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Abstract 
Component-based development has proven effective 

in many engineering domains, and several general 
component technologies are available. Most of these 
are focused on providing an efficient software-
engineering process. However for the majority of 
embedded systems, run-time efficiency and prediction 
of system behaviour are as important as process 
efficiency. This calls for specialized technologies. 
There is even a need for further specialized 
technologies adapted to different types of embedded 
systems, due to the heterogeneity of the domain and the 
close relation between the software and the often very 
application specific system.   

This paper presents the SaveCCM component 
model, intended for embedded control applications in 
vehicular systems. SaveCCM is a simple model in 
which flexibility is limited to facilitate analysis of real-
time and dependability. We present and motivate the 
model, and provide examples of its use. 

1. Introduction  

Component-based development (CBD) is of great 
interest to the software engineering community and has 
achieved considerable success in many engineering 
domains. Some of the main advantages of CBD are 
reusability, higher abstraction level and separation of 
the system development process from the component 
development process. CBD has been extensively used 
for several years in desktop environments, office 
applications, e-business and in Internet- and web-based 
distributed applications. The component technologies 
used in these domains originates from object-oriented 
(OO) techniques. The basic principles of the OO 
approach, such as encapsulation and class 
specification, have been further extended; the 
importance of component interfaces has increased: a 
component interface is treated as a component 
specification and the component implementation is 
treated as a black box. A component interface is also 

the means of integrating the components in an 
assembly. Component technologies include the support 
of component deployment into a system through the 
component interface. On the other hand, the 
management of components’ quality attributes has not 
been supported by these technologies. In the domains 
in which these technologies are widely used, the 
quality attributes have not been of primary interest and 
have not been explicitly addressed; they have instead 
been treated separately from the applied component-
based technologies. In many other domains, for 
example embedded systems, CBD is utilized to a lesser 
degree for a number of different reasons, although the 
approach is as attractive here as in other domains. One 
reason for the limited use of CBD in the embedded 
systems domain is the difficulty to transfer existing 
technologies to this domain, due to the difference in 
system constraints. Another important reason is the 
inability of component-based technologies to deal with 
quality attributes as required in these domains. For 
embedded systems, a number of quality attributes are 
at least as important as the provided functionality, and 
the development efforts related to them are most often 
greater than the efforts related to the implementation of 
particular functions. For development of vehicular 
systems, CBD is an attractive approach, but due to 
specific requirements of system properties such as real-
time, reliability and safety, restricted resource 
consumption (e.g., memory and CPU), general-
purpose component models cannot be used.  Instead 
new component models that keep the main principles 
of the CBD approach, but fulfil specific requirements 
of the domain, must be developed.  

This paper discusses the component model 
SaveCCM, a part of SAVEComp, a component-based 
development framework being developed in the project 
SAVE (Component Based Design of Safety Critical 
Vehicular Systems). The basic idea of SAVEComp is 
to by focusing on simplicity and analysability of real-
time and dependability quality attributes provide 
efficient support for designing and implementing 
embedded control applications for vehicular systems. 
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This is the first paper on SaveCCM, focusing on 
structural issues, triggering of components, and timing 
behaviour. Our aim is to also consider dependability, 
though this is not the focus here. 

The paper is organised as follows. Section 2 gives a 
short overview of different component models used in 
embedded systems. Section 3 briefly presents the 
SAVE project, and Section 4 outlines the 
characteristics of the considered application domain. In 
Section 5, our component model SaveCCM is 
presented, including textual and graphical syntax, as 
well as a few illustrative examples. A larger and more 
complete example from the vehicular domain is 
provided in Section 6, and in Section 7 we summarize 
and give an outline of future work. 

2. Related work 

In addition to widely used component technologies, 
new component technologies appear in different 
application domains, both in industry and academia. 
We will refer to some of them: Koala and Rubus used 
in industry and the research technologies PECT, 
PECOS and ROBOCOP. 

