
ISBN 978-91-7485-529-6
ISSN 1651-4238

Address: P.O. Box 883, SE-721 23 Västerås. Sweden
Address: P.O. Box 325, SE-631 05 Eskilstuna. Sweden
E-mail: info@mdh.se Web: www.mdh.se

Automated System-Level
Software Testing of Industrial
Networked Embedded Systems

Per Erik Strandberg

Mälardalen University Doctoral Dissertation 349

Pe
r Erik Stra

n
d

b
e

rg
 A

U
TO

M
A

TED
 SYSTEM

-LEV
EL SO

FTW
A

R
E TESTIN

G
 O

F IN
D

U
STR

IA
L N

ETW
O

R
K

ED
 EM

B
ED

D
ED

 SYSTEM
S

In the software development of embedded systems, one has to test the software as it
runs on physical devices. The testing can be automated, and this doctoral thesis covers
some of the challenges that can arrive: How does the information related to testing flow?
How should test cases and hardware devices be selected for the testing? Why do some
test cases change verdict for no apparent reason? Finally, how can test results be made
explorable and visualized?

Per Erik Strandberg is an industrial doctoral student at Westermo Network Technologies AB
and Mälardalen University. He received a M.Sc. (Fil.Mag.) in applied mathematics in 2004
and a M.Sc (Civ.Ing.) in bioinformatics in 2005, both at Linköping University. Strandberg has
three industry certifications in software testing and one in requirements engineering. Before
starting his doctoral studies in 2017, he worked with software development, software testing,
test leading, test automation and requirements engineering in the domains of embedded,
rail, nuclear, web and mathematics software. He obtained his Licentiate degree in 2018,
and plans to defend his doctoral thesis in November 2021.

2021

Developers Desk

Test Results

HW Test Env. External

"unused"

Process/Gate

Acceptance Testing

Req. PM TL

Unit Testing Integration Testing System Testing

Test Team

PushPull

Database

Mälardalen University Press Dissertations
No. 349

AUTOMATED SYSTEM-LEVEL SOFTWARE TESTING
OF INDUSTRIAL NETWORKED EMBEDDED SYSTEMS

Per Erik Strandberg

2021

School of Innovation, Design and Engineering

Mälardalen University Press Dissertations
No. 349

AUTOMATED SYSTEM-LEVEL SOFTWARE TESTING
OF INDUSTRIAL NETWORKED EMBEDDED SYSTEMS

Per Erik Strandberg

2021

School of Innovation, Design and Engineering

11

Copyright © Per Erik Strandberg, 2021
ISBN 978-91-7485-529-6
ISSN 1651-4238
Printed by E-Print AB, Stockholm, Sweden

Copyright © Per Erik Strandberg, 2021
ISBN 978-91-7485-529-6
ISSN 1651-4238
Printed by E-Print AB, Stockholm, Sweden

22

Mälardalen University Press Dissertations
No. 349

AUTOMATED SYSTEM-LEVEL SOFTWARE TESTING
OF INDUSTRIAL NETWORKED EMBEDDED SYSTEMS

Per Erik Strandberg

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid Akademin för
innovation, design och teknik kommer att offentligen försvaras måndagen den 22

november 2021, 13.15 i Gamma och online via Teams, Mälardalens högskola, Västerås.

Fakultetsopponent: Professor Burak Turhan, University of Oulu

Akademin för innovation, design och teknik

Mälardalen University Press Dissertations
No. 349

AUTOMATED SYSTEM-LEVEL SOFTWARE TESTING
OF INDUSTRIAL NETWORKED EMBEDDED SYSTEMS

Per Erik Strandberg

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid Akademin för
innovation, design och teknik kommer att offentligen försvaras måndagen den 22

november 2021, 13.15 i Gamma och online via Teams, Mälardalens högskola, Västerås.

Fakultetsopponent: Professor Burak Turhan, University of Oulu

Akademin för innovation, design och teknik

33

Abstract
Embedded systems are ubiquitous and play critical roles in management systems for industry and
transport. Software failures in these domains may lead to loss of production or even loss of life, so
the software in these systems needs to be reliable. Software testing is a standard approach for quality
assurance of embedded software, and many software development processes strive for test automation.
Out of the many challenges for successful software test automation, this thesis addresses five: (i)
understanding how updated software reaches a test environment, how testing is conducted in the test
environment, and how test results reach the developers that updated the software in the first place; (ii)
selecting which test cases to execute in a test suite given constraints on available time and test systems;
(iii) given that the test cases an run on different configurations of connected devices, selecting which
hardware to use for each test case to be executed; (iv) analyzing test cases that, when executed over
time on evolving software, testware or hardware revisions, appear to randomly fail; and (v) making test
results information actionable with test results exploration and visualization.

The challenges are tackled in several ways. First, to better understand the flow of information in
the embedded systems software development process, interviews at five different companies were
conducted. The results show how visualizations and a test results database support decision-making.
Results also describe the overall flow of information in software testing: from developers to hardware
in the test environment, and back to developers. Second, in order to address the challenges of test
selection and hardware selection, automated approaches for testing given resource constraints were
implemented and evaluated using industrial data stemming from years of nightly testing. It was shown
that these approaches could solve problems such as nightly testing not finishing on time, as well as
increasing hardware coverage by varying hardware selection over test iterations. Third, the challenge of
intermittently failing tests was addressed with a new metric that can classify test cases as intermittently
or consistently failing. Again, by using industry data, factors that lead to intermittent failures were
identified, and similarities and differences between root causes for intermittently and consistently failing
tests were observed. Finally, in order to better render test results actionable, a tool was implemented for
test results exploration and visualization. The implementation was evaluated using a reference group
and logging of the tool’s usage. Solution patterns and views of the tool were identified, as well as
challenges for implementing such a tool.

ISBN 978-91-7485-529-6
ISSN 1651-4238

Abstract
Embedded systems are ubiquitous and play critical roles in management systems for industry and
transport. Software failures in these domains may lead to loss of production or even loss of life, so
the software in these systems needs to be reliable. Software testing is a standard approach for quality
assurance of embedded software, and many software development processes strive for test automation.
Out of the many challenges for successful software test automation, this thesis addresses five: (i)
understanding how updated software reaches a test environment, how testing is conducted in the test
environment, and how test results reach the developers that updated the software in the first place; (ii)
selecting which test cases to execute in a test suite given constraints on available time and test systems;
(iii) given that the test cases an run on different configurations of connected devices, selecting which
hardware to use for each test case to be executed; (iv) analyzing test cases that, when executed over
time on evolving software, testware or hardware revisions, appear to randomly fail; and (v) making test
results information actionable with test results exploration and visualization.

The challenges are tackled in several ways. First, to better understand the flow of information in
the embedded systems software development process, interviews at five different companies were
conducted. The results show how visualizations and a test results database support decision-making.
Results also describe the overall flow of information in software testing: from developers to hardware
in the test environment, and back to developers. Second, in order to address the challenges of test
selection and hardware selection, automated approaches for testing given resource constraints were
implemented and evaluated using industrial data stemming from years of nightly testing. It was shown
that these approaches could solve problems such as nightly testing not finishing on time, as well as
increasing hardware coverage by varying hardware selection over test iterations. Third, the challenge of
intermittently failing tests was addressed with a new metric that can classify test cases as intermittently
or consistently failing. Again, by using industry data, factors that lead to intermittent failures were
identified, and similarities and differences between root causes for intermittently and consistently failing
tests were observed. Finally, in order to better render test results actionable, a tool was implemented for
test results exploration and visualization. The implementation was evaluated using a reference group
and logging of the tool’s usage. Solution patterns and views of the tool were identified, as well as
challenges for implementing such a tool.

ISBN 978-91-7485-529-6
ISSN 1651-4238

44

And into the forest I go to lose my mind and find my soul.

– John Muir (1838-1914)

3

And into the forest I go to lose my mind and find my soul.

– John Muir (1838-1914)

3

75

86

Graphical Abstract

Developers Desk

Test Results

HW Test Env. External

"unused"

Process/Gate

Acceptance Testing

Req. PM TL

Unit Testing Integration Testing System Testing

Test Team

PushPull

Database

Figure 1: Automated system-level software testing of industrial networked embedded
systems.

In the software development of embedded systems, one has to test the software
as it runs on physical devices. The testing can be automated, and this thesis
covers some of the challenges that can arrive: How does the information re-
lated to testing flow? How should test cases and hardware devices be selected
for the testing? Why do some test cases change verdict for no apparent reason?
Finally, how can test results be made explorable and visualized?

5

Graphical Abstract

Developers Desk

Test Results

HW Test Env. External

"unused"

Process/Gate

Acceptance Testing

Req. PM TL

Unit Testing Integration Testing System Testing

Test Team

PushPull

Database

Figure 1: Automated system-level software testing of industrial networked embedded
systems.

In the software development of embedded systems, one has to test the software
as it runs on physical devices. The testing can be automated, and this thesis
covers some of the challenges that can arrive: How does the information re-
lated to testing flow? How should test cases and hardware devices be selected
for the testing? Why do some test cases change verdict for no apparent reason?
Finally, how can test results be made explorable and visualized?

5

97

108

Abstract

Embedded systems are ubiquitous and play critical roles in management sys-
tems for industry and transport. Software failures in these domains may lead
to loss of production or even loss of life, so the software in these systems needs
to be reliable. Software testing is a standard approach for quality assurance of
embedded software, and many software development processes strive for test
automation. Out of the many challenges for successful software test automa-
tion, this thesis addresses five: (i) understanding how updated software reaches
a test environment, how testing is conducted in the test environment, and how
test results reach the developers that updated the software in the first place; (ii)
selecting which test cases to execute in a test suite given constraints on avail-
able time and test systems; (iii) given that the test cases are run on different
configurations of connected devices, selecting which hardware to use for each
test case to be executed; (iv) analyzing test cases that, when executed over time
on evolving software, testware or hardware revisions, appear to randomly fail;
and (v) making test results information actionable with test results exploration
and visualization.

The challenges are tackled in several ways. First, to better understand the
flow of information in the embedded systems software development process,
interviews at five different companies were conducted. The results show how
visualizations and a test results database support decision-making. Results also
describe the overall flow of information in software testing: from developers
to hardware in the test environment, and back to developers. Second, in order
to address the challenges of test selection and hardware selection, automated
approaches for testing given resource constraints were implemented and evalu-
ated using industrial data stemming from years of nightly testing. It was shown
that these approaches could solve problems such as nightly testing not finish-
ing on time, as well as increasing hardware coverage by varying hardware
selection over test iterations. Third, the challenge of intermittently failing tests
was addressed with a new metric that can classify test cases as intermittently
or consistently failing. Again, by using industry data, factors that lead to inter-

7

Abstract

Embedded systems are ubiquitous and play critical roles in management sys-
tems for industry and transport. Software failures in these domains may lead
to loss of production or even loss of life, so the software in these systems needs
to be reliable. Software testing is a standard approach for quality assurance of
embedded software, and many software development processes strive for test
automation. Out of the many challenges for successful software test automa-
tion, this thesis addresses five: (i) understanding how updated software reaches
a test environment, how testing is conducted in the test environment, and how
test results reach the developers that updated the software in the first place; (ii)
selecting which test cases to execute in a test suite given constraints on avail-
able time and test systems; (iii) given that the test cases are run on different
configurations of connected devices, selecting which hardware to use for each
test case to be executed; (iv) analyzing test cases that, when executed over time
on evolving software, testware or hardware revisions, appear to randomly fail;
and (v) making test results information actionable with test results exploration
and visualization.

The challenges are tackled in several ways. First, to better understand the
flow of information in the embedded systems software development process,
interviews at five different companies were conducted. The results show how
visualizations and a test results database support decision-making. Results also
describe the overall flow of information in software testing: from developers
to hardware in the test environment, and back to developers. Second, in order
to address the challenges of test selection and hardware selection, automated
approaches for testing given resource constraints were implemented and evalu-
ated using industrial data stemming from years of nightly testing. It was shown
that these approaches could solve problems such as nightly testing not finish-
ing on time, as well as increasing hardware coverage by varying hardware
selection over test iterations. Third, the challenge of intermittently failing tests
was addressed with a new metric that can classify test cases as intermittently
or consistently failing. Again, by using industry data, factors that lead to inter-

7

119

mittent failures were identified, and similarities and differences between root
causes for intermittently and consistently failing tests were observed. Finally,
in order to better render test results actionable, a tool was implemented for test
results exploration and visualization. The implementation was evaluated using
a reference group and logging of the tool’s usage. Solution patterns and views
of the tool were identified, as well as challenges for implementing such a tool.

8

mittent failures were identified, and similarities and differences between root
causes for intermittently and consistently failing tests were observed. Finally,
in order to better render test results actionable, a tool was implemented for test
results exploration and visualization. The implementation was evaluated using
a reference group and logging of the tool’s usage. Solution patterns and views
of the tool were identified, as well as challenges for implementing such a tool.

8

1210

Sammanfattning

Inbyggda system finns överallt och fyller viktiga roller i ledningssystem för
industri och transport. Här kan mjukvarufel leda till produktionsbortfall eller
till och med dödsfall, så mjukvaran i systemen måste vara tillförlitlig. Mjuk-
varutestning är en standardmetod för att kvalitetssäkra mjukvaran i inbyggda
system, och många processer för mjukvaruutveckling strävar efter automatis-
erad testning. Av de många utmaningarna för framgångsrik testautomatiser-
ing täcker denna avhandling fem: (i) att förstå hur uppdaterad mjukvara når
en testmiljö, hur testning utförs i testmiljön och hur testresultat når tillbaka
till utvecklarna som uppdaterade mjukvaran; (ii) att välja vilka testfall som
ska exekveras i en testsvit givet begränsningar i tillgänglig tid och tillgäng-
liga testsystem; (iii) givet att testfall körs på olika konfigurationer av anslutna
enheter, hur väljs hårdvaran som ska användas för varje testfall ut; (iv) att anal-
ysera testfall som, när de körs upprepade gånger med mjukvara, testvara eller
hårdvara under utveckling, verkar slumpmässigt påvisa fel; och (v) att göra
testresultat mer användbara genom göra det möjligt att utforska och visualis-
era den.

Utmaningarna möts på flera sätt. För det första, för att bättre förstå
informationsflödet i utvecklingsprocessen för mjukvaran i inbyggda system
så genomfördes intervjuer på fem olika företag. Resultaten visar hur
visualiseringar och en testresultatsdatabas stödjer beslutsfattande. Resultaten
beskriver också det övergripande informationsflödet i mjukvarutestning: från
utvecklare till hårdvara i testmiljön och tillbaka till utvecklarna. För det
andra, för att ta itu med utmaningarna vid testselektion och hårdvaruselektion,
implementerades och utvärderades automatiserade metoder för testning givet
resursbegränsningar, med hjälp av industriella data från flera år av nattliga
tester. Dessa tillvägagångssätt kunde lösa problem som att nattliga tester
inte avslutas i tid, och kan även öka hårdvarutäckningen genom att variera
hårdvaruselektionen över testiterationer. För det tredje angrips utmaningen
med intermittenta tester med en ny metrik för att klassificera testfall som
intermittent eller konsekvent påvisar fel. Genom att återigen använda

9

Sammanfattning

Inbyggda system finns överallt och fyller viktiga roller i ledningssystem för
industri och transport. Här kan mjukvarufel leda till produktionsbortfall eller
till och med dödsfall, så mjukvaran i systemen måste vara tillförlitlig. Mjuk-
varutestning är en standardmetod för att kvalitetssäkra mjukvaran i inbyggda
system, och många processer för mjukvaruutveckling strävar efter automatis-
erad testning. Av de många utmaningarna för framgångsrik testautomatiser-
ing täcker denna avhandling fem: (i) att förstå hur uppdaterad mjukvara når
en testmiljö, hur testning utförs i testmiljön och hur testresultat når tillbaka
till utvecklarna som uppdaterade mjukvaran; (ii) att välja vilka testfall som
ska exekveras i en testsvit givet begränsningar i tillgänglig tid och tillgäng-
liga testsystem; (iii) givet att testfall körs på olika konfigurationer av anslutna
enheter, hur väljs hårdvaran som ska användas för varje testfall ut; (iv) att anal-
ysera testfall som, när de körs upprepade gånger med mjukvara, testvara eller
hårdvara under utveckling, verkar slumpmässigt påvisa fel; och (v) att göra
testresultat mer användbara genom göra det möjligt att utforska och visualis-
era den.

Utmaningarna möts på flera sätt. För det första, för att bättre förstå
informationsflödet i utvecklingsprocessen för mjukvaran i inbyggda system
så genomfördes intervjuer på fem olika företag. Resultaten visar hur
visualiseringar och en testresultatsdatabas stödjer beslutsfattande. Resultaten
beskriver också det övergripande informationsflödet i mjukvarutestning: från
utvecklare till hårdvara i testmiljön och tillbaka till utvecklarna. För det
andra, för att ta itu med utmaningarna vid testselektion och hårdvaruselektion,
implementerades och utvärderades automatiserade metoder för testning givet
resursbegränsningar, med hjälp av industriella data från flera år av nattliga
tester. Dessa tillvägagångssätt kunde lösa problem som att nattliga tester
inte avslutas i tid, och kan även öka hårdvarutäckningen genom att variera
hårdvaruselektionen över testiterationer. För det tredje angrips utmaningen
med intermittenta tester med en ny metrik för att klassificera testfall som
intermittent eller konsekvent påvisar fel. Genom att återigen använda

9

1311

industriellt data så identifierades faktorer som leder till intermittenta tester,
och likheter och skillnader i rotorsaker för intermittenta och konsekventa
tester identifierades. Slutligen, för att göra testresultaten mer användbara,
implementerades ett verktyg för utforskning och visualisering av testresultat.
Implementationen utvärderades med hjälp av en referensgrupp samt av
loggning av verktygets användning. Lösningsmönster och verktygets vyer
identifierades, liksom utmaningar för att implementera ett sådant verktyg.

10

industriellt data så identifierades faktorer som leder till intermittenta tester,
och likheter och skillnader i rotorsaker för intermittenta och konsekventa
tester identifierades. Slutligen, för att göra testresultaten mer användbara,
implementerades ett verktyg för utforskning och visualisering av testresultat.
Implementationen utvärderades med hjälp av en referensgrupp samt av
loggning av verktygets användning. Lösningsmönster och verktygets vyer
identifierades, liksom utmaningar för att implementera ett sådant verktyg.

10

1412

Populärvetenskaplig
sammanfattning

I moderna industriella automatiseringssystem, som ombord på tåg eller
i elkraftsystem, spelar kommunikationsnätverket en kritisk roll. Bortfall
av service kan få allvarliga konsekvenser som minskad produktion eller
eventuellt dödsfall. Mjukvaran i inbyggda system i nätverk måste vara robust,
och mjukvarutestning är en standardmetod för kvalitetskontroll. Denna
testning är dyr, repetitiv, kan begränsa tiden till marknad och drabbas ofta av
förseningar. Testautomatisering är därför önskvärd, men kan komma med
egna utmaningar.

Westermo Network Technologies AB har samarbetat i ett forskningspro-
jekt med Mälardalens Högskola där Per Erik Strandberg undersökt testau-
tomatisering av dessa system. Strandbergs forskning har fokuserat på flera
utmaningar. För det första, hur går det till när mjukvara skapas av en pro-
grammerare och ska nå en testmiljö? Vilka processer och hinder spelar roll för
ett bra informationsflöde i den processen? För det andra, hur testar vi på ett
smartare sätt givet begränsade resurser: ska vi alltid köra alla testfall? Vilken
hårdvara ska vi välja för testningen? För det tredje, varför är det så att vissa
tester liksom “byter åsikt” oftare än andra – ett test borde väl helt konsekvent
alltid peka ut ett fel när felet finns där, och aldrig när felet inte finns? Slutligen,
hur kan vi använda den ökande mängd data om testresultat som kommer från
ökad testautomatisering? Hur kan resultaten visualiseras och hur gör vi det
möjligt att utforska den?

En del av Strandbergs forskning är inriktad på förbättrade algoritmer och
implementering av dessa i verktyg. Ett exempel på ett sådant verktyg är Svit-
byggaren som väljer de viktigaste testfallen givet ett antal prioriteringskriterier,
ett andra verktyg väljer hårdvara för testningen, och ett tredje pekar ut tester
som oftare än andra byter åsikt. För att kunna visa att dessa verktyg utökar
forskningsfronten så gjorde han utvärderingar med industriell data som sam-
lats in under flera år. Däribland detaljer om miljoner av testexekveringar, och

11

Populärvetenskaplig
sammanfattning

I moderna industriella automatiseringssystem, som ombord på tåg eller
i elkraftsystem, spelar kommunikationsnätverket en kritisk roll. Bortfall
av service kan få allvarliga konsekvenser som minskad produktion eller
eventuellt dödsfall. Mjukvaran i inbyggda system i nätverk måste vara robust,
och mjukvarutestning är en standardmetod för kvalitetskontroll. Denna
testning är dyr, repetitiv, kan begränsa tiden till marknad och drabbas ofta av
förseningar. Testautomatisering är därför önskvärd, men kan komma med
egna utmaningar.

Westermo Network Technologies AB har samarbetat i ett forskningspro-
jekt med Mälardalens Högskola där Per Erik Strandberg undersökt testau-
tomatisering av dessa system. Strandbergs forskning har fokuserat på flera
utmaningar. För det första, hur går det till när mjukvara skapas av en pro-
grammerare och ska nå en testmiljö? Vilka processer och hinder spelar roll för
ett bra informationsflöde i den processen? För det andra, hur testar vi på ett
smartare sätt givet begränsade resurser: ska vi alltid köra alla testfall? Vilken
hårdvara ska vi välja för testningen? För det tredje, varför är det så att vissa
tester liksom “byter åsikt” oftare än andra – ett test borde väl helt konsekvent
alltid peka ut ett fel när felet finns där, och aldrig när felet inte finns? Slutligen,
hur kan vi använda den ökande mängd data om testresultat som kommer från
ökad testautomatisering? Hur kan resultaten visualiseras och hur gör vi det
möjligt att utforska den?

En del av Strandbergs forskning är inriktad på förbättrade algoritmer och
implementering av dessa i verktyg. Ett exempel på ett sådant verktyg är Svit-
byggaren som väljer de viktigaste testfallen givet ett antal prioriteringskriterier,
ett andra verktyg väljer hårdvara för testningen, och ett tredje pekar ut tester
som oftare än andra byter åsikt. För att kunna visa att dessa verktyg utökar
forskningsfronten så gjorde han utvärderingar med industriell data som sam-
lats in under flera år. Däribland detaljer om miljoner av testexekveringar, och

11

1513

även information om hur hårdvara organiserats i testsystem. Resultaten visar
att förbättrade verktyg löser kritiska problem: med Svitbyggaren så avslutas
nu testningen i tid och tillkortakommanden i kvalitet hittas tidigare. Vidare så
kan allokeringen av hårdvara ändras över tid, något som förbättrar testtäcknin-
gen. Tester som byter åsikt ofta kan identifieras och orsakerna till varför de är
intermittenta har undersökts.

En annan delen av Strandbergs forskning använder kvalitativa metoder där
intervjuer med utövare är centrala. Han transkriberade mer än 28 timmar ljud
till mer än 185 sidor kompakt text som sedan analyserades med metoder med
ursprung i forskning om psykologi. I dessa studier visar Strandberg hur testre-
sultat nu kan visualiseras och hur beslut tas med hjälp av en databas med testre-
sultat. Han visar även det övergripande informationsflödet i mjukvarutest-
ningsprocesserna, samt teman, utmaningar och bra tillvägagångssätt. De vik-
tigaste bra tillvägagångssätten är: nära samarbete och kommunikation mellan
roller. Till sist visar Strandberg på utmaningar med att visualisera testresultat,
till exempel hur man ska möta användarnas förväntningar, oväntade avvikelser
i testningen och hur information från olika system ska integreras i ett.

Det finns ett gap mellan industri och akademi inom fältet mjukvarutest-
ning. Strandbergs resultat och beskrivningar av verktyg kan guida och in-
spirera andra industriella utövare. Det är uppenbart att framtida forskning
om mjukvarutestning skulle dra nytta av ett fortsatt samarbete mellan industri
och akademi, och Strandberg hoppas spela en fortsatt roll i överbryggandet av
gapet.

12

även information om hur hårdvara organiserats i testsystem. Resultaten visar
att förbättrade verktyg löser kritiska problem: med Svitbyggaren så avslutas
nu testningen i tid och tillkortakommanden i kvalitet hittas tidigare. Vidare så
kan allokeringen av hårdvara ändras över tid, något som förbättrar testtäcknin-
gen. Tester som byter åsikt ofta kan identifieras och orsakerna till varför de är
intermittenta har undersökts.

En annan delen av Strandbergs forskning använder kvalitativa metoder där
intervjuer med utövare är centrala. Han transkriberade mer än 28 timmar ljud
till mer än 185 sidor kompakt text som sedan analyserades med metoder med
ursprung i forskning om psykologi. I dessa studier visar Strandberg hur testre-
sultat nu kan visualiseras och hur beslut tas med hjälp av en databas med testre-
sultat. Han visar även det övergripande informationsflödet i mjukvarutest-
ningsprocesserna, samt teman, utmaningar och bra tillvägagångssätt. De vik-
tigaste bra tillvägagångssätten är: nära samarbete och kommunikation mellan
roller. Till sist visar Strandberg på utmaningar med att visualisera testresultat,
till exempel hur man ska möta användarnas förväntningar, oväntade avvikelser
i testningen och hur information från olika system ska integreras i ett.

Det finns ett gap mellan industri och akademi inom fältet mjukvarutest-
ning. Strandbergs resultat och beskrivningar av verktyg kan guida och in-
spirera andra industriella utövare. Det är uppenbart att framtida forskning
om mjukvarutestning skulle dra nytta av ett fortsatt samarbete mellan industri
och akademi, och Strandberg hoppas spela en fortsatt roll i överbryggandet av
gapet.

