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Abstract
Automated test generation has been proposed to allow test
cases to be created with less effort. While much progress has
been made, it remains a challenge to automatically generate
strong as well as small test suites that are also relevant to
engineers. However, how these automated test generation
approaches compare to or complement manually written test
cases is still an open research question. In the light of the
potential benefits of automated test generation in practice,
its long history, and the apparent lack of summative evidence
supporting its use, the present study aims to systematically
review the current body of peer-reviewed publications com-
paring automated test generation and manual test design
performed by humans. We conducted a literature review and
meta-analysis to collect data comparing manually written
tests with automatically generated ones regarding test effi-
ciency and effectiveness. The overall results of the literature
review suggest that automated test generation outperforms
manual testing in terms of testing time, the number of tests
created and the code coverage achieved. Nevertheless, most
of the studies report that manually written tests detect more
faults (both injected and naturally occurring ones), are more
readable, and detect more specific bugs than those created us-
ing automated test generation. Our results suggest that just
a few studies report specific statistics (e.g., effect sizes) that
can be used in a proper meta-analysis, and therefore, results
are inconclusive when comparing automated test generation
and manual testing due to the lack of sufficient statistical
data and power. Nevertheless, our meta-analysis results sug-
gest that manual and automated test generation are clearly
outperforming random testing for all metrics considered.
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1 Introduction
Software plays a vital role in our daily lives and can be found
in a number of domains, ranging from mobile applications to
medical systems. In this context, software development orga-
nizations need to deliver reliable and high-quality software
products while having to consider more stringent time con-
straints. This problem limits the amount of software testing
that can be performed, and it needs to be managed through
efficient and effective automated techniques. The creation
of test cases in software testing is an intellectual activity
in which engineers allocate a variety of cognitive resources
when confronted with challenges as they go along. This is
largely a manual activity, dependent on the ingenuity and
thoroughness of humans. Automated test generation [2] has
been proposed to allow test cases to be created with less
effort.
The goal is to automatically find a small set of test cases

that check the correctness of the system and guard against
(previous as well as future) faults. While much progress
has been made, it remains a challenge to create strong and
small test suites that are also relevant to developers. Even
so, mature tools for automated test generation are still few
and consequently, the evidence regarding the comparison
of automated test generation and manual testing is scarce.
Thus, there is a need for a meta-analysis structuring this
evidence and providing an overarching comparison.
In this paper, we present a meta-analytical approach on

comparing two (and rather broad) classes of software test
design techniques, specifically automated and manual test
design, based on the findings of several primary studies. We
conducted three separate meta-analyses with respect to mu-
tation scores, decision coverage, and the number of tests
produced by each testing technique. In addition, we used
another statistical method, vote counting, and a qualitative
synthesis method, narrative synthesis, as additional methods
to obtain other reported results in our literature review. Our
literature review results suggest that test cases generated by
automated test generation tools are more cost-efficient in
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terms of coverage achieved, the number of tests generated,
the time needed to create and execute tests and check the re-
sults. In addition, our results indicate that test cases created
manually by humans achieve similar or better fault detec-
tion scores when compared using both injected or naturally
occurring faults. Even though these fault detection scores
are higher for manual test design on average, there is no
statistically significant difference between these two tech-
niques. Given that most of the studies do no report statistics
to be used in a meta-analysis, our results are limited. There
is a need for more empirical studies that are properly docu-
mented in order to perform a full-blownmeta-analysis on the
comparison between manual and automated test generation.

2 Planning the Literature Review and
Meta-Analysis

The method used in this paper is based on the guidelines
for a literature review and meta-analyses proposed by Bar-
bara Kitchenham [23]. Meta-analysis refers to the process
of finding, selecting, analyzing, and combining information
relevant to a particular research question or goal. The meta-
analysis begins with formulating a problem, search the liter-
ature, selecting the studies, extracting values such as differ-
ences and means, and the statistical analysis and calculations
[23]. Then, the combination of p-values from independent
tests over the same hypotheses regarding cost and fault detec-
tion is performed. Since combining p-values may not always
be helpful when the effects of the difference between manual
and automated test generation in the combined studies are
not consistent, the effect sizes of different studies can be
combined to have a clearer overview of the overall effect
size of these differences. Two approaches can be used when
pooling the effect sizes for meta-analysis: The Fixed Effect
Model or the Random Effect Model [5]. The fixed-effects
model presumes that all studies and their effect sizes derive
from a homogeneous population. However, in the random-
effect model, the study effect has a more significant variance
than the data drawn from the same population. In fact, in
the random-effects model, that data is drawn from a vastly
heterogeneous population.

2.1 Research question
This paper addresses the following research question: RQ:
How does automated test generation compare with manual
testing in terms of cost and fault detection? This question is
essential since the emerging evidence comparing automated
test generation and manual testing is scarce. Thus, there is a
need for a literature review and a meta-analysis structuring
this evidence and providing an overarching comparison.

2.2 Search process
We used the PICO (Population, Intervention, Comparison,
and Outcomes) [24] approach to identify keywords from

Table 1. Number of studies per database.