The Koala component technology [9] is designed 
and used by Philips for development of software in 
consumer electronics. Koala has passive components 
that interact through a pipes-and-filters model, which 
is allocated to active threads. However, Koala does not 
support analysis of run-time properties.  

The Robocop component technology [Jon03] is a 
variant of the Koala component technology. A 
Robocop component is a set of models, each of which 
provides a particular type of information about the 
component. An example of such a model is the non-
functional model that includes modeling timeliness, 
reliability, memory use, etc. Robocop aims to cover all 
aspects of a component-based development process for 
embedded systems. 

The Rubus Component Model [8] is developed by 
Arcticus systems aimed for small embedded systems. It 
is used by Volvo Construction Equipment. The com-
ponent technology incorporates tools, e.g. a scheduler 
and a graphical tool for application design, and it is 
tailored for resource constrained systems with real-
time requirements. In many aspects Rubus Component 
Model is similar to SaveCCM; actually some of the 
basic approaches from Rubus are included in 
SAVEComp. One difference is that SAVEComp is 
focused on multiple quality attributes and in-
dependences of underlying operating system. 

PECT (Prediction-enabled Component Technology) 
from Software Engineering Institute at CMU [12] [13] 

focuses on quality attributes specification and methods 
for prediction of quality attributes on system level 
from attributes of components. The component model 
enables description of some real-time attributes. 
Compared with SAVEComp, PECT is a more general-
purpose component technology and more complex.  

PECOS  (PErvasive COmponent Systems) [6], 
developed by ABB Corporate Research Centre and 
academia, is designed for field devices, i.e. reactive 
embedded systems that gathers and analyze data via 
sensors and react by controlling actuators, valves, 
motors etc. The focus is on nonfunctional properties 
such as memory consumption and timeliness, which 
makes PECOS goals similar to SaveCCM. 

These examples show that there are many similar 
component technologies for development of embedded 
systems. One could ask if it would not be more 
efficient to use a single model.  Experiences have 
shown that for many embedded system domains 
efficiency in run-time resources consumption and 
prediction of system behavior are far more important 
than efficiency in the software development. This calls 
for specialization, not generalization. Another 
argument for specialization is the typically very close 
relation between software and the system in which the 
software is embedded. Different platforms and 
different system architectures require different 
solutions on the infrastructure and interoperability 
level, which leads to different requirements for 
component models. Also the nature of embedded 
software limits the possibilities of interoperability 
between different systems. Despite the importance of 
pervasiveness, dynamic configurations of 
interoperation between systems, etc. this is still not the 
main focus of vast majorities of embedded systems.  

These are the reasons why different application 
domains call for different component models, which 
may follow the same basic principles of component-
based software engineering, but may be different in 
implementations.  With that in mind we can strongly 
motivate a need for a component technology adjusted 
for vehicular systems. 

3. The SAVE project  

The long term aim of the SAVE [10] project is to 
establish an engineering discipline for systematic 
development of component-based software for safety 
critical embedded systems. SAVE is addressing the 
above challenge by developing a general technology 
for component-based development of safety-critical 
vehicular systems, including 
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• Methodology and process for development of 
systems with components 

• Component specification and composition, 
providing a component model which includes the 
basic characteristics of safety-critical components 
and infrastructure supporting component 
collaboration. 

• Techniques for analysis and verification of 
functional correctness, real-time behaviour, safety, 
and reliability.  

• Run-time and configuration support, including 
support for assembling components into systems, 
run-time monitoring, and evaluation of alternative 
configurations. 
The main objective of SAVE is to develop 

SAVEComp – a component-based development (CBD) 
technology for safety-critical embedded real-time 
systems (RTS). The primary focus is on designing 
systems with components, based on component and 
system models. The ambition is to develop a method 
and infrastructure for CBD for safety-critical 
embedded RTS, corresponding to existing general 
component technologies, such as COM and JavaBeans.  

