
Supporting End-to-end Data-propagation Delay
Analysis for TSN Networks

Bahar Houtan1 and Mohammad Ashjaei1 and Masoud Daneshtalab1 and
Mikael Sjödin1 and Saad Mubeen1

1Mälardalen University Sweden,
bahar.houtan@mdh.se, mohammad.ashjaei@mdh.se,

masoud.daneshtalab@mdh.se, mikael.sjodin@mdh.se,
saad.mubeen@mdh.se

Abstract. End-to-end data-propagation delay analysis allows verifica-
tion of important timing constraints, such as age and reaction, that are
often specified on chains of tasks and messages in real-time systems.
We identify that the existing analysis does not support distributed task
chains that include the Time-Sensitive Networking (TSN) messages. To
this end, this paper extends the existing analysis to allow the end-to-end
timing analysis of distributed task chains that include TSN messages.
The extended analysis supports all types of traffic in TSN, including
the Scheduled Traffic (ST), Audio Video Bridging (AVB), and Best-
Effort (BE) traffic. Furthermore, the extended analysis accounts for the
synchronization among the end stations that are connected via TSN.
The applicability of the analysis is demonstrated using an automotive-
application case study.

1 Introduction

Many embedded functions in modern vehicles are modeled as chains of tasks
that can be distributed over multiple end stations (nodes) via a network. There
are various types of timing constraints such as Age and Reaction that are often
specified on these distributed chains. The age constraint constrains the age or
freshness of the data from the input to the output of the chain. Whereas, the
reaction constraint constrains the first reaction at the output of the chain corre-
sponding to the data that arrived at the input of the chain1. These constraints
are included in the timing model of the AUTOSAR standard [1] and have been
translated to several modeling languages in the vehicular domain [2]. The de-
velopers of these functions are required to verify that these timing constraints
are satisfied at the design time. These timing constraints can be verified by
performing the end-to-end data-propagation delay analysis of these constrained
distributed task chains [3–5]. Note that this type of analysis is applicable to both
single node and distributed embedded systems. In the case of distributed em-
bedded systems, there are several works that have incorporated various legacy

1 The age and reaction constraints and the corresponding delays are discussed in detail
in Section 3.



on-board real-time network protocols in this analysis, e.g., Controller Area Net-
work (CAN) [6] and legacy Ethernet [7].

We identify that the existing end-to-end data-propagation delay analysis does
not support the analysis of task chains that utilize the Time-Sensitive Network-
ing (TSN) messages. TSN is a set of IEEE standards that are based on switched
Ethernet. There are several works that provide response-time analysis for vari-
ous types of traffic in TSN [8–10]. However, none of these analyses are integrated
to the end-to-end data-propagation delay analysis. To this end, this paper pro-
poses an end-to-end data-propagation delay analysis to allow the timing analysis
of distributed task chains that encompass all types of TSN traffic classes, includ-
ing Scheduled Traffic (ST), Audio Video Bridging (AVB), and Best-Effort (BE)
traffic classes. The main contributions of the paper are as follows:

– We present a comprehensive system model for distributed embedded systems
that use TSN for network communication. The model can express distributed
task chains that can contain various types of traffic supported by TSN,
including the ST, AVB, and BE traffic.

– We develop an end-to-end data-propagation delay analysis of distributed
task chains that include various types of TSN messages. The presented end-
to-end timing analysis incorporates response-time analysis of TSN.

– We demonstrate the applicability of the proposed analysis on a vehicular use
case.

2 Background and Related Work

2.1 Time-Sensitive Networking (TSN)

TSN standards are recently developed by the TSN task group in IEEE standard-
ization. These standards can be seen as a toolbox containing various features
to improve the performance of communication in several applications, e.g., au-
tomation and automotive applications [11–13]. Among several features, the TSN
standards allow temporal isolation of the ST traffic that is transmitted according
to an offline schedule. Another feature is the Time-Aware Shaper (TAS) that
can realize the temporal isolation using a set of gates controlling the transmis-
sion of traffic on a port of a TSN switch. The gates can stop the transmission
of lower priority traffic in favour of the urgent ST traffic which in turn guaran-
tees low-jitter transmission for the ST traffic. In addition, the TSN standards
define a Credit-Based Shaper (CBS) mechanism that allows reservation of band-
width over the network for a set of traffic classes, known as the AVB classes.
The network can have multiple AVB classes, e.g., classes A and B, where class
A has higher priority than class B, and they undergo the CBS mechanism for
transmission. According to the CBS mechanism, a credit is configured per class
of traffic on each port and the traffic associated to the class can only be sent
when the credit for that class is zero or positive. If the credit is negative, the
transmission is on hold until the credit replenishes with a constant rate, known
as the idleSlope, to zero or positive. The credit decreases when the transmission



is happening with a constant rate, known as the sendSlope, and the summation
of both values is equal to the port rate. Moreover, TSN can support legacy traffic
transmission that do not need any timing guarantees, which is known as the BE
traffic class.

2.2 Related Work

Several schedulability analysis techniques have been proposed in the literature
to calculate the delays of traffic crossing through a TSN network in the worst-
case scenarios. Among the techniques, many of them focused on the worst-case
delays of the classes A and B frames under the CBS only, e.g., [14] and the im-
proved technique given in [15]. In addition, the work in [16] proposed a technique
based on the trajectory approach to compute the delays of classes A and B. The
technique obtains tighter bound compared to the previous techniques, e.g., com-
pared to [14]. Later, the work in [17] proposed the notion of eligible interval that
could provide a bound for delays per frame leading to tighter analysis compared
to the previous analysis techniques. The above-mentioned works solely consider
the CBS in TSN networks. However, the TSN standards give various number of
shapers and mechanisms that a network designer can select from. For instance,
the proposal in [18] and [19] presented an analysis based on network calculus
where it considers a TSN shaper called the Burst Limiting Shaper (BLS).