Database Name Results
IEEE Xplore 226
ACM Digital Library 344
Scopus 217

the research question in order to create the search string as
follows: Population (i.e., engineers using automated andman-
ual test design approaches), Intervention (i.e., the automated
and manual test design approaches and tools), Comparison
(i.e., experiments on cost and efficiency), Outcomes (e.g.,
metrics related to cost and efficiency). Thus, the identified
keywords are automated, manual, generate, test, software,
and compare.

We used the following search string, which gave the best
results for covering a predefined set of manually searched
papers on this topic:

test AND generation AND (manual OR handcrafted OR hand-
made OR manually) AND software AND (evaluation OR ex-
periment OR case study OR comparative OR comparison)

We selected IEEE Xplore and ACM Digital Library as the
digital libraries and Scopus as the indexing system. The
databases have been selected based on the experience re-
ported by Dyba et al. [11] as well the authors’ knowledge
about the previous studies published on this subject. The
search process was performed in March 2020. The search
results per each database are reflected in Table 1.

2.3 Study selection
The study selection process starts with removing the studies
that are irrelevant from the set of the identified candidate pa-
pers. After the first screening, the papers need to be looked at
in more detail. The process continues with reading the titles
and abstract, going deeper into the introduction, and full-text
reading. For our set of papers, we took the following steps:
First, the duplicates were removed with the help of the soft-
ware. Second, the titles were read to determine whether the
articles focused on testing, automated or manual testing, and
test generation in the scope of software engineering. Third,
we read the abstracts to check whether the studies had an em-
pirical background and were not secondary studies, whether
they contained the search words, and made a comparison of
manual and automated tools or techniques on software or
systems. It is important to note that we found several papers
that were not easy to understand whether they were rele-
vant to our study by reading the abstract. We performed a
kappa analysis to check our level of agreement. To complete
this procedure, we achieved a kappa value k=0.608, which
indicates a substantial strength of agreement. In addition,
we found several papers that reported more than one study.
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As suggested by Kitchenham [24], these papers can be con-
sidered as separate studies for the sake of the analysis. This
fact was used in the meta-analysis process, as reported in the
later sections of this study. Another thing worth mention-
ing is that we also came across several papers, which were
replications of a previous study, or reporting an experiment
conducted in a certain period, and later this experiment was
replicated. Thus, both experiments were reported in a later
study. We decided to keep only the latest version for such
papers since these papers can be considered replications of
previous studies.

The following inclusion criteria were applied to each paper
during the selection process: studies that compare manual
testing and automated testing, model-based testing and man-
ual testing, random testing and manual testing, and studies
that present the result of an empirical study in software engi-
neering published after 2010 1. The exclusion criteria include
the following categories: studies presenting summaries of
conferences/editorials, non-peer-reviewed material, studies
not accessible in full text, books, and gray literature, studies
that are duplicates of other studies, and secondary studies.
We extracted the following data from each study: the

source of the paper (journal or conference), the method used
to conduct the study (experiment, case study, survey), the
type of comparison (manual and automated, manual and
model-based testing), the program or system under test, the
language used for programming of each system under test,
the size of each program (LOC, classes, methods). Many stud-
ies suggested this process has two actors, the extractor and
the reviewer [23] [24], but we preferred to do both roles for
each process. We first extracted all the needed information
for the paper and checked the accuracy of the results. When
there was a disagreement, one’s reasoning and interpretation
were discussed until the first and the last authors agreed.

2.4 Meta Analysis
Meta-analyses use statistical methods to analyze and pool
the results from several primary studies, usually experiments,
that have measured the outcome of two different treatments
or interventions. Meta-analyses provide a higher statistical
meaning for their outcomes than individual primary studies
[24]. Unfortunately, not toomanymeta-analyses are reported
in software engineering. Since there is no clear understand-
ing of what a representative sample should look like [20],
the results of the primary studies are incomparable, and pro-
viding relevant knowledge through these methods is quite
challenging.

1We included publications after 2010 since we wanted to focus on recent and
relevant comparison studies comparing the latest automated test generation
approaches with manual testing.

2.5 Study Selection Process Results
Figure 1 shows a flow diagram representation of the study
selection process and the number of papers that resulted
in each step. The initial set of papers consisted of a total
number of 787 papers. We removed duplicates and ended
up having a total of 682 papers. In the next step, we applied
the inclusion and exclusion criteria. First, we remove non-
peer-reviewed papers and those published before 2010 (this
resulted in 470 papers). Second, we checked if the tags and
keywords contained any of the keywords identified in the
search string (first searching for the keywords "software",
"programs", and "systems", which resulted in 236 remaining
papers, and second using the "test" or "testing" keywords,
which resulted in 193 results). Third, the title and the abstract
were examined to remove papers using the exclusion criteria
(this step resulted in 155 papers). We checked the papers’
full text in the next step and arrived at our final set of 29
papers. Quality assessment was the last step and the set of
papers was reduced to 17 papers. The search process had not
come to an end yet. The first steps of the process were done
separately; however, we had a few papers that we found
necessary to examine in pairs. These were the papers that
were not clear, and we named this process the "excluded-
papers review". These papers were not excluded right away;
instead, they were kept apart for further examination. The
full text of these papers was read in pairs, followed by a
discussion of whether the papers were relevant to our study
or not. This process concluded with four more papers to add
to the set. Therefore, the final set consisted of a total of 21
papers.

