
An Evaluation Framework for Modeling Languages
Supporting Predictable Vehicular Software Systems

Enxhi Ferko, Igli Jasharllari, Alessio Bucaioni, Mohammad Ashjaei, Saad Mubeen
Mälardalen University, Västerås, Sweden

name.surname@mdh.se

Abstract—Handling the software complexity of modern ve-
hicular systems has become very challenging due to their non-
centralized nature and real-time requirements that they impose.
Among many software development paradigms for these systems,
model-based development excels for several reasons including its
ability to verify timing predictability of software architectures of
these systems using pre-runtime timing analysis techniques. In
this work, we propose a comprehensive framework that captures
the timing related information needed for the modeling languages
to facilitate these timing analyses. We validate the applicability
of the framework by comparing two modeling languages and
their respective tool-chains, Rubus-ICE and APP4MC, that are
used for software development in the vehicle industry. Based
on our results, both modeling languages support the design and
analysis of vehicle software, but with different. Both modeling
languages support time-, event- and data-driven activation of
software components and modeling of single- and multi-rate
transactions. Amalthea targets applications on single nodes with
multi-core architectures while RCM focuses on single-core single-
node and distributed embedded systems with ongoing work for
supporting single-node multi-core architectures. In comparison
to Amalthea, RCM provides a generic message model which can
easily be re-modeled according to protocol-specific properties.

Index Terms—Model-based software development, model-
based design, model-based verification, modelling languages,
Rubus Component Model, Amalthea, automotive software, real-
time systems, timing analysis, timing verification.

I. INTRODUCTION
The software in modern vehicles consists of millions of

lines of code that run on several tens of Electronic Control
Units (ECUs) [1], [2]. According to a recent study from Jaguar
Land Rover [3], the size of vehicle software will soon reach
1 billion lines of code. To cope with the increasing size and
complexity of the software during its development, researchers
and practitioners have successfully adopted emerging software
development paradigms, including model-based software de-
velopment [4]. Model-based software development revolves
around mete(models) [5], [6] and model transformations [7].
Among numerous benefits of this paradigm is its ability to
support model-based timing verification of the software archi-
tectures. This is crucial in the vehicle industry as the systems’
developers are required to verify the timing predictability of
these systems. A system is considered timing predictable if it
is possible to prove at the design time that all the specified
timing requirements are satisfied [8], [9].

In recent years, several modeling languages and method-
ologies that are supported by the model-based timing analysis
have been developed, e.g., the Rubus Component Model
(RCM) [10] and Amalthea [11]. However, these languages are
characterized by different approaches towards the modeling
of timing information (timing properties, requirements and

constraints). As a result, the timing information that a timing
analysis tool requires as an input may be partially or fully
extractable from the software architectures that are modeled
with these languages. Consequently, timing analysis of the
software architectures that are modeled with the languages that
have limited expressiveness for timing information cannot be
supported without making over-estimated assumptions.

To date, few researches have focused on characterizing
and comparing modeling languages with respect to timing
perspective as most of them focus on other extra-functional
properties and requirements. In this context, it would be ben-
eficial to both researchers and practitioners to have means for
classifying and categorizing modeling languages with respect
to modeling timing information and analyses they enable. Such
a classification can not only establish a basis for comparing the
timing modeling capabilities of the languages, but also identify
which of the modeling languages would be more appropriate
for a specific vehicular application. We address the follow-
ing research problem: How can we categorize and compare
modeling languages based on a theoretical framework con-
sidering their timing expressiveness? The main contribution
of this work is a comprehensive framework for characterising
modeling languages supporting timing analysis of software
architectures of vehicular systems. To show the applicability
of the proposed framework, we apply it to categorize two
industrial modelling languages widely used in the vehicular
domain, namely the RCM [10] and Amalthea [11] and their
respective tool-chains Rubus-ICE [12] and APP4MC [13].