Various schedulability analysis techniques focused on mechanisms other than
the CBS, such as the gate mechanism. The analysis that is proposed in [20]
computes the worst-case response times of classes A and B messages in TSN
considering both CBS and the gate mechanism. However, the analysis considers a
single-switch network, while industrial networks can consist of multiple switches.
The work in [21] presented an analysis based on calculating the accumulation
of delays, whereas the works in [22] and [23] used network calculus to check the
schedulability of TSN messages. In addition, the technique in [24] presented a
response-time analysis for classes A and B messages considering the CBS and
support for the ST that is proposed in [25]. Furthermore, the work in [10] extends
the technique in [24] for supporting the BE traffic. The traffic forwarding and
shaping model in the latter work was different than the TSN standard models,
as it was proposed before finalization of the first TSN draft.

A TSN network may also benefit from the preemption support along with
the CBS and the gate mechanism [26]. Therefore, the work in [27] proposed
an analysis considering frame preemption under the IEEE 802.3br standard.
Further, the work in [9] presented a technique that calculates worst-case response
times of frames for classes A and B when the CBS, gate mechanism and frame
preemption are used in a TSN network. Similarly, the work in [8] proposed a
response-time analysis with the mentioned TSN features in combination with
various modes, such as enabling and disabling the hold and release mechanism.
The hold and release mechanism is defined in the TSN standards to prevent any
possible jitter for the ST traffic due to transmission of lower-priority classes A
and B.



In the context of distributed embedded systems, not only the response times
of tasks in the nodes and messages in the TSN network should be taken into
account, but also the delays in the chains of tasks that include TSN messages.
The existing end-to-end data-propagation delay analysis that computes these
delays incorporates the analysis of various legacy real-time networks, such as
CAN [5] and legacy Ethernet [28]. The work in [6] and [4] presented an end-to-
end data-propagation delay analysis for automotive applications, where some of
the techniques have been also implemented in tools to support component-based
software development, e.g., [5, 7, 29, 30]. However, to the best of our knowledge,
there is no existing work that incorporates the analysis of TSN into the end-to-
end data-propagation delay analysis. This paper presents an end-to-end delay
analysis considering data chains in TSN networks with all types of traffic classes,
including ST, AVB and BE classes.

3 Data-propagation Delays

Real-time systems are often modelled with chains of tasks. In order to verify the
timing behavior of these chains, not only their end-to-end response times need
to be calculated and compared against the corresponding deadlines, but also the
end-to-end data-propagation delays (age and reaction) should be calculated and
compared with the corresponding age and reaction constraints. Consider a task
chain consisting of three tasks τ1, τ2 and τ3, as shown in Figure 1. The tasks
in this chain are activated independently. The periods of activation for tasks τ1,
τ2 and τ3 are 8 ms, 8 ms and 4 ms, respectively. The Worst Case-Execution
Time (WCET) of each task is assumed to be 1 ms. For simplicity, we assume
that the priority of τ1 is higher than the priority of τ2 and the priority of τ2 is
higher than the priority of τ3. The tasks use register-based communication, i.e.,
they communicate to each other and to their environment by means of writing
data to and reading from the registers. The registers are of non-consuming type.
This means that data stays in the register after the reader has read the data.
Furthermore, the registers are over-writable, i.e., if the writer is faster than the
reader then new data can be overwritten on the previous data in the register
before the reader has read the previous data. The data read by τ1 from Reg-1
corresponds to input of the chain. Similarly, the data written to Reg-3 by τ3
corresponds to output of the chain.

Fig. 1. An example of a task chain that uses register-based communication.



As the tasks are activated independently and some tasks have different peri-
ods, the data can traverse through the chain via multiple paths from the input
to the output of the chain as shown in Figure 2. These paths are called timed
paths. Due to multiple timed paths, there can be various delays that the data
can experience from the input to the output of the chain. Two such delays that
are common in the automotive systems are age and reaction delays [3]. The age
delay is the time elapsed between the arrival of data at the input and the latest
availability of the corresponding data at the output. In the age delay analysis,
we are interested to identify the longest time difference between the input data
and the last sample of corresponding output data. In addition, the reaction de-
lay corresponds to the earliest availability of the data at the first instance of the
output corresponding to the data that just missed the read access at the input.
Possible age and reaction delays for the chain in Figure 1 are shown in Figure 2.
The age delay is important, in particular, for control applications where fresh-
ness of the data is of value. Whereas, the reaction delay is important in the
applications where the first reaction to the input is of value.

Fig. 2. Age and Reaction delays in the task chain depicted in Figure 1.

Although the data-propagation delays are discussed in the context of single-
core processors, these delays are equally valid in distributed embedded systems.
Let us consider a distributed task chain in a distributed embedded system de-
picted in Figure 3, where two nodes are connected via a network. In this example,
the tasks are activated periodically with periods of 6ms and 3ms, respectively.
Task τ1 in Node 1 sends a message to task τ2 in Node 2 through the network.

Depending on the type of network, we may have different possible data path
from the sender task to the receiver task. For example, when the network in
not capable of initiating communication independent of the nodes, a message
can only be queued for transmission at the network interface when the sending
task sends it. This is the case of many network protocols, including CAN [31].
In this case, the message inherits period from its sender task. Furthermore, the
data paths in a distributed task chain also depends upon if the network supports



1W
0 20105 15 25

0 20105 15 25

Reaction delay = 10

2W
0 20105 251m

Reg‐1 Reg‐2 Reg‐3

Period = 6ms

WCET = 1ms

Reg‐41W 1m 2W
WCET = 1ms

Period = 3ms

Node 1 Node 2Network

15

Age delay = 7

1W
0 20105 15 25

0 20105 15 25

Reaction delay = 16

2W
0 20105 251m 15

Age delay = 13

1W
0 20105 15 25

0 20105 15 25

Reaction delay = 16

2W
0 20105 251m 15

Age delay = 16

(a)

(b)

(c)

Fig. 3. A multi-rate chain in a distributed embedded system.

synchronization of nodes (e.g., Switched Ethernet) or not (e.g., CAN network).
Figure 4 shows an execution trace when the nodes are synchronized in the system
shown in Figure 3. The age and reaction delays in this distributed chain are also
identified in Figure 4.