12

1614

Acknowledgments

By writing a doctoral thesis when 40+, I am old enough to have had a my
life influenced by a lot of people. Many are those who have helped me move
towards research, many have helped me believe in myself, and in this research.

First of all, I would like to thank my family: my mother Gudrun for open-
ing the door to the wonderful world of mathematics; my father Jan for teaching
me to see the positive things in life and, in particular, to not care so much about
the negative; my brother Jonas for helping me have two feet on the ground; my
wife Anna for always being there for me; and especially my children Knut and
Vera for helping me rediscover the magic of playing, for teaching me about
emotions, and for being the stochastic process that regularly adds chaos into
my otherwise gray life.

It has been said that “when the student is ready the teacher will appear.”1

For me, this was almost literally the case. I would like to thank Raimo for
first suggesting industrial doctoral studies all those years ago, and to Monika
and Kristian for pushing me in the right direction. Before I knew it, teachers
had appeared – thank you Daniel and Wasif for supervising me, and thank you
Tom, Elaine, Eddie, Robert, Gita and Jonathan for co-authoring with me.

My research has not only included an academic partner, but also an indus-
trial side – there are many awesome managers who made this research possible
or that have had a positive impact in my life: thank you Patric, Peter, Petra,
Pierre, and Peter. I would also like to thank all colleagues, past and present.
In particular, thanks to the testing competence group at HiQ, and to the “Delta
team” at Westermo.

I would like to thank all the wonderful people at MDH, in particular:
Carola, Jenny and Malin, for ruling with an iron fist in a silk glove; Maria,
Mats and Susanne, for managing the ITS ESS-H research school; Ann-Louise,
Atieh, Daniel, Inna, Johan, Mahshid, Martin, Niclas, Xu and Yurii, for always

1The saying is sometimes falsely attributed to Lao Tzu (6th-century BCE), but seems to
originate from the 1885 book Light on the Path, by Mabel Collins, according to Stefan Stenudd’s
2020 book Fake Lao Tzu Quotes: Erroneous Tao Te Ching Citations Examined.

13

Acknowledgments

By writing a doctoral thesis when 40+, I am old enough to have had a my
life influenced by a lot of people. Many are those who have helped me move
towards research, many have helped me believe in myself, and in this research.

First of all, I would like to thank my family: my mother Gudrun for open-
ing the door to the wonderful world of mathematics; my father Jan for teaching
me to see the positive things in life and, in particular, to not care so much about
the negative; my brother Jonas for helping me have two feet on the ground; my
wife Anna for always being there for me; and especially my children Knut and
Vera for helping me rediscover the magic of playing, for teaching me about
emotions, and for being the stochastic process that regularly adds chaos into
my otherwise gray life.

It has been said that “when the student is ready the teacher will appear.”1

For me, this was almost literally the case. I would like to thank Raimo for
first suggesting industrial doctoral studies all those years ago, and to Monika
and Kristian for pushing me in the right direction. Before I knew it, teachers
had appeared – thank you Daniel and Wasif for supervising me, and thank you
Tom, Elaine, Eddie, Robert, Gita and Jonathan for co-authoring with me.

My research has not only included an academic partner, but also an indus-
trial side – there are many awesome managers who made this research possible
or that have had a positive impact in my life: thank you Patric, Peter, Petra,
Pierre, and Peter. I would also like to thank all colleagues, past and present.
In particular, thanks to the testing competence group at HiQ, and to the “Delta
team” at Westermo.

I would like to thank all the wonderful people at MDH, in particular:
Carola, Jenny and Malin, for ruling with an iron fist in a silk glove; Maria,
Mats and Susanne, for managing the ITS ESS-H research school; Ann-Louise,
Atieh, Daniel, Inna, Johan, Mahshid, Martin, Niclas, Xu and Yurii, for always

1The saying is sometimes falsely attributed to Lao Tzu (6th-century BCE), but seems to
originate from the 1885 book Light on the Path, by Mabel Collins, according to Stefan Stenudd’s
2020 book Fake Lao Tzu Quotes: Erroneous Tao Te Ching Citations Examined.

13

1715

having interesting discussions in the research school; Caroline for the introduc-
tion to qualitative interview data analysis; Adnan and Aida, for always having
a constructive attitude; and to Adnan, Daniel, Daniel and Jean, in the Soft-
ware Testing Laboratory research group, for never backing out of a technical
discussion, no matter how deep the rabbit hole would go.

To everyone I cited: thank you for letting me stand on your shoulders. To
every named or anonymous reviewer: thank you for the excellent feedback and
for making my research better. Thanks to the university library, and everyone
else that funds open access publications.

Thanks to all the incredible people behind the many free and also commer-
cial software projects and tools I relied on for making this thesis, in particular:
Bulma, Docker, Dropbox, DuckDuckGo, Ecosia, Emacs, Firefox, FontAwe-
some, GNU, Gimp, git, golang, Google, Inkscape, LaTeX, Linux, MariaDB,
Matplotlib, Microsoft, MySQL, OpenMoji, Overleaf, Python, SQLite, Tango,
Trello, Ubuntu, Vue, and Xubuntu.

Thank you John Cleese, for all things completely different.
Finally, to you, the reader: thank you, and may you live long and prosper.
My research was funded by Westermo and the Swedish Knowledge Foun-

dation through grants 20150277 (ITS ESS-H), and 20160139 (TESTMINE).
The saying that “when the student is ready the teacher will appear,” has

a second part: “when the student is truly ready the teacher will disappear.”
Now that my doctoral studies are almost completed, I worry that the teachers
will disappear. Of course they will, some day. I hope that day will not be too
soon, that perhaps other teachers will come, and that I will cross paths with
wonderful teachers, coauthors, managers, and colleagues many more times.
But first I hope to go into the forest, lose my mind, and find my soul.

Per Erik Strandberg
in Västerås, Sweden
on a rainy day in August 2021

14

having interesting discussions in the research school; Caroline for the introduc-
tion to qualitative interview data analysis; Adnan and Aida, for always having
a constructive attitude; and to Adnan, Daniel, Daniel and Jean, in the Soft-
ware Testing Laboratory research group, for never backing out of a technical
discussion, no matter how deep the rabbit hole would go.

To everyone I cited: thank you for letting me stand on your shoulders. To
every named or anonymous reviewer: thank you for the excellent feedback and
for making my research better. Thanks to the university library, and everyone
else that funds open access publications.

Thanks to all the incredible people behind the many free and also commer-
cial software projects and tools I relied on for making this thesis, in particular:
Bulma, Docker, Dropbox, DuckDuckGo, Ecosia, Emacs, Firefox, FontAwe-
some, GNU, Gimp, git, golang, Google, Inkscape, LaTeX, Linux, MariaDB,
Matplotlib, Microsoft, MySQL, OpenMoji, Overleaf, Python, SQLite, Tango,
Trello, Ubuntu, Vue, and Xubuntu.

Thank you John Cleese, for all things completely different.
Finally, to you, the reader: thank you, and may you live long and prosper.
My research was funded by Westermo and the Swedish Knowledge Foun-

dation through grants 20150277 (ITS ESS-H), and 20160139 (TESTMINE).
The saying that “when the student is ready the teacher will appear,” has

a second part: “when the student is truly ready the teacher will disappear.”
Now that my doctoral studies are almost completed, I worry that the teachers
will disappear. Of course they will, some day. I hope that day will not be too
soon, that perhaps other teachers will come, and that I will cross paths with
wonderful teachers, coauthors, managers, and colleagues many more times.
But first I hope to go into the forest, lose my mind, and find my soul.

Per Erik Strandberg
in Västerås, Sweden
on a rainy day in August 2021

14

1816

List of Publications

This doctoral thesis is a collection of publications. These are listed below,
as is peripheral work done during the doctoral studies. The included papers
have been reformatted to better match the format of this thesis. The texts and
images are almost identical to the ones published, only minimal corrections
have been done to spelling, etc. The papers also have their own bibliographies.
In addition, the first part of this thesis has a separate bibliography.

I was the main author, driver and writer of the publications included in the
thesis. Presentations for some papers have been recorded in order to simplify
dissemination, and links to available presentations are included below.

Publications Included in this Thesis

Paper A: P. E. Strandberg, E. P. Enoiu, W. Afzal, D. Sundmark, and R. Feldt.
“Information Flow in Software Testing – An Interview Study with Em-
bedded Software Engineering Practitioners.” In IEEE Access, 7:46434–
46453, 2019 [121] (Instrument: [120]).

Presentation: https://youtu.be/KVVVxe3dH8o

Paper B: P. E. Strandberg, D. Sundmark, W. Afzal, T. J. Ostrand, and E. J.
Weyuker. “Experience report: Automated System Level Regression Test
Prioritization using Multiple Factors.” In International Symposium on
Software Reliability Engineering, IEEE, 2016 [125].

Winner of best research paper award at ISSRE’16.

Paper C: P. E. Strandberg, T. J. Ostrand, E. J. Weyuker, D. Sundmark, and W.
Afzal. “Automated Test Mapping and Coverage for Network Topolo-
gies.” In International Symposium on Software Testing and Analysis,
ACM, 2018 [124].

Paper D: P. E. Strandberg, T. J. Ostrand, E. J. Weyuker, D. Sundmark, and W.
Afzal. “Intermittently Failing Tests in the Embedded Systems Domain.”

15

List of Publications

This doctoral thesis is a collection of publications. These are listed below,
as is peripheral work done during the doctoral studies. The included papers
have been reformatted to better match the format of this thesis. The texts and
images are almost identical to the ones published, only minimal corrections
have been done to spelling, etc. The papers also have their own bibliographies.
In addition, the first part of this thesis has a separate bibliography.

I was the main author, driver and writer of the publications included in the
thesis. Presentations for some papers have been recorded in order to simplify
dissemination, and links to available presentations are included below.

Publications Included in this Thesis

Paper A: P. E. Strandberg, E. P. Enoiu, W. Afzal, D. Sundmark, and R. Feldt.
“Information Flow in Software Testing – An Interview Study with Em-
bedded Software Engineering Practitioners.” In IEEE Access, 7:46434–
46453, 2019 [121] (Instrument: [120]).

Presentation: https://youtu.be/KVVVxe3dH8o

Paper B: P. E. Strandberg, D. Sundmark, W. Afzal, T. J. Ostrand, and E. J.
Weyuker. “Experience report: Automated System Level Regression Test
Prioritization using Multiple Factors.” In International Symposium on
Software Reliability Engineering, IEEE, 2016 [125].

Winner of best research paper award at ISSRE’16.

Paper C: P. E. Strandberg, T. J. Ostrand, E. J. Weyuker, D. Sundmark, and W.
Afzal. “Automated Test Mapping and Coverage for Network Topolo-
gies.” In International Symposium on Software Testing and Analysis,
ACM, 2018 [124].

Paper D: P. E. Strandberg, T. J. Ostrand, E. J. Weyuker, D. Sundmark, and W.
Afzal. “Intermittently Failing Tests in the Embedded Systems Domain.”

15

1917

In International Symposium on Software Testing and Analysis, ACM,
2020 [123].

Presentation: https://youtu.be/W1G5hVfp_Sw

Paper E: P. E. Strandberg, W. Afzal and D. Sundmark. “Software Test
Results Exploration and Visualization with Continuous Integration and
Nightly Testing.”

Submitted to Springer’s International Journal on Software Tools for
Technology Transfer (STTT) in July 2021.

Publications not Included in Thesis

Paper X1: P. E. Strandberg, W. Afzal, T. Ostrand, E. Weyuker, and D. Sund-
mark. Automated System Level Regression Test Prioritization in a Nut-
shell. IEEE Software, 34(4):30-37, 2017 [118].

Technical Report X2: P. E. Strandberg. “Software Test Data Visualization
with Heatmaps – an Initial Survey.” Technical report, Mälardalen Real-
Time Research Centre, Mälardalen University, MDH-MRTC-318/2017-
1-SE, 2017 [115].

Paper X3: P. E. Strandberg, W. Afzal and D. Sundmark. “Decision Making
and Visualizations Based on Test Results.” In International Symposium
on Empirical Software Engineering and Measurement, ACM/IEEE,
2018 [119].

Licentiate Thesis X4: P. E. Strandberg. “Automated System Level Software
Testing of Networked Embedded Systems.” Licentiate Thesis,
Mälardalen University, 2018 [116].

Defended at Mälardalen University with a grading committee of Mika
Mäntylä (Oulu University, Finland), Helena Holmström Olsson (Malmö
University, Sweden), and Andrea Arcuri (Kristiania University College,
Norway).

Paper X5: P. E. Strandberg. “Ethical Interviews in Software Engineering.” In
International Symposium on Empirical Software Engineering and Mea-
surement, ACM/IEEE, 2019 [117].

Presentation: https://youtu.be/WkukdVxc8Y0

16

In International Symposium on Software Testing and Analysis, ACM,
2020 [123].

Presentation: https://youtu.be/W1G5hVfp_Sw

Paper E: P. E. Strandberg, W. Afzal and D. Sundmark. “Software Test
Results Exploration and Visualization with Continuous Integration and
Nightly Testing.”

Submitted to Springer’s International Journal on Software Tools for
Technology Transfer (STTT) in July 2021.

Publications not Included in Thesis

Paper X1: P. E. Strandberg, W. Afzal, T. Ostrand, E. Weyuker, and D. Sund-
mark. Automated System Level Regression Test Prioritization in a Nut-
shell. IEEE Software, 34(4):30-37, 2017 [118].

Technical Report X2: P. E. Strandberg. “Software Test Data Visualization
with Heatmaps – an Initial Survey.” Technical report, Mälardalen Real-
Time Research Centre, Mälardalen University, MDH-MRTC-318/2017-
1-SE, 2017 [115].

Paper X3: P. E. Strandberg, W. Afzal and D. Sundmark. “Decision Making
and Visualizations Based on Test Results.” In International Symposium
on Empirical Software Engineering and Measurement, ACM/IEEE,
2018 [119].

Licentiate Thesis X4: P. E. Strandberg. “Automated System Level Software
Testing of Networked Embedded Systems.” Licentiate Thesis,
Mälardalen University, 2018 [116].

Defended at Mälardalen University with a grading committee of Mika
Mäntylä (Oulu University, Finland), Helena Holmström Olsson (Malmö
University, Sweden), and Andrea Arcuri (Kristiania University College,
Norway).

Paper X5: P. E. Strandberg. “Ethical Interviews in Software Engineering.” In
International Symposium on Empirical Software Engineering and Mea-
surement, ACM/IEEE, 2019 [117].

Presentation: https://youtu.be/WkukdVxc8Y0

16

2018

Paper X6: P. E. Strandberg, M. Frasheri and E. P. Enoiu “Ethical AI-Powered
Regression Test Selection.” In International Conference on Artificial
Intelligence Testing, IEEE, 2021 [122].

Presentation: https://youtu.be/mcYXHpuaqQ8

17

Paper X6: P. E. Strandberg, M. Frasheri and E. P. Enoiu “Ethical AI-Powered
Regression Test Selection.” In International Conference on Artificial
Intelligence Testing, IEEE, 2021 [122].

Presentation: https://youtu.be/mcYXHpuaqQ8

17

2119

2220

Contents

I Thesis 23

1 Introduction 25
1.1 Brief History of Research in Industry-Academia. 25
1.2 Personal and Industrial Context 28
1.3 Background . 30

2 Research Process 35
2.1 Research Questions . 36
2.2 The Case Study Research Method 38
2.3 On Research Quality . 39

3 Related Work 43
3.1 Industrial Software Testing 43
3.2 Communication and Flow of Information 48
3.3 Visualization . 49

4 Contributions 51
4.1 RQ1: Information Flow . 51
4.2 RQ2: Test Selection . 52
4.3 RQ3: Hardware Selection . 52
4.4 RQ4: Intermittently Failing Tests 53
4.5 RQ5: Test Results Exploration and Visualization 53

5 Future Work 55

6 Conclusions 57

19

Contents

I Thesis 23

1 Introduction 25
1.1 Brief History of Research in Industry-Academia. 25
1.2 Personal and Industrial Context 28
1.3 Background . 30

2 Research Process 35
2.1 Research Questions . 36
2.2 The Case Study Research Method 38
2.3 On Research Quality . 39

3 Related Work 43
3.1 Industrial Software Testing 43
3.2 Communication and Flow of Information 48
3.3 Visualization . 49

4 Contributions 51
4.1 RQ1: Information Flow . 51
4.2 RQ2: Test Selection . 52
4.3 RQ3: Hardware Selection . 52
4.4 RQ4: Intermittently Failing Tests 53
4.5 RQ5: Test Results Exploration and Visualization 53

5 Future Work 55

6 Conclusions 57

19

2321

II Included Papers 73

7 Paper A: Information Flow in Software Testing. . . 75
7.1 Introduction . 77
7.2 Method . 79
7.3 Results . 84
7.4 Discussion and Related Work 106
7.5 Validity Evaluation . 112
7.6 Conclusion . 113
7.7 Future work . 114
7.8 Acknowledgments . 114

8 Paper B: Experience Report: Automated System Level. . . 121
8.1 Introduction . 123
8.2 Related Work . 124
8.3 Problem Description . 125
8.4 The SuiteBuilder Tool . 129
8.5 Experimental Evaluation . 137
8.6 Discussion . 143
8.7 Limitations and Future Research 145
8.8 Conclusions . 146
8.9 Acknowledgments . 147

9 Paper C: Automated Test Mapping and Coverage. . . 151
9.1 Introduction . 153
9.2 Industrial Context . 155
9.3 Preliminaries . 160
9.4 Related Work . 161
9.5 Approach . 161
9.6 Experimental Evaluation . 173
9.7 Discussion and Conclusions 176
9.8 Acknowledgments . 179

10 Paper D: Intermittently Failing Tests. . . 181
10.1 Introduction . 183
10.2 Intermittently Failing Tests 184
10.3 Case Study Design . 190
10.4 Case Study Results . 197
10.5 RQ1 Revisited in Light of Related Work 201
10.6 Discussion . 205
10.7 Validity Analysis . 207

20

II Included Papers 73

7 Paper A: Information Flow in Software Testing. . . 75
7.1 Introduction . 77
7.2 Method . 79
7.3 Results . 84
7.4 Discussion and Related Work 106
7.5 Validity Evaluation . 112
7.6 Conclusion . 113
7.7 Future work . 114
7.8 Acknowledgments . 114

8 Paper B: Experience Report: Automated System Level. . . 121
8.1 Introduction . 123
8.2 Related Work . 124
8.3 Problem Description . 125
8.4 The SuiteBuilder Tool . 129
8.5 Experimental Evaluation . 137
8.6 Discussion . 143
8.7 Limitations and Future Research 145
8.8 Conclusions . 146
8.9 Acknowledgments . 147

9 Paper C: Automated Test Mapping and Coverage. . . 151
9.1 Introduction . 153
9.2 Industrial Context . 155
9.3 Preliminaries . 160
9.4 Related Work . 161
9.5 Approach . 161
9.6 Experimental Evaluation . 173
9.7 Discussion and Conclusions 176
9.8 Acknowledgments . 179

10 Paper D: Intermittently Failing Tests. . . 181
10.1 Introduction . 183
10.2 Intermittently Failing Tests 184
10.3 Case Study Design . 190
10.4 Case Study Results . 197
10.5 RQ1 Revisited in Light of Related Work 201
10.6 Discussion . 205
10.7 Validity Analysis . 207

20

2422

10.8 Conclusion . 208
10.9 Acknowledgments . 208

11 Paper E: Software Test Results Exploration. . . 215
11.1 Introduction . 217
11.2 Industrial Motivation and Context 218
11.3 Research Process . 222
11.4 The Tim Tool . 225
11.5 Discussion . 252
11.6 Conclusions . 262
11.7 Acknowledgments . 263

21

10.8 Conclusion . 208
10.9 Acknowledgments . 208

11 Paper E: Software Test Results Exploration. . . 215
11.1 Introduction . 217
11.2 Industrial Motivation and Context 218
11.3 Research Process . 222
11.4 The Tim Tool . 225
11.5 Discussion . 252
11.6 Conclusions . 262
11.7 Acknowledgments . 263

21

2523

2624

Part I

Thesis

23

Part I

Thesis

23

2725

2826

Chapter 1

Introduction

This chapter starts with a short history of industry-academia collaboration and
industrial doctoral studies, before it introduces the personal and industrial con-
text of this thesis, and then it gives a background to the thesis.

1.1 Brief History of Research in Industry-Academia
Collaboration and Industrial Doctoral Studies

Arora et al. [3] investigate the changes in American innovation from 1850 and
onwards. In particular, they discuss the golden age of the corporate labs, with
AT&T’s Bell Labs that employed 15 thousand people (roughly a tenth with
PhDs) in the late 1960s. Fourteen Nobel Prizes and five Turing Awards were
awarded to alumni at Bell Labs. The authors mention that since the 1980s, the
distances between universities and corporations have grown. Universities fo-
cused on research on smaller and smaller problems, leading to innovation that
could not be used at companies without great difficulty. Corporations instead
focused on development. At this time, corporate research started declining
– publications per firm decreased, and patents per firm has increased (except
in the life sciences). Some of the possible reasons for this decline is the dif-
ference in attitude towards research, where corporate research is often more
mission-oriented, and university research sometimes curiosity-driven. More
concretely, the decline might be caused by (i) spill-over - where rivals use
publications from a company in their patents, (ii) narrowed firm scope, (iii)
increased distances between manufacturing and R&D due to changes in trade,
outsourcing, and offshoring. Finally, Arora et al. mention that (iv) tapping into
knowledge and invention from external sources has been simplified.

According to Geschwind [44], the Swedish doctoral training and degree

25

Chapter 1

Introduction

This chapter starts with a short history of industry-academia collaboration and
industrial doctoral studies, before it introduces the personal and industrial con-
text of this thesis, and then it gives a background to the thesis.

1.1 Brief History of Research in Industry-Academia
Collaboration and Industrial Doctoral Studies

Arora et al. [3] investigate the changes in American innovation from 1850 and
onwards. In particular, they discuss the golden age of the corporate labs, with
AT&T’s Bell Labs that employed 15 thousand people (roughly a tenth with
PhDs) in the late 1960s. Fourteen Nobel Prizes and five Turing Awards were
awarded to alumni at Bell Labs. The authors mention that since the 1980s, the
distances between universities and corporations have grown. Universities fo-
cused on research on smaller and smaller problems, leading to innovation that
could not be used at companies without great difficulty. Corporations instead
focused on development. At this time, corporate research started declining
– publications per firm decreased, and patents per firm has increased (except
in the life sciences). Some of the possible reasons for this decline is the dif-
ference in attitude towards research, where corporate research is often more
mission-oriented, and university research sometimes curiosity-driven. More
concretely, the decline might be caused by (i) spill-over - where rivals use
publications from a company in their patents, (ii) narrowed firm scope, (iii)
increased distances between manufacturing and R&D due to changes in trade,
outsourcing, and offshoring. Finally, Arora et al. mention that (iv) tapping into
knowledge and invention from external sources has been simplified.

According to Geschwind [44], the Swedish doctoral training and degree

25

2927

ValueImprovements

Company Benefit

Company Interest

Researcher Benefit

Researcher Interest

New Knowledge

Common Problem

Funding and Resources

Collaborative Work

Value for Society

Relations and Trust

Value Publications

Figure 1.1: Industry-Academia collaboration based on Sannö et al. [106].

was reformed in 1969, inspired by US systems. Doctoral studies contain re-
search and course work, corresponding to 4 years full time work. In general,
since the 1960s, there has been an increased number of doctoral students, and
since the end of the last millennia also an increase in throughput. The share of
women has risen from 16% 1962 to about 50% in 2005. There has also been a
reduced admission in humanities and about 40% of admitted doctoral students
in Sweden were recruited from abroad. In 1977, a reform led to formation of
several new universities in Sweden. Three reasons for the reform were to pro-
vide universal access to higher education, to limit outward migration stemming
from industrial restructuring, and to provide skilled employees to industry [4].
According to Smith [110], in the mid 1990s the Swedish foundation for the ad-
vancement of knowledge and competence started offering part of funding for
research if universities collaborated with industry. By 2000, thirteen industrial
research schools had started and in 2017, Chalmers University of Technology
alone had about 160 industrial doctoral students.

Assbring and Nuur [4] made a case study on the perceived industrial ben-
efits of participating in collaborative research school. They found that moti-
vators for companies include access to new knowledge and state-of-the-art re-
search, competence creation and retention, new or improved products and pro-
cesses, as well as legitimacy. Small firms are more mission-oriented, whereas
larger firms are more motivated by more general goals such as developing com-
petence.

The Swedish Higher Education Act [126] states that higher education in-

26

ValueImprovements

Company Benefit

Company Interest

Researcher Benefit

Researcher Interest

New Knowledge

Common Problem

Funding and Resources

Collaborative Work

Value for Society

Relations and Trust

Value Publications

Figure 1.1: Industry-Academia collaboration based on Sannö et al. [106].

was reformed in 1969, inspired by US systems. Doctoral studies contain re-
search and course work, corresponding to 4 years full time work. In general,
since the 1960s, there has been an increased number of doctoral students, and
since the end of the last millennia also an increase in throughput. The share of
women has risen from 16% 1962 to about 50% in 2005. There has also been a
reduced admission in humanities and about 40% of admitted doctoral students
in Sweden were recruited from abroad. In 1977, a reform led to formation of
several new universities in Sweden. Three reasons for the reform were to pro-
vide universal access to higher education, to limit outward migration stemming
from industrial restructuring, and to provide skilled employees to industry [4].
According to Smith [110], in the mid 1990s the Swedish foundation for the ad-
vancement of knowledge and competence started offering part of funding for
research if universities collaborated with industry. By 2000, thirteen industrial
research schools had started and in 2017, Chalmers University of Technology
alone had about 160 industrial doctoral students.

Assbring and Nuur [4] made a case study on the perceived industrial ben-
efits of participating in collaborative research school. They found that moti-
vators for companies include access to new knowledge and state-of-the-art re-
search, competence creation and retention, new or improved products and pro-
cesses, as well as legitimacy. Small firms are more mission-oriented, whereas
larger firms are more motivated by more general goals such as developing com-
petence.