4. Application characteristics  

As mentioned above, the considered application 
domain is vehicular systems. Within that domain we 
are mainly considering the safety-critical sub-systems 
responsible for controlling the vehicle dynamics, 
including power-train, steering, braking, etc. 

The vehicular industry has a long tradition of 
building systems from components provided by 
different suppliers. In the past these components have 
been purely mechanical, but today many of the 
components include computers and software. The 
trend today is, on one hand, towards “intelligent” 
mechatronics “light weight nodes”, such as actuators 
including a microprocessor. On the other hand, there 
are trends towards more integrated and flexible 
architectures, where software components can be 
freely allocated to “heavy weight” computer units 
(Electronic Control Units; ECUs). One reason for this 
is that the number of ECUs is growing beyond control 
in a modern car (in the range of 100 in top of the line 
models). Letting SW from several suppliers, related to 
different sub-systems, execute on the same ECU has 
several benefits, including  reduced number of ECUs, 
reduced cabling, reduced number of connection points 
(essential for system reliability), reduced weight, and 
reduced per-unit production cost. The downside is an 
increased risk of interference between the different 

sub-systems. Minimizing this risk and increasing 
efficiency and flexibility in the design process is the 
main motivation for SAVEComp and other efforts 
currently in progress (e.g. the EAST/EEA and AutoSar 
initiatives [1] [2]). 

The safety-critical sub-systems we consider will in 
the foreseeable future have the following character-
istics:  
• Statically configured, i.e., the components used and 

their interconnections will essentially be decided at 
design or configuration time. Hence, the binding 
will be static, as opposed to the dynamic binding 
used in current component technologies. 

• It will be essential to satisfy and provide proof of 
satisfaction of not only the functional behaviour, 
but also of timing and dependability quality 
attributes.  

• The timing and dependability quality attributes will 
be strict, in the sense that they will be specified in 
terms of absolute bounds that must be satisfied. 

• There will be additional, less critical, less static 
components executing on the same ECUs as the 
critical ones. The focus of SAVE is however not on 
these. 

• The systems will be resource constrained, in the 
sense that the per-unit cost is a main optimization 
criterion, i.e., the use of computer and computing 
resources should be kept at a minimum. 

• Due to the “product-line nature” of the industry, 
reuse of architectures, components and quality 
assessments should be supported. 

• The contractual aspect of system and component 
models will in many cases be important as a tool 
for communication and ensuring quality in the 
integrator – supplier relation. 
Looking more in detail at the timing quality 

attributes, SaveCCM should provide sufficient 
machinery to express and reason about the following 
types of timing attributes/requirements: 
• End-to-end timing, i.e., it should be possible to 

determine (or guarantee) that the time from some 
event (e.g., sampling of a sensor value) to the time 
of some other event (e.g., providing a new control 
signal to an actuator) stays within specified bounds. 

• Freshness of data, i.e., it should be possible to 
determine (or guarantee) that a datum has been 
generated no earlier than a specified bound before 
it is used by a specific component (e.g., that a 
sensor value has been sampled no earlier than 35ms 
before it is used by a specific component). 
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• Simultaneity, i.e., it should be possible to 
determine (or guarantee) that a set of data occur 
sufficiently close together in time (e.g., that the 
sampling of two sensors occur within 2ms). 

• Jitter tolerances, i.e., it should be possible to 
determine (or guarantee) that the variation in 
latency between two events stay within specified 
bounds (e.g., that the variation in the time between 
subsequent (periodic) samplings of a sensor value 
stays within 2ms). 

5. The SAVEComp Component Model  

SaveCCM has its roots in previous models and 
design methods for embedded real-time systems, in 
particular Basement [5] and its extensions into the 
Rubus-methodology [3] [8], which (as mentioned 
above) is currently in industry use. SaveCCM, and its 
predecessors are designed specifically for the vehicular 
domain, which – in contrast with many of the current 
component technologies – implies that predictability 
and analysability are more important than flexibility. 
Hence, the model should be as restrictive as possible, 
while still allowing the intended applications to be 
conveniently designed. It is with this in mind we have 
designed SaveCCM. 

