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Abstract

Control dependency is a fundamental concept in many program analyses, trans-

formation, parallelization, and compiler optimization techniques. An over-

whelming number of definitions of control dependency relations are found in

the literature that capture various kinds of program control flow structures.

Weak and strong control closure (WCC and SCC) relations capture nontermi-

nation insensitive and sensitive control dependencies and subsume all previously

defined control dependency relations. In this paper, we have shown that static

dependency-based program slicing requires the repeated computation of WCC

and SCC. The state-of-the-art WCC and SCC algorithm provided by Danicic et

al. has the cubic and the quartic worst-case complexity in terms of the size of the

control flow graph and is a major obstacle to be used in static program slicing.

We have provided a simple yet efficient method to compute the minimal WCC

and SCC which has the quadratic and cubic worst-case complexity and proved

the correctness of our algorithms. We implemented ours and the state-of-the-art

algorithms in the Clang/LLVM compiler framework and run experiments on a

number of SPEC CPU 2017 benchmarks. Our WCC method performs a max-

imum of 23.8 times and on average 10.6 times faster than the state-of-the-art

method to compute WCC. The performance curves of our WCC algorithm for

practical applications are closer to the NlogN curve in the microsecond scale.

Our SCC method performs a maximum of 226.86 times and on average 67.66
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times faster than the state-of-the-art method to compute SCC. Evidently, we

improve the practical performance of WCC and SCC computation by an order

of magnitude.

Keywords: Control dependency, Weak control closure, Strong control closure,

Program slicing, Nontermination (in)sensitive
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1. Introduction

Control dependency is a fundamental concept in many program analyses,

transformation, parallelization and compiler optimization techniques. It is used

to express the relation between two program statements such that one decides

whether the other statement can be executed or not. One of the key applications

of control dependency is program slicing [1] that transforms an original program

into a sliced program with respect to a so-called slicing criterion. The slicing

criterion specifies the variables at a particular program point that will affect the

execution of the sliced program. All program instructions in the original pro-

gram that do not affect the slicing criterion are discarded from the sliced code.

Control dependency is used to identify the program instructions that indirectly

affect the slicing criterion due to the execution of conditional expressions in the

loops or conditional instructions.

The standard definition of control dependency provided by Ferrante et al. [2]

has been widely used for over two decades. This definition is provided at the

level of the control flow graph (CFG) representation of a program assuming

that the CFG has a unique end node (i.e. the program has a single exit point).

Several recent articles on control dependency illustrate that this definition does

not sufficiently capture the intended control dependency of programs having

the modern programming language features. For instance, the exception or halt
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instructions cause multiple exits of the programs, or reactive systems, web ser-

vices or distributed real-time systems have nonterminating program instructions

without an end node. The standard definition of control dependency did not

intend to handle the above systems. The possibility of having nontermination in

the program code introduces two different types of control dependency relations:

the weak and strong control dependencies that are nontermination insensitive

and nontermination sensitive. One of the distinguishing effects between the two

types of control dependencies is that an original nonterminating program re-

mains nonterminating or may be transformed into a terminating program if the

slicing method uses strong or weak control dependence respectively.

Numerous authors provided an overwhelming number of definitions of control

dependencies [1, 2, 3, 4, 5] given at the level of CFG and describe computation

methods to obtain such dependencies. Danicic et al. [6] unified all previously

defined control dependence relations by providing the definitions and theoreti-

cal insights of weak and strong control-closure (WCC and SCC) that are most

generalized and capture all non-termination insensitive and nontermination sen-

sitive control dependence relations. Thus, WCC and SCC subsume all control

dependency relations found in the literature. However, Danicic et al. provided

expensive algorithms to compute WCC and SCC. In particular, the algorithms

for computing WCC and SCC have the cubic and quartic worst-case asymp-

totic complexity in terms of the size of the CFG. We have shown that static

program slicing requires the repeated computation of WCC and/or SCC. The

state-of-the-art WCC and SCC algorithms are not only expensive, but the use

of these algorithms in client applications such as program slicing will make

these applications underperforming. In other words, these applications will run

slower using computationally expensive WCC and SCC algorithms even though

they will obtain wider applicability than applications using the standard control

dependency algorithms such as postdominator-based algorithms.

In this article, we have provided simple and efficient methods to compute

WCC and SCC. We have formalized several theorems and lemmas demonstrat-

ing the soundness, minimality, and complexity of our algorithms. Our WCC and
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SCC algorithms have the quadratic and the cubic worst-case time complexity

in terms of the size of the CFG which are improvements over the methods of

Danicic et al. by an order of the the size of the CFG. We implemented ours and

the WCC and SCC algorithms of Danicic et al. in the Clang/LLVM compiler

framework [7] and performed experiments on a number of benchmarks selected

from SPEC CPU 2017 [8]. Our WCC algorithm performs a maximum of 23.8

times and on average 10.6 times faster than the WCC algorithm of Danicic et

al. Moreover, the practical performance of our WCC algorithm is closer to the

NlogN curve. Our SCC method performs a maximum of 226.86 times and on

average 67.66 times faster than the state-of-the-art method to compute SCC.

Thus we improve the theoretical as well as the practical performance of WCC

and SCC computation by an order of magnitude.

Note that this is an extended version of the paper entitled “Simple and

Efficient Computation of Minimal Weak Control Closure” [9] and published at

the International static analysis symposium (SAS 2020). More specifically, this

article has been extended as follows:

• We have recalled the related definitions of strong control closure from

Danicic et al. [6] in Section 2.4 and provided a detailed example on the

related concepts.

• We have included a new section (Section 5) with the formal development

of our algorithms (Alg. 6 and Alg. 7) to compute SCC. We have provided

several lemmas as the theoretical foundation of our efficient SCC computa-

tion algorithm. We have proved that our algorithm generates the minimal

SCC (Lemma 8). We have provided an incremental method to compute

SCC (Alg. 8, Alg. 9, and Alg. 10) which is even more efficient than Alg. 7.

We have proved the theoretical worst-case complexity of our algorithms.

• We have implemented our SCC computation algorithm in the Clang/L-

LVM framework and performed additional experiments comparing ours

and the state-of-the-art algorithms to compute SCC. Experimental re-

sults are included in Section 6. The results show that our algorithms are
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outstandingly faster than the state-of-the-art algorithms.

The remainder of this paper is organized as follows. Sec. 2 provides some

notations and backgrounds on WCC and SCC, Sec. 3 illustrates the changes to

be performed in static program slicing due to WCC/SCC, Sec. 4 provides the

detailed description of our WCC computation method, proves the correctness,

and the worst-case time complexity of our method, Sec. 5 provides the detailed

description of our SCC computation method, proof of correctness, and the worst-

case time complexity of our method, Sec. 6 compares the performance of ours

and the state-of-the-art WCC and SCC computation method of Danicic et al.

on some practical benchmarks, Sec. 7 discusses the related works, and Sec. 8

concludes the paper.

2. Background

2.1. CFG and Related Concepts

We provide the following formal definition of control flow graph (CFG).

Definition 1 (CFG). A CFG is a directed graph (N,E) where

1. N is the set of nodes that includes a Start node from where the execution
starts, at most one End node where the execution terminates normally,
Cond nodes representing boolean conditions, and nonCond nodes; and

2. E ⊆ N ×N is the relation describing the possible flow of execution in the
graph. An End node has no successor, a Cond node n has at most one
true successor and at most one false successor, and all other nodes have
at most one successor.

Like Danicic et al. [6], we assume the following:

• The CFG is deterministic. So, any Cond node n cannot have multiple

true successors and/or multiple false successors.

• We allow Cond nodes to have either or both of the successors missing. We

may also have non-End nodes having no successor (i.e. out-degree zero).

An execution that reaches these nodes are silently nonterminating as it is

not performing any action and does not return control to the operating

system.

6



• If the CFG G has no End nodes, then all executions of G are nontermi-

nating.

• Moreover, if a program has multiple terminating exit points, nodes repre-

senting those exit points are connected to the End node to model those

terminations. Thus, the CFG in Def. 1 is sufficiently general to model a

wide-range of real-world intraprocedural programs.

The sets of successor and predecessor nodes of any CFG node n in a CFG

(N,E) are denoted by succ(n) and pred(n) where succ(n) = {m : (n,m) ∈ E}

and pred(n) = {m : (m,n) ∈ E}.

Definition 2 (CFG paths). A path π is a sequence n1, n2, . . . , nk of CFG nodes
(denoted by [n1..nk]) such that k ≥ 1 and ni+1 ∈ succ(ni) for all 1 ≤ i ≤ k− 1.

A path is non-trivial if it contains at least two nodes. We write π − S to

denote the set of all nodes in the path π that are not in the set S. The length

of any path [n1..nk] is k − 1. A trivial path [n] has path length 0.

Definition 3 (Disjoint paths). Two finite paths [n1..nk] and [m1..ml] such that
k, l ≥ 1 in any CFG G are disjoint paths if and only if no ni is equal to mj for
all 1 ≤ i ≤ k and 1 ≤ j ≤ l. In other words, the paths do not meet at a common
vertex.

Sometimes, we shall use the phrase “two disjoint paths from n” to mean

that there exist two paths n1 = n, . . . , nk and n′1 = n, . . . , n′l such that [n2..nk]

and [n′2..n
′
l] are disjoint paths. In other words, the paths are disjoint after the

first common vertex. A CFG node is final if it is either a Cond node not having

both a true and a false successor or a non-Cond node having no successor. A

CFG path is complete if it is either an infinite path or a finite path whose last

vertex is a final node.

2.2. Standard Control Dependency

Ferrante et al. [2] provided the first formal definition of control dependency

relation based on postdominator [10] relation. Computing postdominator rela-

tions on a CFG G requires that G has a single End node ne and there is a path

from each node n in G to ne. A node n postdominates a node m if and only
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if every path from m to ne goes through n. Node n strictly postdominates m

if n postdominates m and n 6= m. The standard postdominator-based control

dependency relation can then be defined as follows:

Definition 4 (Control Dependency [2, 5]). Node n is control dependent on

node m (written m
cd→ n) in the CFG G if (1) there exists a nontrivial path π

in G from m to n such that every node m′ ∈ π−{m,n} is postdominated by n,
and (2) m is not strictly postdominated by n.

The relation m
cd→ n implies that there must be two branches of m such that

n is always executed in one branch and may not execute in the other branch.