Fig. 4. A possible execution trace for the distributed embedded system example shown
in Figure 3 when source and destination nodes are synchronized.

A possible execution trace of the distributed task chain in Figure 3 when the
nodes are not synchronized is shown in Figure 5. To create worst case conditions
when the nodes are not synchronized, we assume that the message receiving task
τ2 is activated “just before” the message is received at the receiver node. Hence,
the current instance of τ2 will miss the read access of the message. The message
will be read by the next instance of τ2 as shown in Figure 5. The corresponding
age delay is also identified in this figure. To increase readability, we draw the
same execution trace separately for the case of reaction delay in the distributed
task chain (shown in Figure 3) when the nodes are not synchronized as depicted
in Figure 6.

In the case of TSN, the messages belonging to some traffic classes (AVB
and BE) can be activated by the sending tasks similar to CAN. Moreover, the
messages in TSN can be activated independently by the network as is the case



Fig. 5. A possible execution trace for the distributed embedded system example shown
in Figure 3 when source and destination nodes are not synchronized (age delay).

Fig. 6. A possible execution trace for the distributed embedded system example shown
in Figure 3 when source and destination are not synchronized (reaction delay).

of ST traffic class. The messages belonging to the ST class are not supported
by the data-path computation algorithm in the existing analysis. Hence, the
existing end-to-end data-propagation delay analysis [3] requires extensions to
support messages belonging to all TSN traffic classes. This paper extends the
existing end-to-end data-propagation delay analysis by supporting distributed
task chains that contain messages belonging to various types of traffic in TSN.

4 System model

In this section, we formally present the system model of a distributed system that
consists of two or more end stations (single-core processors) that are connected
by a TSN network. The system, denoted by S, consists of a set of transactions,



denoted by Γ , a set of end stations, denoted by E , and a network, denoted by
N . The system is formally expressed by the following tuple.

S := ⟨Γ,N , E⟩ (1)

where the set of transactions and end stations are formally expressed subse-
quently by Eq. (2) and Eq. (3):

Γ := {Γ1, ..., Γn} (2)

E := {E1, ..., En} (3)

4.1 End station model

An end station Ei may consist of one or more tasks as shown in Eq. (4):

Ei := {τij1, ..., τijk} (4)

where i is the index of the end station to which the task belongs. Note that
a task in an end station may be a part of one or more transactions. Hence, j
represents the transaction index. Finally, k represents the unique identifier of
the task within the scope of the end station.

4.2 Task

The properties of a task are specified by the tuple in Eq. (5).

τijk := ⟨Pijk, Cijk, Tijk, Jijk, Oijk⟩ (5)

where, Cijk is the task’s WCET, Tijk is the task’s period, Pijk is the task’s
priority, and Jijk is the task’s release jitter. Moreover, Oijk represents the offset
of the task.

Some other properties of the task are calculated using the aforementioned
information in the task’s tuple. Firstly, the activation time of the nth instance of
the task τijk can be obtained using the task’s period and offset based on Eq. (6).
Moreover the worst-case response time of the task is indicated by Rijk. Note
that the nth instance of the task τijk is denoted by τijk(n).

αijk(n) = n ∗ Tijk +Oijk (6)

4.3 Network model

The network attributes are indicated by a set of parameters in Eq. (7):

N := ⟨s,L, I⟩ (7)

where s is the overall network speed and L holds the set of links in the network.
We consider that each link creates a bi-directional connection between an end



station and a switch or between two switches. All switches in the network are
TSN switches, hence there can be different traffic classes in the network. We
indicate the traffic classes by the set in Eq. (8), where AVB can be classes A,
B or other classes that undergo the CBS. Moreover, ST and BE represent the
scheduled traffic and best-effort traffic classes.

I = {AV B, ST,BE} (8)

A message in the network is indicated by mjk, where the subscript j identifies
the transaction to which the message belongs. Furthermore, the subscript k is
the unique identifier of a message within the scope of the network. Eq. (9) shows
the set of attributes defining the properties of a message.

mjk := ⟨Pjk, Sizejk, Tjk, Jjk,Ljk,Ojk⟩ (9)

where the priority of the message is denoted by Pjk that specifies the TSN class
from which the message is transmitted, e.g., class A. In this model, the ST
class has the highest priority, while AVB (classes A and B) has a lower priority
than ST. However, class A has a higher priority than class B. Moreover, the BE
class has the lowest priority among all the classes. The size of data (payload) is
indicated by Sizejk. We assume that all messages are periodic, therefore Tjk is
the period of the message. The release jitter of the message is indicated by Jjk.
The set of links assigned as the route of the message from the source end station
to the destination end station is stored in the set Ljk. Furthermore, the set of
offsets of the message at each of the links specified in the set Ljk is stored in
the set Ojk. We assume that we only know the offset of the ST traffic as it is
scheduled offline [32]. Therefore, the set Ojk for non-ST traffic is assumed to be
empty, i.e., Ojk = {}.

Based on the aforementioned properties, we can calculate other properties of
the message mjk, such as the transmission time (Cjk) as well as the worst-case
response time (Rjk) by utilizing the response-time analysis of various classes in
TSN [10]. Moreover, the activation time of the nth instance of the message mjk

at link l is calculated by Eq. (10), where Ol
jk is the offset of mjk on link l.

αl
jk(n) = n ∗ Tijk +Ol

jk (10)

We assume that both ST and non-ST traffic inherit period from the task
from which they are transmitted. Therefore, Tijk indicates the period of the
kth task (sending task) belonging to the ith end station and being part of the
jth transaction. Moreover, we denote the nth instance of the message mjk by
mjk(n).

4.4 Transaction

A transaction Γj represents the model of a distributed task chain that consists of
two or more tasks that communicate with each other via one or more messages.
The data read by the first task of the transaction is considered as the input of



the transaction, and the data written by the last task of the chain corresponds
to output of the transaction. The period of the transaction is denoted by Tj .
Note that this model limits the number of message to one per transaction.