5.1. Architectural elements 
SaveCCM consists of the following main elements: 

• Components, which are basic units of encapsulated 
behaviour, that executes according to the execution 
model presented below.  

• Switches, which provide facilities to dynamically 
change the component interconnection structure (at 
configuration or run-time). 

• Assemblies, which provide means to form 
aggregate components from sets of interconnected 
components and switches. 

• Run-time framework, which provides a set of 
services, such as communication between 
components. Component execution and control of 
sensors and actuators. 
Both switches and assemblies can be considered to 

be special types of components. Due to the difference 
in semantics we will, however, treat them as separate 
elements. Below, we will elaborate on these elements, 
their properties, and their attributes. 
Functional interface 

The functional interface of all architectural 
elements is defined in terms of a set of associated 
ports, which are points of interaction between the 

element and its external environment. We distinguish 
between input- and output ports, and there are two 
complementary aspects of ports: the data that can be 
transferred via the port and the triggering of 
component executions. SaveCCM distinguish between 
these two aspects, and allow three types of ports: (1) 
data-only ports, (2) triggering-only ports, and (3) data 
and triggering ports. 

An architectural element emits trigger signals and 
data at its output ports, and receives trigger signals and 
data at its input ports. Systems are built from 
components by connecting input ports to output ports. 
Ports can only be connected if their types match, i.e. 
identical data types are transferred and the triggering 
coincides. 

Data-only ports are one element buffers that can be 
read and written. Each write will overwrite the 
previous value stored. Output and input ports are 
distinct, in the sense that writing a datum to an output 
port does not mean that the datum is immediately 
available at the input port connected to the output port. 
This is to allow transfer of data between ports over a 
network or any other mechanism that does not 
guarantee atomicity of the transfer.  

Triggering-only ports are used for controlling the 
activation of components. A component may have 
several triggering ports. The component is triggered 
when all input triggering ports are activated. Several 
output triggering ports may be connected to a single 
input triggering port, providing an “OR-semantics”, in 
the sense that the input port is triggered if at least one 
of its connected output ports is activated. Note that the 
input triggering port is active from the time of 
activation (triggering) to the start of execution of the 
component. Activations cannot be cancelled, and 
activating an active port has no effect. 

Data and triggering ports combine data-only and 
triggering-only ports in the obvious way. 
Execution model 

Since predictability and analyzability are of primary 
concern for the considered application domain, the 
SaveCCM execution model is rather restrictive. 

The basis is a control-flow (pipes and filter) 
paradigm in which executions are triggered by clocks 
or external events, and where components have finite, 
possibly variable, execution time. 

On a high level, a component is either waiting to be 
activated (triggered) or executing. A component 
change state from waiting to executing when all input 
triggering ports are active. 

In a first phase of its execution a component reads 
all its inputs. In its second execution phase the 
component performs all its computations based only on 
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the inputs read and its internal state.  In its third 
execution phase, the component generates outputs, 
after which it returns to its idle state waiting for a new 
triggering.  
External I/O 

Sensors and actuators (I/O) are accessed via 
enclosing components, in which the sensor/actuator 
values are part of the component’s internal state. 
Timing 

Time is a first class citizen in SAVEComp. A global 
time base is assumed (a perfect clock). This perfect 
clock is accessed via special components, called 
triggers, which can trigger the activation of other 
components. To cater for the imperfection of real 
clocks, a triggering initiated at time t will arrive at the 
receiving component sometime in the interval t±δ .  

Switches 
As mentioned above, a switch provides means for 

conditional transfer of data and/or triggering between 
components. Switches allow configuration of 
assemblies. A switch contains a connection spe-
cification, which specifies a set of connection patterns, 
each defining a specific way of connecting the input 
and output ports of the switch. Logical expressions 
(guards; one for each pattern) based on the data 
available at some of the input ports of the switch are 
used to determine which connection pattern that is in 
effect. 

