
 1

SaveCCM – a component model for safety-critical real-time systems

Hans Hansson1, Mikael Åkerholm1, Ivica Crnkovic1, Martin Törngren2
1Mälardalen Real-Time Research Centre, http://www.mrtc.mdh.se

Mälardalen University, Västerås, Sweden
{hans.hansson, mikael.akerholm, ivica.crnkovic}@mdh.se

2Mechatronics Division, Dept. of Machine Design, KTH, Stockholm, martint@kth.se

Abstract
Component-based development has proven effective

in many engineering domains, and several general
component technologies are available. Most of these
are focused on providing an efficient software-
engineering process. However for the majority of
embedded systems, run-time efficiency and prediction
of system behaviour are as important as process
efficiency. This calls for specialized technologies.
There is even a need for further specialized
technologies adapted to different types of embedded
systems, due to the heterogeneity of the domain and the
close relation between the software and the often very
application specific system.

This paper presents the SaveCCM component
model, intended for embedded control applications in
vehicular systems. SaveCCM is a simple model in
which flexibility is limited to facilitate analysis of real-
time and dependability. We present and motivate the
model, and provide examples of its use.

1. Introduction

Component-based development (CBD) is of great
interest to the software engineering community and has
achieved considerable success in many engineering
domains. Some of the main advantages of CBD are
reusability, higher abstraction level and separation of
the system development process from the component
development process. CBD has been extensively used
for several years in desktop environments, office
applications, e-business and in Internet- and web-based
distributed applications. The component technologies
used in these domains originates from object-oriented
(OO) techniques. The basic principles of the OO
approach, such as encapsulation and class
specification, have been further extended; the
importance of component interfaces has increased: a
component interface is treated as a component
specification and the component implementation is
treated as a black box. A component interface is also

the means of integrating the components in an
assembly. Component technologies include the support
of component deployment into a system through the
component interface. On the other hand, the
management of components’ quality attributes has not
been supported by these technologies. In the domains
in which these technologies are widely used, the
quality attributes have not been of primary interest and
have not been explicitly addressed; they have instead
been treated separately from the applied component-
based technologies. In many other domains, for
example embedded systems, CBD is utilized to a lesser
degree for a number of different reasons, although the
approach is as attractive here as in other domains. One
reason for the limited use of CBD in the embedded
systems domain is the difficulty to transfer existing
technologies to this domain, due to the difference in
system constraints. Another important reason is the
inability of component-based technologies to deal with
quality attributes as required in these domains. For
embedded systems, a number of quality attributes are
at least as important as the provided functionality, and
the development efforts related to them are most often
greater than the efforts related to the implementation of
particular functions. For development of vehicular
systems, CBD is an attractive approach, but due to
specific requirements of system properties such as real-
time, reliability and safety, restricted resource
consumption (e.g., memory and CPU), general-
purpose component models cannot be used. Instead
new component models that keep the main principles
of the CBD approach, but fulfil specific requirements
of the domain, must be developed.

This paper discusses the component model
SaveCCM, a part of SAVEComp, a component-based
development framework being developed in the project
SAVE (Component Based Design of Safety Critical
Vehicular Systems). The basic idea of SAVEComp is
to by focusing on simplicity and analysability of real-
time and dependability quality attributes provide
efficient support for designing and implementing
embedded control applications for vehicular systems.

 2

This is the first paper on SaveCCM, focusing on
structural issues, triggering of components, and timing
behaviour. Our aim is to also consider dependability,
though this is not the focus here.

The paper is organised as follows. Section 2 gives a
short overview of different component models used in
embedded systems. Section 3 briefly presents the
SAVE project, and Section 4 outlines the
characteristics of the considered application domain. In
Section 5, our component model SaveCCM is
presented, including textual and graphical syntax, as
well as a few illustrative examples. A larger and more
complete example from the vehicular domain is
provided in Section 6, and in Section 7 we summarize
and give an outline of future work.

2. Related work

In addition to widely used component technologies,
new component technologies appear in different
application domains, both in industry and academia.
We will refer to some of them: Koala and Rubus used
in industry and the research technologies PECT,
PECOS and ROBOCOP.