Figure 7 shows an example of a TSN-based distributed embedded system
with the model presented in this paper. There are two end stations connected to
the network. More specifically, end station E1 and E2 are connected via links l1
and l2 to switch 1 (SW1). The system has two transactions as shown in Figure 7,
namely Γ1 and Γ2. These transactions are further elaborated in Figure 8.

Fig. 7. Example of a distributed vehicular embedded system based on TSN.

A transaction that is within a single end station only includes tasks from this
end station. Hence, the initiator and terminator end stations of the transaction
are the same. For example, the transaction Γ1 initiates and terminates inside
the end station E1, as shown in Figure 8. On the other hand, transaction Γ2 is
distributed over two end stations.

Fig. 8. Example of transactions.

Trigger modes According to [33], the assumptions on the activation times
of the tasks and messages in a distributed transaction affect the delays of the



transaction. In this paper, we assume that each entity in a transaction, regardless
of being a task or message, can be triggered in two modes, i.e. ”Dependent” or
”Independent”. The trigger mode is selected by the parameter triggerMode, as
shown in Eq. (11).

triggerMode := {Dependent, Independent} (11)

A task can be independently triggered by an event source, e.g., a periodic
clock. Additionally, a task can be triggered based on (i) an activation signal
from a predecessor task, (ii) receiving data from a predecessor task, or (iii) a
combination of both. These modes represent the chains that are presented in
Section 3. In this paper, we assume that a reader task is independently triggered
and can receive the last available instance of the message from the network.

If the message is ST, it is triggered independently. This means that the
message is triggered based on static offsets defined for it at each of the links
specified in its route to the destination end station. In case of the dependent
trigger mode, the message is triggered right after the execution of its source
task is finished. For example, the messages assigned to non-ST classes in TSN
networks (AVB or BE) can use the link as soon as the message’s source task
(the writer task) is executed, and if they obtain free bandwidth to use the link.

Transaction Constraints A constraint on transaction, denoted by Crj , defines
the maximum allowed value of the delays, such as age (Agej), reaction (Reacj).
Moreover, a deadline constraint (Dj) can be specified on a transaction. This
constraint constrains the end-to-end response time of the transaction, which
corresponds to response time of the last task in the transaction. These constraints
are shown in Eq. (12) for transaction Γj :

Crj := {Agej , Reacj , Dj} (12)

5 End-to-end data-propagation delay analysis

This section presents the end-to-end data-propagation delays analysis of task
chains that are distributed over TSN network. The analysis is based on the
existing analysis [3, 5] that considers legacy networks like CAN. The analysis
requires computation of all relevant data paths (also called timed paths) within
the distributed task chains.

5.1 Reachable timed paths

The order of read and write by each instance of the tasks from the input to
the output of the transaction is represented by a set of timed paths. These
timed paths track the propagation of data from the input to the output of the
transaction. Therefore, each transaction can have a set of timed paths. A timed
path belonging to the transaction Γj is denoted by tpij , where i is the ID of the



timed path. A valid timed path between a writer and reader task is selected
according to a set of Boolean functions [3].

The first condition in identifying a valid timed path is that a reader task
(say τdbe) should not be activated before the writer task (say τabc). The condition
defined in Eq. (13) is also known as activation time travel (att()), where a reader
task is activated before the writer task. The activation time travel should not
happen in valid timed paths. Note that a(n) shows the activation time of the
nth instance of the task computed according to Eq. (6).

att(τabc(n) −→ τdbe(m)) = αdbe(m) < αabc(n) (13)

Where, Eq. (13) is true in case of the activation time travel between the
writer and reader tasks. Otherwise, the condition is false, which is desirable.

Moreover, the writer and reader tasks shoud not overlap in a valid timed
path. The critical function (crit()), shown in Eq. (14), returns true if the reader
task τabc is activated before the writer task is completed. Otherwise, this function
returns false, which is desirable. Note that Rabc is the worst-case response time
of the writer task according to the system model presented earlier.

crit(τabc(n) −→ τdbe(m)) = αdbe(m) < αabc(n) +Rabc (14)

Where, Eq. (14) is true when the reader task is activated before the completion
of the writer task. In such case, the reader task misses the data from the writer
task.

Fig. 9. End station tasks with different activation times.

Figure 9 shows an example of the case where the reader task is activated
just after the execution of the writer task is completed. In such case, we have
a reachable timed path from the first instance of the writer task to the first
instance of the reader task. Note that the timed path from the second instance
of the writer task to the reader task’s first instance is not reachable, which will
be excluded by Eq. (13) and Eq. (14).

Moreover, the reader and writer task instances can only overlap when they
are in the same end station; and if the priority of the reader task τdbe is less



than the priority of the writer task τabc. This is taken into account according to
the wait function (wait()) in Eq. (15), where P indicates the priority of the task
according to the system model.

Fig. 10. End station tasks when activated at the same time.

wait(τabc(n) −→ τdbe(m)) = Pdbe < Pabc (15)

Figure 10 shows an example of a timed path between two tasks inside an end
station. If both writer and the reader tasks are activated at the same time, there
is a reachable timed path between the writer and the reader task provided that
the writer task has executed before the reader task.

Accordingly, if the writer and reader task instances are from two different
end stations, the reachability of the timed path through the network is obtained
referring the worst-case response time of the message communicated between
the writer and reader tasks, and the activation time of the writer task instance,
as shown in Figure 11. For instance, if there is a writer task τw and a reader task
τr which communicate by a message Msg, there are three different timed paths
as shown in Figure 11. However, only one of those timed paths is a reachable
timed path from the input to the output of the transaction.

Fig. 11. Timed paths.