3 Literature Review Results
This section presents the results from the analysis of the 21
primary papers included during the study selection process
(Table 2).

3.1 Description of the Primary Studies
P1: [12]: In this paper, the authors investigate how the au-
tomated test cases compared to the manual tests in terms
of cost and effectiveness. The main area of their investiga-
tion is the control software used in the industry. They test
61 real-world industrial programs written in IEC 61131-3.
The automatically generated test cases reach a similar code
coverage with the manually written tests, but they generate
the test cases almost 90% faster.
P2: [13]: In this paper, the authors investigate specification
and implementation-based testing on two programs of safety-
critical software systems, written in IEC 61131-3 language.
Their goal is to measure the efficiency and effectiveness of
fault detection by conducting a controlled experiment using
a test written by twenty-three master students of software
engineering.
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Database Search

Result: 787 papers

Removal of
Duplicates

Result: 682 papers

 Inclusion/Exclusion
Criteria

Result: 193 papers

Title and Abstract
Review

Result: 155 papers

Full-Text Review

Result: 29 papers

Quality Assesment

Result: 17 papers

Manual Search and
Snowbaling

Result: 21 papers

Figure 1. Number of studies during the study selection process.

Table 2. The final set of studies included during the study
selection process

Title Type Method Type of comparison
P1: A Comparative Study of Manual and Automated
Testing for Industrial Control Software

Conference
paper Case study automated test

generation and manual testing
P2: A Controlled Experiment in Testing of
Safety-Critical Embedded Software

Conference
paper Experiment automated test

generation and manual testing
P3: A Replicated Study on Random Test Case Generation
and Manual Unit Testing: How many bugs do
professional developers find?

Conference
paper Experiment automated test

generation and manual testing

P4: A Test Automation Language Framework for
Behavioral Models

Conference
paper Experiment automated test

generation and manual testing
P5: An Empirical Investigation on the Readability of
Manual and Generated Test Cases

Conference
paper Experiment automated test

generation and manual testing
P6: An Experiment Design for Validating a Test Case
Generation Strategy from Requirements Models

Conference
paper Experiment model-based testing

and manual testing
P7: Assessing model-based testing: An empirical study
conducted in industry

Conference
paper Case study model-based testing

and manual testing

P8: Augmenting Field Data for Testing Systems Subject to
Incremental Requirements Changes

Journal
article

Industrial
Case study model-based testing

and manual testingExperiment
P9: Comparing Model-Based Testing with Traditional
Testing Strategies: An Empirical Study

Conference
paper Experiment model-based testing

and manual testing
P10: Do Automatically Generated Test Cases Make
Debugging Easier? An Experimental Assessment of
Debugging Effectiveness and Efficiency

Journal
article Experiment automated test

generation and manual testing

P11: Does Automated Unit Test Generation Really Help
Software Testers?

Journal
article Experiment automated test

generation and manual testing
P12: Empirically Evaluating the Quality of Automatically
Generated and Manually Written Test Suites

Conference
paper Experiment automated test

generation and manual testing
P13: Experience Report: How is Dynamic Symbolic
Execution Different from Manual Testing? A Study on
KLEE

Conference
paper Experiment automated test

generation and manual testing

P14: FormTester: Effective Integration of Model-Based and
Manually Specified Test Cases

Conference
paper Experiment model-based testing

and manual testing

P15: How do Developers Test Android Applications? Conference
paper Survey automated test

generation and manual testing
P16: Introducing Test Case Derivation Techniques into
Traditional Software Development Obstacles and
Potentialities

Conference
paper Case study model-based testing

and manual testing

P17: On the Effectiveness of Manual and Automatic Unit
Test Generation: Ten Years Later

Conference
paper

Case study automated test
generation and manual testingExperiment

P18: One Evaluation of Model-Based Testing and its
Automation

Conference
paper Case study model-based testing

and manual testing
P19: Random Test Case Generation and Manual Unit
Testing: Substitute or Complement in Retrofitting Tests
for Legacy Code?

Conference
paper Experiment automated test

generation and manual testing

P20: Skyfire: Model-Based Testing with Cucumber Conference
paper

Industrial
Case study

model-based testing
and manual testing

P21: Test scenario generation for web application based on
past test artifacts

Journal
article

Case Study automated test
generation and manual testingExperiment

P3: [37]: In this paper, the authors describe the comparison
of the tool-supported test case and manually written unit
tests. This paper is a replication of an empirical study that de-
scribes an experiment involving professional engineers with
several years of experience in the software industry com-
pared to the students from the initial study and an extended
time limit. The paper investigates the differences between
students from the initial study and professionals from this
study and the extended time limit impact.

