
Monitored Software Components
- A Novel Software Engineering Approach -

Daniel Sundmark†, Anders Möller †�, Mikael Nolin†
†MRTC, Mälardalen University, Box 883, SE-721 23 Västerås, Sweden

�CC Systems, www.cc-systems.com
{Daniel.Sundmark, Anders.Moller, Mikael.Nolin}@mdh.se

Abstract

We propose monitoring of software components, and use
of monitored software components, as a general approach
for engineering of embedded computer systems. In our ap-
proach, a component’s execution is continuously monitored
and experience regarding component behaviour is accumu-
lated. As more and more experience is collected the con-
fidence in the component grows; with the goal to eventu-
ally allow certification of the component. Continuous mon-
itoring is also the base for contract checking, and provides
means for post-mortem crash analysis; an important pre-
requisite for many companies to start use 3rd party compo-
nent in their dependable systems.

In this paper we show how four software engineering
goals can be reached by monitoring four component prop-
erties.

1. Introduction

In this paper we propose monitoring of software compo-
nents and use of monitored software components as a gen-
eral approach for engineering of embedded computer sys-
tems. Industrial developers of distributed, heterogeneous,
reliable, resource constrained, embedded, real-time con-
trol systems (in this paper denoted embedded systems) are
facing increased challenges with respect to demands on
increased profitability, functionality and reliability, while
at the same time having to decrease development times,
project costs and time-to-market. Since development costs
only constitute a fraction of the total project cost for soft-
ware projects (about 20% [19]), a general approach for en-
gineering embedded systems must consider not only the de-
velopment phase; also the debugging, testing and mainte-
nance phases need to be addressed. Furthermore, since most
systems are developed incrementally, where new versions
are based on previous versions, and product-line architec-
tures [5] are becoming increasingly important, a general ap-

proach for engineering embedded systems needs to consider
reuse of components between product versions and product
variants. Another emerging key-issue in engineering of em-
bedded systems is safe and predictable integration of third-
party functions, and the associated legal matters regarding
contract fulfilment and liability issues.

The main contributions of this paper are three-fold:

• We present a novel approach to engineering
component-based systems, using monitored soft-
ware components.

• Our approach takes a life-cycle perspective on the
engineering process, and we identify four key-areas
where monitored components will have significant im-
pact.

• We present four measurable properties that can be used
to impact these key-areas.

The outline of the rest of this paper is as follows: In
Section 2 we present a life-cycle approach to engineering
component-based systems, and Section 3 describes prop-
erties of embedded systems. In Section 4, we present a
survey of related work in built-in monitoring support for
component-based systems and existing monitoring prac-
tices in commercial component technologies. In Section 5,
the impacts of monitorable components on predictable as-
semblies are discussed. Section 6 illustrates how to make
use of the monitored information, and finally, in Section 7,
we summarise and present our ideas on future work.

2. A Life-Cycle Approach to Component-
Based Systems

This continuous increase of requirements for embedded-
system developers can be mitigated by deploying suitable
software engineering methods. It is our view that the whole
system and component life-cycles need to be considered by
an engineering method. Below we present four key-areas
of engineering component-based systems where significant



gains can be made by using our proposed concept of moni-
tored components.

• Certifiable components. By monitoring component-
based software, information about the component
properties can be extracted. This information can
be used to fully (or partially) describe the compo-
nents by their externally visible properties. Such a
description can be used as a basis for certifying com-
ponents.1 By reusing certified components, predictable
component assemblies are facilitated.

• System-level testing and debugging. By monitoring in-
dividual components and component interactions, er-
rors can be found and traced. Monitoring can also be
used to support replay debugging [22], where erro-
neous system-executions are recreated in a lab envi-
ronment to allow tracing of bugs.

• Run-time contract checking. This will allow surveil-
lance of third party components. Both functional (e.g.
range of output values) and non-functional (e.g. mem-
ory usage) properties can be monitored. During ac-
ceptance testing, the contract checking is used to val-
idate that a component does not violate its specifica-
tion. In systems that fail after system deployment, logs
from the contract checking can be used in post-mortem
analysis to identify failing or contract-breaking com-
ponents.