The Koala component technology [9] is designed
and used by Philips for development of software in
consumer electronics. Koala has passive components
that interact through a pipes-and-filters model, which
is allocated to active threads. However, Koala does not
support analysis of run-time properties.

The Robocop component technology [Jon03] is a
variant of the Koala component technology. A
Robocop component is a set of models, each of which
provides a particular type of information about the
component. An example of such a model is the non-
functional model that includes modeling timeliness,
reliability, memory use, etc. Robocop aims to cover all
aspects of a component-based development process for
embedded systems.

The Rubus Component Model [8] is developed by
Arcticus systems aimed for small embedded systems. It
is used by Volvo Construction Equipment. The com-
ponent technology incorporates tools, e.g. a scheduler
and a graphical tool for application design, and it is
tailored for resource constrained systems with real-
time requirements. In many aspects Rubus Component
Model is similar to SaveCCM; actually some of the
basic approaches from Rubus are included in
SAVEComp. One difference is that SAVEComp is
focused on multiple quality attributes and in-
dependences of underlying operating system.

PECT (Prediction-enabled Component Technology)
from Software Engineering Institute at CMU [12] [13]

focuses on quality attributes specification and methods
for prediction of quality attributes on system level
from attributes of components. The component model
enables description of some real-time attributes.
Compared with SAVEComp, PECT is a more general-
purpose component technology and more complex.

PECOS (PErvasive COmponent Systems) [6],
developed by ABB Corporate Research Centre and
academia, is designed for field devices, i.e. reactive
embedded systems that gathers and analyze data via
sensors and react by controlling actuators, valves,
motors etc. The focus is on nonfunctional properties
such as memory consumption and timeliness, which
makes PECOS goals similar to SaveCCM.

These examples show that there are many similar
component technologies for development of embedded
systems. One could ask if it would not be more
efficient to use a single model. Experiences have
shown that for many embedded system domains
efficiency in run-time resources consumption and
prediction of system behavior are far more important
than efficiency in the software development. This calls
for specialization, not generalization. Another
argument for specialization is the typically very close
relation between software and the system in which the
software is embedded. Different platforms and
different system architectures require different
solutions on the infrastructure and interoperability
level, which leads to different requirements for
component models. Also the nature of embedded
software limits the possibilities of interoperability
between different systems. Despite the importance of
pervasiveness, dynamic configurations of
interoperation between systems, etc. this is still not the
main focus of vast majorities of embedded systems.

These are the reasons why different application
domains call for different component models, which
may follow the same basic principles of component-
based software engineering, but may be different in
implementations. With that in mind we can strongly
motivate a need for a component technology adjusted
for vehicular systems.

3. The SAVE project

The long term aim of the SAVE [10] project is to
establish an engineering discipline for systematic
development of component-based software for safety
critical embedded systems. SAVE is addressing the
above challenge by developing a general technology
for component-based development of safety-critical
vehicular systems, including

 3

• Methodology and process for development of
systems with components

• Component specification and composition,
providing a component model which includes the
basic characteristics of safety-critical components
and infrastructure supporting component
collaboration.

• Techniques for analysis and verification of
functional correctness, real-time behaviour, safety,
and reliability.

• Run-time and configuration support, including
support for assembling components into systems,
run-time monitoring, and evaluation of alternative
configurations.
The main objective of SAVE is to develop

SAVEComp – a component-based development (CBD)
technology for safety-critical embedded real-time
systems (RTS). The primary focus is on designing
systems with components, based on component and
system models. The ambition is to develop a method
and infrastructure for CBD for safety-critical
embedded RTS, corresponding to existing general
component technologies, such as COM and JavaBeans.

4. Application characteristics

As mentioned above, the considered application
domain is vehicular systems. Within that domain we
are mainly considering the safety-critical sub-systems
responsible for controlling the vehicle dynamics,
including power-train, steering, braking, etc.