It should be noted that a pattern does not have to 
provide connections for all ports, it is sufficient to only 
connect some input and some output ports.  

Switches can be used for pre-run-time static 
configuration by statically binding fixed values to the 
data in some of the input ports, and then use partial 
evaluation to reduce the alternatives defined by the 
switch. 

Switches can also be used for specifying modes and 
mode-switches, each mode corresponding to a specific 
static configuration. By changing the port values at 
run-time, a new configuration can be activated, thereby 
effectuating a mode-shift. 
Assemblies 

As mentioned above, component assemblies allow 
composite behaviours to be defined, and make it 
possible to form aggregate components from 
components and switches. In SaveCCM, assemblies 
are encapsulations of components and switches having 
an external functional interface, just as SaveCCM-
components. Some of the ports of components and 
switches are associated/delegated to the external ports 
of the assembly. 

Due to the strict (and restricted) execution 
semantics of SaveCCM components, an assembly does 
not satisfy the requirements of a component. Hence, 
assemblies should be viewed as a mechanism for 
naming a collection of components and hiding internal 
structure, rather than a mechanism for component 
composition. 
Quality attributes 

Handling of quality attributes, in particular those 
related to real-time and safety, is one of the main 
aspects of SaveCCM. A list of quality attributes and 
(possibly) their values is included in the specification 
of components and assemblies. In this paper we will 
only consider timing attributes. We will show how 
such attributes can be specified and used in analysis.  

5.2. Specification and Composition Language 
We will now outline the textual syntax used to 

define SaveCCM components and assemblies.   
A SaveCCM system is an aggregate of component 

instances. A component instance is a named instance 
of a component type. A component type is either a 
basic component type or a component assembly type. 
A basic component type is defined as follows: 

Components are specified by their interfaces, 
behavior and (quality) attributes. Interfaces are port-
based and they specify input and output ports. 
Behavior identifies variables that express internal 
states, and actions that describe the component 
execution. Variables can be initiated by values from 
the input ports. Attributes describe different properties 
of the components. An attribute has a type, value and 
credibility (a measure of confidence of the expressed 
value). Credibility value, expressed in percentage is 
discussed in [11]. Ports include data or triggers or 
both. A simplified BNF specification of a component 
type is shown below. Actions are abstract 
specifications of the externally visible behavior of the 
component.  

 
<component> ::= Component <typeName> 
{<componentSpec>} 
<componentSpec> :: =<Interface>  [<Behaviour>]  
[<Attributes> ]  

<Interface> ::= Inports: <port>[,<port>]+ ;  

                Outports: <port>[,<port>]+ ; 

<port> ::= <portName> : <portTypeName>; 

<Behaviour> ::= Variables: <variables>+ 
Actions: <actions>+ 

<Variables> ::= <type> <name> [ = <value> | = 
<port_name> ] ; 

<actions> ::= { <action-program> } 

<Attributes> ::= Attributes <attributeSpec>+ ;  
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<attributeSpec> ::=  <type> <name> = <value> 
[:<credibility>] 

<portType> ::= Port <Name> {<portSpec>}; 

<portSpec> ::= Data: <dataType|empty>; 
               Trigger: <bolean> ; 

Switches are specified as special types of 
components, however without actions and attributes. 
Depending on the switch state (condition) particular 
input and output ports are connected or disconnected. 
 
<switch> ::= Switch <type> <name>{<swSpec>} 
<swSpec> ::= <Interface>  <behaviour>  

<Interface> ::= Inports: <port>[,<port>]+ ;  

              Outports:  <port>[,<port>]+ ; 
<port> ::= <portType> <portName> ; 

<behaviour> ::= Switching: <cond>:<in-out-
connect> [,<in-out-connect>]; 

<in-out-connect> ::= <portName> -> <portName> 
[,<portName> -> < portName>]; 

 

An assembly includes a set of components and 
switches that are “wired” together. Similar to 
components assemblies can be instantiated, which 
enables reusability on a higher level than the 
component level.  However, the specification does not 
include a behaviour (variables and activities) part. 
Quality attributes are part of assemblies. The reason is 
that there are assembly properties which cannot be 
derived from the component properties but are 
applicable and can be measured on the assembly level.  