II. BACKGROUND AND RELATED WORK

A. Rubus Component Model (RCM)

Rubus is a collection methods and tools for model-based
software development of real-time embedded systems. RCM,
core of the Rubus approach, is a modelling language. It is
developed by Arcticus Systems1 in co-operation with partners
from academia and industry. RCM has been used in the
vehicular domain for more than 25 years for the development
of in-vehicle control functionalities [10]. The Rubus-ICE tool
suite consist of modeling and analysis tools, code generators
as well as run-time infrastructure for the modeled applica-
tions. Within Rubus-ICE, the applications are developed and
described graphically as inter-connected components, called
Software Circuits (SWCs). The SWCs are characterized by
run-to-completion semantics meaning that, upon triggering, an
SWC reads the input data, processes it according to the internal

1Arcticus Systems - https://www.arcticus-systems.com/



behavioral logic and provides an output. Figure 1 illustrates a
multi-rate data chain in RCM which consists of 3 SWCs.

Fig. 1. Multi-rate data chain modeling in RCM.

B. Amalthea model and APP4MC

APP4MC is an open-source European project under
Eclipse Public License whose objective is to provide a
tool-chain for the engineering of real-time multi-core em-
bedded systems [13]. It originates from the Amalthea and
Amalthea4Public ITEA2 research projects [14]. It is still under
development as it aims to cover all development cycles of
software starting from design to verification and validation
of these systems. Amalthea can be seen as an extension
to the AUTOSAR [15] standard from various aspects and
is envisioned to be a standard for multi-core real-time em-
bedded systems in the vehicular domain [16]. To date, it
provides the design and run-time infrastructure of real-time
embedded system applications. Systems are designed based
on the Amalthea model [11] where the basic hierarchical
element is called Runnable. A Runnable encapsulates the basic
functions. They might be grouped in clusters and mapped to
a task which is activated by Stimuli. Systems are designed as
interconnected components, but yet not graphically supported.
Figure 2 illustrates how this is concretely done in Amalthea.

Fig. 2. Runnables and Tasks modeled with Amalthea.

C. Related Work
The research conducted in [4] and [17] presents an overview

of the current modeling languages and their respective tool
support in the vehicular domain. A comprehensive description
regarding the timing modeling and timing analysis is given.
The modeling languages and tools are grouped based on the
four levels of abstractions for vehicular embedded systems
development. In comparison to these works, we aim to de-
velop a comparative evaluation framework for the languages
based on their expressiveness to model timing information on
the software architectures and timing analyses they enable.
A framework for comparing real-time modeling languages
based on different aspects such extension capabilities and tool
support is presented in [18]. Despite we believe that the prop-
erties in [18] are very important when choosing a modeling
language, in this work we aim to develop a comprehensive
framework with in-depth investigation of their capabilities for
describing the timing behavior of vehicular software systems.

Another comparison framework, developed in [19], takes
into consideration mainly the functional, but also non-
functional aspects of modeling languages. It identifies the
aspects of the software architecture that should be modeled by
an architectural language. An extension of this framework is
presented in [20], which incorporates several other features of
hardware architectures and non-functional characteristics such
as timing and dependability for safety-critical systems. Even
though the framework is extended, modeling of timing infor-
mation is not the primary focus of the work in [20]. Whereas,
we focus on filling this gap by providing the minimal criteria
for a modeling language to describe the timing behavior of a
vehicular software system and enable its timing analysis.

A survey of component-based modeling languages for em-
bedded systems and their classification framework is presented
in [21]. The survey provides a minimal criteria to classify
several domain-specific modeling languages. In comparison
to this work, we aim at classifying and comparing modeling
languages with respect to their expressiveness to support mod-
elling of timing information and provision of timing analysis
in the vehicular domain only. The work in [22] defined a set
of features and capabilities that a modeling language should
support to enable timing analysis. The scope of this work is
limited to two specific modeling languages. In comparison, we
present a generic classification framework.

To the best of our knowledge, this work represents the first
attempt to categorise and compare modeling languages for
vehicular software systems based on their timing expressive-
ness, which is responsible for enabling timing analysis of the
software architectures with efficiency and precision.

III. THE CLASSIFICATION FRAMEWORK
This section presents a comprehensive framework for cat-

egorizing and comparing different modeling languages based
on their expressiveness to model timing information on the
vehicular software architectures. The framework is graphically
illustrated in Figure. 3. The top-level entities in this framework
include the timing model and timing verification.