The vehicular industry has a long tradition of
building systems from components provided by
different suppliers. In the past these components have
been purely mechanical, but today many of the
components include computers and software. The
trend today is, on one hand, towards “intelligent”
mechatronics “light weight nodes”, such as actuators
including a microprocessor. On the other hand, there
are trends towards more integrated and flexible
architectures, where software components can be
freely allocated to “heavy weight” computer units
(Electronic Control Units; ECUs). One reason for this
is that the number of ECUs is growing beyond control
in a modern car (in the range of 100 in top of the line
models). Letting SW from several suppliers, related to
different sub-systems, execute on the same ECU has
several benefits, including reduced number of ECUs,
reduced cabling, reduced number of connection points
(essential for system reliability), reduced weight, and
reduced per-unit production cost. The downside is an
increased risk of interference between the different

sub-systems. Minimizing this risk and increasing
efficiency and flexibility in the design process is the
main motivation for SAVEComp and other efforts
currently in progress (e.g. the EAST/EEA and AutoSar
initiatives [1] [2]).

The safety-critical sub-systems we consider will in
the foreseeable future have the following character-
istics:
• Statically configured, i.e., the components used and

their interconnections will essentially be decided at
design or configuration time. Hence, the binding
will be static, as opposed to the dynamic binding
used in current component technologies.

• It will be essential to satisfy and provide proof of
satisfaction of not only the functional behaviour,
but also of timing and dependability quality
attributes.

• The timing and dependability quality attributes will
be strict, in the sense that they will be specified in
terms of absolute bounds that must be satisfied.

• There will be additional, less critical, less static
components executing on the same ECUs as the
critical ones. The focus of SAVE is however not on
these.

• The systems will be resource constrained, in the
sense that the per-unit cost is a main optimization
criterion, i.e., the use of computer and computing
resources should be kept at a minimum.

• Due to the “product-line nature” of the industry,
reuse of architectures, components and quality
assessments should be supported.

• The contractual aspect of system and component
models will in many cases be important as a tool
for communication and ensuring quality in the
integrator – supplier relation.
Looking more in detail at the timing quality

attributes, SaveCCM should provide sufficient
machinery to express and reason about the following
types of timing attributes/requirements:
• End-to-end timing, i.e., it should be possible to

determine (or guarantee) that the time from some
event (e.g., sampling of a sensor value) to the time
of some other event (e.g., providing a new control
signal to an actuator) stays within specified bounds.

• Freshness of data, i.e., it should be possible to
determine (or guarantee) that a datum has been
generated no earlier than a specified bound before
it is used by a specific component (e.g., that a
sensor value has been sampled no earlier than 35ms
before it is used by a specific component).

 4

• Simultaneity, i.e., it should be possible to
determine (or guarantee) that a set of data occur
sufficiently close together in time (e.g., that the
sampling of two sensors occur within 2ms).

• Jitter tolerances, i.e., it should be possible to
determine (or guarantee) that the variation in
latency between two events stay within specified
bounds (e.g., that the variation in the time between
subsequent (periodic) samplings of a sensor value
stays within 2ms).

5. The SAVEComp Component Model

SaveCCM has its roots in previous models and
design methods for embedded real-time systems, in
particular Basement [5] and its extensions into the
Rubus-methodology [3] [8], which (as mentioned
above) is currently in industry use. SaveCCM, and its
predecessors are designed specifically for the vehicular
domain, which – in contrast with many of the current
component technologies – implies that predictability
and analysability are more important than flexibility.
Hence, the model should be as restrictive as possible,
while still allowing the intended applications to be
conveniently designed. It is with this in mind we have
designed SaveCCM.

5.1. Architectural elements
SaveCCM consists of the following main elements:

• Components, which are basic units of encapsulated
behaviour, that executes according to the execution
model presented below.

• Switches, which provide facilities to dynamically
change the component interconnection structure (at
configuration or run-time).

• Assemblies, which provide means to form
aggregate components from sets of interconnected
components and switches.