Example 1. The CFG in Fig. 1(b) is obtained from the source code in Fig. 1(a)
according to Def. 1. This pattern of CFG is abundant in the perlbench in SPEC
CPU2017 [8]. We shall use this CFG as a running example in the remainder of
this article. The labeling of true and false branches of Cond nodes are omitted
for simplicity. Fig. 2 presents the control dependency graph (CDG) computed
from the CFG based on computing postdominator relations such that an edge

(n,m) in the CDG represents the control dependency relation n
cd→ m. For

example, the edge (n10, n6) in the CDG represents that statement 21 is control
dependent on statement 8 in the program in Fig. 1(a).

2.3. Weak Control Closure

Podgurski and Clarke [3] introduced the weak control dependence which is

nontermination sensitive. A number of different nontermination sensitive and

nontermination insensitive control dependency relations conservatively extend-

ing the standard relation above are defined in successive works [11, 12, 13, 5, 3].

Danicic et al. [6] unified all previous definitions and presented two generaliza-

tions called weak and strong control closure which are non-termination insen-

sitive and non-termination sensitive. WCC and SCC capture all the existing

non-termination (in)sensitive control dependency relations found in the litera-

ture. In this section, we recall some relevant definitions and terminologies of

WCC from Danicic et al. [6].

Definition 5 (N ′-Path). An N ′-path is a finite path [n1..nk] in a CFG G such
that nk ∈ N ′ and ni 6∈ N ′ for all 1 < i ≤ k − 1.

Note that n1 may be in N ′ in the above definition. Thus, an N ′-path from

n ends at a node in N ′ and no node in this path is in N ′ except n1 which may

or may not be in N ′.
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1 void run(){
2 if (! in safe )
3 in safe =true;
4 while(load<capacity)
5 if (load<max val)
6 load++;
7 else break;
8 while(overhead<ov limit){
9 CRITICAL:
10 if (! in safe ) {
11 print(Error);
12 return; }
14 overhead++;
15 loadnexec(overhead, load);
16 }
17 if (capacity<max val)
18 goto CRITICAL;
19 else{
20 while(true){
21 if (overhead ≥ ov limit)
22 overhead=capacity−load;
23 if (in safe )
24 goto CRITICAL;
25 else
26 up status(load, capacity);
27}}}

(a)

n18(Start): 1

n17: 2

n16: 3

n15: 4

n14: 5

n13: 7 n10: 8n12: 6

n3: 10

n9: 17

n7: 20

n6: 21n1: 14n2: 11

n0(End): 12 n11: 15 n5: 22

n4: 23

n8: 26

(b)

Figure 1: (a) Code snippet used as a running example in which all variables are global, (b)
intraprocedural CFG of (a) according to Definition 1 in which n : l represents the CFG node
n originated from statement l

Definition 6 (N ′-weakly committing vertex). Let G = (N,E) be any CFG.
A node n ∈ N is N ′-weakly committing in G if all N ′-paths from n have the
same endpoint. In other words, there is at most one element of N ′ that is
’first-reachable’ from n.

Definition 7 (Weak control closure). Let G = (N,E) be any CFG and let
N ′ ⊆ N . N ′ is weakly control-closed in G if and only if all nodes n ∈ N \ N ′
that are reachable from N ′ are N ′-weakly committing in G.

We say that a set X is weakly control-closed if and only if it is the weak

control closure of any set of CFG nodes. The concept of weakly deciding vertices

is introduced to prove that there exists minimal and unique WCC of a set of
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n1 n3

n11

n4

n5 n6 n7

n8 n9

n10

n14 n15

n12 n13

n17 n16

Figure 2: Control dependency graph obtained from the CFG in Fig. 1 computed using post-
dominator relations

nodes N ′ ⊆ N . Since program slicing uses control dependence relations to

capture all control dependent nodes affecting the slicing criterion, using minimal

WCC in program slicing gives us smaller nontermination insensitive slices.

Definition 8 (Weakly deciding vertices). A node n ∈ N is N ′-weakly deciding
in G if and only if there exist two finite proper N ′-paths in G that both start at n
and have no other common vertices. WDG(N ′) denotes the set of all N ′-weakly
deciding vertices in G.

Thus, if there exists an N ′-weakly deciding vertex n, then n is not N ′-weakly

committing. The WCC of an arbitrary set N ′ ⊆ N can be formally defined using

weakly deciding vertices as follows:

WCC(N ′) = {n : n ∈WDG(N ′), n is reachable from N ′ in G} ∪N ′

Example 2. Consider the CFG in Fig. 1. Let N ′ = {n5, n8, n10}. The N ′-paths
in this CFG include n9, . . . , n5 and n4, . . . , n6, n4, n8. The path n6, n5, n4, n8
is not an N ′-path since n5 ∈ N ′. Nodes n12, n13, n14 and n15 are N ′-weakly
committing. However, n9 and n6 are not N ′-weakly committing due to the N ′-
paths [n9..n10] and [n9..n5], and n6, n5 and n6, n4, n8. Nodes n9 and n6 are thus
N ′-weakly deciding and N ′ is not weakly control closed. However, all N ′-weakly
deciding vertices n4, n6 and n9 are reachable from N ′ and thus N ′∪{n4, n6, n9}
is a weak control-closed set capturing all the relevant control dependencies of
N ′.

10



2.4. Strong Control Closure

In this section, we recall some relevant definitions and terminologies of SCC

from Danicic et al. [6].

Definition 9 (Strongly committing vertices). Let n ∈ N be any CFG node.
n is N ′-strongly committing in G iff it is N ′-weakly committing in G and all
complete paths in G from n contain an element of N ′.

Definition 10 (N ′-avoiding vertices). A node n ∈ N is N ′-avoiding in G if
and only if no node in N ′ is reachable in G from n.

Definition 11 (Strong control closure). Let N ′ be any subset of N . N ′ is
strongly control-closed in G if and only if all nodes n ∈ N \N ′ that are reachable
in G from N ′ are N ′-strongly committing or N ′-avoiding in G.

We say that a set X is strongly control-closed if and only if it is the strong

control closure of any set of CFG nodes.

Example 3. Consider the CFG G in Fig. 1. Let G1 be the CFG G after remov-
ing the nodes n12, n13, and n0, and all incoming and outgoing edges from these
nodes. Thus, all executions of G1 are nonterminating. Some program analyses
such as program slicing may transform a terminating CFG into a nonterminat-
ing one. Thus, this kind of transformation is usual in practice. Moreover, we
may obtain nonterminating CFG from nonterminating reactive systems, soft-
ware models, or nonterminating distributed systems.

Let N ′ = {n18, n5, n8}. Nodes n4 and n6 are weakly deciding vertices due
to the N ′-paths (i) [n4, n8] and [n4..n5] and (ii) [n6, n5] and [n6..n8]. Thus,
these nodes are not strongly committing according to Def. 9. There exist com-
plete paths [n3, n2] and [n15, n14] which do not go through N ′. Thus, n3 and
n15 are not strongly committing (Def. 9). Moreover, these nodes are not N ′-
avoiding. Thus, the strong control-closed superset of N ′ must be a superset of
X = {n3, n4, n6, n15}. However, N ′ ∪ X is not yet a strong control closure of
N ′ since now (i) n9 and n10 are not N ′ ∪X-weakly deciding and consequently
not strongly commiting, and (ii) they are not N ′ ∪ X-avoiding. Nodes n9 and
n10 are not N ′∪X-weakly deciding due to the paths (i) [n9..n6] and [n9, n3] and
(ii) [n10, n3] and [n10..n6]. Since all nodes in X ∪ {n9, n10} are reachable from
n18 ∈ N ′, N ′ ∪ {n3, n4, n6, n9, n10, n15} is the strong control closure of N ′.

3. Motivations for Efficient Algorithms of Computing WCC and SCC

Program slicing is one of the client applications of WCC and SCC. Slicing

is specified by means of a slicing criterion which is usually a set of CFG nodes

representing program points of interest. Static backward/forward program slic-

ing then asks to select all program instructions that directly or indirectly affect/

11



affected by the computation specified in the slicing criterion. Static dependence-

based program slicing [1, 14, 15] is performed by constructing a so-called pro-

gram dependence graph (PDG) [2]. A PDG explicitly represents the data and

the control dependence relations in the control flow graph (CFG) of the input

program. Any edge n1 → n2 in a PDG represents either the control depen-

dence relation n1
cd→ n2 or the data dependence relation n1

dd→ n2. The relation

n1
dd→ n2 holds if n2 is using the value of a program variable defined at n1.

A PDG is constructed by computing all the data and the control dependence

relations in the CFG of a program beforehand, and then include all edges (n,m)

in the PDG if n1
dd→ n2 or n1

cd→ n2 holds. A forward/backward slice includes

the set of all reachable nodes in the PDG from the nodes in the slicing criterion

in the forward/backward direction.

The existence of the numerous kinds of control dependence in the litera-

ture puts us in the dilemma of which control dependence algorithm is to be

used to construct PDG. Control dependence computation algorithms such as

postdominator-based algorithms exist that cannot compute control dependen-

cies from the following code having no exit point:

if (p) { L1: x=x+1; goto L2; } else { L2: print(x);goto L1; }

Thus, for the above listing of code, PDG cannot be constructed if we use

postdominator-based algorithms to compute control dependency, and conse-

quently, we will not be able to apply PDG-based program slicing.

Algorithm 1 (Slicing). Let C be the the slicing criterion, and let S = C.

1. S′ :=
⋃

n∈S
{m : m

dd

→∗ n}

2. S := cl(S′)

3. if (S = S′) then EXIT

4. else GOTO step 1

Building a PDG by using a particular control dependence computation al-

gorithm may miss computing certain kinds of control dependencies, and the

program slicing may produce unsound results. With the advent of WCC and
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SCC, we obtain a more generalized method to compute control closure of a wide-

range of programs. However, the above approach of static program slicing is not

feasible with WCC and SCC. This is due to the fact that even though WCC and

SCC capture/compute the weak and strong form of control dependencies that

are nontermination (in)sensitive, it is not possible to tell specifically which node

is control dependent on which other nodes. Given any set N ′ of CFG nodes,

the weak/strong control closure cl(N ′) of N ′ captures all control dependencies

n1
cd→ n2 such that n2 ∈ cl(N ′) implies n1, n2 ∈ cl(N ′). However, by looking

into the set cl(N ′), it is not possible to tell if the relation n1
cd→ n2 holds or

not for any n1, n2 ∈ cl(N ′). Since we cannot compute all individual control

dependencies n1
cd→ n2 beforehand, it is not possible to compute a PDG from a

CFG using weak or strong control closed sets. However, Alg. 1 can be applied

to perform the static program slicing using weak or strong control closures.

