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Abstract—Numerous studies have exploited the potential of
Artificial Intelligence (AI) and Machine Learning (ML) models
to develop intelligent systems in diverse domains for complex
tasks, such as analysing data, extracting features, prediction,
recommendation etc. However, presently these systems embrace
acceptability issues from the end-users. The models deployed at
the back of the systems mostly analyse the correlations or depen-
dencies between the input and output to uncover the important
characteristics of the input features, but they lack explainability
and interpretability that causing the acceptability issues of intel-
ligent systems and raising the research domain of eXplainable
Artificial Intelligence (XAI). In this study, to overcome these
shortcomings, a hybrid XAI approach is developed to explain
an AI/ML model’s inference mechanism as well as the final
outcome. The overall approach comprises of 1) a convolutional
encoder that extracts deep features from the data and computes
their relevancy with features extracted using domain knowledge,
2) a model for classifying data points using the features from
autoencoder, and 3) a process of explaining the model’s working
procedure and decisions using mutual information to provide
global and local interpretability. To demonstrate and validate
the proposed approach, experimentation was performed using
an electroencephalography dataset from road safety to classify
drivers’ in-vehicle mental workload. The outcome of the experi-
ment was found to be promising that produced a Support Vector
Machine classifier for mental workload with approximately 89%
performance accuracy. Moreover, the proposed approach can also
provide an explanation for the classifier model’s behaviour and
decisions with the combined illustration of Shapely values and
mutual information.

Index Terms—autoencoder, electroencephalography, explain-
ability, feature extraction, mental workload, mutual information

I. INTRODUCTION

Recent developments of Artificial Intelligence (AI) and
Machine Leaning (ML) have been embraced in almost every
domain in the form of automated and semi-automated systems.
However, with the growing popularity of these systems, the
AI/ML algorithms which act behind the systems, still endure
acceptability issues due to the lack of explanations on the
algorithms’ inference mechanism and decisions. Realising
the dire need of explaining or interpreting AI/ML model-
based intelligent systems, the research domain of eXplainable
Artificial Intelligence (XAI) emerged. Currently, XAI research
is immensely spreading to develop methods of generating
explanations to enhance the local and global interpretability

of AI/ML models. Global interpretability refers to interpreting
any model’s inference mechanism, whereas local interpretabil-
ity indicates the understandability of a specific decision from
an AI/ML model [1]. Several tools are already proposed by
researchers to generate explanations and interpretability of
AI/ML models, such as Local Interpretable Model Agnostic
Explanations (LIME) [2] and SHapley Additive exPlanations
(SHAP) [3]. However, the understandability of the expla-
nations from these tools are highly dependent on domain
expertise.

Many fields from diverse domains have already been fa-
cilitated by XAI research, such as, image processing [4],
anomaly detection [5], predictive maintenance [6] etc. On
the contrary, safety-critical domains concerning human life,
e.g., road safety has received less attention from the XAI
researchers. Very few evidences are found in the literature
like explaining motorbike riding pattern [7], whereas the depth
of research in XAI is still shallow for drivers. However,
AI/ML approaches had been well investigated for in-vehicle
road safety features such as, drivers’ drowsiness detection
and intelligent speed assistance through utilising vehicular
signals, neurophysiological signals, etc. Specifically, neuro-
physiological signals, e.g. electroencephalography (EEG) and
electrocardiography (ECG), are one of the major tools for
assessing a driver’s in-vehicle performance [8]. The major
challenge of utilising EEG signals in an AI/ML approach is the
feature extraction procedure that demands high involvement
of experts and manual computation. Automatic approaches
are already proved to be efficient in extracting features from
EEG leveraging the computation strength of convolutional
neural network (CNN) based autoencoder [9] but lacks in
explainability of the extracted features.

Autoencoders of different architectures have been exploited
in several studies to explain diverse tasks, like forecasting
energy demand [10], classifying time series [11], detecting
anomalies [5] and changes in temporal images [12], etc.
Moreover, autoencoder has been used to enhance the quality
of explanations from different explainability tools [13]. All
of these works contribute to explain decisions or enhance
explanations but no evidence was found on explaining the deep
features that can be extracted using autoencoder.

One of the major challenges of explaining model and/or
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decision is to extract the underlying relation between the input
and output. Recently, the concept of mutual information has
drawn attention of XAI researchers due to its naive nature
of quantifying relevancy between two random variables [14].
Upon realising the potential of mutual information and the
urge of explaining features to induce global interpretability
in AI/ML models, this study proposes a hybrid approach of
feature explanation using mutual information associating the
explanation generated by popular explainability tool SHAP.
The idea solely depends on the fact that the mutual information
is a proper mean of domain knowledge as demonstrated in sev-
eral recent studies on recommender systems [15], automated
fault diagnosis [16], feature extraction [17] etc.