The Swedish Higher Education Act [126] states that higher education in-

26

3028

stitutions shall involve external parties and ensure that they can benefit from
research findings. Doing co-production, i.e. having an industry-academia col-
laboration in research, is not only a way to comply with regulations and rec-
ommendations, it can also be a suitable way to conduct relevant research. For
co-produced research to be relevant and successful, the research party and the
industry party should share a common understanding of the problem and be
able to communicate [31, 43, 55, 106]. This can be a challenge, as Sannö et
al. point out [106], because these two parties typically have differences in per-
spective with respect to problem formulation, methodology, and result; as well
as counterproductive differences in their views on knowledge and in their driv-
ing forces. Lo et al. [73] and Carver et al. [17] made studies in 2015 and 2016
on how practitioners perceived relevance of research in software engineering.
There seems to be no correlation between citation count and its perceived rel-
evance, and papers with industrial co-authors were only marginally more rel-
evant. Sannö et al. discuss ways to increase the impact of industry-academia
collaboration and present the model illustrated in Figure 1.1. As mentioned,
the formulation of a common problem is central. The model also illustrates
that the impact of the collaboration does not end with new knowledge – in-
stead the new knowledge can be seen as what drives further industry-academia
research through different benefits. Weyuker and Ostrand [134] recommend
that academics strive to involve at least one industry participant that is com-
mitted to the goal of the study, and that the industry partner sees the research as
relevant, valuable and important. Eldh points out that an interest in continued
partnership is a good evaluation criteria for both industry and academia [31].
A more detailed approach for industry-academia collaboration was proposed
by Marijan and Gotlieb [78]. Their process involves a model in seven phases
starting with problem scoping (focusing on the industrial problem) and knowl-
edge conception (to formulate research problem); followed by development,
transfer, exploitation and adoption of knowledge and technology; and ending
in market research in order to explore if benefits from the research could reach
outside of the project. All research problems and questions in this thesis have
been formulated jointly while involving both industry and academia.

There is no doubt a great value in corporate research. Arora et al. [3] argue
that these labs solve practical problems, three of the reasons are that companies
have the ability to test innovation at scale by having large data sets, companies
are often multi-disciplinary and may have unique equipment. Furthermore,
doctoral studies is no longer only perceived as a preparation for an academic
career, PhD holders are attractive to industry [4]. Finally, many industrial
doctoral students feel privileged to carry out research in close collaboration
with industry [4].

27

stitutions shall involve external parties and ensure that they can benefit from
research findings. Doing co-production, i.e. having an industry-academia col-
laboration in research, is not only a way to comply with regulations and rec-
ommendations, it can also be a suitable way to conduct relevant research. For
co-produced research to be relevant and successful, the research party and the
industry party should share a common understanding of the problem and be
able to communicate [31, 43, 55, 106]. This can be a challenge, as Sannö et
al. point out [106], because these two parties typically have differences in per-
spective with respect to problem formulation, methodology, and result; as well
as counterproductive differences in their views on knowledge and in their driv-
ing forces. Lo et al. [73] and Carver et al. [17] made studies in 2015 and 2016
on how practitioners perceived relevance of research in software engineering.
There seems to be no correlation between citation count and its perceived rel-
evance, and papers with industrial co-authors were only marginally more rel-
evant. Sannö et al. discuss ways to increase the impact of industry-academia
collaboration and present the model illustrated in Figure 1.1. As mentioned,
the formulation of a common problem is central. The model also illustrates
that the impact of the collaboration does not end with new knowledge – in-
stead the new knowledge can be seen as what drives further industry-academia
research through different benefits. Weyuker and Ostrand [134] recommend
that academics strive to involve at least one industry participant that is com-
mitted to the goal of the study, and that the industry partner sees the research as
relevant, valuable and important. Eldh points out that an interest in continued
partnership is a good evaluation criteria for both industry and academia [31].
A more detailed approach for industry-academia collaboration was proposed
by Marijan and Gotlieb [78]. Their process involves a model in seven phases
starting with problem scoping (focusing on the industrial problem) and knowl-
edge conception (to formulate research problem); followed by development,
transfer, exploitation and adoption of knowledge and technology; and ending
in market research in order to explore if benefits from the research could reach
outside of the project. All research problems and questions in this thesis have
been formulated jointly while involving both industry and academia.

There is no doubt a great value in corporate research. Arora et al. [3] argue
that these labs solve practical problems, three of the reasons are that companies
have the ability to test innovation at scale by having large data sets, companies
are often multi-disciplinary and may have unique equipment. Furthermore,
doctoral studies is no longer only perceived as a preparation for an academic
career, PhD holders are attractive to industry [4]. Finally, many industrial
doctoral students feel privileged to carry out research in close collaboration
with industry [4].

27

3129

1.2 Personal and Industrial Context

Providing information on context in software engineering research is relevant
in order to allow readers to draw valid conclusions from the research [27, 94,
105]. In addition, in research dealing with qualitative data, the researcher is
“active in the research process” and there is a risk for researcher bias where
personal background and industrial context could play a role [14, 93]. Here
I mention context such that a reader could take this into consideration when
reading this thesis.

Before starting as an industrial doctoral student in 2017, I worked for 11
years with software testing, development, and requirements in the rail, nu-
clear, web, and communication equipment domains. During the majority of
this time, I was a consultant, and as such, I led a competence network on soft-
ware testing for 5 years. In this period of my life, I studied many test and
requirements certification syllabi and became a certified tester as well as a cer-
tified professional for requirements engineering (ISTQB foundation, ISTQB
test manager, ISTQB agile tester, and REQB CPRE Foundation).

I am employed full time at Westermo Network Technologies AB (West-
ermo), where I have worked with test automation, test management and re-
search. The company designs and manufactures robust data communication
devices for harsh environments, providing communication infrastructure for
control and monitoring systems where consumer grade products are not suf-
ficiently resilient. These devices and the software in them, are tested nightly
with the main purpose of finding software regressions. In order to test for re-
gressions, a number of test systems built up of physical or virtualized devices
under test running the software under test have been constructed (see exam-
ple in 1.2). Automated test cases have also been implemented, as well as a
test framework for running the test cases. I first added code to this frame-
work in 2011, when it was being migrated into what is now its current form.
More recently, this framework has started a transition from Python into the
Go programming language. Over time, more and more components have been
added to this eco-system for nightly testing, such as the test selection process
described in Paper B, the test case mapping onto test systems described in
Paper C, and the test results database that is central to Paper E.

In 2014, when the implementation of a test selection tool was evaluated, I
wrote an internal report at Westermo. At this time, I was encouraged to im-
prove the report and publish it in an academic context by the software manager.
Around the same time, I attended a course for becoming ISTQB Certified Test
Manager. Through luck, connections and curiosity I got in contact with the
Software Testing Laboratory at MDH. After some encouragement and coach-

28

1.2 Personal and Industrial Context

Providing information on context in software engineering research is relevant
in order to allow readers to draw valid conclusions from the research [27, 94,
105]. In addition, in research dealing with qualitative data, the researcher is
“active in the research process” and there is a risk for researcher bias where
personal background and industrial context could play a role [14, 93]. Here
I mention context such that a reader could take this into consideration when
reading this thesis.

Before starting as an industrial doctoral student in 2017, I worked for 11
years with software testing, development, and requirements in the rail, nu-
clear, web, and communication equipment domains. During the majority of
this time, I was a consultant, and as such, I led a competence network on soft-
ware testing for 5 years. In this period of my life, I studied many test and
requirements certification syllabi and became a certified tester as well as a cer-
tified professional for requirements engineering (ISTQB foundation, ISTQB
test manager, ISTQB agile tester, and REQB CPRE Foundation).

I am employed full time at Westermo Network Technologies AB (West-
ermo), where I have worked with test automation, test management and re-
search. The company designs and manufactures robust data communication
devices for harsh environments, providing communication infrastructure for
control and monitoring systems where consumer grade products are not suf-
ficiently resilient. These devices and the software in them, are tested nightly
with the main purpose of finding software regressions. In order to test for re-
gressions, a number of test systems built up of physical or virtualized devices
under test running the software under test have been constructed (see exam-
ple in 1.2). Automated test cases have also been implemented, as well as a
test framework for running the test cases. I first added code to this frame-
work in 2011, when it was being migrated into what is now its current form.
More recently, this framework has started a transition from Python into the
Go programming language. Over time, more and more components have been
added to this eco-system for nightly testing, such as the test selection process
described in Paper B, the test case mapping onto test systems described in
Paper C, and the test results database that is central to Paper E.

In 2014, when the implementation of a test selection tool was evaluated, I
wrote an internal report at Westermo. At this time, I was encouraged to im-
prove the report and publish it in an academic context by the software manager.
Around the same time, I attended a course for becoming ISTQB Certified Test
Manager. Through luck, connections and curiosity I got in contact with the
Software Testing Laboratory at MDH. After some encouragement and coach-

28

3230

Figure 1.2: An example of a Westermo test system.

ing on how to write an academic paper, I submitted an early version of Paper B
without coauthors. After being rejected with very constructive feedback, we
conducted an evaluation of changes in fault distribution. Together with four
other authors, I submitted to ISSRE in 2016 and the paper won the best re-
search paper award. In parallel, I learned about the upcoming Industrial Grad-
uate School ITS ESS-H, and after several rounds of discussion, I started as an
industrial doctoral student in 2017.

During this period, Westermo migrated from a development model loosely
based on scrum to a feature-driven development model based on kanban,
where every feature is developed in isolation from the others in separate
code branches, and then merged into a main branch after a risk management
process. This increased parallelization of the testing of the branches makes it
harder to get resources for nightly testing, and makes the results more sparse,
in turn making the test results more complicated to understand. As illustrated
in Figure 1.3, the increase in complexity is not only visible in number of
branches, but also in the number of test cases and test systems in use, as well
as in the number of new test cases executed.

My personal and industrial background has given me unique insights in
industrial software testing, which may have had an impact on how problems
have been formulated, and how data has been collected and analyzed.

29

Figure 1.2: An example of a Westermo test system.

ing on how to write an academic paper, I submitted an early version of Paper B
without coauthors. After being rejected with very constructive feedback, we
conducted an evaluation of changes in fault distribution. Together with four
other authors, I submitted to ISSRE in 2016 and the paper won the best re-
search paper award. In parallel, I learned about the upcoming Industrial Grad-
uate School ITS ESS-H, and after several rounds of discussion, I started as an
industrial doctoral student in 2017.

During this period, Westermo migrated from a development model loosely
based on scrum to a feature-driven development model based on kanban,
where every feature is developed in isolation from the others in separate
code branches, and then merged into a main branch after a risk management
process. This increased parallelization of the testing of the branches makes it
harder to get resources for nightly testing, and makes the results more sparse,
in turn making the test results more complicated to understand. As illustrated
in Figure 1.3, the increase in complexity is not only visible in number of
branches, but also in the number of test cases and test systems in use, as well
as in the number of new test cases executed.

My personal and industrial background has given me unique insights in
industrial software testing, which may have had an impact on how problems
have been formulated, and how data has been collected and analyzed.

29

3331

0

10

20

30

Te
st

Sy
ste

m
s

0

300

600

900

1200

Te
st

Ca
se

s

0

20

40

60

Br
an

ch
es

20
12

-Q
2

20
13

-Q
1

20
14

-Q
1

20
15

-Q
1

20
16

-Q
1

20
17

-Q
1

20
18

-Q
1

20
19

-Q
1

20
20

-Q
1

20
21

-Q
1

Quarter

0

200

400

600

O
ut

co
m

es
 (k

)

Figure 1.3: Growth in test complexity at Westermo between 2012 and Q2 2021.

1.3 Background

The growth in complexity in the nightly testing (illustrated in Figure 1.3) is
also present elsewhere, such as in the automotive industry. Staron [113] re-
ports on software architecture in this domain. There has been a growth in
number of computers in a car, from at most one in the 1970s, followed by
the introduction of electronic fuel injection, anti-lock brakes, cruise control in
the late 1900s and autonomous driving and automated breaking when obsta-
cles are detected in the early 2000s. Staron mentions that cars in 2015 could
have 150 computers with more than 100 million lines of code, and that some
of the trends here are: heterogeneity and distribution of software, variants and

30

0

10

20

30

Te
st

Sy
ste

m
s

0

300

600

900

1200

Te
st

Ca
se

s

0

20

40

60

Br
an

ch
es

20
12

-Q
2

20
13

-Q
1

20
14

-Q
1

20
15

-Q
1

20
16

-Q
1

20
17

-Q
1

20
18

-Q
1

20
19

-Q
1

20
20

-Q
1

20
21

-Q
1

Quarter

0

200

400

600

O
ut

co
m

es
 (k

)

Figure 1.3: Growth in test complexity at Westermo between 2012 and Q2 2021.

1.3 Background

The growth in complexity in the nightly testing (illustrated in Figure 1.3) is
also present elsewhere, such as in the automotive industry. Staron [113] re-
ports on software architecture in this domain. There has been a growth in
number of computers in a car, from at most one in the 1970s, followed by
the introduction of electronic fuel injection, anti-lock brakes, cruise control in
the late 1900s and autonomous driving and automated breaking when obsta-
cles are detected in the early 2000s. Staron mentions that cars in 2015 could
have 150 computers with more than 100 million lines of code, and that some
of the trends here are: heterogeneity and distribution of software, variants and

30

3432

configuration, autonomous functions as well as connectivity and cooperation
between nodes.

Embedded systems are becoming ubiquitous. They range from portable
sensors to communication equipment providing infrastructure, as part of a train
or other vehicles, industrial plants or in other applications. As many as 90%
of newly produced processors are part of embedded systems [41]. Software
failures in communication equipment can lead to isolation of nodes in a vehicle
or a plant, leading to delays, loss of productivity, or even loss of life in extreme
cases. The software in embedded systems needs to be of high quality and
software testing is the standard method for detecting shortcomings in quality.

Software testing, can be defined1 as the act of manually or automatically
inspecting or executing software with or without custom hardware in order to
gather information for some purpose: feedback, quality control, finding issues,
building trust, or other. An important aspect of testing embedded systems is
to do testing on real hardware [7, 137]. For some of the testing, emulators
and simulators can be suitable, but these should be complemented with phys-
ical hardware [102]. Testing could also iterate from being on host and target
hardware [21]. By testing on target hardware, timing and other non-functional
aspects can be verified along with functional correctness. One common ap-
proach for testing on real hardware is to build test systems of the embedded
devices in network topologies, in order to support testing.

An overwhelming majority of the software testing conducted in industry
is manual. Kasurinen et al. found it as high as 90% in a study in Finland in
2010 [63]. A practitioner focused report from 2015 found that only 28% of test
cases are automated [111]. Test automation can reduce the cost involved and
also improve time to market [135]. If tests can run with minimal human in-
tervention, considerable gains in test efficiency are possible. Indeed, many or-
ganizations strive for agile and continuous development processes, where test
automation is an important part, and research has been done on how to achieve
this [89]. For organizations developing networked embedded systems to be
successful in this transition, they would need a number of things in addition to
agile processes. First of all, they would need a way to automate testing with
a test framework and test cases. Test suites would have to run every now and
then. The test framework needs to know how to log in, upgrade, and configure
the hardware in the test systems. If the organizations develop many different
hardware models, they would need several test systems with different sets of
hardware. In order to utilize the resources optimally, the test systems might

1This definition partially overlaps with definitions from both the International Software Test-
ing Qualifications Board (ISTQB) and the ISO/IEC/IEEE 29119-1 standard [58, 131]. Many
other definitions exist.

31

configuration, autonomous functions as well as connectivity and cooperation
between nodes.

Embedded systems are becoming ubiquitous. They range from portable
sensors to communication equipment providing infrastructure, as part of a train
or other vehicles, industrial plants or in other applications. As many as 90%
of newly produced processors are part of embedded systems [41]. Software
failures in communication equipment can lead to isolation of nodes in a vehicle
or a plant, leading to delays, loss of productivity, or even loss of life in extreme
cases. The software in embedded systems needs to be of high quality and
software testing is the standard method for detecting shortcomings in quality.

Software testing, can be defined1 as the act of manually or automatically
inspecting or executing software with or without custom hardware in order to
gather information for some purpose: feedback, quality control, finding issues,
building trust, or other. An important aspect of testing embedded systems is
to do testing on real hardware [7, 137]. For some of the testing, emulators
and simulators can be suitable, but these should be complemented with phys-
ical hardware [102]. Testing could also iterate from being on host and target
hardware [21]. By testing on target hardware, timing and other non-functional
aspects can be verified along with functional correctness. One common ap-
proach for testing on real hardware is to build test systems of the embedded
devices in network topologies, in order to support testing.

An overwhelming majority of the software testing conducted in industry
is manual. Kasurinen et al. found it as high as 90% in a study in Finland in
2010 [63]. A practitioner focused report from 2015 found that only 28% of test
cases are automated [111]. Test automation can reduce the cost involved and
also improve time to market [135]. If tests can run with minimal human in-
tervention, considerable gains in test efficiency are possible. Indeed, many or-
ganizations strive for agile and continuous development processes, where test
automation is an important part, and research has been done on how to achieve
this [89]. For organizations developing networked embedded systems to be
successful in this transition, they would need a number of things in addition to
agile processes. First of all, they would need a way to automate testing with
a test framework and test cases. Test suites would have to run every now and
then. The test framework needs to know how to log in, upgrade, and configure
the hardware in the test systems. If the organizations develop many different
hardware models, they would need several test systems with different sets of
hardware. In order to utilize the resources optimally, the test systems might

1This definition partially overlaps with definitions from both the International Software Test-
ing Qualifications Board (ISTQB) and the ISO/IEC/IEEE 29119-1 standard [58, 131]. Many
other definitions exist.

31

3533

DeviceFunction File Library Test System Test Env.OS

Figure 1.4: Perspectives of testing: from low level (source code functions) to high
level (system).

be shared: humans use them by day and machines run nightly testing when no
one is in the office. This way developers and testers could use the test systems
for development, fault finding and manual testing. During the nights, the orga-
nizations would benefit from potentially massive and broad automated testing.
This type of testing, on this high level, could be called automated system level
testing in the context of networked embedded systems. This perspective is
illustrated in the rightmost parts of Figure 1.4.

Wiklund et al. identified lack of time for testing as an important challenge
for test automation [135]. One reason could be that system level testing is slow
compared to unit testing where a function, file or library may be tested (left part
of Figure 1.4). A typical test case for networked embedded systems on system
level could be a firewall test. This test case would need at least three devices
under test (DUTs): a firewall node, an internal node (to be protected by the
firewall), and an external node (trying to reach the internal node). Depending
on configuration and type of traffic, the outside node should or should not be
able to reach the inside node. These test cases need time because they perform
several configuration and verification steps, send actual traffic in the network,
and the test framework analyzes the traffic sent. Because testing is slow, it may
not be feasible to run all test cases every night, so the organizations need to
decide on which test cases to include in or exclude from testing. This problem
of regression test selection (RTS, or SL-RTS for System Level RTS) is well-
studied, but very little previous research had been done on SL-RTS in 2016
when Paper B was published.

Wiklund et al. also found that low availability of the test environment is an
important challenge for test automation [135], in particular if the test systems
have non-standard hardware [80]. There is thus a need to maximize the value
of the testing, given available resources. If a large number of physical test
systems are built, and a large number of test cases designed, then one would
need a way to assign the hardware resources of the test systems to the test
cases, so that as many test cases as possible could run on as many test systems
as possible. In this thesis, this process is referred to as “mapping” of test cases
onto test systems. If there is no automated mapping, then each new test case

32

DeviceFunction File Library Test System Test Env.OS

Figure 1.4: Perspectives of testing: from low level (source code functions) to high
level (system).

be shared: humans use them by day and machines run nightly testing when no
one is in the office. This way developers and testers could use the test systems
for development, fault finding and manual testing. During the nights, the orga-
nizations would benefit from potentially massive and broad automated testing.
This type of testing, on this high level, could be called automated system level
testing in the context of networked embedded systems. This perspective is
illustrated in the rightmost parts of Figure 1.4.

Wiklund et al. identified lack of time for testing as an important challenge
for test automation [135]. One reason could be that system level testing is slow
compared to unit testing where a function, file or library may be tested (left part
of Figure 1.4). A typical test case for networked embedded systems on system
level could be a firewall test. This test case would need at least three devices
under test (DUTs): a firewall node, an internal node (to be protected by the
firewall), and an external node (trying to reach the internal node). Depending
on configuration and type of traffic, the outside node should or should not be
able to reach the inside node. These test cases need time because they perform
several configuration and verification steps, send actual traffic in the network,
and the test framework analyzes the traffic sent. Because testing is slow, it may
not be feasible to run all test cases every night, so the organizations need to
decide on which test cases to include in or exclude from testing. This problem
of regression test selection (RTS, or SL-RTS for System Level RTS) is well-
studied, but very little previous research had been done on SL-RTS in 2016
when Paper B was published.

Wiklund et al. also found that low availability of the test environment is an
important challenge for test automation [135], in particular if the test systems
have non-standard hardware [80]. There is thus a need to maximize the value
of the testing, given available resources. If a large number of physical test
systems are built, and a large number of test cases designed, then one would
need a way to assign the hardware resources of the test systems to the test
cases, so that as many test cases as possible could run on as many test systems
as possible. In this thesis, this process is referred to as “mapping” of test cases
onto test systems. If there is no automated mapping, then each new test case

32

3634

might trigger a need to build a new test system, which would be expensive and
limit the scalability of the testing. Also, in order to maximize the value of the
testing, the mapping process should make sure that, over time, each test case
utilizes different parts of the hardware in the test systems, such that hardware
coverage is increased.

A literature study from 2017 on continuous practices identified that, as
the frequency of integrations increase, there is an exponential growth of infor-
mation [108]. Similarly, Brandtner et al., identified that relevant information
might be spread out in several systems [13]. One way to handle test results
data is to implement a test results database (TRDB). The TRDB could sup-
port exploration, visualization and also provide overviews of results, such that
when engineers come to work in the mornings, they could rapidly understand
the results of the nightly testing. It is therefore important to study and learn
from industrial practitioners how the information flows in their testing pro-
cesses, and how they make decisions based on visualizations and other support
systems enabled by the TRDB.

Intuitively, testing might be expected to be a deterministic process – given
the same stimuli to the same system, one could expected the same response.
However, this is not true, or rather: in practice, no one is able to observe or
control all variables that are of relevance to a complex system, therefore testing
is perceived as non-deterministic when some tests intermittently fail. This has
been well studied, e.g. by Luo et al. [76] and has been shown to be linked
to poor quality test code [42]. However, most of the previous work has been
conducted on unit level testing of open source software. It appears as if only
four previous studies have considered higher level testing [2, 29, 70, 128].

33

might trigger a need to build a new test system, which would be expensive and
limit the scalability of the testing. Also, in order to maximize the value of the
testing, the mapping process should make sure that, over time, each test case
utilizes different parts of the hardware in the test systems, such that hardware
coverage is increased.

A literature study from 2017 on continuous practices identified that, as
the frequency of integrations increase, there is an exponential growth of infor-
mation [108]. Similarly, Brandtner et al., identified that relevant information
might be spread out in several systems [13]. One way to handle test results
data is to implement a test results database (TRDB). The TRDB could sup-
port exploration, visualization and also provide overviews of results, such that
when engineers come to work in the mornings, they could rapidly understand
the results of the nightly testing. It is therefore important to study and learn
from industrial practitioners how the information flows in their testing pro-
cesses, and how they make decisions based on visualizations and other support
systems enabled by the TRDB.

Intuitively, testing might be expected to be a deterministic process – given
the same stimuli to the same system, one could expected the same response.
However, this is not true, or rather: in practice, no one is able to observe or
control all variables that are of relevance to a complex system, therefore testing
is perceived as non-deterministic when some tests intermittently fail. This has
been well studied, e.g. by Luo et al. [76] and has been shown to be linked
to poor quality test code [42]. However, most of the previous work has been
conducted on unit level testing of open source software. It appears as if only
four previous studies have considered higher level testing [2, 29, 70, 128].

33

3735

3836

Chapter 2

Research Process

The research of this thesis has largely followed the process described in Fig-
ure 1.1. The common problem has been that of automated system-level soft-
ware testing of industrial networked embedded systems. The work has been
funded by Westermo and the Swedish Knowledge Foundation through the ITS
ESS-H research school, and collaborative work has been done, primarily be-
tween the Software Testing Laboratory at Mälardalen University and West-
ermo. Through the research effort new knowledge has been generated, which
gives benefits and value to the company, the researchers, and for society in
general. The knowledge has led to improvements in work processes and tools
used at Westermo, and to academic publications. The value and benefits have
led to an interest in continued collaborative research.

The research goal of this thesis is: to improve automated system-level
software testing of industrial networked embedded systems. The five research
questions of this thesis are organized to align with Figure 2.1, which shows the
overall information flow model discovered in Paper A. In short, this thesis tar-
gets five questions that can be positioned in different stages of this flow model:
How does information relevant to testing flow in an organization developing
embedded systems? Which test cases should be executed when there is not
enough time? Which hardware devices should be included in the testing when
there are too many possible combinations? Why do some test cases intermit-
tently fail? How can information relevant to testing be presented to developers
and testers such that they can make decisions? The rest of this chapter de-
scribes these five questions in more detail, the case study research method, as
well as a discussion on research quality.

35

Chapter 2

Research Process

The research of this thesis has largely followed the process described in Fig-
ure 1.1. The common problem has been that of automated system-level soft-
ware testing of industrial networked embedded systems. The work has been
funded by Westermo and the Swedish Knowledge Foundation through the ITS
ESS-H research school, and collaborative work has been done, primarily be-
tween the Software Testing Laboratory at Mälardalen University and West-
ermo. Through the research effort new knowledge has been generated, which
gives benefits and value to the company, the researchers, and for society in
general. The knowledge has led to improvements in work processes and tools
used at Westermo, and to academic publications. The value and benefits have
led to an interest in continued collaborative research.