The relation
dd

→∗ denotes the transitive-reflexive closure of
dd→. The above

algorithm computes the slice set S for backward slicing containing all CFG

nodes that affect the computation at the nodes in C. For forward slicing, the

relation
dd

→∗ has to be computed in the forward direction. To compute the

relation
dd

→∗, we can build a data dependency graph (DDG) capturing only the

data dependency relations. Then, step 1 in Algorithm 1 can be accomplished

by obtaining the set of all reachable nodes in the DDG from the nodes in S in

the forward/backward direction.

Algorithm 1 illustrates that step 2 needs to be performed iteratively until

a fixpoint S = S′ is reached. Given any CFG (N,E), Danicic et al. provided

expensive algorithms to compute weak and strong control closures with worst-

case time complexity O(|N |3) and O(|N |4) respectively. These algorithms are

not only computationally expensive, they cause the static forward/backward

program slicing practically inefficient. In the following, we highlight the moti-

vating factors of having WCC and SCC algorithms and the significance of their

efficiency:

1. Traditional post-dominator based algorithms cannot capture control de-
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pendency relations from programs containing modern program instruc-

tions such as exceptions or nonterminating loops. WCC and SCC are the

most generalised concepts to allievate the limitations of post-dominator

based control dependency computation from these programs.

2. Program slicing is one of the major clients of control dependency. How-

ever, the most widely used PDG-based program slicing cannot directly use

WCC and SCC to capture control dependencies. Slicing algorithms like

Algorithm 1 require repeated computation of WCC or SCC.

3. Efficient algorithms to compute WCC and SCC are desirable for their

client applications. In particular, efficient WCC and SCC algorithms will

improve the efficiency of program slicing and the client applications of

program slicing such as debugging, software maintenance, program opti-

mization, or program analysis.

In the next sections (Section 4 and 5), we shall provide alternative simple yet

practically efficient methods of computing minimal weak and strong control

closed sets.

4. Efficient Computation of Minimal WCC

The relationship between WCC and weakly deciding vertices is the following

(Lemma 51 in [6]): the set of CFG nodes N ′ ⊆ N is weakly control-closed in

the CFG G = (N,E) iff all N ′-weakly deciding vertices in G that are reachable

from N ′ are in N ′. Moreover, N ′ ∪WDG(N ′) is the unique minimal weakly

control-closed subset of N that contains N ′ (Theorem 54 in [6]). We perform

a simple and efficient two-step process of computing all N ′-weakly deciding

vertices WDG(N ′) followed by checking the reachability of these vertices from

N ′ to compute the weakly control-closed subset of N containing N ′.

In what follows, let G = (N,E) be a CFG, let N ′ ⊆ N , and let N be the set

of nodes such that WDG(N ′)∪N ′ ⊆ N ⊆ N . The set of all N ′-weakly deciding

vertices WDG(N ′) are computed in the following two steps:
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n2

n3 n1

n4

n5

n6

m1

m2

n2

n5

m1 m2

CFG G

Graph G

Figure 3: CFG G used for the informal illustration of our approach. The graph G is generated
by our analysis for the verification of potential N ′-weakly deciding vertices.

1. We compute a set of CFG nodes WD which is an overapproximation of the

set of all N ′-weakly deciding vertices, i.e., WDG(N ′) ⊆WD. The WD set

includes all CFG nodes n such that n has two disjoint N ′-paths. However,

WD also contains spurious nodes having overlapping N ′-paths or a single

N ′ path which are not N ′-weakly deciding. Thus, N = WD ∪ N ′ is a

weakly control-closed subset of N containing N ′ which is not minimal.

2. For each node n ∈ WD, the above process also indicates all CFG nodes

m ∈ N such that either [n..m] is an N ′-path or there exists an N ′-path

from n that must go throughm. From this information, we build a directed

graph (N , E) such that any edge (n,m) ∈ E indicates that n is possibly a

weakly deciding vertex, m ∈ N , and there exists an N -path [n..m] in G.

Next, we perform a verification process to check that each node in WD

has two disjoint N ′-paths using the graph (N , E) and discard all nodes in

WD that do not have two such paths.

4.1. An informal account of our approach

In this section, we give an informal description of our algorithm to compute

the N ′-weakly deciding vertices. The first step of this algorithm keeps track of

all N ′-paths (or N -paths to be more specific where N = N ′ initially) in the
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T1 = m1 → n6 → n5 → n4 → n3 → n2 → n1 → n2
S1 P1 = [m1]0 [n6,m1]1 [n5..m1]2 [n4..m1]3 [n3..m1]4 [n2..m1]5 [n1..m1]6

T2 = m2 → n5 → n4 → n3 → n2 → n1 → n2
P2 = [m2]0 [n5]0 [n4, n5]1 [n3..n5]2 [n2]0 [n1..n2]1

T3 = m1 → n6 → n5 → n4
S2 P3 = [m1]0 [n6,m1]1 [n5..m1]2 [n4..m1]3

T4 = m2 → n5 → n4 → n3 → n2 → n1 → n2
P4 = [m2]0 [n5]0 [n4, n5]1 [n3..n5]2 [n2..n5]3 [n1..n5]4

Table 1: The N -paths discovered by our algorithm. CFG nodes are visited in two different
orders denoted by S1 and S2. Ti represents the sequence of visited CFG nodes and Pi

represents the sequence of discovered N -paths during the corresponding visits for 1 ≤ i ≤ 4.
The superscript on a path denotes its length.

CFG. We traverse the CFG backward from the nodes in N ′ and record all N -

paths at each visited node of the CFG. During this process, we discover all CFG

nodes n that have more than one N -paths ending at different CFG nodes, and

n is included in WD (and thus n ∈ N ) as it is a potential N ′-weakly deciding

vertex. In the following, we illustrate this process using the CFG G in Fig. 4

where m1,m2 ∈ N ′.

We have trivial N -paths [m1] and [m2] of lengths zero at CFG nodes m1

and m2 respectively. The N -paths from a node are identified from the N -paths

of its successor nodes. The trivial N -path [m1] leads to the N -path [n6,m1]

of length 1 which in turn leads to [n5..m1] of length 2. Similarly, [m2] leads to

the N -path [n5,m2] of length 1. Since two N -paths [n5..m1] and [n5,m2] are

identified from n5, n5 is included in WD and a new trivial N -path [n5] of length

0 is identified. Different orders of visiting CFG nodes may produce different

N -paths.

Table 1 presents two possible orders of visiting the CFG nodes. The sequence

ofN -paths denoted by P1 is produced due to visiting the node sequence T1. Note

that an earlier visit to n2 has produced the N -path [n2..m1] of length 5, and

the last visit to n2 from n1 (via the backward edge) in T1 does not produce

any new N -path at n2 as it could generate the N -path [n2..m1] of length 7

which is not preferred over [n2..m1] of length 5 by our algorithm. While visiting
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the sequence of nodes in T2, our algorithm identifies two N -paths [n5..m1] and

[n5..m2], and thus it includes n5 in WD. Moreover, a new trivial N -path [n5] is

generated, and the successive visits to the remaining sequence of nodes replace

the old N -paths by the newly generated paths of smaller lengths. From the

N -paths [n3..n5] and [n1..m1] at the successor nodes of n2, our algorithm infers

that there exist two N -paths [n2..m1] and [n2..n5] from n2, and thus it includes

n2 in WD even though no two disjoint N -paths exist in G. Thus, WD is an

overapproximation of WDG(N ′). When CFG nodes are visited according to the

order specified in S2, our algorithm does not infer two N -paths at n2, and thus

it becomes more precise by not including n2 in WD. Note that this order of

visiting CFG nodes does not affect the soundness (as we prove it later in this

section), but the precision and performance of the first step of our analysis,

which is a well-known phenomenon in static program analysis. Note that our

algorithm does not compute path lengths explicitly in generating N -paths; it is

accounted implicitly by our analysis.

The second step of our algorithm generates a graph G consisting of the set

of nodes N ′ ∪WD and the edges (n,m) such that n ∈ WD, n′ ∈ succ(n), and

[n′..m] is the N -path discovered in the first step of the analysis. Thus, [n..m]

is an N -path in the CFG. The graph G in Fig. 4 is generated from the WD set

and the N -paths generated due to visiting node sequences T1 and T2 in Table 1.

Next, we traverse the graph G from N ′ backward; if a node n ∈WD is reached,

we immediately know one of the N -paths from n and explore the other unvisited

branches of n to look for a second disjoint N -path. For the graph G in Fig. 4,

if n5 ∈ WD is reached from m1, it ensures that [n5..m1] is an N -path in the

CFG. Next, we look for a second N -path in the other branch of n5. In this

particular case, the immediate successor of n5 that is not yet visited is m2 ∈ N ′

such that [n5..m2] is the second N -path disjoint from [n5..m1], which verifies

that n5 is an N ′-weakly deciding vertex. We could have that m2 6∈ N ′, and

in that case, we traverse the graph G from m2 in the forward direction to look

for an N -path different from [n5..m1], include n5 in WDG(N ′) if such a path

is found, and excluded it from WDG(N ′) otherwise. Similarly, we discover the
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N -path [n2..n5] by reaching n2 from n5. However, since any N -path from n2

through the other branch of n2 overlaps with [n2..n5], n2 is discarded to be a

N ′-weakly deciding vertex. When all nodes in WD are verified, we obtain the

set WDG(N ′) ⊆WD and the algorithm terminates.

4.2. An overapproximation of the weakly deciding vertices

We perform a backward traversal of the CFG from the nodes in N ′. Initially,

N = N ′. We maintain a function A(n) for each CFG node n ∈ N . This function

serves the following purposes:

1. If the backward traversal of the CFG visits only one N -path [n..m], then

we set A(n) = m.

2. If two disjointN -paths [n..m1] and [n..m2] are visited during the backward

traversal of the CFG, then we set A(n) = n.

We initialize the function A(n) as follows:

A(n) =

⊥ n ∈ N \N ′

n n ∈ N ′
(1)

The valuation A(n) = ⊥ indicates that no N -path from n is visited yet. If we

visit a CFG node n ∈ N \ N ′ with two N ′-paths (which may possibly be not

disjoint due to overapproximation), then n is a potential N ′-weakly deciding

vertex. In this case, we set A(n) = n, n is included in WD (and hence n ∈ N ),

and the function A(n) will not be changed further.