Fig. 3. Classification Framework.

A. Timing Model
The timing model is a crucial input for model-based timing

analysis tools. It comprises timing properties and requirements
from each node (ECU) and network in the vehicular system.

1) Timing Properties: The timing properties are catego-
rized by node properties and network properties. The node
properties are defined based on the model in [23], which can
be represented by the following tuple.

τ = {C, T,D, P, J,O,B,R} (1)



Above, C represents the worst-case execution time (WCET)
that a task takes to execute on a particular hardware without
considering any interference. A task can be activated peri-
odically or sporadically with the minimum inter-arrival time
denoted by T . Moreover, a deadline D is defined as the
time that the task should finish its execution in order to not
disrupt the service (soft deadline) or lead to a catastrophe (hard
deadline). A task has a priority which indicates the importance
of the task shown by P . The period is defined either manually
or using a priority assignment algorithm, such as the rate
monotonic priority assignment. The time difference between
the earliest and latest activation time of the task is called jitter,
which is shown by J . An offset O can be set for a task which
indicates the time that the task is activated after its arrival. A
task can be blocked by lower priority tasks due to occupied
shared resources and the maximum blocking time is denoted
by B. Finally, the worst-case response time of the task R is the
maximum difference between the finishing and arriving time
considering the interference and blocking. Besides the above
timing properties, a node in a distributed embedded system
can contain several transactions with multiple tasks. Therefore,
additional information related to the transactions belonging to
a node should be provided. In multi-core architectures, where
nodes are partitioned in two or more cores, the basic properties
for nodes remain the same [24] [25]. However, additional run-
time information is needed for example task affinity properties.

A distributed embedded system contains one or more net-
works. A network is usually characterized by a data trans-
mission speed and the communication protocol. Similar to the
tasks within a node, a message in a network has a set of
properties, which are specified in the following tuple.

m = {S,C, T,D,O, P, J,B,R} (2)

In the above tuple, a message contains a payload, which
is the actual data to be transferred in the network, that is
defined by S. Depending on the network speed, the message
transmission time can be derived from the payload size and
the message overhead, which is modeled by C. Similar to
tasks, messages can be sent periodically or sporadically that
is shown by T , while the deadline for the message delivery
is denoted by D. A message can be activated with an offset,
shown as O. The priority of the message is shown by P in
the network. Moreover, the message may have a release jitter,
denoted by J . The message transmission can be blocked by the
lower priority message transmission that blocks the medium
and the maximum blocking time is denoted by B. The worst-
case response time of the message is also defined by R.

2) Timing Requirements: These requirements are specified
on the software architectures by means of timing constraints
on events or event chains [26]. Figure 4 exemplifies a timing
requirement on the distributed functionality between the event
from the sensor detecting road obstacles and the event re-
sponsible for the steering wheel actuation. Timing constraints
are often specified using two attributes representing lower and
upper bounds. A constraint is satisfied when the occurrences
of the events happen within these limits. This framework
categorizes the timing constraints into node and network
constraints, which is aligned to the AUTOSAR standard [15].

The constraints that can apply on nodes are as follows.

• Delay Constraint: it constrains the time distance between
the source triggering event and target response event.

• Strong Delay Constraint: this constraint is similar to the
delay constraint with the difference that both source and
target response events have equal period.

• Order Delay: it is a minor instance of the Strong Delay
Constraint where the low attribute limit is set to zero and
the high limit is set to infinite. Moreover, the occurrence of
the two events are not allowed to coincide.

• Repetition Constraint: it constrains the activation pattern of
the occurrences of a single event under the presence of jitter.

• Repeat Constraint: it is an instance of the Repetition Con-
straint where an event is not allowed to experience any Jitter.

• Sporadic Constraint: it constrains the activation pattern of
two consecutive occurrences of a single event to be sporadic.
Additionally, the time distance between the two occurrences
must be equal or higher than the minimum inter-arrival time.

• Periodic Constraint: it is a special instance of the Sporadic
Constraint where the minimum and maximum inter-arrival
times are equal. This is also referred as the event’s period.