 
<assembly> ::= Assembly  <assemblyType> 
{<assemblySpec>} 
<assemblySpec> ::= <Interface>  <Behaviour>  
                   [<Attributes> ]  

<Interface> ::= Inports: <port>[,<port>]+ ;  

                Outports: <port>[,<port>]+ ; 
<port> ::= <portType> <portName> ; 

<Behaviour> ::= Components: <componentName> 
[,<compomemtName >+] <connections> 

<connections> ::=  Connections 
<singleConnection> [,<singleConnection>]+ 

<singleConnection> ::= <portName> -> 
<componentName.portName>  
| <componentName.portName> -> <portName> 
 |<componentName.portName> -> 
<componentName.portName>  

<Attributes> ::= Attributes <attributeSpec>+ ;  
<attributeSpec> ::= <type> <name> = <value> 
[:<credibility>]; 
 

In modelling and building systems we must create 
instances of these types and associate instances to tasks 
that execute on target systems. We will, however, in 
this paper not discuss these issues further, though our 
examples will contain some instantiations that we hope 

will be intuitive enough to be understood without 
further explanations.  

5.3. Graphical Language  
A subset of the UML2 component diagrams is 

adopted as graphical representation language. The 
interpretation of the symbols for provided and required 
interfaces, and ports are somewhat modified to fit the 
needs of SaveComp. The following symbols are used: 

 
Symbol Interpretation 

 
 

Input ports - The upper is an input port 
with a trigger, and no data. The middle 
symbol is an input port with data and no 
triggering, and the lower symbol is an 
input port with data and triggering. 

 
 

Output port - Similar to the input ports, 
the upper is symbol is an output port with 
triggering functionality but with no data. 
The middle symbol is an output port with 
data but with no triggering, and the lower 
symbols indicates an output port with both 
data and triggering. 

Component - A component with the 
stereotype changed to SaveComp 
corresponds to a SaveCCM component. 

Switch - components with the stereotype 
switch, corresponds to switches in 
SaveCCM.  
Assembly - components with the 
stereotype Assembly, corresponds to 
assemblies in SaveCCM. 
Delegation - A delegation is a direct 
connection from an input to -input or 
output to -output port, used within 
assemblies.  

 

5.4. Simple examples 
We will give a few examples to illustrate 

SaveCCM. In the examples we will use our graphical 
language, and for selected architectural elements also 
the textual format. 

Static configuration 
By static configuration we assume instantiation of 
assemblies and the included components. For example 
we specify a general controller, which can be 
configured to be a P, I, D, PI, PD, ID, or PID 
controller. Switches are used to express this.  

 Graphically we can illustrate PID as follows: 

<<Assembly>> 
<name> 

<<Switch>> 
<name> 

<<SaveComp>>

<name> 
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<<Switch>>

S1

<<SaveComp>>

PC

<<SaveComp>>

IC

<<SaveComp>>
DC

<<Switch>>

S2

<<SaveComp>>

Compose

Set Actual

P I D

Control

<<Assembly>>
PID

 
The following is the same example expressed in the 

specification and composition language: 
 

Assembly PID  { 

 Inports: P:Pport, I:Iport, D:Dport, 
       Set:Setport, Actual:Actualport; 

 Outports: Control:Controlport; 

 Components: PC:PCtype, IC:ICtype, 
     DC:DCtype, Compose :Ctype, S1:S, S2:Z; 
   

  PortConnect:  
   P->{S1.P,S2.P}, I->{S1.I,S2.}, D-> 
   {S1.D,S2.D},Set->S1.setin, Actual-> 
   S1.actualin,S1.actualoutp->P.actual, 
   S1.actualouti-> I.actual, S1.actualoutd-> 
   D.actual,S1.setoutp-> P.set, S1.setouti-> 
   I.set, S1.setoutd->D.set, P.control->S2.p,  
   I.control->S2i, D.control-> S2.d, S2.pp-> 
   Compose.p, S2.ii->Compose.i, S2.dd-> 
   Compose.d, Compose.control->control   