Summarising, to expand the research domain of XAI and
contribute to road safety, this study aims at utilising the EEG
signals recorded from car drivers’ to demonstrate the proposed
concept of explaining autoencoder extracted features using
mutual information, followed by explaining mental workload
classification to achieve local and global interpretability. To
achieve the aim of this study, two major objectives are set and
stated below:

• To propose a novel approach of using mutual information
to explain autoencoder extracted EEG features.

• To demonstrate a hybrid methodology of explaining men-
tal workload classification from the autoencoder extracted
features using SHAP and mutual information to induce
local and global interpretability.

The remaining parts of this article are arranged as follows,
Section II contains description of the materials and methods.
In Section III, obtained results are presented discussed thor-
oughly. Finally, conclusion of this study and possible research
directions are stated in Section IV.

II. MATERIALS AND METHODS

A. Data Acquisition and Preprocessing

The data, specifically the EEG signals, that was analysed in
this study was collected under the framework of the project
BrainSafeDrive1, through an natural driving experiment in a
route around the urban areas of the periphery of Bologna,
Italy. During the experiment, 20 male participants drove along
a 2.5km long circuit route twice in normal and rush hour
randomly for three laps. Moreover, each circuit consisted of
easy and hard segments containing road through busy indus-
trial area and comparatively quite residential area, respectively.
The experimental road, hour and segments were selected to
induce the drivers with different levels of workload. Additional
description of the experimental protocol are available in the
articles- [18] and [17].

To record EEG signals, the digital monitoring BEmicro
system (EBNeuro, Italy) was used with active 15 EEG
channels (FPz, AF3, AF4, F3, Fz, F4, P5, P3, Pz,
P4, P6, POz, O1, Oz and O2) placed according to the
10 − 20 International System. The sampling frequency was
256Hz and the channel impedance was kept below 20kΩ.

1http://brainsafedrive.brainsigns.com/

During the experiments raw EEG signals were recorded and
the processing was applied offline. In particular, each EEG
signal has been firstly band-pass filtered with a fourth-order
Butterworth infinite impulse response (IIR) filter (high-pass
filter cut-off frequency: 1Hz, low-pass filter cut-off frequency:
30Hz). Afterwards, ARTE (Automated aRTifacts handling in
EEG) algorithm [19] was deployed to remove various artefacts
such as, drivers’ movements and environmental noises, from
the recorded EEG signals. Finally, the EEG signals were
sliced into epochs of 2s (0.5Hz of the frequency resolution)
length using sliding window technique with a stride of 0.125s
keeping an overlap of 0.825s between two continuous epochs.
The windowing technique was performed to obtain higher
number of observations in comparison with the number of
variable and to contain the stationarity condition of the EEG
signals [20].

B. Feature Extraction

The feature extraction process was performed from two
different perspectives. First, the features were extracted based
on the Power Spectral Density (PSD) to incorporate domain
knowledge in the feature set. In the second approach, convolu-
tional autoencoder was developed to extract features from the
EEG signals to contain deeper insights of the data and reduce
human involvement. Both the approaches are briefly described
below.

1) Features from Power Spectral Density: From the clean
and segmented EEG signals, the PSD has been calculated
for each EEG channel for each epoch using the Fast Fourier
Transformation (FFT) and a Hanning window of equal epoch
length, i.e., 2s. Then, the EEG frequency bands of interest
has been defined for each subject by estimating the Individ-
ual Alpha Frequency (IAF) value [21]. The IAF value was
determined as the peak of the general alpha rhythm frequency
(8−12Hz). Subsequently, average frequency of the theta band
[IAF − 6, IAF − 2], the alpha band [IAF − 2, IAF + 2]
and the beta band [IAF + 2, IAF + 18], over all the EEG
channels were calculated. Finally, a spectral feature vector
containing 45 features (15 EEG channels × 3 Frequency bins)
has been obtained from the frequency bands directly correlated
to the mental workload, as manifested in the previous scientific
literature [8]. In fact, one of the prime biomarkers of human
mental workload is the ratio between Frontal Theta and
Parietal Alpha spectral content [8].