• Run-time framework, which provides a set of
services, such as communication between
components. Component execution and control of
sensors and actuators.
Both switches and assemblies can be considered to

be special types of components. Due to the difference
in semantics we will, however, treat them as separate
elements. Below, we will elaborate on these elements,
their properties, and their attributes.
Functional interface

The functional interface of all architectural
elements is defined in terms of a set of associated
ports, which are points of interaction between the

element and its external environment. We distinguish
between input- and output ports, and there are two
complementary aspects of ports: the data that can be
transferred via the port and the triggering of
component executions. SaveCCM distinguish between
these two aspects, and allow three types of ports: (1)
data-only ports, (2) triggering-only ports, and (3) data
and triggering ports.

An architectural element emits trigger signals and
data at its output ports, and receives trigger signals and
data at its input ports. Systems are built from
components by connecting input ports to output ports.
Ports can only be connected if their types match, i.e.
identical data types are transferred and the triggering
coincides.

Data-only ports are one element buffers that can be
read and written. Each write will overwrite the
previous value stored. Output and input ports are
distinct, in the sense that writing a datum to an output
port does not mean that the datum is immediately
available at the input port connected to the output port.
This is to allow transfer of data between ports over a
network or any other mechanism that does not
guarantee atomicity of the transfer.

Triggering-only ports are used for controlling the
activation of components. A component may have
several triggering ports. The component is triggered
when all input triggering ports are activated. Several
output triggering ports may be connected to a single
input triggering port, providing an “OR-semantics”, in
the sense that the input port is triggered if at least one
of its connected output ports is activated. Note that the
input triggering port is active from the time of
activation (triggering) to the start of execution of the
component. Activations cannot be cancelled, and
activating an active port has no effect.

Data and triggering ports combine data-only and
triggering-only ports in the obvious way.
Execution model

Since predictability and analyzability are of primary
concern for the considered application domain, the
SaveCCM execution model is rather restrictive.

The basis is a control-flow (pipes and filter)
paradigm in which executions are triggered by clocks
or external events, and where components have finite,
possibly variable, execution time.

On a high level, a component is either waiting to be
activated (triggered) or executing. A component
change state from waiting to executing when all input
triggering ports are active.

In a first phase of its execution a component reads
all its inputs. In its second execution phase the
component performs all its computations based only on

 5

the inputs read and its internal state. In its third
execution phase, the component generates outputs,
after which it returns to its idle state waiting for a new
triggering.
External I/O

Sensors and actuators (I/O) are accessed via
enclosing components, in which the sensor/actuator
values are part of the component’s internal state.
Timing

Time is a first class citizen in SAVEComp. A global
time base is assumed (a perfect clock). This perfect
clock is accessed via special components, called
triggers, which can trigger the activation of other
components. To cater for the imperfection of real
clocks, a triggering initiated at time t will arrive at the
receiving component sometime in the interval t±δ .

Switches
As mentioned above, a switch provides means for

conditional transfer of data and/or triggering between
components. Switches allow configuration of
assemblies. A switch contains a connection spe-
cification, which specifies a set of connection patterns,
each defining a specific way of connecting the input
and output ports of the switch. Logical expressions
(guards; one for each pattern) based on the data
available at some of the input ports of the switch are
used to determine which connection pattern that is in
effect.

It should be noted that a pattern does not have to
provide connections for all ports, it is sufficient to only
connect some input and some output ports.

Switches can be used for pre-run-time static
configuration by statically binding fixed values to the
data in some of the input ports, and then use partial
evaluation to reduce the alternatives defined by the
switch.

Switches can also be used for specifying modes and
mode-switches, each mode corresponding to a specific
static configuration. By changing the port values at
run-time, a new configuration can be activated, thereby
effectuating a mode-shift.
Assemblies

As mentioned above, component assemblies allow
composite behaviours to be defined, and make it
possible to form aggregate components from
components and switches. In SaveCCM, assemblies
are encapsulations of components and switches having
an external functional interface, just as SaveCCM-
components. Some of the ports of components and
switches are associated/delegated to the external ports
of the assembly.