If A(n) 6= n, then A(n) may be modified multiple times during the walk of

the CFG. If A(n) = m1 is modified to A(n) = m2 such that n 6= m1 6= m2, then

there exists a path n, . . . ,m2, . . . ,m1 in G such that m1,m2 ∈ N and [n..m2]

is an N -path in G. This may happen when (i) visiting the CFG discovers the

N -path [n..m1] such that m2 6∈ N , and (ii) in a later visit to m2, m2 is included

in WD (and in N ) that invalidates the path [n..m1] as an N -path and obtains

a new N -path [n..m2]. Note that if [n..m] is an N -path and m 6∈ N ′, then
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there exists an N ′-path from n that go through m which we prove later in this

section.

Alg. 2 computes the setWD which is an overapproximation of weakly control-

closed subset of N containing N ′. It uses a worklist W to keep track of which

CFG nodes to visit next. Note the following observations for Alg. 2.

• For any node n in W , A(n) 6= ⊥ due to the initializations in Eq. 1 and

the update of A at steps 2(a) and 2(b) in Alg. 2.

• The set Sm computed in line 6 is never empty due to the fact that n is a

successor of m and A(n) 6= ⊥.

• If A(m) = m, then m will never be included in W in steps 2(a) and 2(b)

as further processing of node m will not give us any new information.

• Since m can only be included in WD in step (2a) if A(m) 6= m, and

A(m) = m for any m ∈ N ′ due to Eq. 1, we must have WD ∩N ′ = ∅.

• Node m can only be included in W in step 2(b) if A(m) = x is updated

to A(m) = y such that y 6= x.

• If any path [n..m] is traversed such that A(m) = m and no node in [n..m]−

{m} is in WD, then m is transferred such that A(n′) = m for all n′ ∈

[n..m]−{m} due to step (2b). Also, note that if A(n) = m, then we must

have A(m) = m.

• The functions A are both the input and the output of the algorithm. This

facilitates computing WD incrementally. This incremental WD computa-

tion will improve the performance of client applications of WCC such as

program slicing (see Alg. 1). The impact of incremental WD computation

is further explained in the incremental computation of SCC in Section 5.2.

Theorems 1 and 2 below state the correctness of Alg. 2 which we prove using

an auxiliary lemma.

Lemma 1. If A(n) = m and n 6= m, then there exists an N ′-path from n and
all N ′-paths from n must include m.
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Algorithm 2: OverapproxWD
Input : G = (N,E), N ′, A
Output: A,WD
/* Step 1: Initialization */

1 WD = ∅
2 W = N ′

/* Step 2: Computation */

3 while (W 6= ∅) do
4 Remove an element n from W
5 forall (m ∈ pred(n)) do
6 Sm = {A(m′) : m′ ∈ succ(m), A(m′) 6= ⊥}

/* Step 2(a): Potential weakly deciding vertex */

7 if (|Sm| > 1 ∧A(m) 6= m) then
8 W = W ∪ {m}
9 A(m) = m

10 WD = WD ∪ {m}
/* Step 2(b): Updating N ′-paths */

11 if (|Sm| == 1 ∧A(m) 6= m ∧ x ∈ Sm) then
12 y = A(m)
13 A(m) = x
14 if (y 6= x) then W = W ∪ {m}
15
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Proof. Since A(n) = m, there exists a path π = [n..m] visited in Alg. 2 from
m backward. The transfer of m to A(n) is only possible if we have Sx = {m}
for all x ∈ π − {m} and A(x) = m is set in step (2b). Since A(x) 6= x, no
node x ∈ π − {m} is in WD ∪ N ′. Also, there exists a predecessor y of m
such that Sy = {m} which is only possible if A(m) = m. Thus, we must have
m ∈ N ′ ∪WD and π is a (WD ∪N ′)-path.

If m ∈ N ′, then the lemma trivially holds. Suppose m = m1 6∈ N ′. Then,
we must have m1 ∈ WD, and there exists a successor n1 of m1 such that
A(n1) = m2. If m2 6∈ N ′, then m2 ∈WD and there exists a successor n2 of m2

such that A(n2) = m3. Thus, we obtain a subsequence of nodes n1, . . . , nk such
that A(ni) = mi+1 for all 1 ≤ i ≤ k and eventually we have mk+1 ∈ N ′ since
the CFG is finite and it is traversed from the nodes in N ′ backward. Thus,
[n..mk+1] is an N ′-path which go through m.

Corollary 1. If A(n) = m, then m ∈ N ′ ∪WD.

Proof. The proof follows from the first part of the proof of Lemma 1.

Theorem 1. For any WD computed in Alg. 2, WDG(N ′) ⊆WD.

Proof. Suppose the lemma does not hold. So, there exists an N ′-weakly deciding
vertex n ∈WDG(N ′) such that n 6∈WD. Thus, there are two disjoint N ′-paths
from n. Let n1 = n, . . . , nk and m1 = n, . . . ,ml be two N ′-paths. Since
nk,ml ∈ N ′, A(nk) = nk and A(ml) = ml due to Eq. 1. Alg. 2 traverses these
paths and update A(ni) and A(mj) in step (2b) such that

A(ni) 6= ⊥ and A(mj) 6= ⊥ for all 1 ≤ i < k and 1 ≤ j < l.

Since n 6∈ WD, |Sn| ≤ 1 in line 6 in Alg. 2. Node n has at most two successors
according to the definition of CFG (Def. 1). Since A(n2) 6= ⊥ and A(m2) 6= ⊥,
|Sn| ≤ 1 is only possible if A(n2) = A(m2). Let A(n2) = m. Then, we must
have A(n) = m and all N ′-paths must include m according to Lemma 1. Thus,
we conclude that n is not an N ′-weakly deciding vertex since the N ′-paths from
n are not disjoint, and we obtain the contradiction.

Theorem 2. Alg. 2 eventually terminates.

Proof. Alg. 2 iterates as long as there exist elements in W . For all n ∈ N such
that A(n) = n, n is included in WD and it never gets included in W again. If
the value of A(n) remains ⊥, then n is never reached and included in W during
the walk of the CFG. Thus the algorithm can only be nonterminating for some
node n such that A(n) 6= n 6= ⊥. According to step (2b) in the algorithm, n
can only be included in W if the new value of A(n) is different from the old
one. Thus, in order for the algorithm to be nonterminating, there exists an
infinite update to A(n) by the sequence of values m1, . . . ,mk, . . . such that no
two consecutive values are the same, i.e., mi 6= mi+1 for all i ≥ 1.

According to Lemma 1, A(n) = mi implies that there exists an N ′-path from
n and all N ′-paths from n must include mi. Thus, there exists a path [n..mi]
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Figure 4: Graph G = (N , E) constructed according to Def. 12 from the CFG in Fig. 1, and A
and WD in Example 4

in the CFG. If A(n) is updated by mi+1, then mi+1 ∈ WD and A(mi+1) =
mi+1. Node mi+1 must be in the path [n..mi] as otherwise we eventually have
Sn = {mi,mi+1} in line 6 which will lead to A(n) = n. So, A(n) will never
become mi again in (2b) as all N ′-paths from n must go through mi+1 ∈ WD.
Similarly, if A(n) is updated by mi+2, mi+2 must be in the path [n..mi+1] and
A(n) will never be updated by mi+1 again. Since the path [n..mi+1] has a
finite number of nodes, A(n) cannot be updated infinitely, and the algorithm
eventually terminates.

Example 4. Let N ′ = {n5, n8} for the CFG in Fig 1. Alg. 2 computes A and
WD as follows:

• A(n) = ⊥ for n ∈ {n0, n2}

• A(ni) = ni for i ∈ {4, . . . , 6, 8, . . . , 10, 14, 15, 17}

• A(ni) = n10 for i ∈ {1, 3, 11, 13}

• A(n7) = n6, A(n12) = n15, A(n16) = n15, A(n18) = n17

• WD = {n4, n6, n9, n10, n14, n15, n17}

Note that CFG nodes n9, n10, n14, n15, and n17 have no disjoint N ′-paths as all
N ′-paths from these nodes must go through n10. Thus, these nodes do not belong
to WDG(N ′). However, we have WDG(N ′) = {n4, n6} and WDG(N ′) ⊆ WD
holds.

4.3. Generating minimal weakly deciding vertices

Alg. 2 is sound according to Theorem 1. However, as illustrated in Sec. 4.1,

the WD set computed in this algorithm contains spurious nodes that are not N ′-

weakly deciding. In what follows, we provide a general and efficient algorithm to

verify the results obtained from Alg. 2 and discard all incorrectly identified N ′-

weakly deciding vertices. Thus, both algorithms together provide minimal and

sound N ′-weakly deciding vertices. We first represent the solutions generated

by Alg. 2 as a directed graph G as follows:
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Definition 12. G = (N , E) is a directed graph, where

• N = N ′ ∪WD, and

• E = {(n,A(m)) : n ∈WD,m ∈ succ(n), A(m) 6= ⊥}.

Note that succ(n) is the set of successors of n in the CFG. In Fig. 4, G =

(N , E) is constructed from A and WD in Example 4 and the CFG in Fig. 1.

Any graph G constructed according to Def. 12 has the following properties:

• If there exists an edge (n,m) in E such that m ∈ N ′, then there exists an

N ′-path [n..m] in the CFG G.

• An edge (n,m) in E such that m ∈ WD implies that there exists an N ′-

path from n going through m (from Lemma 1).

• There exist no successors of a node in N ′ since WD ∩N ′ = ∅.

• Graph G may be an edge-disjoint graph since there may exist N ′-weakly

deciding vertices and their N ′-paths do not overlap.

• Since our CFG has at most two successors according to Def. 1, any node

in G has at most two successors. However, some nodes in G may have self-

loop or only one successor due to the spurious nodes generated in WD.

Moreover, |N | ≤ |N |, |E| ≤ |E|.