2) Features from Convolutional Autoencoder: Tradition-
ally, the convolutional autoencoder architecture consists of
two segments, (i) encoder and (ii) decoder. A number of
convolutional layers associated with pooling layers form the
encoder segment to find the deep hidden features in the
original signal. On the contrary, Decoder contains several
deconvolutional layer to reconstruct the input signal from the
features through minimising the residuals. The autoencoder
trains through the process of encoding and reconstruction of
predefined epochs and batch size. Here, several tweaking of
the number of convolutional layers and associated parameters
were performed and the encoder was finalised with three
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convolutional layers and three max-pooling layers followed
by a flattening layer. Table I presents the summary of the
layers of the encoder with a total of 732 parameters to train.
The output shape of of the input layer is (512, 16, 1) that
contains 1 clean EEG signal epoch of length 2s (at 256Hz
sampling frequency) from 15 channels and one channel was
introduced with zeros to facilitate the design of the encoder.
The decoder was designed in the inverse order of the structure
of the encoder containing four convolutional layers and three
upsampling layers facilitating the depooling mechanism. In
each of the convolutional layers, batch normalisation with
ReLU activation function was invoked with zero padding. The
developed autoencoder utilised RMSprop optimisation with a
learning rate of 0.002 and binary cross-entropy as the loss
function. Finally, 32 features were extracted from the cleaned
EEG epochs in accordance to the output shape of the flattening
layer of the encoder.

TABLE I
SUMMARY OF THE DESINGED CONVOLUTIONAL ENCODER.

Layer Type Output Shape No. of Parameters
Input (512, 16, 1) 0
Convolutional (256, 8, 16) 80
MaxPooling (128, 4, 16) 0
Convolutional (64, 2, 8) 520
MaxPooling (32, 1, 8) 0
Convolutional (16, 1, 4) 132
MaxPooling (8, 1, 4) 0
Flattening (32) 0

After the preparation of feature sets, labels were added
to the feature vectors according to the experimental road
segment and time of driving based on the experimental design.
Specifically, the feature vectors extracted from driving sessions
on hard road segment during rush hour was labelled as high
mental workload. On the other hand, low mental workload
labels were added to the features extracted from the data
recorded during normal hour while driving on easier road
segment as prescribed by the experts in the experimental
protocol [17], [18].

C. Explanation of Extracted Features

The features extracted from the convolutional autoencoder
are based on the underlying characteristics of the input data,
in this study, the EEG signals. To understand and explain the
features, mutual information was used to prove the relevance
between the spectral features and the autoencoded features.
The mutual information between two random variables is a
metric to quantify the mutual dependence between the two
variables. For measuring linear and nonlinear correlation, it is
an ideal criteria. The mutual information has been considered
as the base for many well-known methods, such as hidden
Markov models and decision trees [16]. In fact, a recent
study showed the use of mutual information in developing
combined feature set from correlated features from different
measurements [17].

Theoretically, If X and Y are continuous random variables
where X,Y ∈ Rd, the mutual information between X and Y
is termed as I(X,Y ) and formulated as shown in equation 1
[14].

I(X,Y ) =

∫
y

∫
x

p(y, x) log2
p(y, x)

p(y) p(x)
dx dy (1)

In this study, Fs and Fa were considered for spectral
and autoencoder extracted features, respectively depicting X
and Y as stated in equation 1. Thus, computing the mutual
information I(Fs, Fa) generates the means of explaining the
autoencoder extracted features by the spectral features as a
substitute of domain knowledge. Afterwards, for better under-
standing of the explanation, the mutual information values are
illustrated using Chord diagram [22] for the whole model or
a single decision.

D. Mental Workload Classification

In order to classify drivers’ mental workload from EEG
features, Random Forest (RF) and Support Vector Machine
(SVM) have been invoked leveraging the outcome of the
previous studies- [17] and [9]. In the cited studies, authors
compared the selected classifiers with several other AI/ML
models such as, k-Nearest Neighbours (kNN), Multi-Layer
Perceptron (MLP) and Logistic Regression and reported maxi-
mum accuracy by the selected ones in the binary classification
of drivers’ mental workload into high and low. However, in
this study, different kernel functions, e.g., Linear, Polynomial,
Radial Basis Function (RBF) and Sigmoid kernels for SVM
have been deployed to investigate and report the change
in performance metrics while classifying mental workload.
Again, the varying number of estimators and depths were
investigated while RF model was trained. After training and
validating with 5-fold cross-validation of the aforementioned
variants of the models, the classifiers resulting maximum
performance accuracy were chosen to train the concluding
model and generate explanation at global and local scope.