• Observability. Computer systems in general, and em-
bedded systems in particular, are infamous for the dif-
ficulty of observing their internal behaviour. This has
drawbacks throughout the whole debugging, testing
and maintenance phases. Systems whose behaviour is
unobservable become very difficult to analyse and val-
idate. Also after deployment, observability is an im-
portant feature, allowing inspection and performance
tuning of running systems.

The ultimate goal of component monitoring is to be able
to compose predictable assemblies by reusing information
gathered from well-tested software components. The pro-
posal of this paper is that this can be achieved by the iter-
ative process of refinement described in Figure 1. When a
new component (or a 3rd party component) is included in
an assembly, its run-time properties (such as execution time
or memory consumption) are estimated by well-founded
guesses. During testing, these guesses are validated and
refined. As the tested component is deployed in a target-
system assembly, its behaviour is continuously monitored,
allowing for further refinement of the component run-time

1 For some high integrity systems, monitored properties need to be com-
bined with static analysis to obtain safe bounds on properties.

Testing Usage

New component Certified component

Tested component

Property 
refinement

Property 
refinement

Guessed 
properties

Testing Usage

New component Certified component

Tested component

Property 
refinement

Property 
refinement

Guessed 
properties

Figure 1. A conceptual overview of monitor-
ing software components for certification.

behaviour description. This refinement process will even-
tually lead to a certified component, which can be used to
compose predictable assemblies.

Monitoring of components will allow information about
the dynamic behaviour of the component to be recorded.
This information allows static and dynamic properties of
newly (or partly) constructed systems to be predicted. Inter-
esting aspects to monitor (on component level) and predict
(on system level) include timing properties, such as end-to-
end response times, and resource utilisation, such as mem-
ory consumption.

3. Embedded Systems

This paper addresses software engineering aspects of
resource-constrained, embedded, distributed real-time con-
trol systems. To make clear in what context the provided
monitoring approach is supposed to work, we also provide
a brief example of a typical embedded system and an intro-
duction to component monitoring. In this section we also
discuss prerequisites, placed on the component technology
and on the hardware, to be able to monitor the embedded
system software.

3.1. CBSE for Embedded Systems

In Component-Based Software Engineering (CBSE),
software applications are built by composing software com-
ponents into component assemblies. CBSE is gaining more
and more acceptance in the business segment of of-
fice/Internet applications [2][3]. Unfortunately, the market
segment of embedded real-time systems is, to a large ex-
tent, left behind this positive development. Reusing com-
ponents, i.e. one of the main drivers for introducing CBSE,
is both complex and expensive for embedded real-time sys-
tems [6].

However, by building embedded-system software out of
well-tested components, we could gain an increase in the
predictability of the behaviour of the software; provided that
experience from component behaviour has been collected.



In the area of embedded real-time systems, predictable run-
time behaviour is crucial. A component assembly is pre-
dictable if its run-time behaviour can be predicted from the
properties of its components and their patterns of interac-
tions [4]. Predictability is achieved by analysis, and analy-
sis techniques require information about the system. When
analysing a system built from well-tested and functionally
correct components, the main issues are associated with
composability. The composition process should be able to
guarantee the fulfilment of non-functional requirements of
the system, such as communication, synchronisation, mem-
ory, and timing [6]. However, research projects tend to fo-
cus on how to design and analyse component technologies,
leaving predictable assemblies using run-time information
gathered from well-tested and trusted components unex-
plored [9].

3.2. Embedded System Example

In order to exemplify the typical settings, in which the
software components are considered, we have studied some
characteristic vehicular electronic systems [17]. An elec-
tronic vehicular control-system can be characterised as a re-
source constrained, safety-critical, distributed real-time sys-
tem. The computer nodes, called Electronic Control Units
(ECUs), are distributed to reduce cabling and to allow
for division into subsystems. Vehicular systems are usu-
ally heterogeneous, meaning that nodes of different archi-
tecture and computational power cooperate in controlling
the vehicle. The ECUs vary from extremely light-weighted
nodes, like intelligent sensors (i.e. processor-equipped, bus-
enabled sensors), to PC-like hardware for non-control ap-
plications, such as telematics, and information systems.