• Burst Constraint: it is also a special instance of the Sporadic
Constraint where Jitter is not allowed. Moreover, in a par-
ticular time-interval there is a fixed number of occurrences
of the event and the time distance between two consecutive
occurrences is higher than the minimum inter-arrival time.

• Pattern Constraint: it constrains the occurrences of the event
to be activated following a specific pattern where fixed
periodic points are pre-defined. Fixed periodic points are
considered with respect to the offset.

• Arbitrary Constraint: it constrains the activation pattern of
the occurrences of the event to be random and irregular.

• Execution Time Constraint: it constrains the execution time
of a function where the preemptions or blocking during
execution are not considered.

• Synchronization Constraint: it constrains a group of event
occurrences in which an occurrence should be within a
margin limit, known as the tolerance window.

• Strong Synchronization Constraint: it is similar to the Syn-
chronization Constraint, however, the tolerance windows
should not overlap.

• Output Synchronization Constraint: it constrains the occur-
rence of a group of events corresponding to a stimulus.

• Input Synchronization Constraint: it constrains the way how
occurrences of stimuli events follow each other correspond-
ing to a response event.

• Reaction Constraint: it constrains the time distance that a
response event corresponding to a stimuli event must occur.

• Age Constraint: it is defined as the maximum data age
allowed from the input to the output of a chain.

Fig. 4. Example of a timing requirement on distributed vehicular functionality.



B. Timing Verification

After the system has been modeled, its timing information
should be extracted in order to provide evidences on the
system timing predictability. To this end, timing analysis are
used to check whether or not the constraints are satisfied. We
categorize the timing verification parameters as follows:
• Verification of timing constraints applied to the frequency

and occurrence of a single event such as Repetition, Repeat,
Period constraints.

• Verification of synchronization timing constraints applied to
a group of events.

• Verification of timing constraints applied to the time distance
between the occurrence of the source triggering event and
the occurrence of target response event.

• Verification of timing constraints applied to event chains or
distributed event chains.

IV. CASE STUDY

To demonstrate the applicability of the proposed framework,
we use it to categorise and compare two industrial modelling
languages: RCM [10] and Amalthea [11].

A. Evaluation based on Modeling of Timing Properties

Both languages have been developed for supporting the
modeling of timing information of automotive software. Be-
sides, they have same level of expressiveness for modeling
node-level timing properties (Table I). The languages use
different levels of abstraction. For instance, in RCM timing
properties are linked to a software component. Whereas, in
Amalthea these properties are liked to a Runnable, which is
a schedulable part of a software component. Furthermore, a
Runnable can be mapped to more than one task at run-time
unlike RCM which supports a one-to-one mapping between
software components and tasks.

TABLE I
TIMING PROPERTIES OF ELEMENT RESPONSIBLE FOR RUN-TIME

BEHAVIOR AND COMMUNICATION.

Timing Properties
Node RCM Amalthea Network RCM Amalthea
WCET (C) ✓ ✓ WCTT ✓ –
Priority (P) ✓ ✓ Priority (P) ✓ –
Offset (O) ✓ ✓ Offset (O) ✓ –
Deadline (D) ✓ ✓ Deadline (D) ✓ –
Period (T) ✓ ✓ Period (T) ✓ –
Jitter (J) ✓ ✓ Jitter (J) ✓ –
Response ✓ ✓ Response ✓ –
Time (R) Time (R) –

Pattern (F) ✓ –
Payload (S) ✓ –
Inter-arrival ✓ –
Time (IAT) –

In both languages, the basic components can be part of
transactions (chains), which can be event- or data-triggered.
The languages support single-rate and multi-rate data chains.
Both languages provide a clear separation between the control
and data flow [12] [11]. Both languages support modeling
of multi-core applications from the perspective of proof-of-
concept prototypes. However, Amalthea has more practical
support for modeling multi-core vehicular software systems.