The research goal of this thesis is: to improve automated system-level
software testing of industrial networked embedded systems. The five research
questions of this thesis are organized to align with Figure 2.1, which shows the
overall information flow model discovered in Paper A. In short, this thesis tar-
gets five questions that can be positioned in different stages of this flow model:
How does information relevant to testing flow in an organization developing
embedded systems? Which test cases should be executed when there is not
enough time? Which hardware devices should be included in the testing when
there are too many possible combinations? Why do some test cases intermit-
tently fail? How can information relevant to testing be presented to developers
and testers such that they can make decisions? The rest of this chapter de-
scribes these five questions in more detail, the case study research method, as
well as a discussion on research quality.

35

3937

Developers Desk

Test Results

HW Test Env. External

"unused"

Process/Gate

Req. PM TL

Unit Testing Integration Testing System Testing

Test Team

PushPull

Database

RQ1

RQ2

RQ3

RQ4

RQ5

Acceptance Testing

Figure 2.1: Automated System-Level Software Testing of Industrial Networked Em-
bedded Systems with highlighted research questions (compare Figure 1).

2.1 Research Questions

A challenge with testing embedded systems is understanding how updated
software reaches a test environment, how testing is actually conducted in the
test environment, and how test results reach the developers that updated the
software in the first place (i.e. the elements and arrows in Figure 2.1). The fol-
lowing research question (RQ) was formulated in order to tackle this problem:

RQ1: How could one describe the flow of information in software testing in
an organization developing embedded systems, and what key aspects,
challenges, and good approaches are relevant to this flow? (Paper A)

Despite a long history of research, the regression test selection problem was
relatively unexplored from a system-level perspective at the time of Paper B
(2016). In Figure 2.1, test selection is illustrated as a process occurring before
testing and before software reaches the test environment. The following RQ
was formulated in order to explore this problem from a system-level:

36

Developers Desk

Test Results

HW Test Env. External

"unused"

Process/Gate

Req. PM TL

Unit Testing Integration Testing System Testing

Test Team

PushPull

Database

RQ1

RQ2

RQ3

RQ4

RQ5

Acceptance Testing

Figure 2.1: Automated System-Level Software Testing of Industrial Networked Em-
bedded Systems with highlighted research questions (compare Figure 1).

2.1 Research Questions

A challenge with testing embedded systems is understanding how updated
software reaches a test environment, how testing is actually conducted in the
test environment, and how test results reach the developers that updated the
software in the first place (i.e. the elements and arrows in Figure 2.1). The fol-
lowing research question (RQ) was formulated in order to tackle this problem:

RQ1: How could one describe the flow of information in software testing in
an organization developing embedded systems, and what key aspects,
challenges, and good approaches are relevant to this flow? (Paper A)

Despite a long history of research, the regression test selection problem was
relatively unexplored from a system-level perspective at the time of Paper B
(2016). In Figure 2.1, test selection is illustrated as a process occurring before
testing and before software reaches the test environment. The following RQ
was formulated in order to explore this problem from a system-level:

36

4038

RQ2: What challenges might an organization have with respect to system-
level regression test selection in the context of networked embedded
systems, and how could one address these challenges? (Paper B)

Similar to how regression test case selection occurs prior to the actual testing,
a subset of the available hardware must also be selected for each test case – the
mapping of requirements of the test cases onto test systems. In Figure 2.1, a
mapping can be thought of a process requiring a test environment. This leads
to the following RQ:

RQ3: What challenges might an organization have with respect to test envi-
ronment assignment in the context of networked embedded systems, and
how could one address these challenges? (Paper C)

When system-level test cases are executed over time, night after night, on em-
bedded systems in an industrial setting, there is almost always a drift in the
software, testware or hardware between test sessions. With the exception of
mostly manual debugging and trouble shooting, rarely do companies invest
effort in doing regression testing of unchanged systems. Instead, one desires
confirmation that recent changes have not introduced regressions. Under these
conditions, test cases may sometimes intermittently fail for no obvious rea-
son, leading to unexpected test results over time in the test results database
(Figure 2.1). This problem motivates the following RQ:

RQ4: What are the root causes of intermittently failing tests during system-
level testing in a context under evolution, and could one automate the
detection of these test cases? (Paper D)

System-level software testing of industrial networked embedded systems pro-
duces large amounts of information, and involves many automated decisions.
In the software development process, the results may be hard to render into
something actionable, in particular in the daily activities of a software devel-
oper, when a new feature is about to be completed, and at release time. This
leads to the final RQ of this thesis:

RQ5: How could one implement and evaluate a system to enhance visualiza-
tion and exploration of test results to support the information flow in an
organization? (Paper E)

37

RQ2: What challenges might an organization have with respect to system-
level regression test selection in the context of networked embedded
systems, and how could one address these challenges? (Paper B)

Similar to how regression test case selection occurs prior to the actual testing,
a subset of the available hardware must also be selected for each test case – the
mapping of requirements of the test cases onto test systems. In Figure 2.1, a
mapping can be thought of a process requiring a test environment. This leads
to the following RQ:

RQ3: What challenges might an organization have with respect to test envi-
ronment assignment in the context of networked embedded systems, and
how could one address these challenges? (Paper C)

When system-level test cases are executed over time, night after night, on em-
bedded systems in an industrial setting, there is almost always a drift in the
software, testware or hardware between test sessions. With the exception of
mostly manual debugging and trouble shooting, rarely do companies invest
effort in doing regression testing of unchanged systems. Instead, one desires
confirmation that recent changes have not introduced regressions. Under these
conditions, test cases may sometimes intermittently fail for no obvious rea-
son, leading to unexpected test results over time in the test results database
(Figure 2.1). This problem motivates the following RQ:

RQ4: What are the root causes of intermittently failing tests during system-
level testing in a context under evolution, and could one automate the
detection of these test cases? (Paper D)

System-level software testing of industrial networked embedded systems pro-
duces large amounts of information, and involves many automated decisions.
In the software development process, the results may be hard to render into
something actionable, in particular in the daily activities of a software devel-
oper, when a new feature is about to be completed, and at release time. This
leads to the final RQ of this thesis:

RQ5: How could one implement and evaluate a system to enhance visualiza-
tion and exploration of test results to support the information flow in an
organization? (Paper E)

37

4139

2.2 The Case Study Research Method

According to Runeson et al. [105], case study research in software engineering
is useful in order to understand and improve software engineering processes
and products. They define the case study research method as:

an empirical enquiry that draws on multiple sources of evidence
to investigate [. . .] a contemporary software engineering
phenomenon within its real-life context, especially when the
boundary between phenomenon and context cannot be clearly
specified.

The studies in this thesis are all case studies, but differ in terms of aim and
type of data used – both qualitative and quantitative data has been collected and
analyzed. Paper A exclusively used qualitative data (in the form of interviews),
Papers C and D primarily used quantitative data, and Papers B and E combine
qualitative and quantitative data.

When Paper A was being planned, a number of guidelines were considered.
Kitchenham and Pfleeger published a series of guideline papers in 2001 and
2002 [65, 66, 67, 68, 95, 96]. These had an influence on, for example, Runeson
et al. [105], that in turn has had an influence on the overall guideline paper
followed for Paper A: Linåker et al. [72].

A total of about 28 hours of audio and video has been recorded and tran-
scribed into about 185 pages of text for this thesis (17 hours of audio tran-
scribed into 130 pages of text for Paper A, 7 hours of video transcribed into
36 pages of not as dense text for Paper E, and 4 hours of interview audio and
20 pages of text was collected for Paper X3, on which Paper E is based). For
the data analysis of this qualitative data, many options were available, e.g.
grounded theory (for example described by Stol et al. [114]), content analysis
(as described for the field of nursing by Graneheim and Lundman [46]), and
thematic analysis. There is a significant overlap between these methods, and
also a drift of guidelines into software engineering from the social sciences
(e.g., the Cruzes and Dybå guidelines for thematic analysis [22]). In the initial
stages of data analysis for Paper A, we held a workshop among the authors
where the decision to use the recommendations of thematic analysis described
for the field of psychology by Braun and Clarke [14] was taken. Among the
authors we saw this approach as easy to understand and suitable for the type
of data at hand.

At the time, I (and the other authors too) felt that the integrity and
anonymity of the interviewees was of great importance. The interviewees
felt the same, and some of them pointed out that leaked transcripts could

38

2.2 The Case Study Research Method

According to Runeson et al. [105], case study research in software engineering
is useful in order to understand and improve software engineering processes
and products. They define the case study research method as:

an empirical enquiry that draws on multiple sources of evidence
to investigate [. . .] a contemporary software engineering
phenomenon within its real-life context, especially when the
boundary between phenomenon and context cannot be clearly
specified.

The studies in this thesis are all case studies, but differ in terms of aim and
type of data used – both qualitative and quantitative data has been collected and
analyzed. Paper A exclusively used qualitative data (in the form of interviews),
Papers C and D primarily used quantitative data, and Papers B and E combine
qualitative and quantitative data.

When Paper A was being planned, a number of guidelines were considered.
Kitchenham and Pfleeger published a series of guideline papers in 2001 and
2002 [65, 66, 67, 68, 95, 96]. These had an influence on, for example, Runeson
et al. [105], that in turn has had an influence on the overall guideline paper
followed for Paper A: Linåker et al. [72].

A total of about 28 hours of audio and video has been recorded and tran-
scribed into about 185 pages of text for this thesis (17 hours of audio tran-
scribed into 130 pages of text for Paper A, 7 hours of video transcribed into
36 pages of not as dense text for Paper E, and 4 hours of interview audio and
20 pages of text was collected for Paper X3, on which Paper E is based). For
the data analysis of this qualitative data, many options were available, e.g.
grounded theory (for example described by Stol et al. [114]), content analysis
(as described for the field of nursing by Graneheim and Lundman [46]), and
thematic analysis. There is a significant overlap between these methods, and
also a drift of guidelines into software engineering from the social sciences
(e.g., the Cruzes and Dybå guidelines for thematic analysis [22]). In the initial
stages of data analysis for Paper A, we held a workshop among the authors
where the decision to use the recommendations of thematic analysis described
for the field of psychology by Braun and Clarke [14] was taken. Among the
authors we saw this approach as easy to understand and suitable for the type
of data at hand.

At the time, I (and the other authors too) felt that the integrity and
anonymity of the interviewees was of great importance. The interviewees
felt the same, and some of them pointed out that leaked transcripts could

38

4240

uniquely identify them, or be a form industrial espionage. As part of the data
collection process of Paper A, an anonymization process based on existing
ethical guidelines, e.g. [127], was designed. This, in turn, lead to Paper X5 on
ethical interviews in software engineering.

At the core of Paper B is an algorithm and tool for SL-RTS that was eval-
uated with data from four years of nightly testing – two years of data from
before introduction of the tool and two after. Paper C proposes and describes
the implementation of an algorithm and tool for hardware selection, which was
evaluated using 17 test systems and more than 600 test cases for a total of more
than ten thousand possible mappings. This way, performance of the new tool
could be compared with the previous tool in use at Westermo. Paper D de-
scribes a novel algorithm to identify intermittently or consistently failing tests.
The algorithm was used on test results from nine months of nightly testing and
more than half a million test verdicts were used in order to identify test cases to
investigate further. The extended analysis used project artifacts, such as code
commit messages, bug trackers and so on, in order to find patterns for why
test cases are intermittently failing. Finally, Paper E investigates how to im-
plement visualizations based on test results, which again revolves around the
development of a tool. The tool was evaluated by transcribing recorded ref-
erence group meetings, by member checking and by analyzing log files from
using the tool.

2.3 On Research Quality

The term software engineering was coined by Margaret Hamilton while work-
ing on the Apollo program at NASA [54] in an attempt to bring discipline,
legitimacy and respect to software. As pointed out by Felderer and Travassos,
software engineering has evolved from its seminal moments at NASA (and
NATO) aiming at observing and understanding software projects in 1960s and
1970s, via attempts to define methods for empirical studies in the 1980s (such
as the work on goal-question-metric by Basili and Weiss [9]), to the formation
of publication venues for empirical software engineering in the 1990s, into
an evidence-based field of research [35]. In 2012, Runeson et al. published a
book called “Case Study Research in Software Engineering – Guidelines and
Examples” [105] which is one of the main guidelines used in this thesis.

As mentioned above, Arora et al. [3], argues that one of the strengths of re-
search at companies is the access to data. However, when a company uses
its own data and tools to make research claims such as in this thesis, e.g.
by using the SuiteBuilder tool “two thirds of the failing tests are now posi-
tioned in the first third of the test suites,” then this claim cannot easily be

39

uniquely identify them, or be a form industrial espionage. As part of the data
collection process of Paper A, an anonymization process based on existing
ethical guidelines, e.g. [127], was designed. This, in turn, lead to Paper X5 on
ethical interviews in software engineering.

At the core of Paper B is an algorithm and tool for SL-RTS that was eval-
uated with data from four years of nightly testing – two years of data from
before introduction of the tool and two after. Paper C proposes and describes
the implementation of an algorithm and tool for hardware selection, which was
evaluated using 17 test systems and more than 600 test cases for a total of more
than ten thousand possible mappings. This way, performance of the new tool
could be compared with the previous tool in use at Westermo. Paper D de-
scribes a novel algorithm to identify intermittently or consistently failing tests.
The algorithm was used on test results from nine months of nightly testing and
more than half a million test verdicts were used in order to identify test cases to
investigate further. The extended analysis used project artifacts, such as code
commit messages, bug trackers and so on, in order to find patterns for why
test cases are intermittently failing. Finally, Paper E investigates how to im-
plement visualizations based on test results, which again revolves around the
development of a tool. The tool was evaluated by transcribing recorded ref-
erence group meetings, by member checking and by analyzing log files from
using the tool.

2.3 On Research Quality

The term software engineering was coined by Margaret Hamilton while work-
ing on the Apollo program at NASA [54] in an attempt to bring discipline,
legitimacy and respect to software. As pointed out by Felderer and Travassos,
software engineering has evolved from its seminal moments at NASA (and
NATO) aiming at observing and understanding software projects in 1960s and
1970s, via attempts to define methods for empirical studies in the 1980s (such
as the work on goal-question-metric by Basili and Weiss [9]), to the formation
of publication venues for empirical software engineering in the 1990s, into
an evidence-based field of research [35]. In 2012, Runeson et al. published a
book called “Case Study Research in Software Engineering – Guidelines and
Examples” [105] which is one of the main guidelines used in this thesis.

As mentioned above, Arora et al. [3], argues that one of the strengths of re-
search at companies is the access to data. However, when a company uses
its own data and tools to make research claims such as in this thesis, e.g.
by using the SuiteBuilder tool “two thirds of the failing tests are now posi-
tioned in the first third of the test suites,” then this claim cannot easily be

39

4341

confirmed or rejected by someone not at the company. The term falsifiability
was coined by Popper in 1934 [98], and it is sometimes used as a possible
demarcation between science and pseudoscience. Without access to company
data and tools, would it be any easier to falsify the statement about distribution
of failing tests, than it would be to falsify the claim that a teapot orbits the Sun
somewhere between Earth and Mars (Russell’s teapot)? Intuitively, one might
want to argue that this thesis is scientific, but that belief in Russel’s teapot is
pseudo-scientific. Furthermore, in his famous paper “Why Most Published Re-
search Findings Are False” [57], Ioannidis argues that lack of replication, lack
of publications with negative results, and over-emphasis on statistical signif-
icance are root causes for why many research findings are false. Again, the
statement on the fail distributions is not only hard to falsify, it is also hard to
replicate. Claims that are easy to replicate are of course easier to falsify. In
retrospect, now in 2021, one would argue that we as authors of the papers in
this thesis, should have made a greater effort to make data and tools available
to a greater audience. Or that we, in addition to exploring challenges at one
or a few companies, would also have used publicly available sources such as
open source projects to evaluate findings, tools or hypotheses. If we had, then
the opportunities to replicate research findings and the generalizability of the
findings would have been better.

It has been suggested that good research should have both rigor and rel-
evance. By doing so, one avoids conducting research only for the sake of
researchers. At the core of rigor are carefully considered and transparent re-
search methods [60, 105, 106, 132].

Doing research in a certain context certainly has an impact on generaliz-
ability. However, Briand et al. [16] argue that “we see the need to foster [. . .]
research focused on problems defined in collaboration with industrial part-
ners and driven by concrete needs in specific domains [. . .]” In other words,
research in a narrow context may have high relevance, regardless of its gener-
alizability.

Research involving human practitioners may harm these individuals, and
ethical aspects are of relevance to businesses as well. Smith [110] points out
that being an industrial doctoral student comes with unique ethical risks, i.e.
an industrial doctoral student might portray his of her employer in a favor-
able light. For the research in this thesis, we have had a focus on minimizing
harm, which has led to guidelines not part of this thesis (in papers X5 and
X6 [117, 122]). In addition to avoiding harm to participants in the research,
another ethical aspect of this thesis is the potential for hiding decision making
criteria of an algorithm, which risks making decisions inscrutable, and thereby
disempowering stakeholders [81].

40

confirmed or rejected by someone not at the company. The term falsifiability
was coined by Popper in 1934 [98], and it is sometimes used as a possible
demarcation between science and pseudoscience. Without access to company
data and tools, would it be any easier to falsify the statement about distribution
of failing tests, than it would be to falsify the claim that a teapot orbits the Sun
somewhere between Earth and Mars (Russell’s teapot)? Intuitively, one might
want to argue that this thesis is scientific, but that belief in Russel’s teapot is
pseudo-scientific. Furthermore, in his famous paper “Why Most Published Re-
search Findings Are False” [57], Ioannidis argues that lack of replication, lack
of publications with negative results, and over-emphasis on statistical signif-
icance are root causes for why many research findings are false. Again, the
statement on the fail distributions is not only hard to falsify, it is also hard to
replicate. Claims that are easy to replicate are of course easier to falsify. In
retrospect, now in 2021, one would argue that we as authors of the papers in
this thesis, should have made a greater effort to make data and tools available
to a greater audience. Or that we, in addition to exploring challenges at one
or a few companies, would also have used publicly available sources such as
open source projects to evaluate findings, tools or hypotheses. If we had, then
the opportunities to replicate research findings and the generalizability of the
findings would have been better.

It has been suggested that good research should have both rigor and rel-
evance. By doing so, one avoids conducting research only for the sake of
researchers. At the core of rigor are carefully considered and transparent re-
search methods [60, 105, 106, 132].

Doing research in a certain context certainly has an impact on generaliz-
ability. However, Briand et al. [16] argue that “we see the need to foster [. . .]
research focused on problems defined in collaboration with industrial part-
ners and driven by concrete needs in specific domains [. . .]” In other words,
research in a narrow context may have high relevance, regardless of its gener-
alizability.

Research involving human practitioners may harm these individuals, and
ethical aspects are of relevance to businesses as well. Smith [110] points out
that being an industrial doctoral student comes with unique ethical risks, i.e.
an industrial doctoral student might portray his of her employer in a favor-
able light. For the research in this thesis, we have had a focus on minimizing
harm, which has led to guidelines not part of this thesis (in papers X5 and
X6 [117, 122]). In addition to avoiding harm to participants in the research,
another ethical aspect of this thesis is the potential for hiding decision making
criteria of an algorithm, which risks making decisions inscrutable, and thereby
disempowering stakeholders [81].

40

4442

One challenge with the case study research method in software engineer-
ing is that when exploring a “phenomenon [. . .] when the boundary between
phenomenon and context cannot be clearly specified” (as Runeson et al. [105]
defines a case study), the findings might depend on the context and not the
phenomenon. In industrial case studies, many variables may have an impact
on what is being measured. There could therefore exist confounding factors,
perhaps changes in a software development process, that have not been in-
vestigated, or other threats to internal validity. However, this threat has been
addressed by involving both qualitative and quantitative research methods, and
by collecting data as to minimize the impact of confounding variables. E.g.,
in Paper B, challenges with respect to regression test selection were identified
qualitatively. Paper D used a quantitative metric for test case intermittence
that led to the identification of test cases that were then qualitatively investi-
gated. Furthermore, prolonged involvement and industrial experience should
also have addressed this threat.

In the studies in this thesis, a number of constructs are used (e.g., a flaky
test, the mapping problem, and information flow). These do not always have
a standard definition, which leads to threats to construct validity, not only in
the research in this thesis, but in general in the research community. One way
to combat this threat to validity is to carefully define terms, and be transparent
about algorithms used to collect data and also how qualitative data has been
analyzed.

In all but one of the papers of this thesis, the results stem from one context:
the automated system-level testing at Westermo. One should therefore con-
sider external validity before transferring results into other contexts. However,
there is a growing body of knowledge of industrial testing and system-level
testing. It is also interesting to speculate about generalizability, e.g. on test
selection or intermittently failing tests, from unit-level testing to system-level
testing. One such example could be the finding in Paper D that test case as-
sumptions (e.g., on timing) is a factor for intermittence that seems to be com-
mon for both unit- and system-level testing.

By being transparent in the choice of, and strict in the use of, scientific
methods, while at the same time considering humans and organizations, the
research in this thesis should be not only rigorous and relevant, but also ethical.

41

One challenge with the case study research method in software engineer-
ing is that when exploring a “phenomenon [. . .] when the boundary between
phenomenon and context cannot be clearly specified” (as Runeson et al. [105]
defines a case study), the findings might depend on the context and not the
phenomenon. In industrial case studies, many variables may have an impact
on what is being measured. There could therefore exist confounding factors,
perhaps changes in a software development process, that have not been in-
vestigated, or other threats to internal validity. However, this threat has been
addressed by involving both qualitative and quantitative research methods, and
by collecting data as to minimize the impact of confounding variables. E.g.,
in Paper B, challenges with respect to regression test selection were identified
qualitatively. Paper D used a quantitative metric for test case intermittence
that led to the identification of test cases that were then qualitatively investi-
gated. Furthermore, prolonged involvement and industrial experience should
also have addressed this threat.

In the studies in this thesis, a number of constructs are used (e.g., a flaky
test, the mapping problem, and information flow). These do not always have
a standard definition, which leads to threats to construct validity, not only in
the research in this thesis, but in general in the research community. One way
to combat this threat to validity is to carefully define terms, and be transparent
about algorithms used to collect data and also how qualitative data has been
analyzed.

In all but one of the papers of this thesis, the results stem from one context:
the automated system-level testing at Westermo. One should therefore con-
sider external validity before transferring results into other contexts. However,
there is a growing body of knowledge of industrial testing and system-level
testing. It is also interesting to speculate about generalizability, e.g. on test
selection or intermittently failing tests, from unit-level testing to system-level
testing. One such example could be the finding in Paper D that test case as-
sumptions (e.g., on timing) is a factor for intermittence that seems to be com-
mon for both unit- and system-level testing.

By being transparent in the choice of, and strict in the use of, scientific
methods, while at the same time considering humans and organizations, the
research in this thesis should be not only rigorous and relevant, but also ethical.

41

4543

4644

Chapter 3

Related Work

The research fields of software testing, regression test selection, intermittently
failing tests as well as communication and visualization are all well studied.
However, there is a notable gap between academia and industry in these fields:
an overwhelming majority of the actual testing in the industry is manual, de-
spite more than 40 years of research on regression test selection very little of
the research targets the system level, intermittently failing tests have almost
exclusively been explored on unit level testing of open source software, and
previous work on the role of communication in software engineering and soft-
ware testing indicate that a requirements specification is of great importance –
in practice these are unfortunately typically of poor quality. This chapter dis-
cusses findings in these areas of research, and also briefly mention the mathe-
matical field of graph theory and the subgraph isomorphism problem – topics
related to Paper C.

3.1 Industrial Software Testing

A lot of research has shown that industry seems to be slow to adopt state of the
art techniques for software testing. Most testing is done manually, perhaps as
much as 90% [63]. Well-defined test design techniques exist, but testers “rely
on their own experience more” [56]. The industrial use of issue trackers1 is
sometimes flawed, and many organizations don’t use one [63].

On the positive side, companies change over time and many strive towards
using more agile practices, such as shortening feedback loops and adopting
continuous integration [89]. In a literature study on continuous practices from

1Issue tracking can also be referred to as bug tracking, defect reporting, or incident report-
ing [59, 87, 140].

43

Chapter 3

Related Work

The research fields of software testing, regression test selection, intermittently
failing tests as well as communication and visualization are all well studied.
However, there is a notable gap between academia and industry in these fields:
an overwhelming majority of the actual testing in the industry is manual, de-
spite more than 40 years of research on regression test selection very little of
the research targets the system level, intermittently failing tests have almost
exclusively been explored on unit level testing of open source software, and
previous work on the role of communication in software engineering and soft-
ware testing indicate that a requirements specification is of great importance –
in practice these are unfortunately typically of poor quality. This chapter dis-
cusses findings in these areas of research, and also briefly mention the mathe-
matical field of graph theory and the subgraph isomorphism problem – topics
related to Paper C.

3.1 Industrial Software Testing

A lot of research has shown that industry seems to be slow to adopt state of the
art techniques for software testing. Most testing is done manually, perhaps as
much as 90% [63]. Well-defined test design techniques exist, but testers “rely
on their own experience more” [56]. The industrial use of issue trackers1 is
sometimes flawed, and many organizations don’t use one [63].

On the positive side, companies change over time and many strive towards
using more agile practices, such as shortening feedback loops and adopting
continuous integration [89]. In a literature study on continuous practices from

1Issue tracking can also be referred to as bug tracking, defect reporting, or incident report-
ing [59, 87, 140].

43

4745

2017, Shahin et al. identified that, as code integrations become more frequent,
the amount of data such as test results will increase exponentially [108]. There-
fore it is “critical to collect and represent the information in [a] timely manner
to help stakeholders to gain better and easier understanding and interpretation
of the results. . . ” There is also a need for speeding up continuous integra-
tion [112].