The forward reachability of two tasks in the timed path according to the
aforementioned functions is examined based on the forward reachability function
forw() in Eq. (16).

forw(τabc(n) −→ τdbe(m)) =
¬att(τabc(n) −→ τdbe(m))∧
(¬crit(τabc(n) −→ τdbe(m)) ∨ wait(τabc(n) −→ τdbe(m)))

(16)

Further, it can happen that two instances of a writer task reach to an instance
of a reader task, e.g., when the period of the writer task is shorter than the reader
task. In this case, the data in the reader task will be overwritten. In order to
detect this situation we should make sure that an instance of a writer task can
reach to an instance of a reader task, while the next instance of the writer task
cannot reach to the same reader task. This can be detected when the function
in Eq. (17) returns true, where τabc(n + 1) represents the next instance of the
task instance τabc(n).

reach(τabc(n) −→ τdbe(m)) = forw(τabc(n) −→ τdbe(m))
∧¬forw(τabc(n+ 1) −→ τdbe(m))

(17)

After checking the reachability between two task instances, we can check for
the whole timed path by evaluating every two consecutive task instances in the
timed path from the first task until the last task. We show this by Eq. (18) where
a timed path tpij belongs to the transaction Γj . Moreover, for simplicity of the
equation, two consecutive task instances in the timed path are shown by τw and
τr.

reach(tpij) =
∏

reach(τw −→ τr) (18)

We finally evaluate all possible timed paths in the transaction Γj to obtain all
reachable (valid) timed paths in a set TP reach

j , according to Eq. (19) assuming
that there are z timed paths in the transaction.

TP reach
j = {reach(tpij); i = 1..z} (19)

5.2 Accounting for the ST messages

Each ST message has a deterministic schedule at each link within its route from
the sender (writer) task to the receiver (reader) task. The activation time of an
ST message on its last link (the time it is available to the reader task instance)
is not directly dependent on the response time of the sender task or the response
time of the message itself on the previous links. This is opposed to the case of
a non-ST message, where the activation time of the message on the last link
between the sender and receiver tasks is dependent upon both the response time
of the sender task and its own response time on the previous links. Whereas,
the ST messages are isolated by the time slots, which are configured offline on
each link in their route to the receiver tasks. Accordingly, the reachability of
an ST message’s instance to a reader task instance is determined considering



the offsets per link along the route of the message. In this case, the existing
constraint to find reachable timed path requires to also take into account the
activation times of the ST message per link in the route of the message. An
example of a transaction is shown in Figure 12, in which the ST class is utilized
for the communication between two end stations. The reachable timed paths in
the transaction (Γ1) shown in this example are subsequently, tp11, tp

2
1, tp

3
1 and

tp41. For instance, tp11 starts with the first instances of the first and the second
task of the source end station. Then the message uses the bandwidth of the links
in its path according to its offset at each of the links.

Fig. 12. Timed path with ST messages.

As it can be seen in Figure 12, the analysis has to be extended to support
multiple activations of the message on several links as the ST messages have
deterministic activation times per link. In the following, we show that in the
end-to-end delay analysis of the ST messages, we can omit the activation times
of the links in the path of the message except for the last link. This reduction
in the timed path significantly decreases the number of timed paths to evaluate
and in turn reduces the computation time of the analysis. We show this with
the following lemma.

Lemma 1. It is enough to consider the activation time of an ST message on
its last link between its sender and receiver end stations when extracting the
reachable timed paths.

Proof. ST offsets at the subsequent links in the route of the message are defined
in a way to satisfy a set of constraints as presented in [32], such as, constraints on



the frame size, overlapping of messages on a link, order of traversed links, and
deadline satisfaction. Given that the ST offsets satisfy all the aforementioned
constraints, then it is guaranteed that the arrival time of the message is always
before its deadline. In addition, given the offline schedule from [32] it is guar-
anteed that the offsets are increasing over the links on the path of the message,
i.e., there will not be backward timed path over several links for an ST message.
Another important aspect is that during the transmission of the ST message
until its arrival to the destination end station there will be no new activation of
the subsequent instance of the message. Thus, there is always one path for an
ST message over several links. Therefore, it is enough to consider the activation
of the ST message on the last link when extracting the reachable timed paths.

Based on Lemma 1 in case of the scenario depicted in Figure 12, the message
at its last hop (m2

11) is enough to consider in the identification of reachable
timed paths for the end-to-end data-propagation delay analysis, which is shown
in Figure 13. Hence, the existing analysis needs to be extended in order to
support the TSN classes.

Fig. 13. Modelling the ST message at the last hop.

According to Lemma 1, only considering the ST message activation on its last
link is sufficient for deriving the timed path. However to consider the ST message
on the last link, we propose to model it as a separate task which simplifies the
incorporation of the ST message in the existing analysis. Eq. (20) shows the
model of such a task. We regard this task as the network task and denote it
by τNet. This task corresponds to the message mr

jk, where r is the last link
connected to the receiving end station. We assume that there will be one such
task per ST message.



τNet :=
〈
PNet = Pjk, CNet = TT (Sizejk), TNet = Tjk, JNet = Jjk, ONet = Or

jk

〉
(20)

where, TT () calculates the transmission time of the message based on the size
of the message and the network total bandwidth. Modeling of the ST message
with a task allows us to use Eq. (19) to evaluate the reachability of timed paths
corresponding to a transaction, where τNet can be a reader or writer task in a
transaction, while its activation times is computed according to Eq. (10).

5.3 Accounting for the non-ST messages

In case of non-ST messages that are scheduled without offsets, i.e, AVB and
BE classes, the approach to compute reachable timed paths in the existing end-
to-end data-propagation delay analysis [3] holds good. A non-ST message is
assumed to be scheduled for transmission as soon as the sender task completes its
execution. The arrival time of the message instance to the reader task instance
is calculated based on the activation time and the period of the writer task
instance and the response time of the message. As depicted in Figure 14, the
non-ST message m11 has no offset in the set of two links in its route to the reader
task, namely τ211. As a result, the activation time of the message is assumed to be
the same as its predecessor writer task. In Figure 14, each instance of m11 is not
transmitted immediately after the completion of the sender task τ112 because we
assume the message received interference from other higher priority messages.
By knowing the worst-case response time of the message (R11) the reachable
instance of the reader task can be determined. For example, consider tp11 and tp21
in Figure 14. In these timed paths, the first instance of the message is reachable
to the third and fourth instance of the reader task. Therefore, Eq. (16) is used
to evaluate the reachability of timed paths corresponding to a transaction.