Figure 2 gives an overview of the hardware resources of
a typical ECU, with requirements on sensing and actuating,
and with a relatively high computational capacity.

Example Power train ECU in a Vehicular Control-System

� Processor: 25 MHz 16-bit processor
� Memory devices:

� Flash: 1 MB used for application code
� RAM: 128 kB used for the run-time memory usage
� EEPROM: 64 kB used for system parameters

� Serial interfaces: RS232 or RS485, used for service purpose
� Communications: Controller Area Network (CAN) (one or more interfaces)
� I/O: A number of digital and analogue in and out ports

Example Power train ECU in a Vehicular Control-System

� Processor: 25 MHz 16-bit processor
� Memory devices:

� Flash: 1 MB used for application code
� RAM: 128 kB used for the run-time memory usage
� EEPROM: 64 kB used for system parameters

� Serial interfaces: RS232 or RS485, used for service purpose
� Communications: Controller Area Network (CAN) (one or more interfaces)
� I/O: A number of digital and analogue in and out ports

Figure 2. Specification of a typical power
train ECU.

An example of a typical vehicular system communica-
tion solution is shown in Figure 3, where two buses are sep-

arated by a gateway. The gateway is an architectural pattern
that is used for several reasons, e.g., separation of criticality
and real-timeliness, increased available bus bandwidth, in-
creased fault tolerance, or compatibility with standards [1].
Communicating functions may require support for global
synchronisation or fault tolerance mechanisms.

 

ECU 
1 

ECU 
2 

ECU 
3 

I/O 

Sensor 
Actuator 

Bus 1 

Gateway 

ECU 
5 

ECU 
4 

Bus 2 

Service 
Connector 

Sensors 

Service 
Computer 

Figure 3. Example sketch of a vehicle net-
work.

Looking at the software part of the system, there are
some aspects that need to be considered when building the
assembly out of monitorable components. A source of un-
certainty is the frequency of interrupts in the assembly. Typ-
ically, a vehicular system is heavily loaded with interrupts.
When interrupts hit the assembly, these will pre-empt the
execution of the running component, thereby possibly per-
turbing its monitoring.

Dynamic memory allocation (and the garbage collec-
tion that this brings) is usually not allowed in control ap-
plications, since it compromises the determinism and pre-
dictability of the application behaviour. The only type of
memory that is allowed to dynamically shrink and grow in
the system is the stack space (albeit within a statically allo-
cated stack memory area).

3.3. Prerequisites for Monitoring Component-
Based Embedded Systems

Monitoring component-based software requires support
in the component technology, and the framework used dur-
ing run-time. Usually, when looking at today’s compo-
nent technologies suitable for embedded systems with re-
source constrained ECUs, considerable code optimisations
are done during compile time. This is mainly done to min-
imise the size of the application source code. This code opti-
misation might lead to a loss of the design-time component
concept, meaning that clearly identifiable components with



specified in- and out-ports are reduced to regular source
code functions, subjected to, e.g., function in-lining and re-
dundant instruction-sequence coalescing.

Thus, to be able to monitor the components in the form
described during design-time and to be able to reuse the in-
formation gathered during run-time in the next generation
of applications, information about the design-time compo-
nents have to be included in the source code. This should
however not be a problem, if the component technology sat-
isfies the requirements described in [17], i.e. a straight for-
ward port-based object approach, illustrated in Figure 4, us-
ing a pipes-and-filters model of computation.

Component monitoring also poses some requirements
on the system hardware. A fraction of the system mem-
ory needs to be allocated for monitor recording purposes.
In addition, the target system should support some suitable
means of communication through which monitor recordings
can be uploaded to a host computer. Furthermore, some of
the debugging techniques discussed in this paper will bene-
fit significantly from the support of an instruction counter.

y1

ym

x1

xn

y1

ym

y1

ym

x1

xn

Figure 4. Component with required in-ports
x1 − xn and provided out-ports y1 − ym.

4. Related Work

To summarise the available techniques that can be used
to monitor software components, we have studied some
commercial component technologies that include support
for component monitoring and the state-of-the-art methods
for component monitoring. The methods and the different
technologies are described in Section 4.1 and Section 4.2.