Agile software development practices can coexist with traditional
approaches, and they seem to benefit from each other. Notander et al. points
out that a “common belief is that agile processes are in conflict with the
requirements of safety standards. . . Our conclusion is that this might be
the case [sometimes], but not [always]” [86]. Ghanbari came to similar
conclusions [45]. A study on communication in agile projects suggest
that plan-driven approaches are sometimes needed in agile contexts [97].
Similarly, a recent study by Heeager and Nielsen identified four areas
of concern when adopting agile practices in a safety critical context
(documentation, requirements, life cycle and testing) [51].

When it comes to testing of embedded systems, an important aspect is
to investigate non-functional qualities such as timing, and by testing on real
hardware one can achieve this [7, 41]. One could also alternate between testing
on hardware, virtual hardware and no hardware [21].

In a literature study from 2019, bin Ali et al. involved practitioners in the
research process in order to identify industry-relevant research on regression
testing [10]. Among other things, they recommend researchers to: evaluate
coverage of a technique at the feature level (other coverage metrics were not
seen as relevant for practitioners), report on relevant context factors in detail
as opposed to reporting generally on many factors and to study people-related
factors.

3.1.1 Regression Test Selection

When organizations move towards nightly testing, and run testing on the em-
bedded systems, they risk ending up with nights that are not long enough –
too many test cases and too little time. This is a strong motivator for intro-
ducing regression test selection (RTS). A well-cited paper by Yoo and Harman
proposes three strategies for coping with RTS: Minimization, Selection, and
Prioritization [138]. RTS can be based on many different properties: code
coverage [83], expected fault locations [91], topic coverage [52], or historic
data such as last execution, fault detection, and coverage data [30, 32, 52, 64].
Mathematical optimization approaches have been used [36, 53, 83] as well as
genetic algorithms [133]. Software fault prediction is a related field, where

44

2017, Shahin et al. identified that, as code integrations become more frequent,
the amount of data such as test results will increase exponentially [108]. There-
fore it is “critical to collect and represent the information in [a] timely manner
to help stakeholders to gain better and easier understanding and interpretation
of the results. . . ” There is also a need for speeding up continuous integra-
tion [112].

Agile software development practices can coexist with traditional
approaches, and they seem to benefit from each other. Notander et al. points
out that a “common belief is that agile processes are in conflict with the
requirements of safety standards. . . Our conclusion is that this might be
the case [sometimes], but not [always]” [86]. Ghanbari came to similar
conclusions [45]. A study on communication in agile projects suggest
that plan-driven approaches are sometimes needed in agile contexts [97].
Similarly, a recent study by Heeager and Nielsen identified four areas
of concern when adopting agile practices in a safety critical context
(documentation, requirements, life cycle and testing) [51].

When it comes to testing of embedded systems, an important aspect is
to investigate non-functional qualities such as timing, and by testing on real
hardware one can achieve this [7, 41]. One could also alternate between testing
on hardware, virtual hardware and no hardware [21].

In a literature study from 2019, bin Ali et al. involved practitioners in the
research process in order to identify industry-relevant research on regression
testing [10]. Among other things, they recommend researchers to: evaluate
coverage of a technique at the feature level (other coverage metrics were not
seen as relevant for practitioners), report on relevant context factors in detail
as opposed to reporting generally on many factors and to study people-related
factors.

3.1.1 Regression Test Selection

When organizations move towards nightly testing, and run testing on the em-
bedded systems, they risk ending up with nights that are not long enough –
too many test cases and too little time. This is a strong motivator for intro-
ducing regression test selection (RTS). A well-cited paper by Yoo and Harman
proposes three strategies for coping with RTS: Minimization, Selection, and
Prioritization [138]. RTS can be based on many different properties: code
coverage [83], expected fault locations [91], topic coverage [52], or historic
data such as last execution, fault detection, and coverage data [30, 32, 52, 64].
Mathematical optimization approaches have been used [36, 53, 83] as well as
genetic algorithms [133]. Software fault prediction is a related field, where

44

4846

one influential paper was written by Ostrand et al. for traditional software de-
velopment in large software systems [91]. Elbaum et al. mentions that tradi-
tional regression testing techniques that rely on source code instrumentation
and availability of a complete test set become too expensive in continuous in-
tegration development environments, partly because of the high frequency of
code changes [30].

In 2017, when preparing my licentiate thesis, I identified four recent sur-
veys on RTS, none of which was applicable to system-level RTS. The most
recent one, from 2016 by Hao et al., mentions that most techniques have
been evaluated with programs smaller than 6 kSLOC (SLOC = source lines
of code) [49]. This is still very far from many embedded systems where us-
ing the Linux kernel alone results in a code base in the order of 10 MSLOC.
Second, Catal and Mishra found that the dominating techniques for RTS are
coverage based [19] and these can therefore be difficult to apply to system-
level software testing due to the instrumentation required. The third survey,
by Yoo and Harman, discuss a design-based approach to run what seems to be
unit-level test cases: “Assuming that there is traceability between the design
and regression test cases, it is possible to perform regression test selection of
code-level test cases from the impact analysis of UML design models” [138].
Finally, Engström et al. published a paper in 2010 in which they investigated
28 techniques, where 14 were on statement level, the others were no higher
than module level [33].

Now, in 2021, the body of knowledge on system-level RTS has grown and
is still growing. Ricken and Dyck did a survey on multi-objective regression
test optimization in 2017 [101] and they argue that duration needed for test
cases should be taken into account. Lou et al. [75] did a literature study on
regression test prioritization. They found that most approaches are not much
better than simple ones, the approaches target domains where testing is so fast
that selection is not really relevant, and that no free and suitable tool exists
(e.g. a tool integrated with jUnit). In a 2020 doctoral thesis on test selec-
tion, Haghighatkhah [48] proposes a RTS approach that combines diversity
(using test case distances) and historic test data. Similarly, diversity has also
been proposed by Neto et al. [84]. In a systematic mapping study from 2020
on test case prioritization in continuous integration environments, Prado Lima
and Vergelio found that history-based approaches is a dominating approach in
recent publications on RTS, few of the publications they processed report on
challenges in testing in a continuous integration context and that future work
should also include aspects of intermittently failing tests (flaky tests) as well
as time constraints [99].

Paper B builds upon the existing body of knowledge in the field of RTS, as

45

one influential paper was written by Ostrand et al. for traditional software de-
velopment in large software systems [91]. Elbaum et al. mentions that tradi-
tional regression testing techniques that rely on source code instrumentation
and availability of a complete test set become too expensive in continuous in-
tegration development environments, partly because of the high frequency of
code changes [30].

In 2017, when preparing my licentiate thesis, I identified four recent sur-
veys on RTS, none of which was applicable to system-level RTS. The most
recent one, from 2016 by Hao et al., mentions that most techniques have
been evaluated with programs smaller than 6 kSLOC (SLOC = source lines
of code) [49]. This is still very far from many embedded systems where us-
ing the Linux kernel alone results in a code base in the order of 10 MSLOC.
Second, Catal and Mishra found that the dominating techniques for RTS are
coverage based [19] and these can therefore be difficult to apply to system-
level software testing due to the instrumentation required. The third survey,
by Yoo and Harman, discuss a design-based approach to run what seems to be
unit-level test cases: “Assuming that there is traceability between the design
and regression test cases, it is possible to perform regression test selection of
code-level test cases from the impact analysis of UML design models” [138].
Finally, Engström et al. published a paper in 2010 in which they investigated
28 techniques, where 14 were on statement level, the others were no higher
than module level [33].

Now, in 2021, the body of knowledge on system-level RTS has grown and
is still growing. Ricken and Dyck did a survey on multi-objective regression
test optimization in 2017 [101] and they argue that duration needed for test
cases should be taken into account. Lou et al. [75] did a literature study on
regression test prioritization. They found that most approaches are not much
better than simple ones, the approaches target domains where testing is so fast
that selection is not really relevant, and that no free and suitable tool exists
(e.g. a tool integrated with jUnit). In a 2020 doctoral thesis on test selec-
tion, Haghighatkhah [48] proposes a RTS approach that combines diversity
(using test case distances) and historic test data. Similarly, diversity has also
been proposed by Neto et al. [84]. In a systematic mapping study from 2020
on test case prioritization in continuous integration environments, Prado Lima
and Vergelio found that history-based approaches is a dominating approach in
recent publications on RTS, few of the publications they processed report on
challenges in testing in a continuous integration context and that future work
should also include aspects of intermittently failing tests (flaky tests) as well
as time constraints [99].

Paper B builds upon the existing body of knowledge in the field of RTS, as

45

4947

it was in 2016, and the paper shows feasibility of system-level RTS by using
a framework of prioritizers that each investigate some priority-giving aspect.
Had the SL-RTS been implemented from scratch today, then one could have
also considered the diversity of the selection (see, e.g., Haghighatkhah [48]),
and made the tool more scalable as to avoid making a test results database a
bottleneck when test complexity increases (see Figure 1.3). The SuiteBuilder
tool described in Paper B, has had its database questions simplified a few times
in the seven years that have passed since its implementation. A migration from
the old database schema and programming language has started, as described
in Paper E.

3.1.2 Test Environment Assignment

The body of knowledge with respect to assigning test environments to test
cases for execution seems to be in its infancy. While Paper C was in submis-
sion, Kaindl et al. published work on the same high level problem. In their
paper they “briefly sketch the technical essence of [their] project” explaining
that they plan to use a semantic specification, an ontology, and a taxonomy to
assign test environments to a test case [62]. However, it seems as if Paper C
is the only study with a working solution for this problem in the domain of
networked embedded systems.

Paper C investigates and discusses “the mapping problem” and how it is
related to the subgraph isomorphism problem. The subgraph isomorphism
problem is a well-studied topic in the field of graph theory, and much of the
basic terminology is covered in books such as Wilson’s introduction to graph
theory [136]. There are a number of approaches to solving the subgraph iso-
morphism problem: satisfiability, for example, is covered by both Knuth and
Ullman [69, 129]. Another approach is to do a combinatorial search, such
the one described by Bonicci et al. [12]. In the test cases and test systems at
Westermo, there are frequently cycles. If there is a cycle in a test case, then
this must be mapped onto a cycle in a test system. Algorithms for identifying
cycles are therefore of importance for improving the mapping, e.g. work by
Paton, or Yuster and Zwick [92, 139].

3.1.3 Intermittently Failing Tests

According to Fowler [37, 38], a code smell is a “surface indication” of a po-
tential problem in code. Smelly tests represent code smells in test code, such
as test cases with poor design or implementation choices. An example of a test
smell is “the local hero” test case that will pass in a local environment, but fail

46

it was in 2016, and the paper shows feasibility of system-level RTS by using
a framework of prioritizers that each investigate some priority-giving aspect.
Had the SL-RTS been implemented from scratch today, then one could have
also considered the diversity of the selection (see, e.g., Haghighatkhah [48]),
and made the tool more scalable as to avoid making a test results database a
bottleneck when test complexity increases (see Figure 1.3). The SuiteBuilder
tool described in Paper B, has had its database questions simplified a few times
in the seven years that have passed since its implementation. A migration from
the old database schema and programming language has started, as described
in Paper E.

3.1.2 Test Environment Assignment

The body of knowledge with respect to assigning test environments to test
cases for execution seems to be in its infancy. While Paper C was in submis-
sion, Kaindl et al. published work on the same high level problem. In their
paper they “briefly sketch the technical essence of [their] project” explaining
that they plan to use a semantic specification, an ontology, and a taxonomy to
assign test environments to a test case [62]. However, it seems as if Paper C
is the only study with a working solution for this problem in the domain of
networked embedded systems.

Paper C investigates and discusses “the mapping problem” and how it is
related to the subgraph isomorphism problem. The subgraph isomorphism
problem is a well-studied topic in the field of graph theory, and much of the
basic terminology is covered in books such as Wilson’s introduction to graph
theory [136]. There are a number of approaches to solving the subgraph iso-
morphism problem: satisfiability, for example, is covered by both Knuth and
Ullman [69, 129]. Another approach is to do a combinatorial search, such
the one described by Bonicci et al. [12]. In the test cases and test systems at
Westermo, there are frequently cycles. If there is a cycle in a test case, then
this must be mapped onto a cycle in a test system. Algorithms for identifying
cycles are therefore of importance for improving the mapping, e.g. work by
Paton, or Yuster and Zwick [92, 139].

3.1.3 Intermittently Failing Tests

According to Fowler [37, 38], a code smell is a “surface indication” of a po-
tential problem in code. Smelly tests represent code smells in test code, such
as test cases with poor design or implementation choices. An example of a test
smell is “the local hero” test case that will pass in a local environment, but fail

46

5048

when testing in the target environment because of undocumented dependen-
cies that were not satisfied [42]. A flaky test is a test that has been executed at
least twice and provided both passing and failing verdicts, without any changes
being made to the underlying software, hardware or testware between the two
executions [76]. In other words, a flaky test is a test case in which there is an
apparent non-determinism in the underlying software, hardware or testware.
Flaky tests have been widely studied, and many tests are flaky because they
are also smelly [130], and sometimes the removal of test smells leads to re-
moval of flakiness.

Because of the requirement of unchanged software, hardware and testware,
the construct of a flaky test is not very convenient in a resource constrained
continuous integration environment. Therefore, Paper D defines an intermit-
tently failing test as a test case that has been executed repeatedly while there
is a potential evolution in software, hardware and/or testware, and where the
verdict changes over time.2 The paper also defines a metric to quantify test
cases as more or less intermittently failing based on Markov chains [79, 100].
A similar metric was presented by Breuer in 1973 [15], but discovered inde-
pendently, and created for another domain – Paper D targets regression testing
of software-intense embedded system as opposed to describing faults in hard-
ware. Breuer seems to have been first to use Markov chains to describe faults
in a system, as opposed to modeling the system. Another way of quantify-
ing flakiness, based on entropy, has been presented by Gao [40]. This method
requires code instrumentation (code coverage) and was evaluated using Java
programs with 9 to 90 thousand lines of code. One perceived advantage of
Gao’s metric is that it can be used to “weed out flaky failures” whereas our
approach targeted a better understanding of the root causes of intermittently
failing tests.

Lou et al. [76] did an investigation on unit tests in open source projects.
They found that many tests were flaky because of asynchronous waiting, con-
currency, or test order. Important problems with flaky tests, on this level, are
that they can be hard to reproduce, may waste time, may hide other bugs and
they can reduce the confidence in testing such that practitioners ignore failing
tests [76]. Despite a large amount of research on flaky tests on unit level, only
four studies targeting intermittently failing tests on a system level were iden-
tified when Paper D was submitted: Ahmad et al. [2], Eck et al. [29], Lam
et al. [70], and Thorve et al. [128]. These five studies combined allowed for
identification of similarities and differences between factors leading to inter-
mittently failing tests on unit and system levels.

2A recent paper by Barboni et al. [8] explores different definitions and overlapping aspects
of the terminology of flaky or intermittently failing tests.

47

when testing in the target environment because of undocumented dependen-
cies that were not satisfied [42]. A flaky test is a test that has been executed at
least twice and provided both passing and failing verdicts, without any changes
being made to the underlying software, hardware or testware between the two
executions [76]. In other words, a flaky test is a test case in which there is an
apparent non-determinism in the underlying software, hardware or testware.
Flaky tests have been widely studied, and many tests are flaky because they
are also smelly [130], and sometimes the removal of test smells leads to re-
moval of flakiness.

Because of the requirement of unchanged software, hardware and testware,
the construct of a flaky test is not very convenient in a resource constrained
continuous integration environment. Therefore, Paper D defines an intermit-
tently failing test as a test case that has been executed repeatedly while there
is a potential evolution in software, hardware and/or testware, and where the
verdict changes over time.2 The paper also defines a metric to quantify test
cases as more or less intermittently failing based on Markov chains [79, 100].
A similar metric was presented by Breuer in 1973 [15], but discovered inde-
pendently, and created for another domain – Paper D targets regression testing
of software-intense embedded system as opposed to describing faults in hard-
ware. Breuer seems to have been first to use Markov chains to describe faults
in a system, as opposed to modeling the system. Another way of quantify-
ing flakiness, based on entropy, has been presented by Gao [40]. This method
requires code instrumentation (code coverage) and was evaluated using Java
programs with 9 to 90 thousand lines of code. One perceived advantage of
Gao’s metric is that it can be used to “weed out flaky failures” whereas our
approach targeted a better understanding of the root causes of intermittently
failing tests.

Lou et al. [76] did an investigation on unit tests in open source projects.
They found that many tests were flaky because of asynchronous waiting, con-
currency, or test order. Important problems with flaky tests, on this level, are
that they can be hard to reproduce, may waste time, may hide other bugs and
they can reduce the confidence in testing such that practitioners ignore failing
tests [76]. Despite a large amount of research on flaky tests on unit level, only
four studies targeting intermittently failing tests on a system level were iden-
tified when Paper D was submitted: Ahmad et al. [2], Eck et al. [29], Lam
et al. [70], and Thorve et al. [128]. These five studies combined allowed for
identification of similarities and differences between factors leading to inter-
mittently failing tests on unit and system levels.

2A recent paper by Barboni et al. [8] explores different definitions and overlapping aspects
of the terminology of flaky or intermittently failing tests.

47

5149

Source Transmitter Noise Receiver Destination

Message Signal
Signal

with Noise
Message

(received)

Figure 3.1: The Shannon-Weaver communication model.

3.2 Communication and Flow of Information

In a 60 year old publication [109] Shannon first described what would later be
known as the Shannon-Weaver model of communication, shown in Figure 3.1.
This model has later been built upon to represent countless variants. It contains
an information source converted into a message that a transmitter converts to
a signal, noise is added to the signal from a noise source. The signal and
message then reach the destination. Later research on this model add, among
other things, medium used, as well as the role of distances.

Information flow has an important overlap with the concept of communi-
cation, it can be defined by a distributed system of agents and the relationships
between them. Information flow is important when a synergy between humans
and software systems is required for a work flow [26].

A theory for distances in software engineering “explains how practices
improve the communication within a project by impacting distances between
people, activities and artifacts” [11]. As an example, the practice of Cross-Role
Collaboration has an impact on the temporal distance. Olson and Olson found
that new technology may make geographical distance smaller, making cultural
distances appear to be greater [88]. They also found that modern communica-
tion media frequently relies on technical solutions, such as a conference phone,
and when there are usability problems, the users adapted their behavior instead
of fixing the technology – by shouting in the conference phone.

The requirements specification is the most important document for testers
during system testing, but this document is often of poor quality [56], and is
one of the main sources of technical debt for safety development [45]. Alterna-
tively, documentation can be seen as a complement to communication that can
help combat knowledge evaporation [77]. Human factors and the quality of
the requirements specifications were also mentioned in a qualitative interview
study “as essential for development of safety critical systems” [86]. Further-
more, the Annex E of the first part of the ISO/IEC/IEEE 29119 standard ac-
knowledges that testers need to communicate, with various stakeholders, in a
timely manner, and that this communication may be more formal (e.g., written

48

Source Transmitter Noise Receiver Destination

Message Signal
Signal

with Noise
Message

(received)

Figure 3.1: The Shannon-Weaver communication model.

3.2 Communication and Flow of Information

In a 60 year old publication [109] Shannon first described what would later be
known as the Shannon-Weaver model of communication, shown in Figure 3.1.
This model has later been built upon to represent countless variants. It contains
an information source converted into a message that a transmitter converts to
a signal, noise is added to the signal from a noise source. The signal and
message then reach the destination. Later research on this model add, among
other things, medium used, as well as the role of distances.

Information flow has an important overlap with the concept of communi-
cation, it can be defined by a distributed system of agents and the relationships
between them. Information flow is important when a synergy between humans
and software systems is required for a work flow [26].

A theory for distances in software engineering “explains how practices
improve the communication within a project by impacting distances between
people, activities and artifacts” [11]. As an example, the practice of Cross-Role
Collaboration has an impact on the temporal distance. Olson and Olson found
that new technology may make geographical distance smaller, making cultural
distances appear to be greater [88]. They also found that modern communica-
tion media frequently relies on technical solutions, such as a conference phone,
and when there are usability problems, the users adapted their behavior instead
of fixing the technology – by shouting in the conference phone.

The requirements specification is the most important document for testers
during system testing, but this document is often of poor quality [56], and is
one of the main sources of technical debt for safety development [45]. Alterna-
tively, documentation can be seen as a complement to communication that can
help combat knowledge evaporation [77]. Human factors and the quality of
the requirements specifications were also mentioned in a qualitative interview
study “as essential for development of safety critical systems” [86]. Further-
more, the Annex E of the first part of the ISO/IEC/IEEE 29119 standard ac-
knowledges that testers need to communicate, with various stakeholders, in a
timely manner, and that this communication may be more formal (e.g., written

48

5250

reports) or oral (as in agile contexts) [58]. Similarly, the International Soft-
ware Qualifications Board, ISTQB, released their syllabus for certification of
test automation engineers [6] in 2016. It covers topics that frequently occurred
in our interviews in Paper A. They recommend that one should: measure bene-
fits of automation (costs are easily seen), visualize results, create and store logs
from both the system under test and the test framework, and generate reports
after test sessions.

Papers A and E extend the body of knowledge in the field of communi-
cation and information flow in software engineering with results on a holistic
approach to the flow of information in software testing, as well as a tool for
test results exploration and visualization.

3.3 Visualization

According to Diehl, there are three important aspects of software visualiza-
tion: structure, behavior and evolution [24]. An early visualization technique
to show structure is from 1958 and generated control-flow diagrams because
it “is not practical to expect [everyone] to be intimately familiar with [all
code]” [107]. Visualizations may not only show structure but also compare
structures. One survey on software visualization, present methods for visual-
izing static aspects with the focus of source code lines, class metrics, relation-
ships, and architectural metrics [18].

In a well-cited paper from 2002, Jones et al. use test results data with a
combination of source code, code coverage, unit tests and test results in a sort
of an extended Integrated Development Environment (IDE) view [61]. A dash-
board is a common approach for quality monitoring and control in the industry.
These aim at presenting one or more key performance indicators (KPIs) over
time [23, 39]. When visualizing test results, there is a need for summaries [85],
information may be spread out in several different systems [13], one might
need to consider transitions between different views of a test results visualiza-
tion tool [90], and one should consider that visualizations may target different
stakeholders for different purposes [115].

Rosling et al. argues that “The world cannot be understood without num-
bers. But the world cannot be understood with numbers alone.” The Roslings
developed software to visualize the improvements in world health because
students were found to perform worse than random in quizzes on the topic
[103, 104]. This could be seen as an indication of the importance of visu-
alizations for comprehending data. In his keynote at the practitioner-oriented
conference Beauty in Code 2018 [5], James Bach highlighted that stakeholders
do not know what to visualize: “What I had to do, is use my skill as a tester,

49

reports) or oral (as in agile contexts) [58]. Similarly, the International Soft-
ware Qualifications Board, ISTQB, released their syllabus for certification of
test automation engineers [6] in 2016. It covers topics that frequently occurred
in our interviews in Paper A. They recommend that one should: measure bene-
fits of automation (costs are easily seen), visualize results, create and store logs
from both the system under test and the test framework, and generate reports
after test sessions.

Papers A and E extend the body of knowledge in the field of communi-
cation and information flow in software engineering with results on a holistic
approach to the flow of information in software testing, as well as a tool for
test results exploration and visualization.

3.3 Visualization

According to Diehl, there are three important aspects of software visualiza-
tion: structure, behavior and evolution [24]. An early visualization technique
to show structure is from 1958 and generated control-flow diagrams because
it “is not practical to expect [everyone] to be intimately familiar with [all
code]” [107]. Visualizations may not only show structure but also compare
structures. One survey on software visualization, present methods for visual-
izing static aspects with the focus of source code lines, class metrics, relation-
ships, and architectural metrics [18].

In a well-cited paper from 2002, Jones et al. use test results data with a
combination of source code, code coverage, unit tests and test results in a sort
of an extended Integrated Development Environment (IDE) view [61]. A dash-
board is a common approach for quality monitoring and control in the industry.
These aim at presenting one or more key performance indicators (KPIs) over
time [23, 39]. When visualizing test results, there is a need for summaries [85],
information may be spread out in several different systems [13], one might
need to consider transitions between different views of a test results visualiza-
tion tool [90], and one should consider that visualizations may target different
stakeholders for different purposes [115].

Rosling et al. argues that “The world cannot be understood without num-
bers. But the world cannot be understood with numbers alone.” The Roslings
developed software to visualize the improvements in world health because
students were found to perform worse than random in quizzes on the topic
[103, 104]. This could be seen as an indication of the importance of visu-
alizations for comprehending data. In his keynote at the practitioner-oriented
conference Beauty in Code 2018 [5], James Bach highlighted that stakeholders
do not know what to visualize: “What I had to do, is use my skill as a tester,

49

5351

and my interest in visual design, and complexity, and displays, and statistics,
to try to come up with something, that they, when they saw it – it would be
like someone seeing an iPhone for the first time, they would say ‘I used to like
Nokias and now I like Apple phones’.” This could be seen as supporting find-
ings in Paper A, that visualizations are not prioritized and an individual skilled
in other domains ends up being the one preparing visualizations.

Adopting a data science approach at a company can be hard – data science
deals with collection, processing, preparation and analysis of data, it is a cross-
domain discipline that requires skills beyond software engineering and com-
puter science, e.g. mathematics and domain knowledge [28]. Paper E strives
to make test results data visualized and explorable. Similar goals were held in
the q-rapids project3 where data was collected, processed and then shown to
product owners with the aim of enhancing their cognition, situational aware-
ness, and decision-making capabilities [20]. Some of the challenges they have
seen in their work on q-rapids are: to be transparent about what a value or met-
ric means and its origins, integration with the tool and other tools, as well as
the need for the tool to be tailored to a company. Some of the lessons learned
were to use a common entry point for the data, and that implementation of the
tool requires experts (e.g. when setting up data collection streams and doing
analysis of data) [82]. As opposed to the q-rapids project, the tool described
in Paper E does not strive to distill test results data into key performance in-
dicators. Instead, it targets exploration and visualization and, in some sense,
interaction with the data. Ahmad et al. [1] investigated information needs for
testing and identified eight needs that closely match the work in Paper E, such
as being aware of if, and if so where (on which test system and code branch),
a test case fails.