5.4 Worst-case delay analysis

The age and reaction delays are derived based on timed paths. According to [3]
the age delay for a timed path tpnj belonging to the transaction Γj is calculated
by Eq. (21), which calculates the time difference between the input data and the
last sample of the corresponding output data.

∆age(tp
n
j ) = αlast(tp

n
j ) +RTlast(tp

n
j )− αfirst(tp

n
j ) (21)

where, αfirst() returns the activation time of the task instance that is the first
task receiving the fresh input data. This task is an instance of the transaction’s
initiator task inside the initiator end station. Moreover, αlast() and RTlast()
return the activation time and the worst-case response time of the instance of
the terminator task from the terminator end station, after which the data is
overwritten.

The reaction delay is calculated by Eq. (22), where Pred() represents the
first instance of the timed path before the timed path under analysis tpn. Note



Fig. 14. Timed path with non-ST messages.

that the effect of just missing an event at the input of the task chain is covered
by Pred().

∆reac(tp
n
j ) = αlast(tp

n
j ) +RTlast(tp

n
j )− αfirst(Pred(tpnj )) (22)

The age and reaction delays for all timed paths for every transaction should
be extracted and the longest corresponding values represent the worst-case age
and reaction delays, which are calculated according to Eq. (23).

∆age(Γj) = {max(∆age(tp
n
j ));n = 1...z}

∆reac(Γj) = {max(∆reac(tp
n
j ));n = 1...z}

(23)

6 Vehicular Application Case Study

In this section, we discuss an vehicular use case that is used to evaluate the
presented end-to-end data-propagation delay analysis.

6.1 Evaluation settings

We consider a use case that consists of 14 end stations (nodes) that are connected
by a two-switch TSN network as illustrated in Figure 15. For the purpose of
the analysis, we assume each end station includes multiple tasks. There are
14 transactions starting from end stations 1 to 7 that use different TSN traffic
classes to communicate with three sink end stations with the IDs 8 to 10. Table 1
shows the transaction settings. Each transaction initiates and terminates by
a task within different end stations. Each transaction includes four tasks in
total. Besides, it includes two tasks per end station which participates in the
transaction. In the source end station, the first task is a computation task and



Fig. 15. Vehicular application use case topology.

the subsequent task is a communication task, which receives data as input, then
prepares and injects messages to the network. In the destination end station of
the transaction, the first task is a communication task that receives and processes
the message from the network. The communication task sends the message for
further processing to the last task in the transaction . The periods of the tasks
are chosen based on the automotive data set in [34]. The size of all messages are
fixed to 1542 Bytes as the maximum Ethernet frame size and the execution time
of each task is considered to be 0.5 ms. In each transaction, we assume that the
priority of of each precedent task is higher than the priority of its subsequent
task within an end station. Furthermore, we do not consider forking and joining
of tasks in a transaction.

Table 1. The evaluation settings for the use-case based on distributed data chain.

Γj Source
(Ei)

Source tasks (τijk):
[id, Pijk,Cijk, Tijk]

Message (mjk):
[id, Pjk,Sizejk, Tjk,Or

jk]
Destination
(Ei)

Destination tasks (τijk):
[id, Pijk,Cijk, Tijk]

Computation Communication Communication Computation

1 CAM1 (1) [τ1,1,1,4,0.5,20] [τ1,1,2,3,0.5,20] [m1,1, ST,1542,20,0.039] HU (8) [τ8,1,1,10,0.5,10] [τ8,1,2,9,0.5,10]
2 CAM3 (3) [τ3,2,1,4,0.5,20] [τ3,2,2,3,0.5,20] [m2,2, ST,1542,20,0.012] HU (8) [τ8,2,3,8,0.5,10] [τ8,2,4,7,0.5,10]
3 CTRL1 (4) [τ4,3,1,4,0.5,10] [τ4,3,2,3,0.5,10] [m3,3, ST,1542,10,0.065] HU (8) [τ8,3,5,6,0.5,10] [τ8,3,6,5,0.5,10]
4 CTRL3 (6) [τ6,4,1,4,0.5,10] [τ6,4,2,3,0.5,10] [m4,4, ST,1542,10,0.078] HU (8) [τ8,4,7,4,0.5,10] [τ8,4,8,3,0.5,10]
5 CTRL2 (5) [τ5,5,1,2,0.5,10] [τ5,5,2,1,0.5,10] [m5,5, ST,1542,10,0.026] AVSink (9) [τ9,5,1,10,0.5,10] [τ9,5,2,9,0.5,10]
6 AV (7) [τ7,6,1,6,0.5,10] [τ7,6,2,5,0.5,10] [m6,6, A,1542,10,0] AVSink (9) [τ9,6,3,8,0.5,10] [τ9,6,4,7,0.5,10]
7 AV (7) [τ7,7,3,4,0.5,10] [τ7,7,4,3,0.5,10] [m7,7, A,1542,10,0] AVSink (9) [τ9,7,5,6,0.5,10] [τ9,7,6,5,0.5,10]
8 AV (7) [τ7,8,5,2,0.5,10] [τ7,8,6,1,0.5,10] [m8,8, A,1542,10,0] AVSink (9) [τ9,8,7,4,0.5,10] [τ9,8,8,3,0.5,10]
9 CAM1 (1) [τ1,9,3,2,0.5,20] [τ1,9,4,1,0.5,20] [m9,9, B,1542,20,0] PUFCam (10) [τ10,9,1,8,0.5,10] [τ10,9,2,7,0.5,10]
10 CAM2 (2) [τ2,10,1,4,0.5,20] [τ2,10,2,3,0.5,20] [m10,10, B,1542,20,0] PUFCam (10) [τ10,10,3,6,0.5,10] [τ10,10,4,5,0.5,10]
11 CAM2 (2) [τ2,11,3,2,0.5,20] [τ2,11,4,1,0.5,20] [m11,11, B,1542,20,0] PUFCam (10) [τ10,11,5,4,0.5,10] [τ10,11,6,3,0.5,10]
12 CAM3 (3) [τ3,12,3,2,0.5,20] [τ3,12,4,1,0.5,20] [m12,12, BE,1542,20,0] HU (8) [τ8,12,9,2,0.5,10] [τ8,12,10,1,0.5,10]
13 CTRL1 (4) [τ4,13,3,2,0.5,10] [τ4,13,4,1,0.5,10] [m13,13, BE,1542,10,0] PUFCam (10) [τ10,13,7,2,0.5,10] [τ10,13,8,1,0.5,10]
14 CTRL3 (6) [τ6,14,3,2,0.5,10] [τ6,14,4,1,0.5,10] [m14,14, BE,1542,10,0] AVSink (9) [τ9,14,9,2,0.5,10] [τ9,14,10,1,0.5,10]