4.1. Monitoring Techniques for Component-Based
Systems

Currently, only a few component technologies provide
support for run-time monitoring of component behaviour.
However, there is numerous ways of performing this moni-
toring and there is a multitude of run-time aspects to moni-
tor.

Gao et al. identify three different methods for component
tracking and monitoring [9]: (A) framework-based code in-
sertion, where monitoring code (e.g. from a class library)
can be inserted by component engineers, (B) automatic code
insertion, where monitoring code is inserted into the pro-
gram by a specialised monitoring tool, and (C) automatic
component wrapping, where monitoring code is automati-
cally added to the external interface of components.

According to Gao et al., each of these methods has its
own pros and cons. As for framework-based code insertion,
it is highly flexible and can be used for all types of moni-
toring. However, the method requires access to the compo-
nent source code, and the programming overhead is high.
Automatic code insertion also requires access to the source
code, and is much more complex and inflexible compared
to the framework-based code insertion. However, the pro-
gramming overhead is low, since the tracking code is auto-
matically inserted. Automatic component wrapping, on the
other hand, has no need for component source code in order
to insert tracking code. Therefore, not only in-house compo-
nents, but also Commercial-Off-The-Shelf (COTS) compo-
nents can be monitored. On the downside, automatic com-
ponent wrapping is not suitable for monitoring anything
within components, since the monitoring is performed ex-
clusively outside the component.

Considering the use of these methods with respect to
the restrictions posted by component-based embedded sys-
tems, it should be noted that automatic component wrapping
can not be used in order to extract any component informa-
tion other than that available at the component ports. This
makes the method unsuitable for monitoring other compo-
nent properties than those available from outside the com-
ponent. Automatic code insertion, on the other hand, could
be used for all types of monitoring, but would introduce
a trade-off between the complexity of the instrumentation
tool and the amount of data needed to record. Ideally, espe-
cially in resource-constrained systems, the amount of data
to record should be minimised. However, this calls for an
elaborate analysis of the internal workings of the compo-
nent, requiring an inflexible (with respect to portability) and
highly advanced instrumentation tool. Using framework-
based code insertion, no instrumentation tool is required,
allowing ad-hoc optimisations in the monitoring code. In a
resource-constrained environment, this might be useful, but
it must be kept in mind that such optimisations might lead
to unpredictable probe-effects in system ordering and tim-
ing [8].

Jhumka et al. [14] propose the use of executable asser-
tions in order to monitor component behaviour. The asser-
tions are included in component wrappers, enabling them
to test the validity of the input and output values of the
component. By using these wrapper assertions, the pre- and
post-condition sanity checks transforms a regular compo-



nent into a fault-detecting component while at the same
time simplifying unit-, integration- and system-level testing
due to standardised means of extracting test information at
component interfaces. Being relatively small and straight-
forward, executable assertions could well be used in order
to perform sanity checks of embedded system components.
However, executable assertions can not be used in order to
monitor other properties, such as execution time or mem-
ory usage.

Hörnstein and Edler [12] propose the use of Built-In
Test (BIT) components in the Component+ model [13] for
reducing the time spent testing prefabricated components
in new environments. In order to perform these built-in
tests, the Component+ model makes use of three different
types of components: BIT Components, Testers and Han-
dlers. BIT Components are regular software components
with built-in test mechanisms, Testers are special compo-
nents that use the BIT testing interfaces of the BIT com-
ponents and Handlers are special components that can be
used to obtain fault-tolerant systems by handling error sig-
nals from BIT or Tester components. On the assumption
that BIT and Tester components are light-weighted, this can
be an effective way of performing component sanity checks
or run-time contract checking. Even though Handler com-
ponents may be effective for achieving fault-tolerant sys-
tems, this is not the primary subject of this paper.