Table I summarizes the comparison among the two lan-
guages with respect to modelling of network timing properties.
RCM supports the modeling of all properties that are identi-
fied in the proposed framework. Amalthea does not support
modeling of network-level timing properties. This is because
Amalthea focuses only on the optimization of applications de-
veloped for single-node multi-core software architectures [13].
Since Amalthea is foreseen as a complementary language to
AUTOSAR to support modeling of multi-core systems, it can
be argued that Amalthea may get network modeling support
indirectly via AUTOSAR. RCM is capable of supporting the
development of distributed vehicular software systems and
makes a distinction between intra- and inter-node communica-
tion [12]. Inter-node communication is made through the use
of messages and hence expressing the properties identified in
Table 2. The identified properties are applicable to several on-
board networks, e.g., Controller Area Network and TSN [27].

TABLE II
TIMING CONSTRAINTS ON A SINGLE EVENT, PAIR OF EVENTS AND CHAIN

OF EVENTS.

Timing Requirements
RCM Amalthea

Single Event
Repetition Constraint ✓ ✓
Repeat Constraint ✓ ✓
Sporadic Constraint ✓ ✓
Periodic Constraint ✓ ✓
Burst Constraint ✓ ✓
Pattern Constraint ✓ ✓
Arbitrary Constraint ✓ ✓
Pair of events
Delay Constraint ✓ ✓
Strong Delay Constraint ✓ ✓
Order Constraint ✓ ✓
Set of events
Sync Constraint ✓ ✓
Strong Sync Constraint ✓ ✓
Output Constraint ✓ ✓
Input Constraint ✓ ✓

B. Evaluation based on Modeling of Timing Requirements

This section performs a comparative evaluation of the
two languages with respect to their expressiveness to model
the timing requirements. These requirements are extracted
from the TADL2 languages that provides a timing model
for AUTOSAR. Since Amalthea inherits most of the timing
constraints for events, event sets and event chains exactly from
TADL2, it supports modeling of all the identified timing con-
straints as shown in Table II. Similarly, RCM is also capable
of modeling these timing constraint [28]. Both languages are
also capable of constraining all the activation patterns of a
single event occurrences. They permit the activation of events
periodically, sporadically, or following a certain pattern.

In Table III, we identify the timing constraints that can be
specified on a chain of events and distributed chain of events.
Moreover, we also identify the timing constraints, which
could potentially be put on the network. RCM is capable of
supporting all the timing constraints on the network as well as
on the event chains and distributed event chains. On the other
hand, Amalthea can model the timing constrains within a node
but does not support modeling of these constraints on network



messages and distributed event chains as shown in Table III.
However, how the languages specifies the supported timing
constraints differs. For example, RCM provides two special
objects for specifying the Delay and Strong Delay Constraints.
Whereas, the Strong Delay Constraint in Amalthea can be
derived from the Delay Contraint by configuring Mapping
Type option to OneToOne [13] [28]. Besides timing con-
straints, Amalthea provides additional support for mapping of
constraints to Runnables and Tasks to cores.

TABLE III
TIMING CONSTRAINTS ON NETWORK AND EVENT CHAINS.

Timing Requirements
RCM Amalthea

Event chains
Reaction Constraint ✓ ✓
Age Constraint ✓ ✓
Input Sync Constraint ✓ ✓
Output Sync Constraint ✓ ✓
Distributed event chains
Reaction Constraint ✓ –
Age Constraint ✓ –
Input Sync Constraint ✓ –
Output Sync Constraint ✓ –
Network
Repetition Constraint ✓ –
Periodic Constraint ✓ –
Sporadic Constraint ✓ –
Pattern Constraint ✓ –
Strong Delay Constraint ✓ –
Transmission Time Constraint ✓ –

C. Evaluation based on Support for Timing Verification

This subsection performs a comparative evaluation of RCM
and Amelthea based on the tool support for timing veri-
fication of vehicular software architectures. The results of
the evaluation are shown in Table IV. The timing analysis
framework in Rubus-ICE is complemented by a predictable
run-time environment and is supported by the Rubus real-
time operating system (RTOS). The repetition constraint is
proven by construction as RCM provides special clock and
event objects, supported by the Rubus runtime framework,
for predictable repetition rates. Similarly, the runtime frame-
work of RCM ensures the verification of all types of single
event occurrence patterns. Furthermore, the execution time
constraint is verified by construction as Rubus RTOS does
not allow a particular task to over-run than the specified
WCET. RCM supports verification of all timing constraint on
messages, event chains and distributed event chains. The input
synchronization constraints in RCM are enforced by the the
offline scheduler that ensures that multiple inputs to one or
more SWCs are synchronized [28]. On the other hand, the
verification of the output synchronization, delay, strong delay,
age, and reaction constraints are supported by the end-to-end
timing analysis framework of RCM.