The intuitive idea of the verification process is the following. For any n ∈ N ′,

we consider a predecessor m of n in G. Thus, we know that [m..n] is an N ′-path

in the CFG G. If there exist another successor n′ ∈ N ′ of m such that n 6= n′,

then [m..n′] is another N ′-path disjoint from [m..n] and m is an N ′-weakly

deciding vertex. However, all other successors of m might be from WD instead

of N ′. Let succG(m) and predG(m) be the sets of successors and predecessors

of m in G. Then, we traverse G from the nodes in succG(m) \N ′ in the forward

direction to find an N ′-path from m which is disjoint from [m..n]. If it visits

a node in N ′ different from n, then m is an N ′-weakly deciding vertex due to

having two disjoint N ′-paths. Otherwise, we exclude m from WD. Most nodes

in WD can be immediately verified by looking into their immediate successors
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Algorithm 3: VerifyWDV
Input : G = (N , E) and N ′

Output: WDmin

/* Initialization */

1 forall (n ∈ N \N ′) do
2 Ā(n) = ⊥, V (n) = false, and T (n) = false

3 forall (n ∈ N ′) do
4 Ā(n) = n, V (n) = true, and T (n) = true

5 W =
⋃

n∈N ′ predG(n)
6 WDmin = ∅
/* Computation */

7 while (W 6= ∅) do
8 Remove n from W and set V (n) = true
9 Sn = {Ā(m) : m ∈ succG(n), Ā(m) 6= ⊥}

10 Rn = {m : m ∈ succG(n), Ā(m) = ⊥}
11 Let m ∈ Sn

12 if ((|Sn| > 1) ∨ disjointNPath(m,G, Rn,WDmin, N
′)) then

13 Ā(n) = n
14 if (T (n) = false) then WDmin = WDmin ∪ {n}
15 else Ā(n) = Ā(m)
16 forall (n′ ∈ predG(n) such that V (n′) = false) do
17 W = W ∪ {n′}
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without traversing the whole graph G. Also, the graph G is usually much smaller

than the CFG. Thus, the whole verification process is practically very efficient.

Given the graph G = (N , E), Alg. 3 generates WDmin which is the set

of minimal N ′-weakly deciding vertices. Like Alg. 2, we use a function Ā(n)

to keep track of N ′-paths visited from n. Initially, Ā(n) = ⊥ for all n ∈

N \ N ′ and Ā(n) = n otherwise. A boolean function T (n) is set to true

if n ∈ N ′, and T (n) = false otherwise. Another boolean function V (n),

which is initially false, is set to true if n is already verified. The procedure

disjointNPath(m,G, Rn,WDmin, N
′) used in the algorithm traverses the graph

G from the nodes in Rn in the forward direction visiting each node at most once.

If a node in N ′ ∪WDmin different from m is visited, then it returns true, oth-

erwise false. During this traversal, no successors of a node in N ′ ∪WDmin are

visited as an N ′-path must end at a node in N ′. We skip providing the de-

tails of this procedure since it is a simple graph traversal algorithm. Note that

Sn 6= ∅ at Line 9. This is because there exists a successor m of n from which n

is reached during the backward traversal of the graph G and Ā(m) 6= ⊥.

Theorem 3 below proves that WDmin is the minimal weakly control-closed

subset of N containing N ′.

Theorem 3. For any WDmin computed in Alg. 3, WDG(N ′) = WDmin.

Proof. “⊆”: Let n ∈ WDG(N ′). According to Theorem 1, WDG(N ′) ⊆ WD
and thus n ∈ WD. Suppose m1,m2 ∈ succ(n) since there exist two disjoint
N ′-paths from n, and also assume that A(mi) = ni1 for i = 1, 2. Thus, (n, ni1) is
an edge in G for i = 1, 2. According to Corollary 1, ni1 ∈ N ′ ∪WD. If ni1 6∈ N ′,
we can show similarly that there exists a node ni2 such that (ni1, n

i
2) is an edge

in G for some 1 ≤ i ≤ 2 and ni2 ∈ N ′ ∪WD. Since graph G and the CFG G are
finite, eventually we have the following sequence of edges

(n, n11), (n11, n
1
2), . . . , (n1k−1, n

1
k) and (n, n21), (n21, n

2
2), . . . , (n2l−1, n

2
l )

such that n1k, n
2
l ∈ N ′ for some k, l ≥ 1. The graph G is traversed backward

from nik ∈ N ′ and n will be reached in successive iterations in Alg. 3. Thus, n
is reached by traversing an N ′-path [n..n1k] backward. Either another N ′-path
[n..n2l ] will be discovered immediately during the construction of Sn at line (9)
of the algorithm or it will be discovered by calling the procedure disjointNPath
and we eventually have n ∈WDmin.

“⊇”: Let n ∈ WDmin. Thus, there exists a node m ∈ N ′ such that n
is reached during traversing the graph G backward and thus [n..m] is an N ′-
path. Also, there exists a successor m′ 6= m of n such that either m′ ∈ N ′ or
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Algorithm 4: computeWD
Input : G = (N,E), N ′

Output: WD
1 Apply Eq. 1 to initialize A
2 (A,WD) = OverapproxWD(G,N ′, A)
3 Construct G = (N , E) according to Def. 12
4 WD = V erifyWDV (G, N ′)

Algorithm 5: minimalWCC
Input : G = (N,E), N ′

Output: WCC
1 WD = computeWD(G, N ′)
2 WCC =All reachable nodes in WD ∪N ′ from N ′

disjointNPath procedure traverses an N ′-path from m2 which is disjoint from
[n..m]. Thus, n ∈WDG(N ′) due to having two disjoint N ′-paths.

4.4. Computing minimal WCC

After obtaining the WDmin set containing minimal N ′-weakly deciding ver-

tices, computing minimal WCC requires checking the reachability of these nodes

from the nodes in N ′. Alg. 4 and 5 below provide the complete picture of com-

puting minimal WCC.

Example 5. For the graph G in Fig. 4(b) and N ′ = {n5, n8}, Alg. 3 generates
WDmin = {n4, n6}. Alg. 5 computes WCC = {n4, n5, n6, n8} for the CFG in
Fig. 1 and N ′ as above.

4.5. Worst-case time complexity

Lemma 2. The worst-case time complexity of Alg. 2 is O(|N |2).

Proof. The worst-case time complexity is dominated by the costs in step (2) of
Alg. 2. Since |succ(n)| ≤ 2 for any CFG node n, all the operations in steps
(2a)-(2b) have constant complexity. However, after removing a node n from W ,
all the predecessors of n are visited. If the CFG G has no N ′-weakly deciding
vertices, then Alg. 2 visits at most |N | nodes and |E| edges after which the
operation y 6= x in (2b) is always false, no node will be inserted in W , and thus
the cost will be O(|N |+ |E|). In order to obtain a vertex in WD, it needs to visit
at most |N | nodes and |E| edges and the maximum cost will be O(|N |+ |E|). If
a node n is included in WD, then we set A(n) = n and n will never be included
in W afterwards due to the first conditional instruction in step (2b). Since
we can have at most |N | N ′-weakly deciding vertices, the total worst-case cost
will be O((|N | + |E|) ∗ |N |). Since any CFG node has at most two successors,
O(|E|) = O(|N |), and thus the worst-case time complexity is O(|N |2).
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Lemma 3. The worst-case time complexity of Alg. 3 is O(|N |2).

Proof. The initialization steps in Alg. 3 have the worst-case cost O(|N |). The
worst-case cost of Alg. 3 is dominated by the while loop (line 7-17). This loop
iterates at most |N | times since (i) once an element is removed from W , it is
marked as visited and never inserted into W again, and (ii) the loop iterates as
long as there are elements in W . Computing the sets Sn and Rn have constant
costs since |succG(n)| ≤ 2. The costs of all other operations between lines
8-15 are also constant except the disjointNPath procedure which has the worst-
case cost of O(|N | + |E|) as it is a simple forward graph traversal algorithm
visiting each node and edge at most once and other operations have constant
cost. The forall loop at line 16-17 visits the edges in E to insert elements in
W and cannot visit more than |E| edges. Thus, the dominating cost of Alg. 3 is
O((|N | + |E|) × |N |). Since |N | ≤ N , |E| ≤ E, and O(|N |) = O(|E|), O(|N |2)
is the worst-case time complexity of this algorithm.

Lemma 4. The worst-case time complexity of Alg. 4 is O(|N |2).

Proof. The worst-case time complexity of Alg. 4 is dominated by the V erifyWDV
and OverapproxWD procedures which have the worst-case time complexity
O(|N |2) according to Lemma 2 and 3.

Theorem 4. The worst-case time complexity of Alg. 5 is O(|N |2).

Proof. The worst-case time complexity of Alg. 5 is dominated by the computeWD
procedure as checking the reachability of a set of nodes in a graph G = (N,E)
can be performed in linear time (i.e. O(|N |) in the worst case). Since O(|N |2) is
the worst-case complexity of the computeWD procedure according to Lemma 4,
the worst-case time complexity of computing minimal WCC in Alg. 5 is O(|N |2).

5. Efficient Computation of Minimal SCC

5.1. Theoretical foundation and algorithms to compute minimal SCC

Let G = (N,E) be a CFG and let N ′ ⊆ N . According to Def. 11, N ′ is

not strongly control closed if and only if there exists a node n ∈ N \ N ′ such

that n is reachable from N ′ which is neither N ′-strongly committing nor N ′-

avoiding. Any strongly control-closed superset of N ′ should include such n. In

what follows, we identify all CFG nodes n to be included in the strong control

closure of N ′.

If any CFG node n ∈ N \N ′ is not N ′-strongly committing, then according

to Def. 6, either or both of the following conditions are true:
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1. n is not N ′-weakly committing,

2. not all complete paths from n contain an element of N ′.

If n is not N ′-avoiding, then according to Def. 10,

3. there exists a node in N ′ that is reachable from n.

The first condition implies that there exist two disjoint N ′-paths from n ac-

cording to Def. 6, and thus n is an N ′-weakly deciding vertex. We use Alg. 2

and 3 to identify all weakly deciding vertices. To identify all nodes satisfying

conditions (2) and (3) above, we compute the set Γ(G,N ′) defined according

to [6] as follows:

Definition 13. Let G = (N,E) be a CFG and let N ′ ⊆ N . We define Γ(G,N ′)
to be the set of all n ∈ N that lie on a complete path in G which does not pass
through N ′.

The set Γ(G,N ′) in Def. 13 contains all CFG nodes n from which there exists

at least one complete path not containing an element from N ′. Alg. 6 computes

Γ(G,N ′) which has the linear worst-case execution time complexity as proved

in section 5.3. We denote Γ(G,N ′) as Γ for simplicity when G and N ′ are

understood from the context. Alg. 6 is based on the simple idea of considering

all CFG nodes to be in the set Γ at the beginning, and discard all CFG nodes n

from Γ when the backward traversal of the CFG G identifies that all complete

paths from n include a node from N ′. This procedure is done as follows:

• We initialize γ(n) = true for all CFG nodes n ∈ N to indicate that n

belongs to the set Γ.