P4: [29]: In this paper, the authors present a language frame-
work that creates mappings for concrete tests automatically
based on abstract tests. They address three issues: creating
mappings and test value generation, transforming graphs,
and using coverage criteria to generate test paths and solving
constraints, and generating real tests.
P5: [17]: In this paper, the authors compare the readability
of manually written test cases and the classes they test and
further, examining the readability of automatically generated
test cases. An exploratory study is conducted to obtain the
results. The results suggest that developers often neglect
readability and that the automatic test cases are much less
readable in general than those written manually.
P6: [16]: In this paper, the authors propose a plan and design
an experiment to analyze a test case generation strategy in
order to evaluate its completeness from the point of view
of the tests, which will use the Communication Analysis-
based requirements model. The testers apply two different
methods for obtaining the test cases manually; the first is
without derivation rules, and the second is using transfor-
mation rules. After obtaining the manually derived test case,
a comparison against the test cases of automated generation
using transformation rules is made.
P7: [39]: In this paper, the authors compare manually writ-
ten test cases with model-based testing on two different
versions of a web-based data collection and review system.
The experiment was conducted with developers who tested
each software version, having identical testing goals and re-
sources, but the technique used was different. The first devel-
oper used manual testing, and the second used model-based
testing with automated test generation tools. The authors
compare the effectiveness of defects found and efficiency in
terms of effort spent to complete each process.
P8 [9]: In this paper, the authors propose an automated
model-based approach to generate test inputs for testing
new data requirements by modifying the old data.
P9: [30]: In this paper, the authors design and conduct an
empirical experiment to compare manual ad hoc testing with
model-based testing with the aid of the TaRGeT tool. The
metrics measured by these experiments are the time spent
by testers and the number of found defects. These metrics
were analyzed for their correlation with testers’ experience
and the complexity of the system under test. The system
under test is a real-life project with 54 experimental units,
27 use cases, and 82 new defects detected.
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P10: [6]: In this paper, the authors conduct three experi-
ments with five replications with a total of 55 human sub-
jects to evaluate the impact that properties of automated
tests such as readability and understandability, have on the
effectiveness and efficiency of debugging. They conducted
two experiments using automation tools such as Randoop
and EvoSuite, while the third experiment explores the code
identifiers role in test cases since this is the main difference
between the two types of test cases.
P11: [14]: In this paper, the authors perform two controlled
experiments with 97 human subjects to compare the manu-
ally written test cases with test cases generated automatically
with the aid of tools in terms of coverage, number of bugs,
number of tests, effectiveness, and mutation.
P12: [26]: In this paper, the authors compare test suites gen-
erated from automated test generation tools with test suites
written manually by the developers in terms of complexity
and quality. This empirical study examines ten programs
with existing test suites and creates automatically generated
test suites. The test suites are measured in terms of code
coverage and fault detection. The tool used for this type of
testing are CodePro and EVOSUITE.
P13: [45]: This study compares a Dynamic Symbolic Execu-
tion (DSE) tool, KLEE, which is an automated test generation
tool with the manually generated test suites on several GNU
CoreUtils programs. This paper covers different aspects such
as efficiency, coverage, size of the test, and readability.
P14: [10]: This paper compares tests generated from amodel-
based testing tool, FormTester, with the manually generated
tests. The study is conducted testing several online appli-
cations, both online and offline. While manual testing is
performed under two projects, small and one medium to
large size, the FormTester is considering only one project
with a bigger number of LOC.
P15: [42]: This paper reports the results of a survey that
compares different android testing techniques. The survey’s
focus is to highlight the developers’ preferences for the de-
sign and test generation, manually and automatically, and
their perceptions of different metrics. In mobile apps, the test-
ing is usually performed manually, which makes it a costly
activity.
P16: [46]: In this paper, the authors compare a model-based
testing tool, TesMa, with manual testing. They compare the
approaches in terms of effectiveness and cost. They are faced
with two challenges. The first one is that describing the de-
sign model in the unfamiliar modeling tool or complicated
notations will be difficult, and second, for any specific do-
main, multiple viewpoints of test cases should be considered.
The system under testing is a traditional one, developed
manually.
P17: [41]: This paper is a replication of a previous study
conducted ten years ago in which the authors compared
automated test generation tools with the manually written
test suites. The authors used the same tools and experimental

environment as the former authors did, but with the updated
version, including some new tools released in the last years.
P18: [35]: In this paper, the authors evaluate several test
suites in terms of error detection, model, and implementation
coverage. This paper makes a comparison of automatic and
manual testing, but it goes further, comparing these suites
when they use models and when they do not use models.
P19: [36]: In this paper, the authors conduct an experiment
between 48 masters students that have 60 minutes to write
manual unit tests and an automated test generation tool
called Randoop, which generates an amount of tests in only
2 minutes. After the test is generated, they run the tests to see
which techniques are more effective, have greater coverage
and fault detection.
P20: [28]: In this paper, the authors talk about amodel-based
testing tool, Skyfire, which can automatically generate effec-
tive Cucumber test scenarios to replace manually generated
test scenarios. The system under test is Roc, written in Java,
and serves as an infrastructure for big data applications. The
developers write Cucumber mappings from tests generated
by Skyfire, and they present the implementation and design
of the former.
P21: [27]: In this paper, the authors focus on Web appli-
cations and their Web pages and view a test scenario as
a sequence of steps that are taken to transition from one
Web page to another. They compare a tool they have created
with the manually generated test from several engineers and
evaluate their approach by comparing it with manual gener-
ation and two open-source tools and making a qualitative
evaluation by experienced developers.