Traditionally, software monitoring can be performed by
using either hardware- or software-based probes. Hardware
probes come in the form of lab instrumentation tools, such
as In-Circuit Emulators (ICE:s) or logic analysers, or in the
form of System-On-Chip (SOC) solutions [20]. ICE:s or
logic analysers are not suitable for component monitoring,
since they cannot be included in deployed assemblies. SOC-
based monitoring tools, however, are designed to be resi-
dent in deployed systems. Unfortunately, being designed for
system-level event monitoring (e.g., task-switches), these
tools are still far too inflexible for component-level mon-
itoring. Therefore, today, software probes seem to be the
preferred alternative for component monitoring. However,
software-based monitoring is not without drawbacks. By
including software monitoring in the component technol-
ogy, we also introduce problems concerning instrumenta-
tion perturbation. Software-based monitoring is performed
by means of software probes inserted in the code. These
probes will consume execution time and memory space; in-
creasing the spatial and temporal resource consumption of
the components. Probes should be left permanently in de-
ployed components for two reasons: (1) If the probes are
removed, the testing performed on the component might no
longer be valid [7], and (2) by leaving the probes in the de-
ployed component, information concerning execution be-
haviour can be gathered over long periods of time, while
the component operates in its field environment.

4.2. Monitoring Support in Commercial Compo-
nent Technologies

There is a handful of available component technologies
suitable for distributed embedded real-time systems. Some
of these technologies include various supports for monitor-
ing the software. The reason for choosing these is that they
are deployed in industry today, and that they well satisfy the
industrial requirements stated by the embedded-system do-
main [17].

The Rubus Component Model (CM) [16] and the Rubus
Operating System (OS) have support for some of the de-
scribed monitoring aspects. Rubus CM and OS are devel-
oped by Arcticus Systems2 and are used for developing
heavy vehicle software systems by, e.g., Volvo Construc-
tion Equipment3 (VCE). When using the Rubus CM and
OS, all resource allocation of the application and the oper-
ating system is done at compile-time.

The temporal properties needed to obtain static tim-
ing analysis and schedule generation, Best-Case Execution
Time (BCET) and Worst-Case Execution Time (WCET),
are monitored by the Rubus OS during run-time. Apart from
the temporal aspects of the software, maximum stack usage
for each thread and the peak usage of, e.g., queues can be
monitored using Rubus. The OS also gives support for mon-
itoring the CPU utilisation.

In multi-threaded embedded software, various types of
relations, such as precedence and exclusion relations, ex-
ist. To be able to guarantee the behaviour of the system
with respect to these issues, the Rubus CM includes sup-
port for monitoring event traces of the program execution,
i.e., the execution order and the release times of the com-
ponents. This information is dumped on an external inter-
face (e.g., CAN or a serial interface like RS485) during run-
time. Since events are related only via time-stamps, this ser-
vice requires a high-resolution hardware timer. There will
be a significant amount of data associated with this moni-
toring, and the accuracy of the log reflects the size of the
buffer used to store it.

PECOS4 (PErvasive COmponent Systems) [10] is a col-
laborative project between ABB Corporate Research Cen-
tre5 and academia. The goal for the PECOS project is to en-
able component-based technology for embedded systems,
especially for field devices, i.e., embedded reactive systems.
The project tries to consider non-functional properties, such
as memory consumption and timeliness, very thoroughly
in order to enable assessment of the properties during con-
struction time.

2 Arcticus Systems, www.arcticus.se
3 Volvo CE, www.volvo.com
4 The PECOS Project, www.pecos-project.org
5 ABB Corporate Research, www.abb.com



Non-functional properties cannot only be attached to
components, but also to ports and connectors, e.g., exam-
ining the min and max values for an out port, (i.e., a built
in sanity check). Since PECOS is developed to support re-
source constrained embedded real-time systems, schedul-
ing information and memory consumption are crucial prop-
erties to monitor. Hence, PECOS enables support for instru-
menting components during run-time. Every component is
instrumented to extract information about the WCET and its
cycle time. The components are also instrumented with re-
spect to their code size and data (i.e., information on the
heap).

5. Monitoring Software Components

Although a multitude of component properties are of in-
terest when building reliable and reusable software compo-
nents, there are some aspects that would significantly help
increasing reusability and lower the time spent on integra-
tion testing. We have identified four main aspects to moni-
tor, in order to support the key areas defined in Section 1.

5.1. Temporal Behaviour

Having knowledge of the temporal behaviour of an exe-
cution is particularly important for real-time systems. If the
worst-case and best-case execution times of a set of reusable
components are known, the possibility of successfully pre-
dicting the temporal behaviour of the component assembly
will radically increase. Also, other execution time metrics,
such as average execution time, standard deviation, execu-
tion time histogram or other types of statistical representa-
tions of component execution time behaviour can be helpful
to estimate statistical temporal properties of component as-
semblies [18].