On the contrary, APP4MC is an open-source development
platform that aims to have open interfaces to create extensions
for other tools regardless they are of the same nature or
commercial [29]. Today, APP4MC covers only the design of
real-time multi-core vehicular embedded systems and provides
the run-time framework for the mapping of software compo-
nents and runnable to tasks, tasks to cores, and schedulers to
cores. The verification of the timing requirements needs to be

performed by third-party tools as APP4MC lacks a tool for
the validation of timing requirements. However, commercial
tools do not expose many details regarding the modeling
techniques or timing analysis that they enable. In contrast,
Rubus-ICE, despite being a commercial tool, exposes the
underlying analysis techniques and methods to the research
community [12] [28] [30]. Some of the timing analysis tools
supporting Amalthea models and APP4MC include Timing
Architects [31], Symta/s [32], ChronSIM [33], MAST [34].
The first three tools do not clearly discuss the implemented
timing analysis techniques and related models. Whereas, the
MAST is an open-source academic tool that is transparent
about the implemented techniques and analyses for single-
core, multi-core and distributed systems. When MAST is used
to analyse Amalthea models then a model transformation is
needed for MAST to interpret the timing information modeled
by MAST. One challenge with this model transformation is
that some of the information may not be properly transformed
because MAST does not include corresponding components
for covering all aspects of the software that Amalthea supports.
These challenges are pointed out in [35]. Consequently, the
timing analysis engines supported by MAST may use some
pessimistic assumptions about the missing information.

TABLE IV
TIMING VERIFICATION FOR EVENTS, EVENT CHAINS OR EVENTS SET.

Timing Verification
Rubus-ICE APP4MC

The occurrence of a single event ✓ ✓
The occurrence of a message ✓ –
Time distance between the occurrence of ✓ ✓
triggering event and response event
Synchronization Constraints on events set ✓ ✓
Constraints put on event chains ✓ ✓
Constraints put on distributed event chains ✓ –

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a framework for capturing the
timing properties and requirements that modeling languages
should express to verify the timing predictability of vehicular
software systems. Interpretation of timing models generated
through the specification of timing properties is needed to
make use of such models. Hence, the framework also targets
to what extent existing tools support the interpretation and
verification of timing models. We validated the applicability
of the framework by considering two vehicular modeling
languages, namely Amalthea and RCM.

Based on the evaluation results, we identify that both
modeling languages support the design and analysis of vehi-
cle software. However, they have different scopes. Amalthea
targets applications on single nodes with multi-core architec-
tures while RCM focuses on single-core single-node and dis-
tributed embedded systems with ongoing work for supporting
single-node multi-core architectures. Both modeling languages
support time-, event- and data-driven activation of software
components. Furthermore, both languages support modeling of
single- and multi-rate transactions. In comparison to Amalthea,
RCM provides a generic message model which can easily be
re-modeled according to protocol-specific properties.

Our comparative evaluation also indicates that the modeling
effort and learning curve of RCM and Rubus-ICE is minimal



due to the approach of abstracting low-level implementation
details and explicit modeling of timing properties, e.g., jitter.
Amalthea model relies on sub-models for each aspect of
software architecture, which increases its understandability
and usability. APP4MC (the Amalthea tool) does not offer a
timing analysis engine. Hence, it relies on third party tools
for the purpose of performing timing analysis of software
architectures. Amalthea is characterized by a high degree of
timing expressiveness regarding single-node vehicular soft-
ware systems of different architectures. However, this comes
with the drawback of an extensive modelling effort. This may
also result in increasing the pessimism of timing analysis as
assumptions need to be made when some timing properties
are not available. On the other hand, Rubus-ICE is has been
upgraded continuously through several projects in collabora-
tion with academia and industry. New components are added
to adopt state-of-the-art research on timing analysis proposed
by academia and to meet the needs of the end-users.