• We traverse the CFG from the nodes in N ′ in the backward direction. A

worklist W is maintained to keep track of all CFG nodes to be visited. W

is initialized by N ′.

• We set γ(n) = false for all n ∈ N ′ as all complete paths from n include

a node from N ′, and thus n ∈ N ′ does not belong to Γ;
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Algorithm 6: computeΓ
Input : G = (N,E), N ′

Output: Γ, γ
1 forall (n ∈ N) do γ(n) = true
2 W = N ′

3 while (W 6= ∅) do
4 Remove n from W
5 γ(n) = false
6 forall (m ∈ pred(n)) do
7 if (∀n′ ∈ succ(m).not(γ(n′)) ∧ γ(m)) then
8 W = W ∪ {m}

9 Γ = {n : n ∈ N, γ(n)}

• If γ(m) = false for all successors m ∈ succ(n) of any CFG node n, then

all complete paths from n include a node from N ′. Then, γ(n) is set to

false and G is traversed from n backward if γ(n) is not set to false before.

• If there exists a successor m of n such that γ(m) = true, then there

possibly exists a complete path from n not including a node from N ′, and

thus no changes to γ(n) are performed.

Alg. 6 visits each CFG node n exactly once possibly modifying γ(n), and Γ is

finally constructed from γ.

We provide the following lemma stating a set of conditions to be tested

for detecting all CFG nodes n that are not N ′-strongly committing and not

N ′-avoiding, and to be included in the strong control closure of N ′.

Lemma 5. Let G = (N,E) be a CFG and let N ′ ⊆ N . N ′ is not strongly
control-closed if there exists a CFG node n such that the following conditions
hold:

1. n ∈ N \N ′,

2. n is reachable in G from N ′,

3. n ∈WDG(N ′) ∪ Γ, and

4. there exists an edge (n,m) ∈ E such that γ(m) = false.

Proof. If N ′ is not strongly control-closed, then there exists a CFG node n ∈
N \N ′ that is reachable in G from N ′ and are neither N ′-strongly committing
nor N ′-avoiding according to Def. 11. Thus, conditions (1) and (2) of the lemma
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are satisfied for n. If n is not N ′-strongly committing, then either or both of
the conditions are true: (1) n is not N ′-weakly committing, (2) not all complete
paths from n contain an element of N ′. In the former case, n is a weakly deciding
vertex according to Def. 7 and 8, and thus n ∈ WDG(N ′). In the latter case,
n ∈ Γ, and thus the third condition of the lemma is true for n. If n is not N ′

avoiding, then there exists a complete path from n that passes through a node
in N ′. Suppose n0 = n, n1 = m, . . . , nk ∈ N ′ be an N ′-path. We choose n such
that k ≥ 1 is minimal where ni 6∈ Γ for all 1 ≤ i ≤ k. If any ni ∈ Γ exists,
then we choose n = ni instead of n = n0. Thus, there exist N ′-paths from all
successors of each ni. This implies that γ(n′) = false for all successors n′ of
ni, and consequently, γ(ni) is set to false according to Alg. 6. Thus, condition
(4) of the lemma is also satisfied.

Lemma 6. Let G = (N,E) be a CFG and let N ′ ⊆ N . Every strong control
closure of N ′ must include the CFG node n satisfying conditions (1)-(4) in
Lemma 5.

Proof. Let X be the strong control closure of N ′ and let there exist a CFG node
n 6∈ X satisfying conditions (1)-(4) in Lemma 5. Condition (3) in Lemma 5
implies the following contradictions:

• n ∈WDG(N ′): There exist two disjoint N ′-paths

π1 ≡ n0 = n, n1, . . . , nk ∈ N ′ and π2 ≡ m0 = n,m1, . . . ,ml ∈ N ′

for k, l ≥ 1 such that ni 6= mj for all 1 ≤ i ≤ k and 1 ≤ j ≤ l. Since
{nk,ml} ⊆ N ′ ⊆ X, and n 6∈ X, there exist minimal indexes i and j
such that {ni,mj} ⊆ X, and thus n ∈ WDG(X). So, n is not X-weakly
committing. Moreover, it is not X-avoiding due to the paths π1 or π2 as
N ′ ⊆ X. Thus, X is not a strong control closure of N ′.

• n ∈ Γ: There exists a path π1 = n0 = n, n1, . . . such that ni 6∈ N ′.
Condition (4) in Lemma 5 implies that there exists an N ′-paths m0 =
n,m1, . . . ,mk ∈ N ′. Since N ′ ⊆ X, there exists a minimal index 1 ≤ i ≤ k
such that mi ∈ X and [m0..mi] is an X-path. If no nj is in X, then n is
not X-strongly committing, and hence X is not a strong control closure.
If there exists a minimal index j such that nj ∈ X, then [n0..nj ] and
[m0..mi] are two W -paths and hence n ∈ WDG(X). Thus, n is not X-
strongly committing, and hence X is not a strong control closure.

Lemma 7. Let G = (N,E) be a CFG and let N ′ ⊆ N . If N ′ is strongly control
closed, then no CFG node n exists satisfying conditions (1)-(4) in Lemma 5.

Proof. Let N ′ be a strongly control closed set. Assume that there exists a node n
in G satisfying conditions (1)-(4) in Lemma 5. Then, WDG(N ′) = ∅ as otherwise
N ′ is not weakly committing, and consequently, it is not strongly committing,
and hence N ′ is not strongly control-closed. Since n satisfies condition (3) in
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Algorithm 7: computeMinimalSCC
Input : G = (N,E), N ′

Output: SCC
1 SCC = N ′

2 while (true) do
3 WD = computeWD(G,SCC)
4 (Γ, γ) = computeΓ(G,SCC)
5 X = {n : n ∈WD ∪ Γ \ SCC,∃m ∈ succ(n).not(γ(m))}
6 Y = {n : n ∈ X,n is reachable from SCC}
7 if (Y == ∅) then break

8 SCC = SCC ∪ Y

Lemma 5, we must have n ∈ Γ. Then, there exists a complete path n0 =
n, n1, . . . which does not go through a node in N ′. Thus, n is not N ′-strongly
committing. As n satisfies the condition (4) in Lemma 5, there exists an edge
(n,m) ∈ E such that γ(m) = false. So, there exists an N ′-path m0 = n,m1 =
m, . . . ,mk ∈ N ′, and thus n is not N ′-avoiding. Consequently, our assumption
leads to the contradiction that N ′ is not strongly control closed.

Alg. 7 computes the strong control closure SCC of N ′ based on Lemma 5-7.

We provide the following lemma stating that SCC is the unique minimal strong

control closure.

Lemma 8. Let G = (N,E) be a CFG, let N ′ ⊆ N , and let SCC be the set
computed in Alg. 7. Then, SCC is the unique minimal strong control closure of
N ′.

Proof. Let Yi be the set of CFG nodes computed at the i-th iteration of the
while loop in Alg. 7 for i ≥ 1. We have Yi ∩ Yj = ∅ for all i 6= j since if any
Yi is included in SCC, no nodes in Yi are ever considered in the subsequent
iterations j to be included in Yj . Since N is finite, eventually, there exists k ≥ 1
such that Yk = ∅, and the while loop terminates after the k-th iteration. Let
SCC0 = N ′, SCCi = SCC0

⋃i
j=1 Yj , and SCC = SCCk−1.

The unique minimality of SCC is obtained due to Lemma 6 and 7 as follows.
If SCCi is not strongly control-closed, then each CFG node n ∈ Yi+1 must be
included in any strong control closure of N ′ for all 0 ≤ i ≤ k − 2. Eventually,
we obtain the strong control closure SCC = SCCk−1, and obtain Yk as an empty
set due to Lemma 7.

Example 6. Consider the CFG G1 in Example 3. It is the CFG in Fig. 1
with nodes n0, n12, and n13 and their associated edges removed. Let N ′ =
{n5, n8, n18}. Table 2 lists the results of an execution of the while loop in
Alg. 6 for the CFG G1 and the set N ′. The third column lists the CFG node
n that is removed from W in each iteration, the fourth column lists all CFG
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Iteration W n m ∈ pred(n) Action
included in W

1 {n5, n8, n18} n18 - γ(n18) = false
2 {n5, n8} n5 - γ(n5) = false
3 {n8} n8 n4 γ(n8) = false
4 {n4} n4 n6 γ(n4) = false
5 {n6} n6 n7 γ(n6) = false
6 {n7} n7 - γ(n7) = false

Table 2: Computing Γ(G1, N ′) according to Alg. 6 where G1 is specified in Example 3 and
N ′ = {n18, n5, n8}

Iteration SCC WD Γ(G1, SCC) Y
1 N ′ {n4, n6} {n1, n2, n3, n9, n10, {n4, n6, n9}

n11, n14, . . . , n17}
2 N ′ ∪ Y1 ∅ {n1, n2, n3, n10, {n10}

n11, n14, . . . , n17}
3 N ′ ∪ Y1 ∪ Y2 ∅ {n2, n3, n14, . . . , n17} {n3, n15}
4 N ′ ∪ Y1 ∪ . . . ∪ Y3 ∅ {n2, n14} ∅

Table 3: Steps of computing SCC according to Alg. 7 for the CFG G1 specified in Example 3
and the set N ′ = {n18, n5, n8}

node m ∈ pred(n) that satisfies the if condition at line 7 in the algorithm
and are included in the worklist W , and the final column specifies which γ
function is set to false . Except the value of γ(n) listed in the final column,
γ(n) = true for all other remaining CFG nodes from which we obtain Γ =
{n1, n2, n3, n9, n10, n10, n14, . . . , n17}.

Table 3 lists the sets SCC, WD, Γ, and Y computed at different iterations
of the while loop in Alg. 7. The set Y computed at iteration i is denoted by Yi
in the table. We only have shown the steps of computing Γ at the first iteration
in Table 2. We obtain Γ at other iterations by using similar steps. The WD
set is computed according to Alg. 4 which can easily be verified by looking into
the SCC paths in the CFG G1. The final column lists the set Y computed at
each iteration which illustrates that no node is listed twice in this column, and
eventually we obtain Y4 = ∅ and the while loop terminates. Finally, we obtain
SCC = {n3, n4, n5, n6, n8, n9, n10, n15, n18} which is the strong control closure
of N ′. In order to see the difference between WCC and SCC, the WCC of N ′

is {n4, n5, n6, n8, n18}. Since the WCC does not consider nontermination, it is
usually much smaller than SCC.