When considering timeliness for embedded real-time
systems, it is important to be able to verify (1) that each
component meets its timing requirements, (2) that each
node (which is built up from several components) meets its
deadlines, and (3) to be able to analyse the end-to-end tim-
ing behaviour of functions in a distributed system. In order
to make sure that all deadlines are met, temporal analysis is
needed.

This type of analysis is performed using schedulabil-
ity analysis techniques, and requires information about the
component’s execution time. Ideally, the bounds for worst-
case and best-case execution times should be statically com-
puted by an analysis tool; this is the only way to be sure that
the execution-time bounds are safe (i.e. guaranteed not to be
violated at run-time), see e.g. [7]. Unfortunately, tools for
execution-time analysis are immature and few commercial
tools exist. Hence, the industrial practice is to rely on mea-
surements of execution-times. However, structured mea-

surement of execution-times is a tedious, error-prone and
expensive process, which has to be re-done after each mod-
ification to a component. Using monitored components, the
correctness of the execution time values can be improved
gradually, i.e., the more execution hours, the better the ac-
curacy [18]; this is achieved without any extra effort for
execution-time measurement.

In general, execution behaviour information is used for
schedulability analysis and scheduling. In hard real-time
systems, where it is mandatory that deadlines are met,
deterministic schedulability analysis and scheduling (us-
ing worst-case assumptions for execution times) is prefer-
able. However, in practice, many systems would settle for
high probabilities instead of absolute deadline guarantees.
Therefore, stochastic schedulability analysis and schedul-
ing can be used. Depending on the type of analysis intended,
either worst-case or statistical timing metrics should be col-
lected during monitoring.

5.2. Memory Usage

Since we are targeting resource-constrained systems, it
is important to be able to analyse the memory consumption
and to check the sufficiency of the system memory, as well
as the ROM memory. This check should be done pre-run-
time to avoid failures during run-time. Memory is allocated
in a static (pre-run-time or during run-time initialisation) or
a dynamic (run-time) fashion. As mentioned in Section 3.1,
dynamic memory allocation is usually not allowed when de-
veloping embedded real-time systems. In order to improve
the possibility of achieving predictable assemblies, infor-
mation of static memory allocation (e.g., component binary
size) is necessary, but since this information can be provided
by means of compiler output, this property is typically not
necessary to monitor.

The stack memory, however, is statically allocated, but
used in a dynamic fashion. In order not to end up in a
stack overflow situation, stack size is often pessimistically
over-dimensioned during system configuration. In resource-
constrained environments, this might lead to a situation
where the high percentage of unused memory leads to in-
creased requirements on the system hardware. Therefore,
monitoring the stack usage per component is most impor-
tant, since this information can be used to predict the stack
usage behaviour of future assemblies. Due to the high crit-
icality of stack overflow, we are not interested in anything
but worst-case usage during the execution of the compo-
nent. However, in a system allowing dynamic allocation,
also heap size monitoring would be important.



5.3. Event Ordering

When testing and debugging software, it is often help-
ful to be aware of the occurrence and ordering of system
events, such as mutex- and semaphore operations, message
receipts and interrupt occurrences. Using the information
provided by an event log, system designers are able to de-
tect improperly synchronised accesses to shared data or il-
legal pre-emption of non-reentrant code. In addition, by in-
cluding event monitoring in the component model, we en-
sure that all components conforming to the model will pro-
duce event-trace logs of similar formats. This will reduce
the problem of ad-hoc tracing code inserted by system de-
velopers.

Using event traces, we can gain substantial insight re-
garding the internal workings of current assemblies. This
information can be used in order to guarantee precedence
relations, mutual exclusion and to enhance the efficiency of
shared resource usage (e.g., field bus or third-level storage
usage) in future assemblies.