Due to the strict (and restricted) execution
semantics of SaveCCM components, an assembly does
not satisfy the requirements of a component. Hence,
assemblies should be viewed as a mechanism for
naming a collection of components and hiding internal
structure, rather than a mechanism for component
composition.
Quality attributes

Handling of quality attributes, in particular those
related to real-time and safety, is one of the main
aspects of SaveCCM. A list of quality attributes and
(possibly) their values is included in the specification
of components and assemblies. In this paper we will
only consider timing attributes. We will show how
such attributes can be specified and used in analysis.

5.2. Specification and Composition Language
We will now outline the textual syntax used to

define SaveCCM components and assemblies.
A SaveCCM system is an aggregate of component

instances. A component instance is a named instance
of a component type. A component type is either a
basic component type or a component assembly type.
A basic component type is defined as follows:

Components are specified by their interfaces,
behavior and (quality) attributes. Interfaces are port-
based and they specify input and output ports.
Behavior identifies variables that express internal
states, and actions that describe the component
execution. Variables can be initiated by values from
the input ports. Attributes describe different properties
of the components. An attribute has a type, value and
credibility (a measure of confidence of the expressed
value). Credibility value, expressed in percentage is
discussed in [11]. Ports include data or triggers or
both. A simplified BNF specification of a component
type is shown below. Actions are abstract
specifications of the externally visible behavior of the
component.

<component> ::= Component <typeName>
{<componentSpec>}
<componentSpec> :: =<Interface> [<Behaviour>]
[<Attributes>]

<Interface> ::= Inports: <port>[,<port>]+ ;

 Outports: <port>[,<port>]+ ;

<port> ::= <portName> : <portTypeName>;

<Behaviour> ::= Variables: <variables>+
Actions: <actions>+

<Variables> ::= <type> <name> [= <value> | =
<port_name>] ;

<actions> ::= { <action-program> }

<Attributes> ::= Attributes <attributeSpec>+ ;

 6

<attributeSpec> ::= <type> <name> = <value>
[:<credibility>]

<portType> ::= Port <Name> {<portSpec>};

<portSpec> ::= Data: <dataType|empty>;
 Trigger: <bolean> ;

Switches are specified as special types of
components, however without actions and attributes.
Depending on the switch state (condition) particular
input and output ports are connected or disconnected.

<switch> ::= Switch <type> <name>{<swSpec>}
<swSpec> ::= <Interface> <behaviour>

<Interface> ::= Inports: <port>[,<port>]+ ;

 Outports: <port>[,<port>]+ ;
<port> ::= <portType> <portName> ;

<behaviour> ::= Switching: <cond>:<in-out-
connect> [,<in-out-connect>];

<in-out-connect> ::= <portName> -> <portName>
[,<portName> -> < portName>];

An assembly includes a set of components and
switches that are “wired” together. Similar to
components assemblies can be instantiated, which
enables reusability on a higher level than the
component level. However, the specification does not
include a behaviour (variables and activities) part.
Quality attributes are part of assemblies. The reason is
that there are assembly properties which cannot be
derived from the component properties but are
applicable and can be measured on the assembly level.

<assembly> ::= Assembly <assemblyType>
{<assemblySpec>}
<assemblySpec> ::= <Interface> <Behaviour>
 [<Attributes>]

<Interface> ::= Inports: <port>[,<port>]+ ;

 Outports: <port>[,<port>]+ ;
<port> ::= <portType> <portName> ;

<Behaviour> ::= Components: <componentName>
[,<compomemtName >+] <connections>

<connections> ::= Connections
<singleConnection> [,<singleConnection>]+

<singleConnection> ::= <portName> ->
<componentName.portName>
| <componentName.portName> -> <portName>
 |<componentName.portName> ->
<componentName.portName>

<Attributes> ::= Attributes <attributeSpec>+ ;
<attributeSpec> ::= <type> <name> = <value>
[:<credibility>];

In modelling and building systems we must create
instances of these types and associate instances to tasks
that execute on target systems. We will, however, in
this paper not discuss these issues further, though our
examples will contain some instantiations that we hope

will be intuitive enough to be understood without
further explanations.