5.2. Incremental computation of SCC

The strongly control-closed set SCC in Alg. 7 is computed iteratively. In

each iteration of the while loop, SCC is augmented by a distinct set Y which is
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a subset of the weakly deciding vertices, and the set Γ, computed by calling the

procedures computeWD and computeΓ. Let Y1, . . . , Yk be the distinct sets such

that Yi is computed at the i-th iteration of the while loop. We have Yi 6= Yj if

i 6= j since each Yi is included in SCC and during the computation of the set

Yj at subsequent iterations, the elements of SCC are discarded in computing

Yj . Thus, SCC is progressively growing by distinct nodes in each iteration, and

eventually, it is a strongly control-closed set.

However, this iterative procedure of computing SCC performs redundant

computation by the computeWD (more specifically the OverapproxWD pro-

cedure called within the computeWD procedure in computing weakly deciding

vertices) and the computeΓ procedures. The OverapproxWD procedure tra-

verses the potential N ′-paths by visiting the nodes in the CFG backward from

the set of nodes N ′. The SCC set is progressive growing from the initial set

SCC0 = N ′ to SCCi = N ′
⋃i

j=1 Yi at the i-th iteration, and the OverapproxWD

procedure is called to compute the weakly deciding vertices of the set SCCi−1

at the i-th iteration of the while loop in Alg. 7. Thus, some SCCi−1-paths are

visited more often than necessary, and visiting these paths do not give us more

information. For example, if the while loop in Alg. 7 terminates after k iter-

ation, then N ′-paths are visited at least k times, Y1-paths are visited at least

k − 1 times, Y2-paths are visited at least k − 2 times, and so on.

All potential weakly deciding vertices can be computed more efficiently by

considering the following facts. If A(n) = m is computed by any call to the

OverapproxWD procedure at any iteration j of the while loop in Alg. 7, then

there exists a path π ≡ n0 = n, . . . , nl = m ∈ SCCj−1 and A(nt) = m is

also computed for all 0 ≤ t ≤ l as [nt..nl] is also a potential SCCj−1-path. If

no CFG node in the path π is ever included in Yi in the subsequent iteration

i of the while loop in Alg. 7, then the fact A(nt) = m does not require any

changes. However, if any node nz for any 1 ≤ z ≤ l − 1 is included in Yi,

then the fact A(nt) = m will not be changed for all z + 1 ≤ t ≤ l as [nt..nl] is

still a potential SCCi−1-path. But, we will obtain new facts A(nt) = nz for all

0 ≤ t ≤ z as [nt..nz] is a potential SCCi−1-path. Thus, it is enough to call the
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Algorithm 8: computeWDIncr
Input : G = (N,E), N ′, A
Output: A,WD

1 (A,WD) = OverapproxWD(G,N ′, A)
2 Construct G = (N , E) according to Def. 12
3 WD = V erifyWDV (G, N ′)

Algorithm 9: computeΓIncr
Input : G = (N,E), N ′, γ
Output: Γ, γ

1 W = N ′

2 while (W 6= ∅) do
3 Remove n from W
4 γ(n) = false
5 forall (m ∈ pred(n)) do
6 if (∀n′ ∈ succ(m).not(γ(n′)) ∧ γ(m)) then
7 W = W ∪ {m}

8 Γ = {n : n ∈ N, γ(n)}

OverapproxWD procedure with the argument Yi−1 instead of SCCi−1 to make

only the necessary changes to compute weakly deciding vertices.

Similarly, the computeΓ procedure traverses the CFG backward from the

set of given nodes SCCi−1 at the i-th iteration of the while loop in Alg. 7 and

update γ(n) = false for each visited node n. Thus, if γ(n) is set to false at

any earlier iteration j, it does not need to be visited at the later iterations. So,

instead of calling computeΓ with the argument SCCi−1, it is enough to call it

with the argument Yi−1 in computing Γ.

Alg. 8 and 9 facilitate computing minimal SCC incrementally. These al-

gorithms are essentially similar to Alg. 4 and 6 except that (i) A and γ are

the input arguments of Alg. 8 and 9 respectively, and (ii) the initialization of

A and γ are removed from these algorithms, and (iii) A is also the output of

Alg. 8; these modifications facilitate the incremental computation of minimal

SCC. Finally, Alg. 10 computes minimal SCC incrementally which initializes

A and γ before the iterative computation of SCC in the while loop, and calls

the computeWDIncr and the computeΓIncr procedures with the argument Y
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Algorithm 10: computeMinSCCIncr
Input : G = (N,E), N ′

Output: SCC
1 Apply Eq. 1 to initialize A
2 forall (n ∈ N) do γ(n) = true
3 SCC = N ′, Y = N ′

4 while (true) do
5 (A,WD) = computeWDIncr(G, Y,A)
6 (Γ, γ) = computeΓIncr(G, Y, γ)
7 X = {n : n ∈WD ∪ Γ \ SCC,∃m ∈ succ(n).not(γ(m))}
8 Y = {n : n ∈ X,n is reachable from SCC}
9 if (Y == ∅) then break

10 SCC = SCC ∪ Y
11 forall (n ∈ Y ) do A(n) = n

instead of SCC unlike Alg. 7. Moreover, A(n) = n is set for all n ∈ Y as Y

is part of SCC (see Eq. 1) and it may provide more weakly deciding vertices

by the computeWDIncr procedure in the subsequent calls of the procedure.

Even though the incremental computation of SCC does not improve the theo-

retical worst-case complexity, it improves the practical efficiency of the overall

computation.

5.3. Worst-case complexity

Danicic et al. [6] provided an algorithm to compute Γ(G,N ′) which has the

worst-case time complexity O(|G|2) where |G| = |N |+ |E|. O(|G|2) is effectively

O(|N |2) since the maximum out-degree of any CFG node is two. Moreover, their

algorithm to compute minimal strongly control-closed superset of N ′ has the

quartic worst-case cost, i.e., O(|N |4). In this section, we show that Γ(G,N ′) can

be computed in linear time and minimal strongly control-closed superset of N ′

can be computed in cubic time in the worst-case in terms of the size of the CFG.

Thus, we have improved the theoretical worst-case computational complexity of

both algorithms by an order of |N |.

Lemma 9. Given any CFG (N,E), the worst-case time complexity of Alg. 6 is
O(|N |).

Proof. The worst-case time complexity of Alg. 6 is dominated by the while loop.
The loop iterates as long as there exist elements in the worklist W . W cannot
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contain more than |N | elements as (1) an element m can be inserted in W if
γ(m) is true (see the conditions of the if at line 7), and (2) once an element m
is removed from W , γ(m) is set to false (Line 5). Thus, no element is inserted
in W twice. The forall loop in line 6 traverses all incoming edges to the CFG
node n removed from W . Since each CFG node n can be inserted in W at most
once, each incoming edge to n is visited at most once. The if condition at line 7
has constant cost since any CFG node has at most two successors according to
Def. 1. All other operations in the while loop have constant cost. The iteration
of the while and the forall loop (at line 6) are mutually dependent: removing
a node n from W causes all edges (m,n) for m ∈ pred(n) to be visited in the
forall loop which in turn may add m to W . Thus, the maximum number of
iterations of the while and the forall loops is |N |+|E|. Since all other operations
have constant cost, the worst-case time complexity of the while loop, and hence
Alg. 6 is O(|N |+ |E|) which is effectively O(|N |) since |E| ≤ 2 ∗ |N |.

Theorem 5. Given any CFG (N,E), the worst-case time complexity of Alg. 7
is O(|N |3).

Proof. In each iteration of the while loop in Alg. 7, the set Y is computed and in-
cluded in SCC, and SCC is excluded (line 5) in computing Y in the subsequent
iterations. Thus, every iteration of the while loop computes a different Y ⊆ N ,
and since N is finite, the loop iterates at most |N | times. The worst-case cost
of each iteration is dominated by the computeWD procedure which is O(|N |2)
according to Lemma 4. Thus, the worst-case cost of Alg. 7 is O(|N |3).

6. Experimental evaluation

We implemented ours and the weak and strong control closure algorithms

of Danicic et al. [6] in the Clang/LLVM compiler framework [7] and run ex-

periments in an Intel(R) Core(TM) i7-7567U CPU with 3.50GHz and have 16

GB of RAM memory. In order to reduce biases to a particular algorithm and

mitigate any threat to validity, the implementation of all algorithms used smart

data structures such as bitvectors and maps to improve its execution time and

the code are optimized as much as possible. All implementations are released

as open source under an open source license in a github repository1.The exper-

iments are performed on a number of benchmarks consisting of approximately

2081 KLOC written in C language. In order to reduce any threat to validity,

we utilize the same data structure

1https://github.com/anm-spa/CDA
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# benchmarks KLOC #Proc Twcc TwccD Speedup
1 Mcf 3 40 9.6 56.7 5.9
2 Nab 24 327 55.1 418.6 7.6
3 Xz 33 465 40.5 116.5 2.9
4 X264 96 1449 155.7 896.0 5.8
5 Imagick 259 2586 334.8 2268.9 6.8
6 Perlbench 362 2460 1523.3 32134.8 21.1
7 GCC 1304 17827 26658.1 634413.9 23.8

Average Speedup = 10.6

Table 4: Comparing execution times of WCC algorithms on selected benchmarks from SPEC
CPU 2017 [8]

Table 4 shows experimental results of computing WCC on seven benchmarks

selected from the SPEC CPU 2017 [8]. The #Proc column indicates the number

of procedures analyzed in the respective benchmarks, Twcc and TwccD columns

show total runtime of the WCC algorithms of ours and Danicic et al., and the

Speedup column indicates the speedup of our approach over Danicic et al. which

is calculated as TwccD/Twcc. Each procedure is analyzed 10 times and the N ′-

sets are chosen randomly for each run. All times are recorded in microseconds

which are converted to milliseconds and the analysis times reported in Table 4

are the average of 10 runs.

Regarding the correctness, both algorithms compute the same weakly control

closed sets. As shown in Table 4, we obtain the highest and the lowest speedup

of 23.8 and 2.9 from the GCC and the Xz benchmarks, and an average speedup

from all benchmarks is 10.6. The Xz benchmark provides the lowest speedup

due to the fact that it has fewer procedures than GCC and the sizes of the

CFGs for most procedures in this benchmark are very small; the average size of

a CFG (i.e. number of CFG nodes) is only 8 per procedure. On the other hand,

GCC has 38 times more procedures than Xz and the average size of a CFG

per procedure is 20. Also, the greater speedups are obtained in larger CFGs.