3.2 Experimental Characteristics and Reported
Measurements

The final set of 21 papers includes 17 conference papers
and four journal papers. Regarding the empirical methods
used to obtain the results, we found 15 papers that con-
ducted experiments, eight papers used a case study, and only
one performed a survey. In addition, 13 papers compared
code-based automated test generation with manual testing,
whereas eight papers made this comparison with model-
based testing. Most of the human subjects were students,
followed by researchers, developers and testers.
The programs under test are mainly open source in the

majority of the papers, with just a few studies focusing on
proprietary and commercial systems. Most papers use more
than one program or class to run their tests on. The main
targeted programming language is Java, with only a few pa-
pers targeting testing for different programming languages
in industrial environments. The size of the programs ranges
from hundreds to tens of thousands of lines of code.

In most cases, the type of defects used for fault detection is
seeded defects, with just a few studies focusing on naturally
occurring faults.
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In addition, just a minority of papers included report statis-
tics such as effect sizes and p-values. These papers produce a
more specific set of results regarding different metrics such
as mutation score, coverage, and the number of tests. Four of
the papers which report statistical data were used to perform
themeta-analysis. Other papers that do not report effect sizes
but report other statistics can be used to draw several more
specific conclusions. We evaluated papers in the final set
that provided valuable data and information to answer our
research question. They report empirical methods of high
quality with valuable results.

3.3 Literature Review Results
The overall results show that most of the studies do not re-
port a significant difference between manual and automated
test generation for all metrics considered (studies do not
show any statistical significant difference when looking at
p-values for fault detection, code coverage, and cost metrics2.
On the other hand, when comparing p-values for specific
metrics, the results suggest that automated test generation
outperforms manual test design in terms of the number of
tests, testing time and coverage achieved. One metric that
shows that manual testing is outperforming automated test
generation is related to the readability of the resulting test
cases.

Regarding fault detection effectiveness (for both injected
faults and naturally-occurring faults), 14 out of 21 papers
report that manual tests outperform automated generated
tests. Automated test generation outperforms manual test
design in only two studies.

Although some of these results are significant, these calcu-
lations typically rely on different contexts, tools, SUTs, and
statistical model assumptions. Drawing reliable conclusions
from these results is a difficult task, but we are indicating
that the research in automated test generation and software
testing must improve its empirical reporting practices to
improve these much-needed literature review studies. In
the next section, we show the results of the meta-analysis
process and the challenges faced during this endeavour.

4 Meta-Analysis Results
We performed the meta-analysis on four out of the twenty-
four studies identified as our primary studies: P1 [12], P2 [13],
P10 [6] and P11 [14]. A crucial aspect of each meta-analysis
is that all the primary studies must use the same effect size.
Keeping this in mind, each paper was carefully examined,
and we selected only the papers which reported statistical
values suitable for our analysis and more importantly, the
same effect size. We extracted the p-values and the effect
sizes of each paper. We noticed that two of the four papers

2We use a traditional statistical significance limit of 0,05

reported two replications of experiments, so we considered
the values of each experiment separately.

The studies were not dependent on previous studies; there-
fore, we excluded the possibility of having a multi-level meta-
analysis. We found two types of data reported in our set of
primary studies. The first type of data was “pre-calculated
effect size data” and the second was “raw effect size” data.
The pre-calculated effect size data is straightforward, and
we only reported it on the table of the effect sizes. Raw ef-
fect size data, on the other hand, comes in different formats.
First, the “standard effect size data” reports values such as
mean, standard deviation, and sample size. The second type
is event rate data, which reports the number of events on the
control and intervention groups and the number of groups
in each trial. The third type of raw effect size data is the inci-
dence rate data. This set of data includes values such as the
number of events and the person-time at risk. It was easily
understandable that incidence rate data was the kind of data
that we could find in our studies since the set of our primary
studies is related to software engineering. We examined the
papers with raw effect size data and identified that the data
in these papers belonged to the standard effect size data thus,
mean, standard error, and the sample size of each technique
was extracted.