5.3. Graphical Language
A subset of the UML2 component diagrams is

adopted as graphical representation language. The
interpretation of the symbols for provided and required
interfaces, and ports are somewhat modified to fit the
needs of SaveComp. The following symbols are used:

Symbol Interpretation

Input ports - The upper is an input port
with a trigger, and no data. The middle
symbol is an input port with data and no
triggering, and the lower symbol is an
input port with data and triggering.

Output port - Similar to the input ports,
the upper is symbol is an output port with
triggering functionality but with no data.
The middle symbol is an output port with
data but with no triggering, and the lower
symbols indicates an output port with both
data and triggering.

Component - A component with the
stereotype changed to SaveComp
corresponds to a SaveCCM component.

Switch - components with the stereotype
switch, corresponds to switches in
SaveCCM.
Assembly - components with the
stereotype Assembly, corresponds to
assemblies in SaveCCM.
Delegation - A delegation is a direct
connection from an input to -input or
output to -output port, used within
assemblies.

5.4. Simple examples
We will give a few examples to illustrate

SaveCCM. In the examples we will use our graphical
language, and for selected architectural elements also
the textual format.

Static configuration
By static configuration we assume instantiation of
assemblies and the included components. For example
we specify a general controller, which can be
configured to be a P, I, D, PI, PD, ID, or PID
controller. Switches are used to express this.

 Graphically we can illustrate PID as follows:

<<Assembly>>
<name>

<<Switch>>
<name>

<<SaveComp>>

<name>

 7

<<Switch>>

S1

<<SaveComp>>

PC

<<SaveComp>>

IC

<<SaveComp>>
DC

<<Switch>>

S2

<<SaveComp>>

Compose

Set Actual

P I D

Control

<<Assembly>>
PID

The following is the same example expressed in the

specification and composition language:

Assembly PID {

 Inports: P:Pport, I:Iport, D:Dport,
 Set:Setport, Actual:Actualport;

 Outports: Control:Controlport;

 Components: PC:PCtype, IC:ICtype,
 DC:DCtype, Compose :Ctype, S1:S, S2:Z;

 PortConnect:
 P->{S1.P,S2.P}, I->{S1.I,S2.}, D->
 {S1.D,S2.D},Set->S1.setin, Actual->
 S1.actualin,S1.actualoutp->P.actual,
 S1.actualouti-> I.actual, S1.actualoutd->
 D.actual,S1.setoutp-> P.set, S1.setouti->
 I.set, S1.setoutd->D.set, P.control->S2.p,
 I.control->S2i, D.control-> S2.d, S2.pp->
 Compose.p, S2.ii->Compose.i, S2.dd->
 Compose.d, Compose.control->control

}

Switch S {

 Inports: P:Pport, I:Iport, D:Dport,
 setin:Setport, actualin:Actualport;

 Outports: actualp:Actualport,
 actuali:Actualport, actuald:Actualport,
 setoutp:Setport, setouti:Setport,
 setoutd:Setport

 Switching:
 P: setin->setoutp, actualin->actualp;

 I: setin->setouti, actualin->actuali;

 D: setin->setoutd, actualin->actuald;

}

Switch Z {

 Inports: P:Pport, I:Iport, D:Dport,
 p:Setport, i:Setport, d:Setport;

 Outports: pp:Setport, ii:Setort,
 dd:Setport;
 Switching:
 P: p->pp; I: i->ii; D: d->d;

}

Like components, assemblies can be reused. When
creating a component instance or an assembly we can

statically bind port values to constants. For instance if
the component type PID is instantiated with P set to
true, and I and D set to false, we will (by partial
evaluation) obtain the following component. This
configuration is supposed to be done automatically by
a configuration tools.

Assembly P:PID (P.val=true, I.val=false,
D.val=false) {

 Inports: Set:Setport, Actual:Actualport;

 Outports: Control:Controlport:

 Components: PC:PCtype, Compose:Ctype

 PortConnect: Set->P.set, Actual->P.actual
 P.control-> Compose.p, Compose.control->
 control;

}

The graphical interpretation is shown below.