This type of monitoring provides a foundation to include
full support for a replay debugging method [22][15][21]
in the component technology. Replay debugging is a gen-
eral term denoting methods for recording the execution be-
haviour of multi-tasking or truly parallel systems in order
to use this information to reproduce system failures during
debugging. Most replay methods require both event order-
ing information (such as interrupt, context switch and syn-
chronisation information) and data flow information (such
as task state and external input information) in order to re-
produce executions. Provided that the assembly infrastruc-
ture (e.g., real-time operating system mechanisms) includes
support for replay debugging, including sufficient monitor-
ing in the components will ensure that the entire assembly
can be debugged by means of execution replay.

5.4. Sanity Check

A sanity check is a way of determining the soundness
of the functional operation of a component during run-time
with respect to the component input and its current state. In
other words, given a specific input, is the corresponding out-
put realistic? During testing, having access to the input val-
ues of the component that produce erroneous output facili-
tates efficient testing.

Monitoring this during run-time will allow us to store
erroneous operations of the component and (hopefully) to
correct these errors in future assemblies. If we are unable
to correct the faulty component, we could still able to pre-
vent unsafe system behaviour by taking appropriate actions
based on knowledge of the errors. This type of monitoring
could also include properties like Mean-Time Between Fail-
ures (MTBF).

Exec. Event Sanity
Time Memory Ordering Check

Certifiable
Components x x x x
Debug/
Testing x x
R-T Contract
Checking x x x
Observability x x

Table 1. Mapping key-areas of interest to key
component aspects.

In addition, this type of monitoring could be used to en-
sure that 3rd party software components provide the service
they are supposed to. Typically a component is equipped
with a provided interface, specifying the services provided
by that component, and a required interface, specifying the
resources needed by the component in order to provide the
correct services. Formalising and standardising these inter-
faces allows for contractual-based component development,
where the behaviour of 3rd party components included in
the assembly can be specified by contracts. Using sanity
checks of the inputs and outputs at the component interfaces
allows for run-time contract checking of 3rd party compo-
nents.

6. Using Monitored Information

In Section 2, four key-areas that would benefit from
component-level monitor support were listed. Table 1 maps
these areas to the four monitored component aspects dis-
cussed in this Section. For instance, execution time- and
memory information can be used in order to automatically
check whether 3rd party components do not violate their re-
quired interface (e.g., by memory leaks or deadline misses),
and sanity checks can be used to check the provided inter-
face during run-time. By using event ordering and sanity
check traces, the observability and ability to easily test and
debug the assembly can be considerably enhanced. Regard-
less of whether replay debugging methods are used or not,
event traces are helpful during debugging in order to visu-
alise the behaviour of the component assembly during run-
time.

As for certifiable components, all monitoring aspects can
be helpful in order to successfully predict the future be-
haviour of components in different types of assemblies.
Including monitoring in a component technology will en-
sure that all components conforming to that technology
will include identical monitoring support. Hence, compo-
nent properties can be easily compared using standardised
means of comparison.



7. Conclusion and Future Work

In this paper we have proposed monitoring of software
components, and reuse of monitored components, as a gen-
eral approach towards engineering of resource constrained,
embedded, distributed, real-time control systems. The con-
cept is general in the sense that it addresses not only the
development phase; rather the whole product life cycle, in-
cluding debugging, testing and maintenance, is considered.
The concept also extends well into product-line settings,
where components and architectures are reused over a set
of related product and product variants. We have identified
four key-areas within engineering of embedded systems: (i)
certifiable components, (ii) system-level testing and debug-
ging, (iii) run-time contract checking, and (iv) observabil-
ity. We have also discussed how to meet the challenges
within these areas, by identifying four main component-
aspects that are of particular interest to monitor: (1) the exe-
cution time behaviour of the components, (2) the static and
dynamic memory usage, (3) the event ordering of the ex-
ecution and (4) a sanity check of the components output
based on the input. We have provided a summary of the
state-of-the-art of monitoring support for component mod-
els and presented a brief survey of the practices used in to-
day’s component models for embedded real-time systems.

As for future work, there are a number of issues we
would like to address. We intend to look further into the
problems of using the same component on top of different
hardware platforms, where some old monitoring informa-
tion might be reused, while other information needs to be
discarded on the new platform. Furthermore, the trade-off
between minimisation of monitoring memory and CPU us-
age and the level of detail of monitor information will be in-
vestigated. In order to evaluate our ideas, we plan to use the
SaveComp Component Model, described in [11], as a test
platform. The component model is designed for embedded
control-systems in vehicles, and much focus has been spend
on solving reliability, timelines and safety issues.