Table 2. idleSlope of class A and class B per link.

idleSlope (Mbps) l1 l2 l7 l10 l15

Class A - - - 0.78 0.78
Class B 0.4 0.4 0.4 - -

Among the transactions, five transactions use ST class; three transactions use
class A; three transactions use class B; and three transactions use class BE. The
CBS mechanism is set according to Table 2, where the credit for classes A and
B are chosen according to the utilization of these classes on the network links.
The overall network bandwidth is set to 1 Gbps. We set the idle slope according
to the utilization of the traffic on classes A and B, as shown in Table 2. The
transactions 6, 7 and 8 use class A on the links 10 and 15, therefore the credit
of the links l10 and l15 are set to 0.78. Furthermore, the transactions 9, 10 and
11 use the class B on the links 1, 2 and 7. Accordingly, the credits for class B on
the links l1, l2 and l7 are set to 0.4. We note that zero credit means there are no
messages from the associated CBS classes on the link. which are not presented
in Table 2.

Finally, the age and reaction constraints specified on each transaction are
depicted in Table 3.

Table 3. Timing constraints for all transactions

Reacj (ms) Agej (ms)
Crj 35 25

6.2 Evaluation setup and analysis results

We implemented the proposed analysis as an in-house tool. The configuration
and message set in the vehicular application use-case were given as input to
the implemented analysis. Table 4 shows the calculated age and reaction de-
lays for each individual transaction. By comparing the calculated delays with
the corresponding constraints specified on each transaction, we see that all the
transactions meet their age and reaction constraints.

7 Conclusions and Future Works

In this paper, we identified that the existing end-to-end data-propagation delay
analysis for distributed embedded systems does not support all traffic classes in
TSN networks. In particular, the ST class that is scheduled offline is not sup-
ported. We proposed extensions to the existing analysis that now supports all



Table 4. Calculated age and reaction delays for each transaction.

Trans. (Γj) Reaction Delay (ms) Age Delay (ms)
1 31 21
2 32 22
3 23 13
4 24 14
5 21 11
6 22 12
7 23 13
8 24 14
9 31 21
10 32 22
11 33 23
12 35 25
13 24 14
14 25 15

traffic classes in TSN. The extensions are proposed such that the extended analy-
sis is backward compatible with the legacy networks like CAN. We evaluated the
presented analysis on a vehicular application use case. A potential future work
is to integrate the proposed analysis with model-based software development
frameworks for distributed embedded systems, e.g., Rubus-ICE [29].

Acknowledgements

The work in this paper is supported by the Swedish Governmental Agency for
Innovation Systems (VINNOVA) via the DESTINE, PROVIDENT and INTER-
CONNECT projects, and the Swedish Knowledge Foundation via the FIESTA,
HERO and DPAC projects.

References

1. AUTOSAR Consortium, AUTOSAR Techincal Overview [online], Release 4.1,
Rev.2, Ver.1.1.0., http://autosar.org.

2. Saad Mubeen, Thomas Nolte, Mikael Sjödin, John Lundbäck, and Kurt-Lennart
Lundbäck. Supporting Timing Analysis of Vehicular Embedded Systems through
the Refinement of Timing Constraints. International Journal on Software and
Systems Modeling, January 2017.

3. N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson. A Compositional Frame-
work for End-to-End Path Delay Calculation of Automotive Systems under Dif-
ferent Path Semantics. In Workshop on Compositional Theory and Technology for
Real-Time Embedded Systems, December 2008.



4. Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas
Nolte. End-to-end Timing Analysis of Cause-Effect Chains in Automotive Embed-
ded Systems. Journal of Systems Architecture, October 2017.

5. Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. Support for End-to-End
Response-time and Delay Analysis in the Industrial Tool Suite: Issues, Experiences
and a Case Study. ComSIS Consortium, January 2013.

6. Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. Communications-oriented
Development of Component-based Vehicular Distributed Real-time Embedded Sys-
tems. Journal of Systems Architecture, January 2014.

7. Mohammad Ashjaei, Saad Mubeen, John Lundbäck, Mattias G̊alnander, Kurt-
Lennart Lundbäck, and Thomas Nolte. Modeling and Timing Analysis of Vehicle
Functions Distributed over Switched Ethernet. In 43rd Annual Conference of the
IEEE Industrial Electronics Society, October 2017.

8. Lucia Lo Bello, Mohammad Ashjaei, Gaetano Patti, and Moris Behnam. Schedula-
bility Analysis of Time-Sensitive Networks with Scheduled Traffic and Preemption
Support. Journal of Parallel and Distributed Computing, October 2020.

9. Luxi Zhao, P. Pop, Zhong Zheng, Hugo Daigmorte, and M. Boyer. Latency Analysis
of Multiple Classes of AVB Traffic in TSN with Standard Credit Behavior using
Network Calculus. IEEE Transactions on Industrial Electronics, September 2020.