<<SaveComp>>

PC
<<SaveComp>>

Compose

<<Assembly>>
P

Set Actual
Control

Mode shift
We specify a component (ModeC) with two

externally determined modes: idle and busy. In mode
idle control algorithm A should run at 10Hz and in
mode busy control algorithm B should run at 100Hz.
Graphically we illustrate ModeC as follows:

<<Switch>>

S1

<<SaveComp>>
A

<<SaveComp>>
B

<<Switch>>

S2

100Hz 10Hz mode

<<Assembly>>
ModeC

Set Actual Control

 8

6. The Cruise Control Example

To further illustrate the use of SaveCCM we
demonstrate a simple design of an Adaptive Cruise
Control system (ACC), as an example of an advanced
function in a vehicle. An ACC system helps the driver
to keep the distance to a vehicle in-front, i.e., it
autonomously adapt the velocity of the vehicle to the
velocity and distance of the vehicle in front.

The following figure visualises a suggested ACC
system using SaveCMM:

<<SaveComp>>

HMI inputs

<<SaveComp>>
Internal
Sensors

<<SaveComp>>

Radar

<<Assembly>>

CC / ACC System

<<SaveComp>>

Object
recognition

<<SaveComp>>

ACC
Mode Logic

<<Assembly>>

ACC
Controllers

<<SaveComp>>

Actuators

<<SaveComp>>

HMI Outputs

10 Hz 100 Hz

The above system can be divided into three major

parts: input, control, and actuate. Our focus will be on
the control part that is encapsulated in the CC/ACC
System assembly. The CC/ACC system consists of
three components and a switch:

• Object recognition is a component that has
responsibility to determine if there is a vehicle in
front and in that case estimate the distance and
relative velocity. It is triggered by the CC/ACC 10
Hz triggering port, and has a Worst Case
Execution Time (WCET) of 30 ms.

• ACC controllers is an assembly implementing
two cascaded controllers. The inner controller is
for speed control and can be used for normal
Cruise Control (CC), while the outer handles
distance control. The assembly has two triggering
ports, one for the inner loop, and one for the outer.

• HMI outputs is a component that gives
information to the driver through the vehicle

computer display, e.g., information about the
vehicle state and latest request. The component is
triggered by the CC/ACC systems triggering port
bound to 10 Hz. The WCET is 2 ms.

• ACC mode logic is a component implementing
the logic for shifting modes depending on the state
of the vehicle, inputs by the driver and from the
environment (vehicles in front). The different
modes are CC, ACC, and standby. It is triggered
by the 10 Hz port. The WCET is less than 1 ms.

A diagram showing the internal design of the
assembly ACC Controllers is provided in the following
figure:

<<Assembly>>
ACC Controllers

<<SaveComp>>
Distance

Controller

<<Switch>>
Mode <<SaveComp>>

Speed
Controller

Object
Recognition

HMI
Inputs

Internal
Sensors

Mode
Logic

Distance
Controller
Triggering

Control

Speed
Controller
Triggering

In the figure the name of the component attached to

in-ports is written above each port. A brief
presentation of the different components in the
assembly is given below.
• Distance Controller is a pure controller

component implementing a control algorithm; it
handles distance control and is the component in
the outer loop. The WCET is 20 ms, and it is
triggered at 10 Hz.

• Mode is a switch, which depending on the actual
mode of the controller activates and deactivates
the both controller components. The switch also
switches the input of the speed controller, between
HMI Inputs (CC functionality) and from the
control signal of the outer loop controller (ACC
functionality).

• The speed controller executes with a rate five
times faster than the rate of the distance controller
due to faster dynamics, it control the speed of the
vehicle. The WCET is 5 ms.

 9

As illustrated by the example, SaveCCM is
designed to seamless and easily support typical
requirements that arise when designing advanced
vehicular functionality, e.g., connections with data,
triggering and both, assemblies, feedback, and mode
changes.