} 

Switch S { 

 Inports: P:Pport, I:Iport, D:Dport, 
       setin:Setport, actualin:Actualport; 

 Outports: actualp:Actualport, 
     actuali:Actualport, actuald:Actualport,  
     setoutp:Setport, setouti:Setport,  
     setoutd:Setport 

 Switching:  
  P: setin->setoutp, actualin->actualp; 

  I: setin->setouti, actualin->actuali; 

  D: setin->setoutd, actualin->actuald; 

} 

Switch Z { 

 Inports: P:Pport, I:Iport, D:Dport, 
      p:Setport, i:Setport, d:Setport; 

 Outports: pp:Setport, ii:Setort,  
       dd:Setport; 
 Switching:  
  P: p->pp; I: i->ii; D: d->d; 

} 

 

Like components, assemblies can be reused. When 
creating a component instance or an assembly we can 

statically bind port values to constants. For instance if 
the component type PID is instantiated with P set to 
true, and I and D set to false, we will (by partial 
evaluation) obtain the following component. This 
configuration is supposed to be done automatically by 
a configuration tools. 
 

Assembly P:PID (P.val=true, I.val=false, 
D.val=false) { 

 Inports: Set:Setport, Actual:Actualport; 

 Outports: Control:Controlport: 

 Components: PC:PCtype, Compose:Ctype 

 PortConnect: Set->P.set, Actual->P.actual 
  P.control-> Compose.p, Compose.control->  
      control;   

} 

 

The graphical interpretation is shown below. 
 

<<SaveComp>>

PC
<<SaveComp>>

Compose

<<Assembly>>
P

Set Actual
Control  

Mode shift 
We specify a component (ModeC) with two 

externally determined modes: idle and busy. In mode 
idle control algorithm A should run at 10Hz and in 
mode busy control algorithm B should run at 100Hz. 
Graphically we illustrate ModeC as follows: 

 

<<Switch>>

S1

<<SaveComp>>
A

<<SaveComp>>
B

<<Switch>>

S2

100Hz 10Hz mode

<<Assembly>>
ModeC

Set Actual Control  
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6. The Cruise Control Example  

To further illustrate the use of SaveCCM we 
demonstrate a simple design of an Adaptive Cruise 
Control system (ACC), as an example of an advanced 
function in a vehicle. An ACC system helps the driver 
to keep the distance to a vehicle in-front, i.e., it 
autonomously adapt the velocity of the vehicle to the 
velocity and distance of the vehicle in front.  

The following figure visualises a suggested ACC 
system using SaveCMM:  

 

<<SaveComp>>

HMI inputs

<<SaveComp>>
Internal
Sensors

<<SaveComp>>

Radar

<<Assembly>>

CC / ACC System

<<SaveComp>>

Object 
recognition

<<SaveComp>>

ACC
Mode Logic

<<Assembly>>

ACC
Controllers

<<SaveComp>>

Actuators

<<SaveComp>>

HMI Outputs

10 Hz 100 Hz

 
  
The above system can be divided into three major 

parts: input, control, and actuate. Our focus will be on 
the control part that is encapsulated in the CC/ACC 
System assembly. The CC/ACC system consists of 
three components and a switch: 

• Object recognition is a component that has 
responsibility to determine if there is a vehicle in 
front and in that case estimate the distance and 
relative velocity. It is triggered by the CC/ACC 10 
Hz triggering port, and has a Worst Case 
Execution Time (WCET) of 30 ms.   

• ACC controllers is an assembly implementing 
two cascaded controllers. The inner controller is 
for speed control and can be used for normal 
Cruise Control (CC), while the outer handles 
distance control. The assembly has two triggering 
ports, one for the inner loop, and one for the outer.  