With respect to the body of knowledge in the field of visualization of soft-
ware test results, Paper E confirms some of the previous work (such as the im-
portance of visualizations, and the need to consider transitions between views).
It also provides a long term case study of the implementation and usage of test
results visualization and decision making, and shows the importance of the
TRDB.

3Q-Rapids: Quality-aware rapid software development: www.q-rapids.eu.

50

and my interest in visual design, and complexity, and displays, and statistics,
to try to come up with something, that they, when they saw it – it would be
like someone seeing an iPhone for the first time, they would say ‘I used to like
Nokias and now I like Apple phones’.” This could be seen as supporting find-
ings in Paper A, that visualizations are not prioritized and an individual skilled
in other domains ends up being the one preparing visualizations.

Adopting a data science approach at a company can be hard – data science
deals with collection, processing, preparation and analysis of data, it is a cross-
domain discipline that requires skills beyond software engineering and com-
puter science, e.g. mathematics and domain knowledge [28]. Paper E strives
to make test results data visualized and explorable. Similar goals were held in
the q-rapids project3 where data was collected, processed and then shown to
product owners with the aim of enhancing their cognition, situational aware-
ness, and decision-making capabilities [20]. Some of the challenges they have
seen in their work on q-rapids are: to be transparent about what a value or met-
ric means and its origins, integration with the tool and other tools, as well as
the need for the tool to be tailored to a company. Some of the lessons learned
were to use a common entry point for the data, and that implementation of the
tool requires experts (e.g. when setting up data collection streams and doing
analysis of data) [82]. As opposed to the q-rapids project, the tool described
in Paper E does not strive to distill test results data into key performance in-
dicators. Instead, it targets exploration and visualization and, in some sense,
interaction with the data. Ahmad et al. [1] investigated information needs for
testing and identified eight needs that closely match the work in Paper E, such
as being aware of if, and if so where (on which test system and code branch),
a test case fails.

With respect to the body of knowledge in the field of visualization of soft-
ware test results, Paper E confirms some of the previous work (such as the im-
portance of visualizations, and the need to consider transitions between views).
It also provides a long term case study of the implementation and usage of test
results visualization and decision making, and shows the importance of the
TRDB.

3Q-Rapids: Quality-aware rapid software development: www.q-rapids.eu.

50

5452

Chapter 4

Contributions

The research goal of this thesis is to improve automated system-level software
testing of industrial networked embedded systems. To reach the goal, the thesis
poses five RQs that have been targeted with five studies. Each paper primarily
targets one RQ (RQ1: Paper A, RQ2: Paper B, etc.). This chapter revisits the
RQs and summarizes their main contributions (C).

4.1 RQ1: Information Flow

How could one describe the flow of information in software testing in an orga-
nization developing embedded systems, and what key aspects, challenges, and
good approaches are relevant to this flow?

Paper A seems to be the first study to take a high level approach to the
flow of information in software testing. For the study, twelve interviews with
industry practitioners were held. The interviewees were from five different
companies and had an average of more than 14 years of experience. 17 hours
of audio was recorded, anonymized and transcribed into 130 pages of text, that
was analyzed with thematic analysis. The main contributions of Paper A are:

C-A1: An overall model of the flow of information in software testing.

C-A2: Six key factors that affect the flow of information in software testing
(how organizations conduct testing and trouble shooting, communica-
tion, processes, technology, artifacts, as well as how it is organized).

C-A3: Seven main challenges for the information flow (comprehending the
objectives and details of testing, root cause identification, poor feed-
back, postponed testing, poor artifacts and traceability, poor tools and
test infrastructure, and distances).

51

Chapter 4

Contributions

The research goal of this thesis is to improve automated system-level software
testing of industrial networked embedded systems. To reach the goal, the thesis
poses five RQs that have been targeted with five studies. Each paper primarily
targets one RQ (RQ1: Paper A, RQ2: Paper B, etc.). This chapter revisits the
RQs and summarizes their main contributions (C).

4.1 RQ1: Information Flow

How could one describe the flow of information in software testing in an orga-
nization developing embedded systems, and what key aspects, challenges, and
good approaches are relevant to this flow?

Paper A seems to be the first study to take a high level approach to the
flow of information in software testing. For the study, twelve interviews with
industry practitioners were held. The interviewees were from five different
companies and had an average of more than 14 years of experience. 17 hours
of audio was recorded, anonymized and transcribed into 130 pages of text, that
was analyzed with thematic analysis. The main contributions of Paper A are:

C-A1: An overall model of the flow of information in software testing.

C-A2: Six key factors that affect the flow of information in software testing
(how organizations conduct testing and trouble shooting, communica-
tion, processes, technology, artifacts, as well as how it is organized).

C-A3: Seven main challenges for the information flow (comprehending the
objectives and details of testing, root cause identification, poor feed-
back, postponed testing, poor artifacts and traceability, poor tools and
test infrastructure, and distances).

51

5553

C-A4: Five good approaches for enhancing the flow (close collaboration be-
tween roles, fast feedback, custom test report automation, test results
visualization, and the use of suitable tools and frameworks).

4.2 RQ2: Test Selection

What challenges might an organization have with respect to system-level re-
gression test selection in the context of networked embedded systems, and how
could one address these challenges?

Paper B seems to be one of the first papers on system-level regression test
selection. The study covers three industrial challenges with nightly regression
testing: nightly testing not finishing on time, manual work and omitted tests,
as well as no priority for the test cases. These problems were solved by imple-
menting SuiteBuilder. The algorithm was evaluated quantitatively using data
from four years of nightly testing, as well as qualitatively with interview data.
The main contributions of Paper B are:

C-B1: The SuiteBuilder tool, a framework of prioritizers assigning priorities
based on multiple factors.

C-B2: Empirical evidence that the tool improves the testing process: test
suites finish on time, and that two thirds of the failing tests are now
positioned in the first third of the test suites.

4.3 RQ3: Hardware Selection

What challenges might an organization have with respect to test environment
assignment in the context of networked embedded systems, and how could one
address these challenges?

When performing testing of embedded systems, it is critical to also in-
volve real hardware, and Paper C shows what appears to be the first evaluated
approach to solve the mapping problem. The process of mapping involves a
way to map a test case onto a test system using graph theory, in particular the
graph models of the test systems and test cases. This way the subgraph iso-
morphism problem is adapted to the context of networked embedded devices.
The prototype implementation was evaluated quantitatively with the available
test systems and test cases for more than 10.000 different pairs of graphs. The
main contributions of Paper C are:

C-C1: A new mapper, that was found to be more than 80 times faster than the
old tool.

52

C-A4: Five good approaches for enhancing the flow (close collaboration be-
tween roles, fast feedback, custom test report automation, test results
visualization, and the use of suitable tools and frameworks).

4.2 RQ2: Test Selection

What challenges might an organization have with respect to system-level re-
gression test selection in the context of networked embedded systems, and how
could one address these challenges?

Paper B seems to be one of the first papers on system-level regression test
selection. The study covers three industrial challenges with nightly regression
testing: nightly testing not finishing on time, manual work and omitted tests,
as well as no priority for the test cases. These problems were solved by imple-
menting SuiteBuilder. The algorithm was evaluated quantitatively using data
from four years of nightly testing, as well as qualitatively with interview data.
The main contributions of Paper B are:

C-B1: The SuiteBuilder tool, a framework of prioritizers assigning priorities
based on multiple factors.

C-B2: Empirical evidence that the tool improves the testing process: test
suites finish on time, and that two thirds of the failing tests are now
positioned in the first third of the test suites.

4.3 RQ3: Hardware Selection

What challenges might an organization have with respect to test environment
assignment in the context of networked embedded systems, and how could one
address these challenges?

When performing testing of embedded systems, it is critical to also in-
volve real hardware, and Paper C shows what appears to be the first evaluated
approach to solve the mapping problem. The process of mapping involves a
way to map a test case onto a test system using graph theory, in particular the
graph models of the test systems and test cases. This way the subgraph iso-
morphism problem is adapted to the context of networked embedded devices.
The prototype implementation was evaluated quantitatively with the available
test systems and test cases for more than 10.000 different pairs of graphs. The
main contributions of Paper C are:

C-C1: A new mapper, that was found to be more than 80 times faster than the
old tool.

52

5654

C-C2: An extension of the mapper, where the TRDB with previous mappings
is used to map in different ways over time such that the DUT coverage
grew from a median of 33%, to a median of 100% in just five iterations.

4.4 RQ4: Intermittently Failing Tests

What are the root causes of intermittently failing tests during system-level test-
ing in a context under evolution, and could one automate the detection of these
test cases?

Paper D defines a novel metric for intermittently failing tests. By analyzing
more than half a million test verdicts from nine months of nightly testing,
both intermittently and consistently failing tests were identified. The main
contributions of Paper D are:

C-D1: A novel metric that can identify intermittently failing tests, and mea-
sure the level of intermittence over the test base.

C-D2: Nine factors that may lead to intermittently failing tests for system-
level testing of an embedded system (test case assumptions, complexity
of testing, software and/or hardware faults, test case dependencies, re-
source leaks, network issues, random numbers issues, test system issues,
and refactoring).

C-D3: Evidence that finding the root cause of intermittently failing tests often
involves more effort, when compared to root cause analysis of consis-
tently failing tests.

C-D4: Evidence that a fix for a consistently failing test often repairs a larger
number of failures found by other test cases than a fix of an intermittently
failing test.

4.5 RQ5: Test Results Exploration and Visualization

How could one implement and evaluate a system to enhance visualization and
exploration of test results to support the information flow in an organization?

Paper E focuses on a new tool, Tim, that was implemented to replace an
old system for test results exploration and visualization (TREV). Work was
prioritized and evaluated with a reference group of 12 individuals. From ref-
erence group meetings, 7 hours of video was recorded and transcribed into 36
pages of text, and logs from 201 days of using Tim was also collected. The
main contributions of Paper E are:

53

C-C2: An extension of the mapper, where the TRDB with previous mappings
is used to map in different ways over time such that the DUT coverage
grew from a median of 33%, to a median of 100% in just five iterations.

4.4 RQ4: Intermittently Failing Tests

What are the root causes of intermittently failing tests during system-level test-
ing in a context under evolution, and could one automate the detection of these
test cases?

Paper D defines a novel metric for intermittently failing tests. By analyzing
more than half a million test verdicts from nine months of nightly testing,
both intermittently and consistently failing tests were identified. The main
contributions of Paper D are:

C-D1: A novel metric that can identify intermittently failing tests, and mea-
sure the level of intermittence over the test base.

C-D2: Nine factors that may lead to intermittently failing tests for system-
level testing of an embedded system (test case assumptions, complexity
of testing, software and/or hardware faults, test case dependencies, re-
source leaks, network issues, random numbers issues, test system issues,
and refactoring).

C-D3: Evidence that finding the root cause of intermittently failing tests often
involves more effort, when compared to root cause analysis of consis-
tently failing tests.

C-D4: Evidence that a fix for a consistently failing test often repairs a larger
number of failures found by other test cases than a fix of an intermittently
failing test.

4.5 RQ5: Test Results Exploration and Visualization

How could one implement and evaluate a system to enhance visualization and
exploration of test results to support the information flow in an organization?

Paper E focuses on a new tool, Tim, that was implemented to replace an
old system for test results exploration and visualization (TREV). Work was
prioritized and evaluated with a reference group of 12 individuals. From ref-
erence group meetings, 7 hours of video was recorded and transcribed into 36
pages of text, and logs from 201 days of using Tim was also collected. The
main contributions of Paper E are:

53

5755

C-E1: Four solution patterns for TREV (filtering, aggregation, previews and
comparisons).

C-E2: Implementation and empirical evaluation of eight views for TREV
(start, outcomes, outcome, session, heatmap, measurements, compare
branch and analyze branch views).

C-E3: Six challenges for TREV (expectations, anomalies, navigation, inte-
grations, hardware details and plots).

54

C-E1: Four solution patterns for TREV (filtering, aggregation, previews and
comparisons).

C-E2: Implementation and empirical evaluation of eight views for TREV
(start, outcomes, outcome, session, heatmap, measurements, compare
branch and analyze branch views).

C-E3: Six challenges for TREV (expectations, anomalies, navigation, inte-
grations, hardware details and plots).

54

5856

Chapter 5

Future Work

This thesis covers system-level test automation of embedded systems, and in
particular test results information flow, regression test selection, hardware se-
lection, intermittently failing tests as well as test results exploration and visu-
alization. This chapter discusses some of the potential for future research.

The topics of test results information flow and test results exploration and
visualization are partly overlapping. Future work could investigate, on a higher
level, how an organization would benefit from automated test reporting, as well
as if or how humans and such a system could co-create meaningful test reports
– would this be a way to bridge some of the challenges of combining agile and
traditional development?

Despite already being very well-researched, there is room for more work
on the regression test selection problem – in particular with respect to diversity,
what the characteristics of a good selection is, and how different selection
strategies impact these characteristics. Perhaps industry and academia could
co-create an open source tool that could be adjusted to fit different needs (such
as when one organization requires a certain code coverage, whereas another
focuses on diversity)? Also, if the test selection strategy was reactive (perhaps
search-based) and given the mandate to re-prioritize on the fly during a test
session, would that improve test coverage, or other desirables of the testing?

As mentioned above, research on automated hardware selection for test-
ing embedded systems seems to be in its infancy. However, perhaps a more
generalized problem of hardware selection could be well served from findings
in combinatorial testing of product lines or search-based software engineer-
ing [25, 47, 50, 74]? With respect to the results in this thesis, questions that
remain unanswered range from fundamental (is test coverage of two different
hardware platforms exactly twice as valuable as coverage of one?), via detailed
(how different would a tool using satisfiability to solve the mapping problem

55

Chapter 5

Future Work

This thesis covers system-level test automation of embedded systems, and in
particular test results information flow, regression test selection, hardware se-
lection, intermittently failing tests as well as test results exploration and visu-
alization. This chapter discusses some of the potential for future research.

The topics of test results information flow and test results exploration and
visualization are partly overlapping. Future work could investigate, on a higher
level, how an organization would benefit from automated test reporting, as well
as if or how humans and such a system could co-create meaningful test reports
– would this be a way to bridge some of the challenges of combining agile and
traditional development?

Despite already being very well-researched, there is room for more work
on the regression test selection problem – in particular with respect to diversity,
what the characteristics of a good selection is, and how different selection
strategies impact these characteristics. Perhaps industry and academia could
co-create an open source tool that could be adjusted to fit different needs (such
as when one organization requires a certain code coverage, whereas another
focuses on diversity)? Also, if the test selection strategy was reactive (perhaps
search-based) and given the mandate to re-prioritize on the fly during a test
session, would that improve test coverage, or other desirables of the testing?

As mentioned above, research on automated hardware selection for test-
ing embedded systems seems to be in its infancy. However, perhaps a more
generalized problem of hardware selection could be well served from findings
in combinatorial testing of product lines or search-based software engineer-
ing [25, 47, 50, 74]? With respect to the results in this thesis, questions that
remain unanswered range from fundamental (is test coverage of two different
hardware platforms exactly twice as valuable as coverage of one?), via detailed
(how different would a tool using satisfiability to solve the mapping problem

55

5957

be when compared to one that uses the subgraph isomorphism problem, and
are they equally explicable to practitioners?), to extremely detailed (how much
does the performance of the mapping tool increase if cycles in the test sys-
tems and test cases are considered?). The benefits and drawbacks of testing
on actual devices with hardware, on virtualized systems, or using emulated
hardware would also be interesting to explore. When is it good enough to test
without real hardware, and when must it be used?

Similar to the regression test selection problem, the topic of intermittently
failing tests is receiving a great amount of research attention. Most of this
research is done for unit-level testing, perhaps because most test automation
is done at this level and public data sets are available. Some of this research
seems to imply that the root cause of the intermittence is in the test cases them-
selves, which Paper D identified as only one type of root cause. A question that
seems to remain unanswered is: which of the root causes to intermittence are
generalizable across testing levels and domains?

Rule-based systems, such as the SuiteBuilder tool, is a type of artificial
intelligence (AI). More advanced AI learns from data to become increasingly
better at solving tasks, sometimes at the price of transparency or explicability
[71, 122]. It is very clear that society in general, and software test automation
in particular, could gain tremendously by adopting more AI. As this thesis
is being written, Westermo has joined an industry-academia research project
involving AI (described in [34]). What the exact outcomes will be remains to
be seen, but in general, it seems as if almost all aspects of this thesis could
benefit from further automation, with or without AI.

56

be when compared to one that uses the subgraph isomorphism problem, and
are they equally explicable to practitioners?), to extremely detailed (how much
does the performance of the mapping tool increase if cycles in the test sys-
tems and test cases are considered?). The benefits and drawbacks of testing
on actual devices with hardware, on virtualized systems, or using emulated
hardware would also be interesting to explore. When is it good enough to test
without real hardware, and when must it be used?

Similar to the regression test selection problem, the topic of intermittently
failing tests is receiving a great amount of research attention. Most of this
research is done for unit-level testing, perhaps because most test automation
is done at this level and public data sets are available. Some of this research
seems to imply that the root cause of the intermittence is in the test cases them-
selves, which Paper D identified as only one type of root cause. A question that
seems to remain unanswered is: which of the root causes to intermittence are
generalizable across testing levels and domains?

Rule-based systems, such as the SuiteBuilder tool, is a type of artificial
intelligence (AI). More advanced AI learns from data to become increasingly
better at solving tasks, sometimes at the price of transparency or explicability
[71, 122]. It is very clear that society in general, and software test automation
in particular, could gain tremendously by adopting more AI. As this thesis
is being written, Westermo has joined an industry-academia research project
involving AI (described in [34]). What the exact outcomes will be remains to
be seen, but in general, it seems as if almost all aspects of this thesis could
benefit from further automation, with or without AI.

56

6058

Chapter 6

Conclusions

As mentioned in the abstract of this thesis, embedded systems appear almost
everywhere and play a crucial role for industrial and transport applications –
software testing is crucial for the quality assurance of these systems. This the-
sis addresses five challenges for automated system-level software testing of
industrial networked embedded systems. These challenges have been tackled
in five studies, each self-contained with its own conclusion section. To con-
clude the thesis, this chapter takes a step back, and looks at the big picture. A
central result of this thesis is that software testing can be seen as a set of feed-
back loops, that can be visualized in the flow diagram in Figure 1, which was
one of the main findings of Paper A. This study focused on the overall flow of
information in software testing. The remaining studies fit well into this picture.
Both test selection (Paper B) and test environment assignment (Paper C) can
be seen as processes having an impact on what to test, and with what to test,
in the test environment. The role of the test results database has, in one way,
an importance after the testing (e.g. to aid in reporting), but because it may
impact coming test selection and the coming test environment assignment, it
also has an importance before the testing activity. The impact of intermittently
failing tests (Paper D) can be seen as having an influence on test results, how
it reaches developers and the distrust of testing it might lead to for developers.
The findings on intermittently failing tests also point to a need to improve soft-
ware, hardware and testware in order to avoid intermittent faults in these. The
work on visualizing test results and making them explorable (Paper E) is one
approach of improving the feedback loop in Figure 1.

The research goal of this thesis is: to improve automated system-level soft-
ware testing of industrial networked embedded systems. In short, this has been
achieved with an improved understanding of the flow of information in soft-
ware testing, selection of test cases and hardware for testing, with an investi-

57

Chapter 6

Conclusions

As mentioned in the abstract of this thesis, embedded systems appear almost
everywhere and play a crucial role for industrial and transport applications –
software testing is crucial for the quality assurance of these systems. This the-
sis addresses five challenges for automated system-level software testing of
industrial networked embedded systems. These challenges have been tackled
in five studies, each self-contained with its own conclusion section. To con-
clude the thesis, this chapter takes a step back, and looks at the big picture. A
central result of this thesis is that software testing can be seen as a set of feed-
back loops, that can be visualized in the flow diagram in Figure 1, which was
one of the main findings of Paper A. This study focused on the overall flow of
information in software testing. The remaining studies fit well into this picture.
Both test selection (Paper B) and test environment assignment (Paper C) can
be seen as processes having an impact on what to test, and with what to test,
in the test environment. The role of the test results database has, in one way,
an importance after the testing (e.g. to aid in reporting), but because it may
impact coming test selection and the coming test environment assignment, it
also has an importance before the testing activity. The impact of intermittently
failing tests (Paper D) can be seen as having an influence on test results, how
it reaches developers and the distrust of testing it might lead to for developers.
The findings on intermittently failing tests also point to a need to improve soft-
ware, hardware and testware in order to avoid intermittent faults in these. The
work on visualizing test results and making them explorable (Paper E) is one
approach of improving the feedback loop in Figure 1.

The research goal of this thesis is: to improve automated system-level soft-
ware testing of industrial networked embedded systems. In short, this has been
achieved with an improved understanding of the flow of information in soft-
ware testing, selection of test cases and hardware for testing, with an investi-

57

6159

gation of intermittently failing tests, as well as improved visualizations of test
results.

Bibliography

[1] A. Ahmad, O. Leifler, and K. Sandahl. Data visualisation in continuous
integration and delivery: Information needs, challenges, and recommen-
dations. Wiley IET Software, 2021.

[2] A. Ahmad, O. Leifler, and K. Sandahl. Empirical analysis of practi-
tioners’ perceptions of test flakiness factors. Wiley Journal of Software
Testing, Verification and Reliability, page e1791, 2021.

[3] A. Arora, S. Belenzon, A. Patacconi, and J. Suh. The Changing Struc-
ture of American Innovation: Some Cautionary Remarks for Economic
Growth. University of Chicago Press: Innovation Policy and the Econ-
omy, 20(1):39–93, 2020.

[4] L. Assbring and C. Nuur. What’s in it for industry? A case study on
collaborative doctoral education in sweden. Sage Publications: Industry
and Higher Education, 31(3):184–194, 2017.

[5] J. Bach. Beauty or Bugs: Using the Blink Oracle in Testing. Keynote at
the Beauty in Code Conference, Malmö, Sweden, 2018.

[6] B. Bakker, G. Bath, A. Born, M. Fewster, J. Haukinen, J. McKay,
A. Pollner, R. Popescu, and I. Schieferdecker. Certified Tester Advanced
Level Syllabus Test Automation Engineer. Technical report, Interna-
tional Software Testing Qualifications Board (ISTQB), 2016.

[7] A. Banerjee, S. Chattopadhyay, and A. Roychoudhury. On Testing Em-
bedded Software. Elsevier Advances in Computers, 101:121–153, 2016.

[8] M. Barboni, A. Bertolino, and G. De Angelis. What We Talk About
When We Talk About Software Test Flakiness. In International Con-
ference on the Quality of Information and Communications Technology,
pages 29–39. Springer, 2021.

[9] V. R. Basili and D. M. Weiss. A Methodology for Collecting Valid Soft-
ware Engineering Data. IEEE Transactions on Software Engineering,
(6):728–738, 1984.

58

gation of intermittently failing tests, as well as improved visualizations of test
results.

Bibliography

[1] A. Ahmad, O. Leifler, and K. Sandahl. Data visualisation in continuous
integration and delivery: Information needs, challenges, and recommen-
dations. Wiley IET Software, 2021.

[2] A. Ahmad, O. Leifler, and K. Sandahl. Empirical analysis of practi-
tioners’ perceptions of test flakiness factors. Wiley Journal of Software
Testing, Verification and Reliability, page e1791, 2021.

[3] A. Arora, S. Belenzon, A. Patacconi, and J. Suh. The Changing Struc-
ture of American Innovation: Some Cautionary Remarks for Economic
Growth. University of Chicago Press: Innovation Policy and the Econ-
omy, 20(1):39–93, 2020.

[4] L. Assbring and C. Nuur. What’s in it for industry? A case study on
collaborative doctoral education in sweden. Sage Publications: Industry
and Higher Education, 31(3):184–194, 2017.

[5] J. Bach. Beauty or Bugs: Using the Blink Oracle in Testing. Keynote at
the Beauty in Code Conference, Malmö, Sweden, 2018.

[6] B. Bakker, G. Bath, A. Born, M. Fewster, J. Haukinen, J. McKay,
A. Pollner, R. Popescu, and I. Schieferdecker. Certified Tester Advanced
Level Syllabus Test Automation Engineer. Technical report, Interna-
tional Software Testing Qualifications Board (ISTQB), 2016.

[7] A. Banerjee, S. Chattopadhyay, and A. Roychoudhury. On Testing Em-
bedded Software. Elsevier Advances in Computers, 101:121–153, 2016.

[8] M. Barboni, A. Bertolino, and G. De Angelis. What We Talk About
When We Talk About Software Test Flakiness. In International Con-
ference on the Quality of Information and Communications Technology,
pages 29–39. Springer, 2021.

[9] V. R. Basili and D. M. Weiss. A Methodology for Collecting Valid Soft-
ware Engineering Data. IEEE Transactions on Software Engineering,
(6):728–738, 1984.

58

6260

[10] N. bin Ali, E. Engström, M. Taromirad, M. R. Mousavi, N. M. Minhas,
D. Helgesson, S. Kunze, and M. Varshosaz. On the search for industry-
relevant regression testing research. Springer Empirical Software Engi-
neering, 24(4):2020–2055, 2019.

[11] E. Bjarnason and H. Sharp. The role of distances in requirements com-
munication: a case study. Springer Requirements Engineering, pages
1–26, 2015.

[12] V. Bonnici, R. Giugno, A. Pulvirenti, D. Shasha, and A. Ferro. A sub-
graph isomorphism algorithm and its application to biochemical data.
BioMed Central: BMC bioinformatics, 14(7):S13, 2013.

[13] M. Brandtner, E. Giger, and H. Gall. Supporting Continuous Integra-
tion by Mashing-Up Software Quality Information. In Software Evo-
lution Week, Conference on Software Maintenance, Reengineering, and
Reverse Engineering. IEEE, 2014.