The effect size is often referred to as Cohen’s d, which
was the case in our primary studies, which reported pre-
calculated effect sizes (i.e., Cohen’s d estimator). Because all
the primary studies must use the same effect size, and the
other studies reported effect sizes based on Cohen’s d, we
calculated the effect sizes for the studies that only reported
raw effect size data.
We used the mean of each group, control and treatment,

the standard deviation of each group, and the sample size.
This calculation was made for all four papers, and the values
were reported in the table. The core of every meta-analysis
is pooling the effect sizes in order to get one overall effect
size estimate of the studies [18]. When pooling the effect
sizes, we can use two approaches, the Fixed-Effect Model
or the Random-Effects Model [5]. The calculations used for
the meta-analysis do not rely on the effect size metric used;
they rely on the model used [24]. There is a considerable
debate on which one of the approaches should be used. The
fixed-effects model assumes that all studies, along with their
effect sizes, derive from a single homogeneous population
[5]. In practice, this is not realistic since the sample size or
its methods can vary, and in this case, we cannot consider
that the sample comes from a homogeneous population. In
our study, we identified as sample size the various programs
and systems under test. Since the programs under test in
our studies are different in terms of programming languages,
even though we did not have a significant number of effect
sizes to pool, we decided to proceed with the random effect
size approach. We want to explain and defend the assump-
tion that variance is higher than when the results are derived
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from a single population [40]. The random effect size model
demonstrates that there is another reason for the variance
to be present besides the sampling error, and this is the fact
that studies do not derive from a single population; they are
gathered from an enormous population [18]. However, there
is a drawback of using this method because this method
gives more attention to small studies, which are considered
more bias-prone than the larger studies. In order to have a
pool of effect sizes to get one overall effect size estimate of
the studies, besides the effect size values from each study, it
is necessary to have the Standard Error of each study as well.
The standard error uses the standard deviation to measure
the accuracy of a sample distribution representing a pop-
ulation. It depends both on the sample standard deviation
as well as on the sample size. The standard error value de-
creases when the sample size increases, but this event does
not affect the effect size value. The studies we selected for
the meta-analysis did not directly report the Standard er-
ror; they reported only the effect size and the p-value. The
studies reported effect size values for the following metrics:
Fault detection (in terms of number of bugs detected and
mutation score), number of tests, debugging effectiveness
and efficiency, and coverage – code, statement, branch, and
method. In the end, the only metrics we could perform a
meta-analysis for all papers are decision coverage, mutation
score, and the number of test cases.

4.1 A Meta-Analysis on Branch (Decision) Coverage
We performed the first meta-analysis on three studies [12]
[13] [14]. First, we pooled the effect sizes to get an overall
effect size estimate. The “meta” library was used to com-
plete the task. The analysis was easy to code in R, but there
were three parameters we had to take care of. The first is
the “between-study-variance estimator”, 𝜏2. This is the ef-
fect size variance across the study population and reflects
the variance of the true effect sizes. Several estimators are
available, but as other studies suggested [18], we chose the
Sidik-Jonkman estimator (“SJ”) and the HKSJ method for the
necessary adjustments.

Our meta-analysis’s second step is to visually present the
data using forest plots (as shown in Figure 2). There are sev-
eral statistics present in the forest plot. Besides the study
label, effect size TE, and standard error SE, we show several
different values such as the weight of each study, the stan-
dard mean difference, and the 95 confidence interval. The
red boxes show the individual effect size of each study, while
the black diamond shows the pooled effect size. The bigger
the box means the study weighted more because the sample
size was more significant. We can see the more considerable
weight in the first study since the sample size was more
significant. The first study had a sample size of 61 programs.
The horizontal line across the box of each study illustrates
the length of the confidence interval. In this case, the longer
the line across the box of each study, the less accurate the

study findings are. Again, we can see that the findings of the
first study are accurate. Consequently, the horizontal line
is minimal. The same applies to the width of the diamond.
The wider the diamond, the less accurate the meta-analysis
is. We can see from the plot, the width of the diamond is
small. Therefore the results of this meta-analysis are reliable.
The vertical line is the line of no effect, which means this is
the position where there is no apparent difference between
the two techniques. If the outcome of interest is unfavorable,
the results on the left encourage the intervention over the
control group meaning the outcome of interest, which in our
case is the coverage, is lower in the intervention group com-
pared to the control group. In our case, we consider random
testing as treatment and automated and manual testing as
the control group. If the outcome of interest is advantageous,
the results on the right encourage the treatment over the
control group, meaning the outcome of interest appeared
more often in the intervention group than the control group.
In our forest plot, we notice that all the studies appear on
the right side of the vertical line. These results suggest that
the manual or automated testing techniques showed better
decision coverage than the random testing. The pooled effect
size sits at 0.2 with a 95% confidence interval between -0.22
to 0.62. The effect size is small, meaning that the difference
is trivial.

Figure 2. The graphical representation of the pooled effect
size, known as forest plot, along with several statistical data.