• HMI outputs is a component that gives 
information to the driver through the vehicle 

computer display, e.g., information about the 
vehicle state and latest request. The component is 
triggered by the CC/ACC systems triggering port 
bound to 10 Hz. The WCET is 2 ms.  

• ACC mode logic is a component implementing 
the logic for shifting modes depending on the state 
of the vehicle, inputs by the driver and from the 
environment (vehicles in front). The different 
modes are CC, ACC, and standby. It is triggered 
by the 10 Hz port. The WCET is less than 1 ms.  

A diagram showing the internal design of the 
assembly ACC Controllers is provided in the following 
figure: 

 

<<Assembly>>
ACC Controllers

<<SaveComp>>
Distance

Controller

<<Switch>>
Mode <<SaveComp>>

Speed
Controller

Object
Recognition

HMI
Inputs

Internal
Sensors

Mode
Logic

Distance
Controller
Triggering

Control

Speed
Controller
Triggering

 
 
In the figure the name of the component attached to 

in-ports is written above each port. A brief 
presentation of the different components in the 
assembly is given below.  
• Distance Controller is a pure controller 

component implementing a control algorithm; it 
handles distance control and is the component in 
the outer loop. The WCET is 20 ms, and it is 
triggered at 10 Hz.  

• Mode is a switch, which depending on the actual 
mode of the controller activates and deactivates 
the both controller components. The switch also 
switches the input of the speed controller, between 
HMI Inputs (CC functionality) and from the 
control signal of the outer loop controller (ACC 
functionality).  

• The speed controller executes with a rate five 
times faster than the rate of the distance controller 
due to faster dynamics, it control the speed of the 
vehicle. The WCET is 5 ms. 
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As illustrated by the example, SaveCCM is 
designed to seamless and easily support typical 
requirements that arise when designing advanced 
vehicular functionality, e.g., connections with data, 
triggering and both, assemblies, feedback, and mode 
changes. 

As an illustration how the above SaveCCM spe-
cification can be used in analysis of timing properties, 
let us (somewhat simplified) assume that the CC/ACC 
System will be exclusively allocated to an ECU and 
that each component is allocated to a single task. We 
further assume that the tasks are executing under a 
fixed priority (FPS) real-time kernel, with a zero 
execution time overhead, and that the deadline 
attributes of the components are defined to be equal to 
the periods. Given this, and using deadline monotonic 
priority assignment, together with the execution time 
attributes of the components, we can derive the 
following task set for the ACC mode: 

 
Task Period 

(ms) 
WCET 

(ms) 
Prio 

Object Recognition 100 30 5 
Mode Logic 100 1 4 
HMI Outputs 100 2 3 

Distance Controller 100 20 2 
Speed Controller 20 5 1 
 
The task set can be used as input to standard fixed-

priority schedulability analysis tools (e.g. [7]). We can 
use such a tool to verify if the deadline attributes are 
satisfied. By applying this analysis we find that the all 
deadline attributes are satisfied, hence we can from 
now on treat these attributes as properties of the 
current configuration of the CC/ACC System. 

7. Conclusions and further work 

We have presented SaveCCM, a component mode 
intended for embedded control applications in 
vehicular systems. In contrast with most current 
component technologies, SaveCCM is sacrificing 
flexibility to facilitate analysis; in particular analysis of 
dependability and real-time. We illustrate SaveCCM 
by a simple example, where we also, as an example of 
timing analysis, show that SaveCCM models are 
amenable to schedulabilty analysis.  

This paper covers only parts of the component 
specifications. In our future work we will provide a 
complete and formal definition of SaveCCM, as well 
as linking it to further methods and tools for both 

dependability and timing analysis. Parts of the 
specifications not discussed here include actions and 
attributes describing dynamic behaviour of the 
components and attribute values that are used for 
reasoning about system properties. Furthermore, we 
will in association with our industrial partners evaluate 
SaveCCM in “real-life” case-studies. 
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