One possible future research direction is to extend and refine
the proposed framework by considering the timing properties
of software architectures of computation-demanding vehicular
applications that would run on many-core and heterogeneous
computing platforms. Another possible direction is the ap-
plication of the proposed framework to additional modelling
languages for automotive systems such as EAST-ADL.

ACKNOWLEDGEMENTS

The work in this paper is supported by the Swedish
Governmental Agency for Innovation Systems (VINNOVA)
via the PANORAMA, DESTINE, PROVIDENT and INTER-
CONNECT projects, and the Swedish Knowledge Foundation
via the FIESTA, HERO and DPAC projects. We thank our
industrial partners, especially Arcticus Systems, Volvo CE and
HIAB.

REFERENCES

[1] C. Ebert and J. Favaro, “Automotive software,” IEEE Software, vol. 34,
no. 3, pp. 33–39, May 2017.

[2] A. Bucaioni and P. Pelliccione, “Technical architectures for automotive
systems,” in 2020 IEEE International Conference on Software Architec-
ture (ICSA). IEEE, 2020, pp. 46–57.

[3] Land Rover Newsroom. https://media.jaguarlandrover.com/news/2019/04/
jaguar-land-rover-finds-teenagers-writing-code-self-driving-future.

[4] L. Lo Bello, R. Mariani, S. Mubeen, and S. Saponara, “Recent advances
and trends in on-board embedded and networked automotive systems,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 2, 2019.

[5] A. Bucaioni, S. Mubeen, F. Ciccozzi, A. Cicchetti, and M. Sjödin,
“Modelling multi-criticality vehicular software systems: evolution of an
industrial component model,” Software and Systems Modeling, vol. 19,
no. 5, pp. 1283–1302, 2020.

[6] A. Bucaioni, A. Cicchetti, and M. Sjödin, “Towards a metamodel for the
rubus component model.” in ModComp@ MoDELS. Citeseer, 2014, pp.
46–56.

[7] R. Eramo and A. Bucaioni, “Understanding bidirectional transformations
with tggs and jtl,” Electronic Communications of the EASST, vol. 57,
2013.

[8] S. Mubeen, E. Lisova, and A. V. Feljan, “Timing predictability and secu-
rity in safety-critical industrial cyber-physical systems: A position paper,”
Applied Sciences–Special Issue ”Emerging Paradigms and Architectures
for Industry 4.0 Applications”, vol. 10, no. 3125, pp. 1–17, April 2020.

[9] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “End-to-end
timing analysis of cause-effect chains in automotive embedded systems,”
Journal of Systems Architecture, vol. 80, pp. 104 – 113, 2017.

[10] S. Mubeen, H. B. Lawson, J. Lundbäck, M. Gålnander, and
K. Lundbäck, “Provisioning of predictable embedded software in the ve-
hicle industry: The rubus approach,” in 2017 IEEE/ACM 4th International
Workshop on Software Engineering Research and Industrial Practice
(SER IP), 2017.

[11] Amalthea: Deliverable: D 3.4 Development of Scheduling Analysis and
Partitioning/Mapping Support Tools. Work package 3. April 2014.

[12] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for end-to-end
response-time and delay analysis in the industrial tool suite: Issues,
experiences and a case study,” Computer Science and Information System
journal, vol. 10, pp. 453–482, 2013.

[13] App4mc project. help documentation (june 2020). Available:https://
www.eclipse.org/app4mc/help/app4mc-0.9.8/index.html.

[14] Amalthea & Amalthea4Public ITEA3 Projects. https://itea3.org/project/
success-story/amalthea-and-amalthea4public-success-story.html.

[15] AUTOSAR standard V2.2.1. https://www.autosar.org/fileadmin/user
upload/standards/classic/3-0/AUTOSAR TechnicalOverview.pdf.

[16] R. Höttger, U. Jahn, P. Närdemann, and P. Heisig, “Teaching distributed
and parallel systems with app4mc,” in International Symposium on
Embedded Systems and Trends in Teaching Engineering, 2016.

[17] S. Mubeen and T. Nolte, “On timing analysis of component-based
vehicular distributed embedded systems at various abstraction levels,” in
Federated Conference on Component-Based Software Engineering and
Software Architecture (CompArch). IEEE, April 2016, pp. 277–278.