4.1.1 Heterogeneity. In a meta-analysis, heterogeneity
refers to the variation in study outcomes between studies.
Between studies, heterogeneity is one of the biggest concerns
when doing a meta-analysis. Meta-analysis has often been
criticized for combining studies that are very different. High
heterogeneity within studies means that the studies have
nothing in common, and it is meaningless to pool their effect
size. Therefore, we need to check that the effects sizes of each
study are similar, and if the variance is present, it happens
only due to randomness. In other cases, studies report ex-
treme effect sizes, which were included in the meta-analysis.
These values are called outliers, which can distort the overall
effect size of the study. Three types of heterogeneity mea-
sures assess the scale of heterogeneity. The most common
and classical method to measure heterogeneity is Cochran’s
Q. Higgin’s & Thompson’s I2 is another method for calculat-
ing the heterogeneity between studies. It is the percentage of
variability of the effect sizes which is not caused by sampling
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error. The third measure is tau squared T2. We see the output
of pooling effect sizes already gives us all three measures
of heterogeneity: 𝑇 2, as we can see from 𝑡𝑎𝑢2, has a value
of 0.0329, 𝐼 2 is reported under 𝐼 2 and the value reported is
22.6% with a confidence interval between 0.0% and 88.2%
and Cochran’s Q which is reported as Q under the test of
heterogeneity has a value of 3.88 and a p-value equal to 0.275.
The result suggested that there were no outliers among

our studies. Therefore we can confirm once again that the
results are robust. However, as we mentioned before, outliers
are not the only reason that may compromise the robustness
of the pooled effect size outcome. Influence analysis is an
analysis that checks if the pooled effect size relies heavily
on a single study.

Figure 3. A graphical representation of influence analysis
for decision coverage.

Figure 3 presents how the results would have changed if
one of the studies were omitted. We can see that if excluded
from our meta-analysis the Enoiu et al.[12] study, which
is the study with the most significant weight, the pooled
effect size would have changed from 0.20 to 0.52. Thus, we
can confirm that this is the study with the most significant
influence on the analysis.

4.2 A Meta-Analysis on Mutation Analysis
A meta-analysis on the mutation score was performed on
two studies [12] [14]. Two studies are not enough to perform
a meta-analysis, but the second study is considered two dif-
ferent studies since the experiment is conducted twice. Again,
we have named it Fraser et al. [14] (I) for statistical values de-
riving from the first experiment, and Fraser et al. [14] (II) for
statistical values deriving from the second experiment. For
the experiments that do not report overall statistics, we took
the average statistics reported for the tested systems. For the
first study, the programing language is IEC61131-3, and for
the second study, which reported two experiments, it is Java.
For the “between-study-variance estimator” 𝜏2, we chose the
Sidik-Jonkman estimator (“SJ”) and the HKSJ method for the
necessary adjustments. The mean differences were chosen

as the summary measure, and the R code was executed. We
visualize the results on a forest plot for a clearer presentation
in Figure 4.

Figure 4. The graphical representation of the pooled effect
size, known as a forest plot, along with several statistical
data for mutation score.

The red boxes, which represent the weight of each study,
show that the first study Enoiu et al. [12] had the most sig-
nificant weight since the sample size is larger than the other
studies, with a number of 61 subject programs. The hori-
zontal line suggests the most accurate study is the first one
since the line is shorter. The black diamond representing the
pooled effect size of all studies has a small width, suggesting
that the meta-analysis results can be considered reliable. The
vertical striped line represents the line of no effect. Like the
first meta-analysis, we consider random testing as treatment
and automated and manual testing as the control group. The
forest plot shows that all the studies are on the right side of
the vertical line, meaning that manual or automated testing
shows a higher mutation score than random testing. The
pooled effect size shows a value of 0.53, with a 95% confi-
dence interval from 0.27 to 0.79. This is a medium-size value,
meaning that the difference is noticeable.

4.2.1 Heterogeneity. The next step is to calculate the
between-study heterogeneity. R Studio calculates the het-
erogeneity by default when we pool the effect sizes. The
outcome reports the values of all three measures of hetero-
geneity:𝑇 2 has a value of 0.0004, 𝐼 2 reported a value equal to
0.0% with a confidence interval between 0.0% and 88.2% and
Cochran’s Q has a value of 0.11 and a p-value equal to 0.945.
These values suggest that we have a low to no heterogeneity
among our studies. The results are robust, which can also be
used in future scenarios.
Figure 5 suggests the results of the first study has the

strongest influence on the effect size on the pooled effect
size, yet, examining the chart from the table, we could con-
firm that omitting any of the studies, the pooled effect size
remains almost in the same interval.

4.3 A meta-analysis on the number of tests
Meta-analysis using the number of tests was performed on
three studies [12] [13] [14]. The third study is considered
two different studies since the experiment is conducted once
and replicated with other participants. We have named it
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Figure 5. A graphical representation of influence analysis
for mutation score.

Fraser et al. [14] (I) for statistical values deriving from the
first experiment, and Fraser et al. [14] (II) for statistical values
deriving from the second experiment. The average of the
statistics reported for the systems under test was calculated
for the experiments that do not report overall statistics. We
visualize the results on a forest plot for a clearer presentation
in Figure 6.

Figure 6. The graphical representation of the pooled effect
size, known as forest plot along with several statistical data
for the number of tests.

