Specifications or from defect reports. During
the development process CRs collect information about physical changes made in the
system: When a developer checks in a file, he/she refers to a related CR. The file
name, file version and log message are registered in the CR. The final version of a CR
includes both a description of a logical change and information about all modified file
versions. The references between CRs and changed files are controlled by the SDE
tools. No change can be introduced in the software without referring to a CR.

A Change Request passes through different states during the development process.
When a CR is created it is in the state Init. During the work sessions it passes through
other states, such as Exp, Implemented, Tested and reaches the Terminated state. The
CRs integrated in a product release are in the state Released. Figure 1 shows different
states of a CR in a development process.

Fig. 1. Change Requests in a development process

Change Requests are under version control. Each time a CR is changed it is automati-
cally checked out and after the modification, checked in. CRs are saved in an RCS
directory located in a CR library which contains all logical changes of a software ver-
sion. As a versioned file under RCS control, a CR includes not only the change
description and list of changed file versions, but also attributes from RCS: a state, a
responsible user (author) date of change and other RCS attributes.

Change Requests are implemented as text files which follow a specific syntax. The
header part of a CR includes keywords such as Priority and CR Type, creation date and
termination date. A list of files being checked in follows. The body part includes a
description of the change and log messages of the files checked in.

Exp ImplInit

Complete

Test

Test

Term

Approve

Rel

ReleaseModify files
changes (check out/in)

Initiate
project

CR states

3 CR Metrics

The main purpose in using CR metrics is to increase the predictability of the behavior
of software development projects. The second purpose is to obtain an overview of the
current project status. To achieve these objectives we need answers to the following
questions:

- How many changes and types of changes have been made, how many changes
should be made?

- What is the dynamic of the changes? How often are further changes required and
how does the project respond to them?

- How are changes distributed among developers? What is the current state of
change per developer? How many changes has a developer to implement?

- How did the change process look in the projects completed previously?

CRs contain data which can be used for providing the answers. The number of
changes, their states, classification according to priority, type or function, number of
changed files, etc. is one type of possible metrics. Since CRs are under version control,
the history of every change is also available. The states of all changes are available for
the whole period of the development process. The state changes data in a time period is
input to another type of metrics - process metrics. There is also information about the
authors of changes introduced in CRs. It is therefore possible to obtain metrics for the
entire development project and also for every member.

A CR-Metrics application collects data from CR libraries, by parsing CRs. Information
about every CR version is taken and saved in a spreadsheet. The measurements are dis-
played as embedded Excel objects [6] in the form of different graphs. All measure-
ments are performed in a similar way. All versions of all CRs are parsed and different
criteria are used for extracting data.

The CR-Metrics application presents the following measurements:

Current status The states of the latest CR versions for each period are shown.

Accumulated CRs Completed and incomplete CR are sorted according to date.

New CRs The graph shows the number of new CRs in a time interval.

Latest Changes The CRs being changed during a given period are presented.

New and com-
pleted

The number of new and the number of completed (“input” and
“output”) CRs per time interval are shown.

CR life length A distribution of CR life lengths is shown.

CR Type CRs are classified according to CR types (Error, Improve-
ment, etc.).

Priority and State A classification according to the change priority for com-
pleted and incomplete CRs is shown.

4 Measurements

Some of the metrics for a development project designated WinSDE 1.1-0 are presented
here. The graphs show characteristics of the development process, i.e. the dynamics of
change introduction and their completion.

The WinSDE 1.1-0 project uses a development model which is a combination of the
spiral model and the evolutionary prototyping model [7]: The development is per-
formed as a number of iterations, each consisting of several phases: prototyping, eval-
uation of different alternatives, refining the prototype, developing and building the
deliverables and a plan for the next iteration. An implication of this model is a constant
growth of the number of CRs - new requirements are defined during each iteration
(refinements) and at the beginning of the new iteration (new functions). In the last iter-
ation the number of new CRs describing new functions declines, but new CRs related
to the release activities are still being created. The test activities with CR termination
become more intensive at the end of each iteration, but especially at the end of the
project. The unsolved CRs are postponed to a succeeding release.