[18] K. Evensen and K. Weiss, “A comparison and evaluation of real-time
software systems modeling languages,” in AIAA Infotech@Aerospace
2010, April 2010.

[19] N. Medvidovic and R. N. Taylor, “A classification and comparison
framework for software architecture description languages,” IEEE Trans-
actions on Software Engineering, vol. 26, no. 1, pp. 70–93, Jan 2000.

[20] A. Johnsen and K. Lundqvist, “Developing Dependable Software-
Intensive Systems: AADL vs. EAST-ADL,” in Reliable Software Tech-
nologies - Ada-Europe, 2011.

[21] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. V. Chaudron, “A clas-
sification framework for software component models,” IEEE Transactions
on Software Engineering, vol. 37, no. 5, pp. 593–615, 2011.

[22] S. Anssi, S. Gérard, S. Kuntz, and F. Terrier, “AUTOSAR vs. MARTE
for Enabling Timing Analysis of Automotive Applications,” in SDL:
Integrating System and Software Modeling, 2012.

[23] K. Tindell, “Adding time-offsets to schedulability analysis,” in Technical
Report YCS 221, Dept. of Computer Science, University of York., 1994.

[24] S. Mubeen, M. Gålnander, J. Lundbäck, and K.-L. Lundbäck, “Ex-
tracting timing models from component-based multi-criticality vehicular
embedded systems,” in 15th International Conference on Information
Technology : New Generations, April 2018.

[25] M. Bertogna and M. Cirinei, “Response-time analysis for globally
scheduled symmetric multiprocessor platforms,” Proceedings - Real-Time
Systems Symposium, pp. 149–160, January 2008.

[26] TIMMO Methodology , Version 2. TIMMO (TIMing MOdel),
Deliverable 7, October 2009. The TIMMO Consortium. [Online].
Available: http://adt.cs.upb.de/timmo-2-use/timmo/pdf/D7 TIMMO
Methodology Version 2 v10.pdf,Accessed: 2020-06-09.

[27] S. Mubeen, M. Ashjaei, and M. Sjödin, “Holistic modeling of time sen-
sitive networking in component-based vehicular embedded systems,” in
2019 45th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), 2019, pp. 131–139.

[28] S. Mubeen, T. Nolte, M. Sjödin, J. Lundbäck, and K.-L. Lundbäck,
“Supporting timing analysis of vehicular embedded systems through the
refinement of timing constraints,” International Journal on Software and
Systems Modeling, pp. 1–31, January 2017.

[29] R. Höttger, H. Mackamul, A. Sailer, J.-P. Steghöfer, and J. Tessmer,
“APP4MC: Application platform project for multi- and many-core
systems,” it - Information Technology, vol. 59, no. 5, pp. 243 – 251,
2017. [Online]. Available: https://www.degruyter.com/view/journals/itit/
59/5/article-p243.xml

[30] M. Ashjaei, S. Mubeen, J. Lundbäck, M. Gålnander, K. Lundbäck, and
T. Nolte, “Modeling and timing analysis of vehicle functions distributed
over switched ethernet,” in IECON 2017 - 43rd Annual Conference of the
IEEE Industrial Electronics Society, Oct 2017, pp. 8419–8424.

[31] ”Vector - Timing Architects Tool Suite”. [Online]. Available: https://
www.timing-architects.com/, Accessed: 2020-06-10.

[32] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the symta/s approach,” IEE Pro-
ceedings - Computers and Digital Techniques, vol. 152, no. 2, 2005.

[33] ”chronSIM, Model-Based Simulation of Embedded Real-Time Sys-
tems”. https://www.inchron.com/tool-suite/chronsim/, Accessed: 2020-
06-10.



[34] ”MAST-Modeling and Analysis Suite for Real Time Applications”.
[Online]. Available: https://mast.unican.es/, Accessed: 2020-06-09.

[35] J. M. Rivas Concepción, J. J. Gutiérrez, J. Medina, and M. Harbour,
“Calculating latencies in an engine management system using response
time analysis with mast,” in 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 07 2018.