The red boxes, which represent the weight of each study,
show that the first study Enoiu et al. [12] had the most sig-
nificant weight since the sample size is larger than the other
studies, and the number of subjects was 61. The horizontal
line suggests the most accurate study is the first since the
line is shorter. The black diamond representing the pooled
effect size of all studies has a small width, suggesting that
the meta-analysis results can be considered reliable. The ver-
tical striped line represents the line of no effect. We consider
random testing as treatment and automated and manual test-
ing as the control group like the first two meta-analyses.
The forest plot shows that all the studies are on the right
side of the vertical line, meaning that manual or automated
testing shows a larger number of tests than random testing.
The pooled effect size shows a value of 0.57, with a 95 confi-
dence interval from 0.37 to 0.76. This is a medium-size value,
meaning that the difference is noticeable.

4.3.1 Heterogeneity. R Studio calculates the heterogene-
ity by default when plotting the effect sizes. The outcome

reports the values of all three measures of heterogeneity: 𝑇 2

has a value of 0.0026, 𝐼 2 reported a value equal to 0.0 with a
confidence interval between 0.0 and 11.7 and Cochran’s Q
has a value of 0.52 and a p-value equal to 0.914.
The extreme-size cases and outliers’ analysis among the

studies did not report any value. We did the influence analy-
sis, which shows the study which has the most significant
impact on the overall effect size and presented it graphically
in Figure 7.

Figure 7. A graphical representation of influence analysis
for mutation score.

The second study has the biggest influence on the overall
effect size. Omitting this study, the overall effect size value
increases from 0.57 to 0.62, with a 95 confidence interval of
0.46 to 0.77.

5 Discussion
In this section, we present an outline of the collected evidence
regarding our analysis. This information was collected when
performing the literature review (i.e., short summary an
collected statistics) and meta-analysis.

Based on the literature review results, it seems that man-
ual tests achieve higher mutation and fault detection scores
when compared with automated test generation. The vast
majority of the papers report that automated tests are slightly
worse in fault detection than manual testing, while manual
tests are highly effective in detecting specific types of faults.
The test suite size is reported to impact fault detection; how-
ever, when test suites with equal size were used, the fault
detection achieved by automated tests was still not showing
improvements compared to manual tests. When the code is
hard to cover and the mutants are hard to kill, using man-
ual tests shows better results, as reported in several studies.
Even though manual tests achieve higher fault detection, the
automatically generated tests expose complex scenarios. In
addition, manually written tests obtain better fault detec-
tion scores even compared to pure random testing. However,
when manual and automated tests can detect similar faults,
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the preferred technique would be the latter since the tests
are generated faster.

We observed benefits in terms of cost savings in terms of
testing time. For manual testing, all costs are related to hu-
man effort, whereas automated test generation costs involve
both machine and human resources. Based on the results
reported, the creation, execution, and reporting costs are
very low when using automatic test generation tools com-
pared to manual testing. On the other hand, the relative
difficulty of understanding each created test increases the
cost of checking the results for automated test generation.
Thus, even though automated tests often result in more code
lines than manual tests, the test generation tools can produce
high-quality test suites with reduced costs and human effort.

In our meta-analysis, results suggest that manual and
code-based automated test generation techniques are bet-
ter than random testing in terms of injected faults detected
(using mutation) and coverage achieved.

Overall, the validity of the included studies and the limited
number of studies included in the meta-review threaten the
validity of our results. Even if the results of the meta-analysis
are limited, the primary purpose of conducting this studywas
to review the literature and identify the main requirements
for conducting consistent experiments in comparing manual
test design and automated test generation.

We recommend researchers performing empirical studies
on automated test generation to include statistical values
suitable for a meta-analysis when comparing their tech-
nique with manual test creation (e.g., the p-values and
the effect sizes)

5.1 Limitations
There are two types of limitations present in our study: the
primary studies and the review levels. The primary studies’
quality, the variety of the research questions these studies
are posing, the empirical methods used, and the study par-
ticipants are some of the main concerns regarding the limi-
tations of the primary studies. The participants chosen for
the empirical methods were primarily students. This factor
could directly impact the outcome of these primary stud-
ies. In addition, only a few of them report statistics that are
much needed to perform a meta-analysis. In our case, we
found twenty-one primary studies with only seven reporting
statistics, and from this set of seven papers, we could com-
bine statistical data for our meta-analysis for only four of
them. Also, the setup of these studies was different in terms
of the conditions and the tools being used. Regarding the
limitations at the review level, when performing the search,
deciding about inclusion and exclusion, and making various
decisions during synthesis, the results could be influenced
by bias. We tried to minimize these as much as possible, with
several reviews and discussions for each paper.

6 Conclusions and Future Work
Our literature review results suggest that automated test gen-
eration outperforms manual testing in terms of cost, code
coverage, and the number of tests created. On the other hand,
in most of the studies, manually written tests achieve better
fault detection on average. When using injected faults, man-
ually written tests seem to also achieve a higher mutation
score than automatically generated tests. Our results also
show that few studies report the needed statistics to perform
a meta-analysis. More studies are needed to structure the
evidence in this area.
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