E. Explanation of Mental Workload Classification

To explain the SVM classifier trained to classify mental
workload from autoencoder extracted features, open-source
explainability tool SHAP was used. At first, explanations were
generated at global and local scope by invoking the built-
in functions. The main components of the explanations are
the Shapley values associated with the autoencoder extracted
features that control the behaviour of the model as a whole and
for each individual classification tasks. Furthermore, following
the method described in Section II-C, with pre-computed
mutual information values the Chord diagrams were drawn
that illustrates the relevance between the autoencoder extracted
features and the grouped spectral features, i.e., Theta, Alpha
and Beta on the basis of Frontal and Parietal scalp location.
In Section III-B, Fig. 1 and 2 presents the global and local
explanations, respectively.
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Fig. 1. Global explanation of mental workload classifier model with SHAP values with bar plot (left) and mutual information illustrated with Chord diagrams
for six spectral feature groups (right).

III. RESULTS AND DISCUSSION

The outcome of this study is presented in this section
from two different aspects- mental workload classification and
explaining the trained classifier model followed by explaining
a single decision. For each of the aspects, the results are
discussed in corresponding subsections.

A. Mental Workload Classification

For mental workload classification, the analysed dataset
initially contained 65507 instances, where 36630 and 28877
instances were labelled as low and high mental workload,
respectively. As the complete dataset were substantially large,
the instances of low were randomly down-sampled to match
the number of instances labelled as high that leaves the final
dataset size to 57754. Both the RF and SVM classifiers were
trained and cross validated with 5-fold cross-validation. After
the training phase, the performance metrics were calculated
with the hold-out dataset, where the total number of observa-
tions was 11550 and low mental workload was considered as
the positive class. Table II presents the performance metrics
of the mental workload classifiers. The performance metrics
were selected depending on the balanced characteristics of the
dataset. From the summary, it was observed that SVM with
RBF kernel produced the highest classification accuracy. On
the other hand, linear kernel came out to be most unsuccessful
classifier in classifying mental workload. This signifies the
non-linear characteristics of the EEG signals.

TABLE II
PERFORMANCE SUMMARY OF MENTAL WORKLOAD CLASSIFICATION

USING RF AND SVM CLASSIFIER MODEL ON THE HOLDOUT TEST SET.

Classifier Accuracy Precision Recall F1 score
RF 88.59% 0.9995 0.7723 0.8713
SVM 89.45% 0.9831 0.7876 0.8746

B. Global and Local Explanation

Performing the approaches described in Section II-C and
II-E, the explanations are generated using SHAP. At first a
summary plot has been drawn using built-in functions that
illustrate the prime features inferring the model’s decision in
terms of Shapley values. Furthermore, the spectral features
associated mutual information values to the autoencoder ex-
tracted features are illustrated using Chord diagram to generate
global explanation as illustrated in Fig. 1. For a single instance,
local explanation is generated using SHAP values contributing
to the decision (Fig. 2). Here, similar association between the
autoencoder and spectral feature groups can also be shown as
it is illustrated in global explanation.

Currently, several explainability tools are available to gen-
erate explanation for models’ decisions, in other terms, at
local scope. LIME is one of the methods to produce local
explanation. However, here SHAP has been used for en-
hancing interpretability of mental workload classifier model
since it has the capability to produce both local and global
explanation that aligns with the objective of this study. But,
the difficulty of understanding the Shapley values associated
with the autoencoder extracted features for the end users had
been overcome using spectral feature groups of EEG signals.
Mutual information values, in naive term, relevancy between
the spectral features and autoencoder features were calculated
followed by the representation of Chord diagrams to facilitate
the domain experts.

IV. CONCLUSION

The contribution presented in this article is twofold: (1)
proposal and illustration of a novel approach of using mutual
information to explain EEG features extracted by convolu-
tional autoencoder; this approach, to our knowledge, is the
only procedure to explain the autoencoder extracted features;
(2) demonstration of explaining drivers’ mental workload
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Fig. 2. Example of a local explanation with SHAP.

classification at local and global scope, based on autoencoder
extracted EEG features using SHAP and mutual information.
In a broader terms, explaining EEG signal classification that
can be further adopted in other domains utilising the EEG
signals.

The experimental results of this study have been encourag-
ing, but there is space for improvements and further research.
In terms of deep learning techniques, investigating other
architectures, such as Recurrent Neural Network (RNN) as a
combined alternative to the working sequence of autoencoder
and RF or SVM classifier. As regards explainability, exploiting
similar parameters to mutual information for explaining the
features in more understandable form incorporating domain
knowledge. Moreover, improving the quality and form of
explanations both at feature and decision level through a
validation phase that involves experts and end users.
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