10. Bahar Houtan, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin, Sara
Afshar, and Saad Mubeen. Schedulability Analysis of Best-effort Traffic in TSN
Networks. In 26th IEEE International Conference on Emerging Technologies and
Factory Automation, September 2021.

11. L. Lo Bello, R. Mariani, S. Mubeen, and S. Saponara. Recent Advances and Trends
in On-Board Embedded and Networked Automotive Systems. IEEE Transactions
on Industrial Informatics, November 2019.

12. L. Lo Bello and W. Steiner. A Perspective on IEEE Time-sensitive Networking
for Industrial Communication and Automation Systems. Proceedings of the IEEE,
April 2019.

13. Mohammad Ashjaei, Lucia Lo Bello, Masoud Daneshtalab, Gaetano Patti, Sergio
Saponara, and Saad Mubeen. Time-sensitive Networking in Automotive Embed-
ded Systems: State-of-the-Art and Research Opportunities. Journal of Systems
Architecture, 2021, September 2021.

14. J. Diemer, D. Thiele, and R. Ernst. Formal Worst-case Timing Analysis of Ethernet
Topologies with Strict-priority and AVB Switching. In International Symposium
on Industrial Embedded Systems, June 2012.

15. Unmesh D. Bordoloi, Amir Aminifar, Petru Eles, and Zebo Peng. Schedulability
Analysis of Ethernet AVB Switches. In International Conference on Embedded and
Real-Time Computing Systems and Applications, August 2014.

16. Xiaoting Li and Laurent George. Deterministic Delay Analysis of AVB Switched
Ethernet Networks Using an Extended Trajectory Approach. Real-Time Systems,
January 2017.

17. J. Cao, P. J. L. Cuijpers, R. J. Bril, and J. J. Lukkien. Independent yet Tight
WCRT Analysis for Individual Priority Classes in Ethernet AVB. In International
Conference on Real-Time Networks and Systems, October 2016.

18. A. Finzi, A. Mifdaoui, F. Frances, and E. Lochin. Network Calculus-based Timing
Analysis of AFDX Networks with Strict Priority and TSN/BLS Shapers. In IEEE
13th International Symposium on Industrial Embedded Systems, June 2018.

19. A. Finzi and A. Mifdaoui. Worst-case Timing Analysis of AFDX Networks with
Multiple TSN/BLS Shapers. IEEE Access, June 2020.



20. D. Maxim and Y.-Q. Song. Delay Analysis of AVB traffic in Time-sensitive Net-
works (TSN). In International Conference on Real-time Networks and Systems,
October 2017.

21. D. Thiele, R. Ernst, and J. Diemer. Formal Worst-case Timing Analysis of Ethernet
TSN’s Time-aware and Peristaltic Shaperss. In Vehicular Networking Conference,
December 2015.

22. L. Zhao, P. Pop, Z. Zheng, and Q. Li. Timing Analysis of AVB Traffic in TSN
Networks using Network Calculus. In Real-Time and Embedded Technology and
Applications Symposium, August 2018.

23. L. Zhao, P. Pop, and S. Craciunas. Worst-case Latency Analysis for IEEE 802.1Qbv
Time-sensitive Networks using Network Calculus. IEEE Access, July 2018.

24. Mohammad Ashjaei, Gaetano Patti, Moris Behnam, Thomas Nolte, Giuliana
Alderisi, and Lucia Lo Bello. Schedulability Analysis of Ethernet Audio Video
Bridging Networks with Scheduled Traffic Support. Real-Time Systems, July 2017.

25. G. Alderisi, G. Patti, and L. Lo Bello. Introducing Support for Scheduled traffic
over IEEE Audio Video Bridging Networks. In IEEE International Conference on
Emerging Technologies and Factory Automation, September 2013.

26. Mohammad Ashjaei, Mikael Sjödin, and Saad Mubeen. A Novel Frame Preemption
Model in TSN Networks. Journal of Systems Architecture, June 2021.

27. D. Thiele and R. Ernst. Formal Worst-case Performance Analysis of Time-sensitive
Ethernet with Frame Preemption. In 2016 IEEE 21st International Conference on
Emerging Technologies and Factory Automation, September 2016.

28. Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen, Moris Behnam, Ingo Sander,
Lúıs Almeida, and Thomas Nolte. Designing End-to-end Resource Reservations in
Predictable Distributed Embedded Systems. Real-time Systems, June 2017.

29. Saad Mubeen, Harold Lawson, John Lundbäck, Mattias G̊alnander, and Kurt-
Lennart Lundbäck. Provisioning of Predictable Embedded Software in the Vehicle
Industry: The Rubus Approach. In 4th International Workshop on Software Engi-
neering Research and Industry Practice, located at the 39th International Confer-
ence on Software Engineering. ACM, May 2017.

30. Saad Mubeen, Mattias G̊alnander, John Lundbäck, and Kurt-Lennart Lundbäck.
Extracting Timing Models from Component-based Multi-criticality Vehicular Em-
bedded Systems. In 15th International Conference on Information Technology :
New Generations, April 2018.

31. ISO 11898-1. Road Vehicles – Interchange of Digital Information – Controller Area
Network (CAN) for High-speed Communication, ISO Standard-11898, Nov. 1993.

32. Bahar Houtan, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin, and Saad
Mubeen. Synthesising Schedules to Improve QoS of Best-effort Traffic in TSN
Networks. In 29th International Conference on Real-time Networks and Systems,
April 2021.

33. Saad Mubeen, Mattias G̊alnander, Alessio Bucaioni, John Lundbäck, and Kurt-
Lennart Lundbäck. Timing Verification of Component-based Vehicle Software with
Rubus-ICE: End-user’s Experience. In 2018 IEEE/ACM 1st International Work-
shop on Software Qualities and their Dependencies. IEEE, May 2018.

34. S. Kramer, D. Ziegenbein, and A. Hamann. Real World Automotive Benchmarks
for Free. In 6th Intl. Workshop on Analysis Tools and Methodologies for Embedded
and Real-Time Systems, July 2015.