[14] V. Braun and V. Clarke. Using thematic analysis in psychology. Taylor
& Francis: Qualitative research in psychology, 3(2):77–101, 2006.

[15] M. A. Breuer. Testing for Intermittent Faults in Digital Circuits. IEEE
Transactions on Computers, 100(3):241–246, 1973.

[16] L. Briand, D. Bianculli, S. Nejati, F. Pastore, and M. Sabetzadeh. The
Case for Context-Driven Software Engineering Research: Generaliz-
ability Is Overrated. IEEE Software, 34(5):72–75, 2017.

[17] J. C. Carver, O. Dieste, N. A. Kraft, D. Lo, and T. Zimmermann. How
Practitioners Perceive the Relevance of ESEM Research. In Interna-
tional Symposium on Empirical Software Engineering and Measure-
ment. ACM-IEEE, 2016.

[18] P. Caserta and O. Zendra. Visualization of the Static Aspects of Soft-
ware: A Survey. IEEE Transactions on Visualization and Computer
Graphics, 17(7):913–933, 2011.

[19] C. Catal and D. Mishra. Test case prioritization: a systematic mapping
study. Springer Software Quality Journal, 21(3):445–478, 2013.

[20] M. Choraś, R. Kozik, D. Puchalski, and R. Renk. Increasing product
owners’ cognition and decision-making capabilities by data analysis ap-
proach. Springer Cognition, Technology & Work, 21(2):191–200, 2019.

59

[10] N. bin Ali, E. Engström, M. Taromirad, M. R. Mousavi, N. M. Minhas,
D. Helgesson, S. Kunze, and M. Varshosaz. On the search for industry-
relevant regression testing research. Springer Empirical Software Engi-
neering, 24(4):2020–2055, 2019.

[11] E. Bjarnason and H. Sharp. The role of distances in requirements com-
munication: a case study. Springer Requirements Engineering, pages
1–26, 2015.

[12] V. Bonnici, R. Giugno, A. Pulvirenti, D. Shasha, and A. Ferro. A sub-
graph isomorphism algorithm and its application to biochemical data.
BioMed Central: BMC bioinformatics, 14(7):S13, 2013.

[13] M. Brandtner, E. Giger, and H. Gall. Supporting Continuous Integra-
tion by Mashing-Up Software Quality Information. In Software Evo-
lution Week, Conference on Software Maintenance, Reengineering, and
Reverse Engineering. IEEE, 2014.

[14] V. Braun and V. Clarke. Using thematic analysis in psychology. Taylor
& Francis: Qualitative research in psychology, 3(2):77–101, 2006.

[15] M. A. Breuer. Testing for Intermittent Faults in Digital Circuits. IEEE
Transactions on Computers, 100(3):241–246, 1973.

[16] L. Briand, D. Bianculli, S. Nejati, F. Pastore, and M. Sabetzadeh. The
Case for Context-Driven Software Engineering Research: Generaliz-
ability Is Overrated. IEEE Software, 34(5):72–75, 2017.

[17] J. C. Carver, O. Dieste, N. A. Kraft, D. Lo, and T. Zimmermann. How
Practitioners Perceive the Relevance of ESEM Research. In Interna-
tional Symposium on Empirical Software Engineering and Measure-
ment. ACM-IEEE, 2016.

[18] P. Caserta and O. Zendra. Visualization of the Static Aspects of Soft-
ware: A Survey. IEEE Transactions on Visualization and Computer
Graphics, 17(7):913–933, 2011.

[19] C. Catal and D. Mishra. Test case prioritization: a systematic mapping
study. Springer Software Quality Journal, 21(3):445–478, 2013.

[20] M. Choraś, R. Kozik, D. Puchalski, and R. Renk. Increasing product
owners’ cognition and decision-making capabilities by data analysis ap-
proach. Springer Cognition, Technology & Work, 21(2):191–200, 2019.

59

6361

[21] P. Cordemans, S. Van Landschoot, J. Boydens, and E. Steegmans. Test-
Driven Development as a Reliable Embedded Software Engineering
Practice. In Embedded and Real Time System Development: A Software
Engineering Perspective, pages 91–130. Springer, 2014.

[22] D. S. Cruzes and T. Dybå. Recommended Steps for Thematic Synthe-
sis in Software Engineering. In International Symposium on Empirical
Software Engineering and Measurement, pages 275–284. IEEE, 2011.

[23] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner, B. M. y Parareda,
and M. Pizka. Tool Support for Continuous Quality Control. IEEE
Software, 25(5):60–67, 2008.

[24] S. Diehl. Past, Present, and Future of and in Software Visualization. In
International Conference on Computer Vision, Imaging and Computer
Graphics. Springer, 2014.

[25] I. do Carmo Machado, J. D. McGregor, Y. C. Cavalcanti, and E. S.
De Almeida. On strategies for testing software product lines: A system-
atic literature review. Elsevier Information and Software Technology,
56(10):1183–1199, 2014.

[26] C. Durugbo, A. Tiwari, and J. R. Alcock. Modelling information flow
for organisations: A review of approaches and future challenges. Else-
vier International Journal of Information Management, 33(3):597–610,
2013.

[27] T. Dybå, D. I. Sjøberg, and D. S. Cruzes. What Works for Whom,
Where, When, and Why? On the Role of Context in Empirical Soft-
ware Engineering. In International Symposium on Empirical Software
Engineering and Measurement. ACM-IEEE, 2012.

[28] C. Ebert, J. Heidrich, S. Martínez-Fernández, and A. Trendowicz. Data
Science: Technologies for Better Software. IEEE Software, 36(6):66–
72, 2019.

[29] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli. Understanding
Flaky Tests: The Developer’s Perspective. In Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering. ACM, 2019.

[30] S. Elbaum, G. Rothermel, and J. Penix. Techniques for Improving Re-
gression Testing in Continuous Integration Development Environments.

60

[21] P. Cordemans, S. Van Landschoot, J. Boydens, and E. Steegmans. Test-
Driven Development as a Reliable Embedded Software Engineering
Practice. In Embedded and Real Time System Development: A Software
Engineering Perspective, pages 91–130. Springer, 2014.

[22] D. S. Cruzes and T. Dybå. Recommended Steps for Thematic Synthe-
sis in Software Engineering. In International Symposium on Empirical
Software Engineering and Measurement, pages 275–284. IEEE, 2011.

[23] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner, B. M. y Parareda,
and M. Pizka. Tool Support for Continuous Quality Control. IEEE
Software, 25(5):60–67, 2008.

[24] S. Diehl. Past, Present, and Future of and in Software Visualization. In
International Conference on Computer Vision, Imaging and Computer
Graphics. Springer, 2014.

[25] I. do Carmo Machado, J. D. McGregor, Y. C. Cavalcanti, and E. S.
De Almeida. On strategies for testing software product lines: A system-
atic literature review. Elsevier Information and Software Technology,
56(10):1183–1199, 2014.

[26] C. Durugbo, A. Tiwari, and J. R. Alcock. Modelling information flow
for organisations: A review of approaches and future challenges. Else-
vier International Journal of Information Management, 33(3):597–610,
2013.

[27] T. Dybå, D. I. Sjøberg, and D. S. Cruzes. What Works for Whom,
Where, When, and Why? On the Role of Context in Empirical Soft-
ware Engineering. In International Symposium on Empirical Software
Engineering and Measurement. ACM-IEEE, 2012.

[28] C. Ebert, J. Heidrich, S. Martínez-Fernández, and A. Trendowicz. Data
Science: Technologies for Better Software. IEEE Software, 36(6):66–
72, 2019.

[29] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli. Understanding
Flaky Tests: The Developer’s Perspective. In Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering. ACM, 2019.

[30] S. Elbaum, G. Rothermel, and J. Penix. Techniques for Improving Re-
gression Testing in Continuous Integration Development Environments.

60

6462

In International Symposium on Foundations of Software Engineering,
pages 235–245. ACM, 2014.

[31] S. Eldh. Some Researcher Considerations When Conducting Empirical
Studies in Industry. In International Workshop on Conducting Empiri-
cal Studies in Industry, pages 69–70. IEEE, 2013.

[32] E. Engström, P. Runeson, and A. Ljung. Improving Regression Testing
Transparency and Efficiency with History-Based Prioritization – An In-
dustrial Case Study. In International Conference on Software Testing,
Verification and Validation, pages 367–376. IEEE, 2011.

[33] E. Engström, P. Runeson, and M. Skoglund. A systematic review on
regression test selection techniques. Elsevier Information and Software
Technology, 52(1):14–30, 2010.

[34] R. Eramo, V. Muttillo, L. Berardinelli, H. Bruneliere, A. Gomez,
A. Bagnato, A. Sadovykh, and A. Cicchetti. AIDOaRt: AI-augmented
Automation for DevOps, a Model-based Framework for Continuous De-
velopment in Cyber-Physical Systems. In Euromicro Conferenece on
Digital Systems Design, 2021.

[35] M. Felderer and G. H. Travassos. The Evolution of Empirical Meth-
ods in Software Engineering. In Contemporary Empirical Methods in
Software Engineering, pages 1–24. Springer, 2020.

[36] K. F. Fischer. A Test Case Selection Method for the Validation of Soft-
ware Maintenance Modifications. In Computer Software and Applica-
tions Conference, volume 77, pages 421–426. IEEE, 1977.

[37] M. Fowler. Codesmell (blog post). https://martinfowler.
com/bliki/CodeSmell.html, 2006. Online, Accessed 2021-09-
08.

[38] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 2018.

[39] M.-E. Froese and M. Tory. Lessons Learned from Designing Visu-
alization Dashboards. IEEE Computer Graphics and Applications,
36(2):83–89, 2016.

[40] Z. Gao. Quantifying Flakiness and Minimizing its Effects on Software
Testing. PhD thesis, University of Maryland, 2017.

61

In International Symposium on Foundations of Software Engineering,
pages 235–245. ACM, 2014.

[31] S. Eldh. Some Researcher Considerations When Conducting Empirical
Studies in Industry. In International Workshop on Conducting Empiri-
cal Studies in Industry, pages 69–70. IEEE, 2013.

[32] E. Engström, P. Runeson, and A. Ljung. Improving Regression Testing
Transparency and Efficiency with History-Based Prioritization – An In-
dustrial Case Study. In International Conference on Software Testing,
Verification and Validation, pages 367–376. IEEE, 2011.

[33] E. Engström, P. Runeson, and M. Skoglund. A systematic review on
regression test selection techniques. Elsevier Information and Software
Technology, 52(1):14–30, 2010.

[34] R. Eramo, V. Muttillo, L. Berardinelli, H. Bruneliere, A. Gomez,
A. Bagnato, A. Sadovykh, and A. Cicchetti. AIDOaRt: AI-augmented
Automation for DevOps, a Model-based Framework for Continuous De-
velopment in Cyber-Physical Systems. In Euromicro Conferenece on
Digital Systems Design, 2021.

[35] M. Felderer and G. H. Travassos. The Evolution of Empirical Meth-
ods in Software Engineering. In Contemporary Empirical Methods in
Software Engineering, pages 1–24. Springer, 2020.

[36] K. F. Fischer. A Test Case Selection Method for the Validation of Soft-
ware Maintenance Modifications. In Computer Software and Applica-
tions Conference, volume 77, pages 421–426. IEEE, 1977.

[37] M. Fowler. Codesmell (blog post). https://martinfowler.
com/bliki/CodeSmell.html, 2006. Online, Accessed 2021-09-
08.

[38] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 2018.

[39] M.-E. Froese and M. Tory. Lessons Learned from Designing Visu-
alization Dashboards. IEEE Computer Graphics and Applications,
36(2):83–89, 2016.

[40] Z. Gao. Quantifying Flakiness and Minimizing its Effects on Software
Testing. PhD thesis, University of Maryland, 2017.

61

6563

[41] V. Garousi, M. Felderer, Ç. M. Karapıçak, and U. Yılmaz. What We
Know about Testing Embedded Software. IEEE Software, 2017.

[42] V. Garousi and B. Küçük. Smells in software test code: A survey of
knowledge in industry and academia. Elsevier Journal of Systems and
Software, 138:52–81, 2018.

[43] V. Garousi, K. Petersen, and B. Ozkan. Challenges and best practices
in industry-academia collaborations in software engineering: A system-
atic literature review. Elsevier Information and Software Technology,
79:106–127, 2016.

[44] L. Geschwind. Doctoral Training in Sweden: History, Trends and De-
velopments. In Doctoral Education for the Knowledge Society, pages
35–49. Springer, 2018.

[45] H. Ghanbari. Seeking Technical Debt in Critical Software Development
Projects: An Exploratory Field Study. In Hawaii International Confer-
ence on System Sciences, pages 5407–5416. IEEE, 2016.

[46] U. H. Graneheim and B. Lundman. Qualitative content analysis in nurs-
ing research: concepts, procedures and measures to achieve trustworthi-
ness. Elsevier Nurse Education Today, 24(2):105–112, 2004.

[47] J. D. Hagar, T. L. Wissink, D. R. Kuhn, and R. N. Kacker. Introduc-
ing Combinatorial Testing in a Large Organization. IEEE Computer,
48(4):64–72, 2015.

[48] A. Haghighatkhah. Test case prioritization using build history and test
distances: An approach for improving automotive regression testing in
continuous integration environments. PhD thesis, University of Oulu,
2020.

[49] D. Hao, L. Zhang, and H. Mei. Test-case prioritization: achievements
and challenges. Springer Frontiers of Computer Science, 10(5):769–
777, 2016.

[50] M. Harman and B. F. Jones. Search-based software engineering. Else-
vier Information and Software Technology, 43(14):833–839, 2001.

[51] L. T. Heeager and P. A. Nielsen. Meshing agile and plan-driven de-
velopment in safety-critical software: a case study. Springer Empirical
Software Engineering, pages 1–28, 2020.

62

[41] V. Garousi, M. Felderer, Ç. M. Karapıçak, and U. Yılmaz. What We
Know about Testing Embedded Software. IEEE Software, 2017.

[42] V. Garousi and B. Küçük. Smells in software test code: A survey of
knowledge in industry and academia. Elsevier Journal of Systems and
Software, 138:52–81, 2018.

[43] V. Garousi, K. Petersen, and B. Ozkan. Challenges and best practices
in industry-academia collaborations in software engineering: A system-
atic literature review. Elsevier Information and Software Technology,
79:106–127, 2016.

[44] L. Geschwind. Doctoral Training in Sweden: History, Trends and De-
velopments. In Doctoral Education for the Knowledge Society, pages
35–49. Springer, 2018.

[45] H. Ghanbari. Seeking Technical Debt in Critical Software Development
Projects: An Exploratory Field Study. In Hawaii International Confer-
ence on System Sciences, pages 5407–5416. IEEE, 2016.

[46] U. H. Graneheim and B. Lundman. Qualitative content analysis in nurs-
ing research: concepts, procedures and measures to achieve trustworthi-
ness. Elsevier Nurse Education Today, 24(2):105–112, 2004.

[47] J. D. Hagar, T. L. Wissink, D. R. Kuhn, and R. N. Kacker. Introduc-
ing Combinatorial Testing in a Large Organization. IEEE Computer,
48(4):64–72, 2015.

[48] A. Haghighatkhah. Test case prioritization using build history and test
distances: An approach for improving automotive regression testing in
continuous integration environments. PhD thesis, University of Oulu,
2020.

[49] D. Hao, L. Zhang, and H. Mei. Test-case prioritization: achievements
and challenges. Springer Frontiers of Computer Science, 10(5):769–
777, 2016.

[50] M. Harman and B. F. Jones. Search-based software engineering. Else-
vier Information and Software Technology, 43(14):833–839, 2001.

[51] L. T. Heeager and P. A. Nielsen. Meshing agile and plan-driven de-
velopment in safety-critical software: a case study. Springer Empirical
Software Engineering, pages 1–28, 2020.

62

6664

[52] H. Hemmati, Z. Fang, and M. V. Mantylä. Prioritizing Manual Test
Cases in Traditional and Rapid Release Environments. In International
Conference on Software Testing, Verification and Validation, pages 1–
10. IEEE, 2015.

[53] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy. The Art of Test-
ing Less without Sacrificing Quality. In International Conference on
Software Engineering, pages 483–493. IEEE Press, 2015.

[54] R. Hind. The First computer on the Moon. Oxford University Press:
ITNOW, 61(3):22–23, 2019.

[55] S. E. Hove and B. Anda. Experiences from Conducting Semi-Structured
Interviews in Empirical Software Engineering Research. In Interna-
tional Software Metrics Symposium, pages 10–pp. IEEE, 2005.

[56] T. Illes-Seifert and B. Paech. On the Role of Communication, Docu-
mentation and Experience during System Testing – An Interview Study.
In Prozessinnovation mit Unternehmenssoftware Workshop at the Mul-
tikonferenz Wirtschaftsinformatik. Springer, 2008.

[57] J. P. A. Ioannidis. Why Most Published Research Findings Are False.
PLoS Medicine, 2(8):e124, 2005.

[58] ISO/IEC/IEEE. Software and systems engineering – Software testing
– Part 1: Concepts and definitions. ISO/IEC/IEEE Standard 29119-
1:2013, International Organization for Standardization, International
Electrotechnical Commission, Institute of Electrical and Electronics En-
gineers, 2013.

[59] ISO/IEC/IEEE. Software and systems engineering – Software testing –
Part 3: Test documentation. ISO/IEC/IEEE Standard 29119-3:2013, In-
ternational Organization for Standardization, International Electrotech-
nical Commission, Institute of Electrical and Electronics Engineers,
2013.

[60] M. Ivarsson and T. Gorschek. A method for evaluating rigor and indus-
trial relevance of technology evaluations. Springer Empirical Software
Engineering, 16(3):365–395, 2011.

[61] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of Test Infor-
mation to Assist Fault Localization. In International Conference on
Software Engineering, pages 467–477. ACM, 2002.

63

[52] H. Hemmati, Z. Fang, and M. V. Mantylä. Prioritizing Manual Test
Cases in Traditional and Rapid Release Environments. In International
Conference on Software Testing, Verification and Validation, pages 1–
10. IEEE, 2015.

[53] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy. The Art of Test-
ing Less without Sacrificing Quality. In International Conference on
Software Engineering, pages 483–493. IEEE Press, 2015.

[54] R. Hind. The First computer on the Moon. Oxford University Press:
ITNOW, 61(3):22–23, 2019.

[55] S. E. Hove and B. Anda. Experiences from Conducting Semi-Structured
Interviews in Empirical Software Engineering Research. In Interna-
tional Software Metrics Symposium, pages 10–pp. IEEE, 2005.

[56] T. Illes-Seifert and B. Paech. On the Role of Communication, Docu-
mentation and Experience during System Testing – An Interview Study.
In Prozessinnovation mit Unternehmenssoftware Workshop at the Mul-
tikonferenz Wirtschaftsinformatik. Springer, 2008.

[57] J. P. A. Ioannidis. Why Most Published Research Findings Are False.
PLoS Medicine, 2(8):e124, 2005.

[58] ISO/IEC/IEEE. Software and systems engineering – Software testing
– Part 1: Concepts and definitions. ISO/IEC/IEEE Standard 29119-
1:2013, International Organization for Standardization, International
Electrotechnical Commission, Institute of Electrical and Electronics En-
gineers, 2013.

[59] ISO/IEC/IEEE. Software and systems engineering – Software testing –
Part 3: Test documentation. ISO/IEC/IEEE Standard 29119-3:2013, In-
ternational Organization for Standardization, International Electrotech-
nical Commission, Institute of Electrical and Electronics Engineers,
2013.

[60] M. Ivarsson and T. Gorschek. A method for evaluating rigor and indus-
trial relevance of technology evaluations. Springer Empirical Software
Engineering, 16(3):365–395, 2011.

[61] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of Test Infor-
mation to Assist Fault Localization. In International Conference on
Software Engineering, pages 467–477. ACM, 2002.

63

6765

[62] H. Kaindl, F. Lukasch, M. Heigl, S. Kavaldjian, C. Luckeneder, and
S. Rausch. Verification of Cyber-Physical Automotive Systems-of-
Systems: Test Environment Assignment. In International Confer-
ence on Software Testing, Verification and Validation Workshops. IEEE,
2018.

[63] J. Kasurinen, O. Taipale, and K. Smolander. Software Test Automation
in Practice: Empirical Observations. Hindawi Advances in Software
Engineering, 2010.

[64] J.-M. Kim and A. Porter. A History-Based Test Prioritization Tech-
nique for Regression Testing in Resource Constrained Environments.
In International Conference on Software Engineering, pages 119–129.
ACM, 2002.

[65] B. A. Kitchenham and S. L. Pfleeger. Principles of Survey Research
Part 3: Constructing a Survey Instrument. ACM SIGSOFT Software
Engineering Notes, 27(2):20–24, 2002.

[66] B. A. Kitchenham and S. L. Pfleeger. Principles of Survey Research
Part 4: Questionnaire Evaluation. ACM SIGSOFT Software Engineering
Notes, 27(3):20–23, 2002.

[67] B. A. Kitchenham and S. L. Pfleeger. Principles of Survey Research
Part 5: Populations and Samples. ACM SIGSOFT Software Engineering
Notes, 27(5):17–20, 2002.

[68] B. A. Kitchenham and S. L. Pfleeger. Principles of Survey Research
Part 6: Data Analysis. ACM SIGSOFT Software Engineering Notes,
28(2):24–27, 2003.

[69] D. Knuth. Fascicle 6: Satisfiability, volume 19 of The Art of Computer
Programming. Addison-Wesley, Reading, Mass, 2015.

[70] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta.
Root Causing Flaky Tests in a Large-Scale Industrial Setting. In Inter-
national Symposium on Software Testing and Analysis. ACM, 2019.

[71] S. Legg and M. Hutter. A collection of definitions of intelligence.
IOS Press: Frontiers in Artificial Intelligence and applications, 157:17,
2007.

[72] J. Linåker, S. M. Sulaman, M. Höst, and R. M. de Mello. Guidelines for
Conducting Surveys in Software Engineering v. 1.1. Technical report,
Lund University, Sweden, 2015.

64

[62] H. Kaindl, F. Lukasch, M. Heigl, S. Kavaldjian, C. Luckeneder, and
S. Rausch. Verification of Cyber-Physical Automotive Systems-of-
Systems: Test Environment Assignment. In International Confer-
ence on Software Testing, Verification and Validation Workshops. IEEE,
2018.

[63] J. Kasurinen, O. Taipale, and K. Smolander. Software Test Automation
in Practice: Empirical Observations. Hindawi Advances in Software
Engineering, 2010.

[64] J.-M. Kim and A. Porter. A History-Based Test Prioritization Tech-
nique for Regression Testing in Resource Constrained Environments.
In International Conference on Software Engineering, pages 119–129.
ACM, 2002.

[65] B. A. Kitchenham and S. L. Pfleeger. Principles of Survey Research
Part 3: Constructing a Survey Instrument. ACM SIGSOFT Software
Engineering Notes, 27(2):20–24, 2002.

[66] B. A. Kitchenham and S. L. Pfleeger. Principles of Survey Research
Part 4: Questionnaire Evaluation. ACM SIGSOFT Software Engineering
Notes, 27(3):20–23, 2002.

[67] B. A. Kitchenham and S. L. Pfleeger. Principles of Survey Research
Part 5: Populations and Samples. ACM SIGSOFT Software Engineering
Notes, 27(5):17–20, 2002.

[68] B. A. Kitchenham and S. L. Pfleeger. Principles of Survey Research
Part 6: Data Analysis. ACM SIGSOFT Software Engineering Notes,
28(2):24–27, 2003.

[69] D. Knuth. Fascicle 6: Satisfiability, volume 19 of The Art of Computer
Programming. Addison-Wesley, Reading, Mass, 2015.

[70] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta.
Root Causing Flaky Tests in a Large-Scale Industrial Setting. In Inter-
national Symposium on Software Testing and Analysis. ACM, 2019.

[71] S. Legg and M. Hutter. A collection of definitions of intelligence.
IOS Press: Frontiers in Artificial Intelligence and applications, 157:17,
2007.

[72] J. Linåker, S. M. Sulaman, M. Höst, and R. M. de Mello. Guidelines for
Conducting Surveys in Software Engineering v. 1.1. Technical report,
Lund University, Sweden, 2015.

64

6866

[73] D. Lo, N. Nagappan, and T. Zimmermann. How Practitioners Perceive
the Relevance of Software Engineering Research. In Joint Meeting on
Foundations of Software Engineering, pages 415–425. ACM.

[74] R. E. Lopez-Herrejon, L. Linsbauer, and A. Egyed. A systematic map-
ping study of search-based software engineering for software product
lines. Elsevier Information and Software Technology, 61:33–51, 2015.

[75] Y. Lou, J. Chen, L. Zhang, and D. Hao. A Survey on Regression Test-
Case Prioritization. In Advances in Computers, volume 113, pages 1–
46. Elsevier, 2019.

[76] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An Empirical Analysis
of Flaky Tests. In International Symposium on Foundations of Software
Engineering, pages 643–653. ACM, 2014.

[77] O. Manai. How software documentation helps communication in de-
velopment teams: A case study on architecture and design documents.
Bachelor’s Thesis, University of Gothenburg, 2019.

[78] D. Marijan and A. Gotlieb. Industry-Academia research collaboration
in software engineering: The Certus model. Elsevier Information and
Software Technology, 132:106473, 2021.

[79] A. A. Markov. Extension of the law of large numbers to dependent
quantities. Izv. Fiz.-Matem. Obsch. Kazan Univ.(2nd Ser), 15:135–156,
1906.

[80] T. Mårtensson, D. Ståhl, and J. Bosch. Continuous Integration Applied
to Software-Intensive Embedded Systems – Problems and Experiences.
In International Conference on Product-Focused Software Process Im-
provement, pages 448–457. Springer, 2016.

[81] K. Martin. Ethical Implications and Accountability of Algorithms.
Springer Journal of Business Ethics, 160(4):835–850, 2019.