There are 171 and 55 procedures in GCC with the size of the CFGs greater

than 200 and 500 respectively and the maximum CFG size is 15912, whereas

the maximum CFG size in Xz is 87. For benchmarks like Mcf and Nab, even
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though they have fewer procedures than Xz, the average CFG size per procedure

in these benchmarks is 21 and 16.

Since Alg. 2 and 3 dominate the computational complexity of computing

WCC, we compare the execution times of these algorithms in Fig. 5. We also

plotted the functions NlogN and N2 to compare the execution curves of the

algorithms with these functions. All times are measured in microseconds and an

average of 10 runs. If there exist several CFGs with the same size, we keep the

execution time of only one of them. As illustrated in the figure, Alg. 2 performs

consistently. However, the performance of Alg. 3 varies above or below the per-

formance of Alg. 2. This due to the fact that it shows optimal performance

when noDisjointNPath procedure is called minimally. The performance curves

of both algorithms are closer to the NlogN curve for perlbench and gcc bench-

marks and closer to the linear curve for other benchmarks depicted in Fig. 5

when the times are measured in microseconds.

We also have evaluated our algorithms by performing the same experiments

on a virtual machine (VM) running on the real machine as specified above.

The virtual machine uses a 64-bit Ubuntu OS with 10 GB RAM having 2 cores

and the real machine runs Mac OS Version 10.15.4 with 16GB RAM. Due to

randomization, the experiments have different N ′ sets. We obtain a maximum

speedup of 12 for Perlbench and an average speedup of 5.7 on all benchmarks

from the experiments on the VM. Even though we obtain a smaller speedup

compared to the speedup on the real machine, our algorithm is still several

times faster than the WCC computation of Danicic et al., and we obtain sim-

ilar performance curves for all benchmarks on VM. Evidently, our algorithm

improves the state-of-the-art computation of weak control closure by an order

of magnitude.

Table 5 shows experimental results of computing SCC on the selected bench-

marks from the SPEC CPU 2017 [8]. The symbols Tincr, Tscc, and TsccD denote

the execution time of incremental computation of SCC by Alg. 10, the SCC com-

putation by Alg. 7, and the SCC computation of Danicic et al. [6] respectively.

All times are recorded in microseconds which are converted to milliseconds and
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Figure 5: Comparing execution times of Alg. 2 and 3. Execution time curves are also compared
with the NlogN and N2 functions where N represents the number of nodes in the CFG. X-
axis represents selected CFGs from the respective benchmarks. Y-axis represents either the
execution times of the algorithms measured in microseconds or the value of NlogN and N2.
All charts are displayed in the logarithmic scale.
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Benchmarks Tincr Tscc TsccD Tscc/Tincr TsccD/Tincr
Mcf 15.89 22.73 373.82 1.43 23.52
Xz 60.16 79.54 675.70 1.32 11.23
Nab 104.23 146.76 3561.19 1.41 34.17
X264 241.99 327.06 5898.98 1.35 24.38
Imagick 549.40 763.81 23 198.71 1.39 42.23
Perlbench 2262.52 3176.54 513 265.81 1.40 226.86
GCC 12 699.26 17 715.11 1 412 475.70 1.39 111.23

Table 5: Comparing execution times of SCC algorithms on selected benchmarks from SPEC
CPU 2017 [8]

the reported analysis times in Table 5 are the average of 10 runs. The fifth

column lists the speedup of the incremental computation of SCC over the SCC

computation by Alg. 7 which is calculated as Tscc/Tincr. The final column

lists the speedup of the incremental computation of SCC by Alg. 10 over the

SCC computation of Danicic et al. which is calculated as TsccD/Tincr. Each

procedure is analyzed 10 times and the N ′-sets are chosen randomly for each

run.

Regarding the correctness, all SCC computation produce exactly the same

strongly control-closed sets. Regarding the execution time, the incremental

SCC computation by Alg. 10 is the fastest among the three SCC algorithms

in all benchmarks. On an average, it is 1.38 times faster than the iterative

computation of SCC computation by Alg. 7. However, both Alg. 10 and 7 are

significantly faster than the algorithm of Danicic et al. We obtain the minimum

speedup of 11.23 in the Xz benchmark, the maximum speedup of 226.86 on the

Perlbench benchmark, and the average speedup of 67.66 on each benchmarks

by Alg. 10 over Danicic et al. Thus, we have improved not only the theoretical

worst-case complexity but also the practical efficiency of computing SCC by an

order of magnitude. Moreover, the execution times in Table 4 and 5 confirm

that computing WCC is more efficient than computing SCC.

7. Related Work

Denning and Denning [16] are the pioneers to use dominator-based approach

to identify program instructions influenced by the conditional instructions in
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the context of information-flow security. Weiser [1], the pioneer and prominent

author in program slicing, used their approach in program slicing. However, the

first formal definition of control dependence is provided by Ferrante et al. [2]

in developing the program dependence graph (PDG) which is being used for

program slicing and program optimization. This definition became standard

afterward and is being used for over two decades.

Podgurski and Clarke [3] provided two control dependence relations called

weak and strong syntactic dependence. The strong control dependence corre-

sponds to the standard control dependence relation. The weak control depen-

dence subsumes the strong control dependence relation in the sense that any

strong control dependence relation is also a weak control dependence. More-

over, the weak control dependence relation is nontermination sensitive. Bilardi

and Pingali [4] provided a generalized framework for the standard and the weak

control dependence relation of Podgurski and Clarke by means of the dominance

relation parameterized with respect to a set of CFG paths. Different classes of

CFG path set provides different control dependence relations.

Ranganath et al. [5, 17] considered CFGs possibly having multiple end nodes

or no end node. These kinds of CFGs originate from programs containing mod-

ern program instructions like exceptions or nonterminating constructs often

found in web services or distributed systems. They also considered low-level

code such as JVM producing irreducible CFGs, and defined a number of control

dependency relations that are nontermination (in)sensitive and conservatively

extend the standard control dependency relation. The worst-case time complex-

ity of the algorithms for computing their control dependences is O(|N |4log|N |)

where |N | is the number of vertices of the CFG.

The control dependence relations defined later are progressively generalized

than the earlier definitions, but one may be baffled by the overwhelming num-

ber of such definitions, e.g. in [5], to choose the right one. Danicic et al. [6]

unified all previously defined control dependence relations and provided the

most generalized non-termination insensitive and nontermination sensitive con-

trol dependence called weak and strong control-closure. These definitions are

41



based on the weak and strong projections which are the underlying semantics

for control dependence developed by the authors. These semantics are opposite

to that of Podgurski and Clark in the sense that Danicic et al.’s weak (resp.

strong) relation is similar to Podgurski and Clark’s strong (resp. weak) relation.

The worst-case time complexity of their weak and strong control closure algo-

rithms are O(|N |3) and O(|N |4) where |N | is the number of vertices of the CFG.

Léchenet et al. [18] provided automated proof of correctness in the Coq proof

assistant for the weak control closure algorithm of Danicic et al. and presented

an efficient algorithm to compute such control closure. The efficiency of their

method is demonstrated by experimental evaluation. However, no complexity

analysis of their algorithm is provided.

Recently, Marek et al. [19] have provided improved algorithms to compute

the non-termination sensitive control dependence (NTSCD) and decisive order

dependence (DOD) of Ranganath et al. [5, 17]. The asymptotic complexity

of their algorithms are O(|N |2) and O(|N |3) for computing NTSCD and DOD

respectively where |N | is the number of vertices of the CFG. However, Danicic

et al. [6] have shown that a subset N ′ of the set of CFG nodes is strongly

control-closed in the CFG if N ′ is closed under both the NTSCD and DOD

relations when the Start node of the CFG is in N ′. Therefore, their algorithms

can compute the SCC with the restriction that the Start node must belong to

N ′.

Khanfar et al. [20] developed an algorithm to compute all direct control

dependencies to a particular program statement for using it in demand-driven

slicing. Their method only works for programs that must have a unique exit

point. Neither the computational complexity nor the practical performance

benefits of their algorithm are stated. On the other hand, we compute minimal

weak and strong control closure for programs that do not have such restrictions.

Our method improves the theoretical computational complexity of computing

weak and strong control closure than the state-of-the-art methods, and it is also

practically efficient.

Recently, Masud and Lisper [21] have extended the definitions of weak
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and strong control closure for interprocedural programs in proving the correct-

ness of dependency-based program slicing [22, 23]. Moreover, Masud and Cic-

cozzi [24, 25] showed that the standard dominance frontier-based SSA construc-

tion method increases the size of the SSA program by computing a significant

amount of unnecessary φ functions. However, they provided complex and ex-

pensive algorithms that can generate minimal SSA programs. In [26], we have

shown that placing φ functions in SSA computation and obtaining weakly de-

ciding vertices are dual problems, we have developed an algorithm that can

compute both the weakly deciding vertices and the placements of φ-functions

which can be used as an efficient and generalized alternative in computing min-

imal SSA programs.

8. Conclusion and future work

Danicic et al. provided two generalizations called weak and strong control

closure (WCC and SCC) that subsume all existing nontermination insensitive

and nontermination sensitive control dependency relations. However, their algo-

rithms to compute these relations have cubic and quartic worst-case complexity

in terms of the size of the CFG which is not acceptable for client applications

of WCC and/or SCC such as program slicing. In this paper, we have developed

an efficient and easy to understand method of computing minimal WCC and

SCC. We provided the theoretical correctness of our method. Our algorithms

to compute WCC and SCC have the quadratic and the cubic worst-case time

complexity in terms of the size of the CFG. We experimentally evaluated the

algorithms for computing WCC and SCC of ours and Danicic et al. on practical

benchmarks. For the WCC, we obtained the highest 23.8 and on average 10.6

speedups compared to the state-of-the-art method. For the SCC, the highest

and the average speedups are 226.86 and 67.66 compared to the method of Dani-

cic et al. The performance of our WCC algorithm for practical applications is

closer to either NlogN or linear curve in most cases when time is measured in

microseconds. Thus we improve the practical performance of WCC and SCC

computation by an order of magnitude.
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The future extension of this work will be to develop methods for comput-

ing WCC and SCC for interprocedural programs and apply WCC and SCC in

different dependence-based program analyses.
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[18] J.-C. Léchenet, N. Kosmatov, P. Le Gall, Fast computation of arbi-

trary control dependencies, in: A. Russo, A. Schürr (Eds.), Fundamental
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