References

[1] CANopen, Home Page. http://www.canopen.org.

[2] Java Enterprise Beans. http://java.sun.com.

[3] Microsoft .NET. http://www.microsoft.com/net.

[4] PACC Project Home Page. http://www.sei.cmu.edu/pacc.

[5] P. Clements and L. M. Northrop. Software Product Lines:
Practices and Patterns. Addison Wesley, 2001.

[6] I. Crnkovic and M. Larsson. Building Reliable Component-
Based Software Systems. Artech House Publishers, 2002.

[7] J. Engblom, A. Ermedahl, M. Sjödin, J. Gustafsson, and
H. Hansson. Worst-case execution-time analysis for embed-
ded real-time systems. Software Tools for Technology Trans-
fer, 14, 2001.

[8] J. Gait. A Probe Effect in Concurrent Programs. Software –
Practice and Experience, 16(3):225 – 233, March 1986.

[9] J. Gao, E. Zhu, and S. Shim. Tracking component-based soft-
ware. In Proceedings of ICSE2000’s COTS Workshop: Con-
tinuing Collaborations for Successful COTS Development,
2000.

[10] T. Genssler, A. Christoph, B. Schuls, M. Winter, C. Stich,
C. Zeidler, P. Möller, A. Stelter, O. Nierstrasz, S. Ducasse,
G. Arevalo, R. Wuyts, P. Liang, B. Schönhage, and
R. van den Born. PECOS in a Nutshell. http://www.pecos-
project.org.

[11] H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törngren.
SaveCCM - a Component Model for Safety-Critical Real-
Time Systems. In Proceedings of 30th Euromicro Confer-
ence, Special Session Component Models for Dependable
Systems, September 2004.

[12] J. Hörnstein and H. Edler. Test Reuse in CBSE Using Built-
in Tests. In Proceedings of Workshop on Component-based
Software Engineering, April 2002.

[13] E. IST-1999-20162. Component+. www.component-
plus.org, February 2004.

[14] A. Jhumka, M. Hiller, and N. Suri. An Approach to Specify
and Test Component-Based Dependable Software. In Pro-
ceedings of the 7th IEEE International Symposium on High
Assurance Systems Engineering, pages 211 – 211, 2002.

[15] T. LeBlanc and J. Mellor-Crummey. Debugging Parallel Pro-
grams with Instant Replay. IEEE Transactions on Comput-
ers, 36(4):471 – 482, April 1987.

[16] L. M. Lundbäck K-L., Lundbäck J. Component Based De-
velopment of Dependable Real-Time Applications. Techni-
cal report, Arcticus Systems, http://www.arcticus.se.

[17] A. Möller, J. Fröberg, and M. Nolin. Industrial Requirements
on Component Technologies for Embedded Systems. In Pro-
ceedings of International Symposium on Component-Based
Software Engineering (CBSE7). Springer Verlag, May 2004.

[18] M. A. Nolte T and N. M. Using Components to Facilitate
Stochastic Schedulability Analysis. In Proceedings of the
WiP Session of the 24th IEEE Real-Time System Symposium,
December 2003.

[19] N. Report. The economic impacts of inadequate infrastruc-
ture for software testing., May 2002.

[20] M. E. Shobaki and L. Lindh. A Hardware and Software Mon-
itor for High-Level System-on-Chip Verification. In Pro-
ceedings of IEEE International Symposium on Quality Elec-
tronic Design, pages 56 – 61, March 2001.

[21] K.-C. Tai, R. Carver, and E. Obaid. Debugging Concurrent
Ada Programs by Deterministic Execution. IEEE Transac-
tions on Software Engineering, 17(1):45 – 63, January 1991.

[22] H. Thane, D. Sundmark, J. Huselius, and A. Pettersson.
Replay Debugging of Real-Time Systems Using Time Ma-
chines. In Proceedings of Parallel and Distributed Systems:
Testing and Debugging (PADTAD), pages 288 – 295). ACM,
April 2003.