[82] S. Martínez-Fernández, A. M. Vollmer, A. Jedlitschka, X. Franch,
L. López, P. Ram, P. Rodríguez, S. Aaramaa, A. Bagnato, M. Choraś,
and J. Partanen. Continuously Assessing and Improving Software Qual-
ity With Software Analytics Tools: A Case Study. IEEE Access,
7:68219–68239, 2019.

[83] D. Mondal, H. Hemmati, and S. Durocher. Exploring Test Suite Diver-
sification and Code Coverage in Multi-Objective Test Case Selection.

65

[73] D. Lo, N. Nagappan, and T. Zimmermann. How Practitioners Perceive
the Relevance of Software Engineering Research. In Joint Meeting on
Foundations of Software Engineering, pages 415–425. ACM.

[74] R. E. Lopez-Herrejon, L. Linsbauer, and A. Egyed. A systematic map-
ping study of search-based software engineering for software product
lines. Elsevier Information and Software Technology, 61:33–51, 2015.

[75] Y. Lou, J. Chen, L. Zhang, and D. Hao. A Survey on Regression Test-
Case Prioritization. In Advances in Computers, volume 113, pages 1–
46. Elsevier, 2019.

[76] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An Empirical Analysis
of Flaky Tests. In International Symposium on Foundations of Software
Engineering, pages 643–653. ACM, 2014.

[77] O. Manai. How software documentation helps communication in de-
velopment teams: A case study on architecture and design documents.
Bachelor’s Thesis, University of Gothenburg, 2019.

[78] D. Marijan and A. Gotlieb. Industry-Academia research collaboration
in software engineering: The Certus model. Elsevier Information and
Software Technology, 132:106473, 2021.

[79] A. A. Markov. Extension of the law of large numbers to dependent
quantities. Izv. Fiz.-Matem. Obsch. Kazan Univ.(2nd Ser), 15:135–156,
1906.

[80] T. Mårtensson, D. Ståhl, and J. Bosch. Continuous Integration Applied
to Software-Intensive Embedded Systems – Problems and Experiences.
In International Conference on Product-Focused Software Process Im-
provement, pages 448–457. Springer, 2016.

[81] K. Martin. Ethical Implications and Accountability of Algorithms.
Springer Journal of Business Ethics, 160(4):835–850, 2019.

[82] S. Martínez-Fernández, A. M. Vollmer, A. Jedlitschka, X. Franch,
L. López, P. Ram, P. Rodríguez, S. Aaramaa, A. Bagnato, M. Choraś,
and J. Partanen. Continuously Assessing and Improving Software Qual-
ity With Software Analytics Tools: A Case Study. IEEE Access,
7:68219–68239, 2019.

[83] D. Mondal, H. Hemmati, and S. Durocher. Exploring Test Suite Diver-
sification and Code Coverage in Multi-Objective Test Case Selection.

65

6967

In International Conference on Software Testing, Verification and Vali-
dation, pages 1–10. IEEE, 2015.

[84] F. G. D. O. Neto, R. Feldt, L. Erlenhov, and J. B. D. S. Nunes. Visualiz-
ing test diversity to support test optimisation. In Asia-Pacific Software
Engineering Conference, pages 149–158. IEEE, 2018.

[85] A. Nilsson, J. Bosch, and C. Berger. Visualizing Testing Activities
to Support Continuous Integration: A Multiple Case Study. In Inter-
national Conference on Agile Software Development, pages 171–186.
Springer, 2014.

[86] J. P. Notander, M. Höst, and P. Runeson. Challenges in Flexible Safety-
Critical Software Development – An Industrial Qualitative Survey. In
International Conference on Product Focused Software Process Im-
provement, pages 283–297. Springer, 2013.

[87] K. Olsen, T. Parveen, R. Black, D. Friedenberg, M. Hamburg, J. McKay,
M. Posthuma, H. Schaefer, R. Smilgin, M. Smith, S. Toms, S. Ulrich,
M. Walsh, E. Zakaria, T. Müller, A. Beer, M. Klonk, R. Verma, D. Gra-
ham, E. van Veenendaal, S. Eldh, M. Pyhäjärvi, and G. Thompson. Cer-
tified tester foundation level syllabus. Technical report, International
Software Testing Qualifications Board (ISTQB), 2018.

[88] G. M. Olson and J. S. Olson. Distance matters. Taylor & Francis
Human-Computer Interaction, 15(2):139–178, 2000.

[89] H. H. Olsson, H. Alahyari, and J. Bosch. Climbing the “Stairway to
Heaven” – A Multiple-Case Study Exploring Barriers in the Transition
from Agile Development Towards Continuous Deployment of Software.
In Conference on Software Engineering and Advanced Applications,
pages 392–399. IEEE, 2012.

[90] R. Opmanis, P. Kikusts, and M. Opmanis. Visualization of Large-Scale
Application Testing Results. University of Latvia: Baltic Journal of
Modern Computing, 4(1):34, 2016.

[91] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting the location
and number of faults in large software systems. IEEE Transactions on
Software Engineering, 31(4):340–355, 2005.

[92] K. Paton. An Algorithm for Finding a Fundamental Set of Cycles of a
Graph. Communications of the ACM, 12(9):514–518, 1969.

66

In International Conference on Software Testing, Verification and Vali-
dation, pages 1–10. IEEE, 2015.

[84] F. G. D. O. Neto, R. Feldt, L. Erlenhov, and J. B. D. S. Nunes. Visualiz-
ing test diversity to support test optimisation. In Asia-Pacific Software
Engineering Conference, pages 149–158. IEEE, 2018.

[85] A. Nilsson, J. Bosch, and C. Berger. Visualizing Testing Activities
to Support Continuous Integration: A Multiple Case Study. In Inter-
national Conference on Agile Software Development, pages 171–186.
Springer, 2014.

[86] J. P. Notander, M. Höst, and P. Runeson. Challenges in Flexible Safety-
Critical Software Development – An Industrial Qualitative Survey. In
International Conference on Product Focused Software Process Im-
provement, pages 283–297. Springer, 2013.

[87] K. Olsen, T. Parveen, R. Black, D. Friedenberg, M. Hamburg, J. McKay,
M. Posthuma, H. Schaefer, R. Smilgin, M. Smith, S. Toms, S. Ulrich,
M. Walsh, E. Zakaria, T. Müller, A. Beer, M. Klonk, R. Verma, D. Gra-
ham, E. van Veenendaal, S. Eldh, M. Pyhäjärvi, and G. Thompson. Cer-
tified tester foundation level syllabus. Technical report, International
Software Testing Qualifications Board (ISTQB), 2018.

[88] G. M. Olson and J. S. Olson. Distance matters. Taylor & Francis
Human-Computer Interaction, 15(2):139–178, 2000.

[89] H. H. Olsson, H. Alahyari, and J. Bosch. Climbing the “Stairway to
Heaven” – A Multiple-Case Study Exploring Barriers in the Transition
from Agile Development Towards Continuous Deployment of Software.
In Conference on Software Engineering and Advanced Applications,
pages 392–399. IEEE, 2012.

[90] R. Opmanis, P. Kikusts, and M. Opmanis. Visualization of Large-Scale
Application Testing Results. University of Latvia: Baltic Journal of
Modern Computing, 4(1):34, 2016.

[91] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting the location
and number of faults in large software systems. IEEE Transactions on
Software Engineering, 31(4):340–355, 2005.

[92] K. Paton. An Algorithm for Finding a Fundamental Set of Cycles of a
Graph. Communications of the ACM, 12(9):514–518, 1969.

66

7068

[93] M. Q. Patton. Qualitative Research & Evaluation Methods: Integrating
Theory and Practice. Sage publications, 2014.

[94] K. Petersen and C. Wohlin. Context in Industrial Software Engineering
Research. In International Symposium on Empirical Software Engineer-
ing and Measurement, pages 401–404. IEEE, 2009.

[95] S. L. Pfleeger and B. A. Kitchenham. Principles of Survey Research
Part 1: Turning Lemons into Lemonade. ACM SIGSOFT Software En-
gineering Notes, 26(6):16–18, 2001.

[96] S. L. Pfleeger and B. A. Kitchenham. Principles of Survey Research Part
2: Designing a Survey. ACM SIGSOFT Software Engineering Notes,
27(1):18–20, 2002.

[97] M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, and J. Still. The
impact of agile practices on communication in software development.
Springer Empirical Software Engineering, 13(3):303–337, 2008.

[98] K. Popper. The logic of scientific discovery. Routledge, 2005.

[99] J. A. Prado Lima and S. R. Vergilio. Test Case Prioritization in Contin-
uous Integration environments: A systematic mapping study. Elsevier
Information and Software Technology, page 106268, 2020.

[100] N. Privault. Understanding Markov Chains: Examples and Applica-
tions. Springer, 2013.

[101] K. Ricken and A. Dyck. A Survey on Multi-objective Regression Test
Optimization. Full-scale Software Engineering/The Art of Software
Testing, pages 32–37, 2017.

[102] P. Rosenkranz, M. Wählisch, E. Baccelli, and L. Ortmann. A Dis-
tributed Test System Architecture for Open-source IoT Software. In
Workshop on IoT challenges in Mobile and Industrial Systems, pages
43–48. ACM, 2015.

[103] H. Rosling, A. Rosling Rönnlund, and O. Rosling. New Software Brings
Statistics Beyond the Eye. OECD Statistics, Knowledge and Policy: Key
Indicators to Inform Decision Making, pages 522–530, 2005.

[104] H. Rosling, A. Rosling Rönnlund, and O. Rosling. Factfulness: Ten
Reasons We’re Wrong About the World – and Why Things Are Better
Than You Think. Flatiron Books, 2018.

67

[93] M. Q. Patton. Qualitative Research & Evaluation Methods: Integrating
Theory and Practice. Sage publications, 2014.

[94] K. Petersen and C. Wohlin. Context in Industrial Software Engineering
Research. In International Symposium on Empirical Software Engineer-
ing and Measurement, pages 401–404. IEEE, 2009.

[95] S. L. Pfleeger and B. A. Kitchenham. Principles of Survey Research
Part 1: Turning Lemons into Lemonade. ACM SIGSOFT Software En-
gineering Notes, 26(6):16–18, 2001.

[96] S. L. Pfleeger and B. A. Kitchenham. Principles of Survey Research Part
2: Designing a Survey. ACM SIGSOFT Software Engineering Notes,
27(1):18–20, 2002.

[97] M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, and J. Still. The
impact of agile practices on communication in software development.
Springer Empirical Software Engineering, 13(3):303–337, 2008.

[98] K. Popper. The logic of scientific discovery. Routledge, 2005.

[99] J. A. Prado Lima and S. R. Vergilio. Test Case Prioritization in Contin-
uous Integration environments: A systematic mapping study. Elsevier
Information and Software Technology, page 106268, 2020.

[100] N. Privault. Understanding Markov Chains: Examples and Applica-
tions. Springer, 2013.

[101] K. Ricken and A. Dyck. A Survey on Multi-objective Regression Test
Optimization. Full-scale Software Engineering/The Art of Software
Testing, pages 32–37, 2017.

[102] P. Rosenkranz, M. Wählisch, E. Baccelli, and L. Ortmann. A Dis-
tributed Test System Architecture for Open-source IoT Software. In
Workshop on IoT challenges in Mobile and Industrial Systems, pages
43–48. ACM, 2015.

[103] H. Rosling, A. Rosling Rönnlund, and O. Rosling. New Software Brings
Statistics Beyond the Eye. OECD Statistics, Knowledge and Policy: Key
Indicators to Inform Decision Making, pages 522–530, 2005.

[104] H. Rosling, A. Rosling Rönnlund, and O. Rosling. Factfulness: Ten
Reasons We’re Wrong About the World – and Why Things Are Better
Than You Think. Flatiron Books, 2018.

67

7169

[105] P. Runeson, M. Höst, A. Rainer, and B. Regnell. Case Study Research in
Software Engineering: Guidelines and Examples. John Wiley & Sons,
2012.

[106] A. Sannö, A. E. Öberg, E. Flores-Garcia, and M. Jackson. Increasing the
Impact of Industry–Academia Collaboration through Co-Production.
Technology Innovation Management Review, 9(4), 2019.

[107] A. E. Scott. Automatic Preparation of Flow Chart Listings. Journal of
the ACM, 5(1):57–66, 1958.

[108] M. Shahin, M. A. Babar, and L. Zhu. Continuous Integration, Delivery
and Deployment: A Systematic Review on Approaches, Tools, Chal-
lenges and Practices. IEEE Access, 5:3909–3943, 2017.

[109] C. E. Shannon. A Mathematical Theory of Communication. Bell System
Technical Journal, 27, 1948.

[110] G. Smith. Ethical risks of pursuing participatory research as an indus-
trial doctoral student. In Multidisciplinary Digital Publishing Institute
Proceedings, volume 1, page 167, 2017.

[111] Sogeti, Capgemini, and HP. World Quality Report 2014-2015, 2015.

[112] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige. Reinforcement
Learning for Automatic Test Case Prioritization and Selection in Con-
tinuous Integration. In International Symposium on Software Testing
and Analysis. ACM, 2017.

[113] M. Staron. Automotive Software Architectures: An Introduction.
Springer, 2017.

[114] K.-J. Stol, P. Ralph, and B. Fitzgerald. Grounded Theory in Software
Engineering Research: a Critical Review and Guidelines. In Inter-
national Conference on Software Engineering, pages 120–131. ACM,
2016.

[115] P. E. Strandberg. Software Test Data Visualization with Heatmaps
– an Initial Survey. Technical report, MDH-MRTC-318/2017-1-SE,
Mälardalen University, 2017.

[116] P. E. Strandberg. Automated System Level Software Testing of Net-
worked Embedded Systems. Thesis for Degree of Licentiate of Engi-
neering, Mälardalen University, 2018.

68

[105] P. Runeson, M. Höst, A. Rainer, and B. Regnell. Case Study Research in
Software Engineering: Guidelines and Examples. John Wiley & Sons,
2012.

[106] A. Sannö, A. E. Öberg, E. Flores-Garcia, and M. Jackson. Increasing the
Impact of Industry–Academia Collaboration through Co-Production.
Technology Innovation Management Review, 9(4), 2019.

[107] A. E. Scott. Automatic Preparation of Flow Chart Listings. Journal of
the ACM, 5(1):57–66, 1958.

[108] M. Shahin, M. A. Babar, and L. Zhu. Continuous Integration, Delivery
and Deployment: A Systematic Review on Approaches, Tools, Chal-
lenges and Practices. IEEE Access, 5:3909–3943, 2017.

[109] C. E. Shannon. A Mathematical Theory of Communication. Bell System
Technical Journal, 27, 1948.

[110] G. Smith. Ethical risks of pursuing participatory research as an indus-
trial doctoral student. In Multidisciplinary Digital Publishing Institute
Proceedings, volume 1, page 167, 2017.

[111] Sogeti, Capgemini, and HP. World Quality Report 2014-2015, 2015.

[112] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige. Reinforcement
Learning for Automatic Test Case Prioritization and Selection in Con-
tinuous Integration. In International Symposium on Software Testing
and Analysis. ACM, 2017.

[113] M. Staron. Automotive Software Architectures: An Introduction.
Springer, 2017.

[114] K.-J. Stol, P. Ralph, and B. Fitzgerald. Grounded Theory in Software
Engineering Research: a Critical Review and Guidelines. In Inter-
national Conference on Software Engineering, pages 120–131. ACM,
2016.

[115] P. E. Strandberg. Software Test Data Visualization with Heatmaps
– an Initial Survey. Technical report, MDH-MRTC-318/2017-1-SE,
Mälardalen University, 2017.

[116] P. E. Strandberg. Automated System Level Software Testing of Net-
worked Embedded Systems. Thesis for Degree of Licentiate of Engi-
neering, Mälardalen University, 2018.

68

7270

[117] P. E. Strandberg. Ethical Interviews in Software Engineering. In Inter-
national Symposium on Empirical Software Engineering and Measure-
ment. IEEE, 2019.

[118] P. E. Strandberg, W. Afzal, T. Ostrand, E. Weyuker, and D. Sundmark.
Automated System Level Regression Test Prioritization in a Nutshell.
IEEE Software, 34(1):1–10, April 2017.

[119] P. E. Strandberg, W. Afzal, and D. Sundmark. Decision Making and
Visualizations Based on Test Results. In International Symposium on
Empirical Software Engineering and Measurement. ACM/IEEE, 2018.

[120] P. E. Strandberg, E. P. Enoiu, W. Afzal, D. Sundmark, and
R. Feldt. Instrument from: Test Results Communication – An In-
terview Study in the Embedded Software Industry. Technical report,
https://doi.org/10.5281/zenodo.1189562, 2018.

[121] P. E. Strandberg, E. P. Enoiu, W. Afzal, D. Sundmark, and R. Feldt. In-
formation Flow in Software Testing – An Interview Study With Embed-
ded Software Engineering Practitioners. IEEE Access, 7:46434–46453,
2019.

[122] P. E. Strandberg, M. Frasheri, and E. P. Enoiu. Ethical AI-Powered
Regression Test Selection. In International Conference On Artificial
Intelligence Testing. IEEE, 2021.

[123] P. E. Strandberg, T. J. Ostrand, E. J. Weyuker, W. Afzal, and D. Sund-
mark. Intermittently Failing Tests in the Embedded Systems Domain.
In International Symposium on Software Testing and Analysis, page
337–348. ACM, 2020.

[124] P. E. Strandberg, T. J. Ostrand, E. J. Weyuker, D. Sundmark, and
W. Afzal. Automated Test Mapping and Coverage for Network Topolo-
gies. In International Symposium on Software Testing and Analysis,
pages 73–83. ACM, 2018.

[125] P. E. Strandberg, D. Sundmark, W. Afzal, T. J. Ostrand, and E. J.
Weyuker. Experience Report: Automated System Level Regression Test
Prioritization Using Multiple Factors. In International Symposium on
Software Reliability Engineering, pages 12–23. IEEE, 2016.

[126] Swedish Code of Statues. Higher Education Act (1992: 1434)
(Högskolelagen (1992: 1434)), 1992.

69

[117] P. E. Strandberg. Ethical Interviews in Software Engineering. In Inter-
national Symposium on Empirical Software Engineering and Measure-
ment. IEEE, 2019.

[118] P. E. Strandberg, W. Afzal, T. Ostrand, E. Weyuker, and D. Sundmark.
Automated System Level Regression Test Prioritization in a Nutshell.
IEEE Software, 34(1):1–10, April 2017.

[119] P. E. Strandberg, W. Afzal, and D. Sundmark. Decision Making and
Visualizations Based on Test Results. In International Symposium on
Empirical Software Engineering and Measurement. ACM/IEEE, 2018.

[120] P. E. Strandberg, E. P. Enoiu, W. Afzal, D. Sundmark, and
R. Feldt. Instrument from: Test Results Communication – An In-
terview Study in the Embedded Software Industry. Technical report,
https://doi.org/10.5281/zenodo.1189562, 2018.

[121] P. E. Strandberg, E. P. Enoiu, W. Afzal, D. Sundmark, and R. Feldt. In-
formation Flow in Software Testing – An Interview Study With Embed-
ded Software Engineering Practitioners. IEEE Access, 7:46434–46453,
2019.

[122] P. E. Strandberg, M. Frasheri, and E. P. Enoiu. Ethical AI-Powered
Regression Test Selection. In International Conference On Artificial
Intelligence Testing. IEEE, 2021.

[123] P. E. Strandberg, T. J. Ostrand, E. J. Weyuker, W. Afzal, and D. Sund-
mark. Intermittently Failing Tests in the Embedded Systems Domain.
In International Symposium on Software Testing and Analysis, page
337–348. ACM, 2020.

[124] P. E. Strandberg, T. J. Ostrand, E. J. Weyuker, D. Sundmark, and
W. Afzal. Automated Test Mapping and Coverage for Network Topolo-
gies. In International Symposium on Software Testing and Analysis,
pages 73–83. ACM, 2018.

[125] P. E. Strandberg, D. Sundmark, W. Afzal, T. J. Ostrand, and E. J.
Weyuker. Experience Report: Automated System Level Regression Test
Prioritization Using Multiple Factors. In International Symposium on
Software Reliability Engineering, pages 12–23. IEEE, 2016.

[126] Swedish Code of Statues. Higher Education Act (1992: 1434)
(Högskolelagen (1992: 1434)), 1992.

69

7371

[127] Swedish Research Council. Forskningsetiska principer i humanistisk-
samhällsvetenskaplig forskning. Technical report, 1996.

[128] S. Thorve, C. Sreshtha, and N. Meng. An Empirical Study of Flaky
Tests in Android Apps. In International Conference on Software Main-
tenance and Evolution, pages 534–538. IEEE, 2018.

[129] J. R. Ullmann. Bit-vector algorithms for binary constraint satisfaction
and subgraph isomorphism. ACM Journal of Experimental Algorith-
mics, 15:1–6, 2010.

[130] A. Vahabzadeh, A. M. Fard, and A. Mesbah. An Empirical Study of
Bugs in Test Code. In International Conference on Software Mainte-
nance and Evolution, pages 101–110. IEEE, 2015.

[131] E. van Veenendaal. Standard glossary of terms used in software testing.
Technical Report Version 2.3, International Software Testing Qualifica-
tions Board (ISTQB), March 2014.

[132] F. Vermeulen. On Rigor and Relevance: Fostering Dialectic Progress in
Management Research. Academy of Management Journal, 48(6):978–
982, 2005.

[133] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos. Time-
Aware Test Suite Prioritization. In International Symposium on Soft-
ware Testing and Analysis, pages 1–12. ACM, 2006.

[134] E. J. Weyuker and T. J. Ostrand. Experiences with Academic-Industrial
Collaboration on Empirical Studies of Software Systems. In Inter-
national Symposium on Software Reliability Engineering Workshops,
pages 164–168. IEEE, 2017.

[135] K. Wiklund, S. Eldh, D. Sundmark, and K. Lundqvist. Impediments for
software test automation: A systematic literature review. Wiley Journal
of Software Testing, Verification and Reliability, 27(8):e1639, 2017.

[136] R. J. Wilson. Introduction to Graph Theory, 5th Edition. Prentice-Hall,
2010.

[137] W. H. Wolf. Hardware-Software Co-Design of Embedded Systems.
Proceedings of the IEEE, 82(7):967–989, 1994.

[138] S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: a survey. Wiley Journal of Software Testing, Verification
and Reliability, 22(2):67–120, 2012.

70

[127] Swedish Research Council. Forskningsetiska principer i humanistisk-
samhällsvetenskaplig forskning. Technical report, 1996.

[128] S. Thorve, C. Sreshtha, and N. Meng. An Empirical Study of Flaky
Tests in Android Apps. In International Conference on Software Main-
tenance and Evolution, pages 534–538. IEEE, 2018.

[129] J. R. Ullmann. Bit-vector algorithms for binary constraint satisfaction
and subgraph isomorphism. ACM Journal of Experimental Algorith-
mics, 15:1–6, 2010.

[130] A. Vahabzadeh, A. M. Fard, and A. Mesbah. An Empirical Study of
Bugs in Test Code. In International Conference on Software Mainte-
nance and Evolution, pages 101–110. IEEE, 2015.

[131] E. van Veenendaal. Standard glossary of terms used in software testing.
Technical Report Version 2.3, International Software Testing Qualifica-
tions Board (ISTQB), March 2014.

[132] F. Vermeulen. On Rigor and Relevance: Fostering Dialectic Progress in
Management Research. Academy of Management Journal, 48(6):978–
982, 2005.

[133] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos. Time-
Aware Test Suite Prioritization. In International Symposium on Soft-
ware Testing and Analysis, pages 1–12. ACM, 2006.

[134] E. J. Weyuker and T. J. Ostrand. Experiences with Academic-Industrial
Collaboration on Empirical Studies of Software Systems. In Inter-
national Symposium on Software Reliability Engineering Workshops,
pages 164–168. IEEE, 2017.

[135] K. Wiklund, S. Eldh, D. Sundmark, and K. Lundqvist. Impediments for
software test automation: A systematic literature review. Wiley Journal
of Software Testing, Verification and Reliability, 27(8):e1639, 2017.

[136] R. J. Wilson. Introduction to Graph Theory, 5th Edition. Prentice-Hall,
2010.

[137] W. H. Wolf. Hardware-Software Co-Design of Embedded Systems.
Proceedings of the IEEE, 82(7):967–989, 1994.

[138] S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: a survey. Wiley Journal of Software Testing, Verification
and Reliability, 22(2):67–120, 2012.

70

7472

[139] R. Yuster and U. Zwick. Finding Even Cycles Even Faster. SIAM Jour-
nal on Discrete Mathematics, 10(2):209–222, 1997.

[140] T. Zhang, H. Jiang, X. Luo, and A. T. Chan. A Literature Review of
Research in Bug Resolution: Tasks, Challenges and Future Directions.
Oxford University Press: The Computer Journal, 59(5):741–773, 2016.

71

[139] R. Yuster and U. Zwick. Finding Even Cycles Even Faster. SIAM Jour-
nal on Discrete Mathematics, 10(2):209–222, 1997.

[140] T. Zhang, H. Jiang, X. Luo, and A. T. Chan. A Literature Review of
Research in Bug Resolution: Tasks, Challenges and Future Directions.
Oxford University Press: The Computer Journal, 59(5):741–773, 2016.

71

7573

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1243
 309
 None
 Up
 0.0000
 0.0000

 Both
 8
 AllDoc
 13

 CurrentAVDoc

 Smaller
 20.9764
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1243
 309
 None
 Up
 0.0000
 0.0000

 Both
 8
 AllDoc
 13

 CurrentAVDoc

 Smaller
 20.9764
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut top edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1243
 309
 None
 Up
 0.0000
 0.0000

 Both
 8
 AllDoc
 13

 CurrentAVDoc

 Smaller
 20.9764
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 551.62 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1243
 309

 None
 Up
 0.0000
 0.0000

 Both
 8
 AllDoc
 13

 CurrentAVDoc

 Smaller
 551.6220
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryList_V1
 qi2base