The current status graph (Figure 2) shows the number of CRs created during the
project. CRs are classified according to their states. The graph shows how many
changes have been completed and how many remain open.

The example in the graph shows that the number of new CRs grows constantly. The
number of completed CRs also increases. The number of open CRs is approximately
the same during the entire project except during the last phase. Some steps in complet-
ing CRs can be seen - when the time for a new deliverable approaches, many CRs are
terminated.

Fig. 2. Current states of CRs for a project using the Spiral model

WinSDE 1.1-0 - Current status

0

20

40

60

80

100

120

96-
12

97-
01

97-
02

97-
03

97-
04

97-
05

97-
06

97-
07

97-
08

97-
09

97-
10

97-
11

97-
12

C
R

s

Completed Open Resting New

Figure 3 shows the same type of graph for another project which followed the Water-
fall model. In the project initiation phase, all the requirements have been defined and
CRs have been created. The graph shows how the work has improved. The number of
open CRs increases, and in the final, test phase, the CRs are being completed.

Fig. 3. Current states of CRs for a project using the Waterfall model

Figure 4 shows the distribution of the times taken in making changes. The time on the
X-axis is the time interval between the reception of the CR and the completion of the
change. The Y-axis shows the number of changes which are completed in the specified
period. The graph indicates that most of the CRs are completed within six months, and
it suggests that it is acceptable to deliver the product modified in that period without
waiting further six months for making the remaining changes planned in the project..

Fig. 4. Distribution of times for making changes

C++ Complib 3.0 - Current status

0

5

10

15

20

25

30

95-08 95-09 95-10 95-11 95-12 96-01

C
R

s

Completed Open Resting New

WinSDE 1.1-0 - Completion time
distribution

0
5

10
15
20
25

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Months

C
R

s

 pro-

inger
5 Conclusion

The measurements shown in this paper illustrate the possibility of using an SCM data-
base not only for size metrics but also for process metrics. The process metrics should
lead to a better understanding of development processes and help in making appropri-
ate decisions in process management. Experience in the use of the CR-Metrics tool at
ABB Industrial Systems remains limited because of its recent development. However,
a case study has shown very similar patterns of metrics: Three projects for the develop-
ment of similar products using the Spiral model have been measured, and the results
from CR-metrics have shown surprisingly many similarities. The total number of CRs
was three times greater than the number of CRs at the outset. The number of postponed
CRs was approximately 20% of the total number of CRs (which suggests a weakness
in the project planning). The number of open, i.e CRs being processed was constantly
about 6 per developer during the development process in all projects. The most inter-
esting fact is that the shapes of the curves in all projects were similar.

The idea is to use CR-metrics during execution of the project when both the project
manager and project members can follow up the project status. The final measure-
ments can be taken at the completion of the project. The metrics can be compared with
those from other projects and related to other facts. One advantage of the tool is the
possibility of collecting data from earlier projects, as all data concerned is under SCM
control.

References

1. The Software Measurement Laboratory, University of Magdeburg,
http://irb.cs.uni-magdeburg.de/sw-eng/us/metclas/index.shtml

2. William A Florac, Robert E. Part, Anita D. Carleton - Practical Software Measure-
ment: Measuring for process management and Improvement, Software Engineering
Institute, Carnegie Mellon University, CMU/SEI-976-HB-003, April 1997

3. David B. Leblang, Managing the Software Development Process with ClearGuide,
Software Configuration Management ICSE’97 Workshop, Boston, May 1997,
ceedings, Springer Verlag, ISBN 3-540-63014-7, pages 66-80

4. Ivica Crnkovic, Experience with Change-Oriented SCM Tools, Software Configu-
ration Management ICSE’97 Workshop, Boston, May 1997, proceedings, Spr
Verlag, ISBN 3-540-63014-7, pages 222-234

5. Walter F. Tichy, RCS - A System for Version Control, Software and Practice
Experience, 15(7):635-654, 1985

6. Microsoft Visual Basic 5.0 ActiveX Controls Reference, 1997,
ISBN 1-57231-508-3

7. Steve McConnell, Rapid Development: timing wild software schedules, Microsoft
Press, 1996, ISBN 1-55615-900-5