As an illustration how the above SaveCCM spe-
cification can be used in analysis of timing properties,
let us (somewhat simplified) assume that the CC/ACC
System will be exclusively allocated to an ECU and
that each component is allocated to a single task. We
further assume that the tasks are executing under a
fixed priority (FPS) real-time kernel, with a zero
execution time overhead, and that the deadline
attributes of the components are defined to be equal to
the periods. Given this, and using deadline monotonic
priority assignment, together with the execution time
attributes of the components, we can derive the
following task set for the ACC mode:

Task Period

(ms)
WCET

(ms)
Prio

Object Recognition 100 30 5
Mode Logic 100 1 4
HMI Outputs 100 2 3

Distance Controller 100 20 2
Speed Controller 20 5 1

The task set can be used as input to standard fixed-

priority schedulability analysis tools (e.g. [7]). We can
use such a tool to verify if the deadline attributes are
satisfied. By applying this analysis we find that the all
deadline attributes are satisfied, hence we can from
now on treat these attributes as properties of the
current configuration of the CC/ACC System.

7. Conclusions and further work

We have presented SaveCCM, a component mode
intended for embedded control applications in
vehicular systems. In contrast with most current
component technologies, SaveCCM is sacrificing
flexibility to facilitate analysis; in particular analysis of
dependability and real-time. We illustrate SaveCCM
by a simple example, where we also, as an example of
timing analysis, show that SaveCCM models are
amenable to schedulabilty analysis.

This paper covers only parts of the component
specifications. In our future work we will provide a
complete and formal definition of SaveCCM, as well
as linking it to further methods and tools for both

dependability and timing analysis. Parts of the
specifications not discussed here include actions and
attributes describing dynamic behaviour of the
components and attribute values that are used for
reasoning about system properties. Furthermore, we
will in association with our industrial partners evaluate
SaveCCM in “real-life” case-studies.

8. References

[1] EAST, Embedded Electronic Architecture Project,
http://www.east-eea.net/

[2] Autosar homepage: http://www.autosar.org/
[3] D. Isovic, C. Norström, Components in Real-time systems,

Chap. 13 in I. Crnkovic, M. Larsson, Building Reliable
Component-Based Software Systems, 2002, ISBN 1-58053-
327-2

[4] Merijn de Jonge, Johan Muskens and Michel Chaudron
Scenario-Based Prediction of Run-time Resource Consumption
in Component-Based Software Systems, CBSE6 proceedings,
http://www.csse.monash.edu.au/~hws/cgi-
bin/CBSE6/Proceedings/proceedings.cgi

[5] Hans Hansson, H. Lawson, O. Bridal, Christer Norström, S.
Larsson, H. Lönn, M. Strömberg, BASEMENT: An Architecture
and Methodology for Distributed Automotive Real-Time
Systems, IEEE T. on Computers, 46(9):1016-1027, Sept. 1997.

[6] Peter Müller, Christian Stich, Christian Zeidler, Components @
Work: Component Technology for Embedded Systems, 27th
International Workshop on Component-Based Software
Engineering, EUROMICRO 2001

[7] MAST - Modeling and Analysis Suite for Real-Time
Applications, http://mast.unican.es/

[8] C. Norström, M. Gustafsson, K. Sandström, J. Mäki-Turja, N.-E.
Bånkestad, “Experiences from Introducing State-of-the art Real-
time Techniques in the Automotive Industry”, Proceedings 8th
IEEE Int’l Conf. on Engineering of Computer-based Systems.
IEEE 2001.

[9] R. van Ommering, F. van der Linden, and J. Kramer; The Koala
component model for consumer electronics software. IEEE
Computer, 33(3):78–85, March, 2000

[10] SAVE Project, http://www.mrtc.mdh.se/SAVE/
[11] M. Show,”Thruth vs Knowledge: The difference between what a

component does and what we know it does”, Proc. 8th Intl-
workshop on software specification and design, IEEE 1996

[12] Wallnau, Kurt C. & Ivers, James. Snapshot of CCL: A
Language for Predictable Assembly, Technical report CMU/SEI-
2003-TN-025

[13] Wallnau, Kurt C. Volume III: A Technology for Predictable
Assembly from Certifiable Components, Technical report
CMU/SEI-2003-TR-009.

