International Journal on Software Tools for Technology Transfer
https://doi.org/10.1007/510009-022-00647-1

GENERAL

®

Check for
updates

Regular

Software test results exploration and visualization with continuous
integration and nightly testing

Per Erik Strandberg'? . Wasif Afzal? - Daniel Sundmark?

Accepted: 13 January 2022
© The Author(s) 2022

Abstract

Software testing is key for quality assurance of embedded systems. However, with increased development pace, the amount
of test results data risks growing to a level where exploration and visualization of the results are unmanageable. This paper
covers a tool, Tim, implemented at a company developing embedded systems, where software development occurs in parallel
branches and nightly testing is partitioned over software branches, test systems and test cases. Tim aims to replace a previous
solution with problems of scalability, requirements and technological flora. Tim was implemented with a reference group
over several months. For validation, data were collected both from reference group meetings and logs from the usage of the
tool. Data were analyzed quantitatively and qualitatively. The main contributions from the study include the implementation
of eight views for test results exploration and visualization, the identification of four solutions patterns for these views
(filtering, aggregation, previews and comparisons), as well as six challenges frequently discussed at reference group meetings
(expectations, anomalies, navigation, integrations, hardware details and plots). Results are put in perspective with related work
and future work is proposed, e.g., enhanced anomaly detection and integrations with more systems such as risk management,
source code and requirements repositories.

Keywords Software testing - Test results - Visual analytics

1 Introduction test cycles become more frequent [44]. Making sense of test

results data can be challenging, and if data are not presented

Modern embedded systems tend to come with increased
complexity, e.g., in the automotive industry the number of
computers per car has increased from 0, to a handful in the
1970s, to hundreds in the 2010s [45]. Also, the companies
developing embedded systems tend to strive more and more
for agile and continuous practices in the software develop-
ment, which could involve compilation and testing of each
code change in isolation, nightly testing, etc. With contin-
uous practices, there is an increased amount of information
generated from the software process as the development and

B Per Erik Strandberg
per.strandberg @ westermo.com; per.erik.strandberg @mdh.se

Wasif Afzal
wasif.afzal@mdh.se

Daniel Sundmark
daniel.sundmark @mdh.se

Westermo Network Technologies AB, Visterds, Sweden

Milardalen University, Visterds, Sweden

Published online: 18 February 2022

well, time and attention may be wasted while making critical
decisions [1].

Previous work seems to have: (i) been conducted for unit
testing or a less complex testing process, e.g., Wang et al.
[55] that visualize test artifacts on the state machine model
of a system; (ii) aimed at distilling the potentially rich and
diverse test data into a quality indicator such as Ram et al. [38]
that explore several metrics and focus on these as opposed
to focusing on the test data itself; or (iii) striven for creat-
ing a dashboard, mash-up or 3D-visualization on top of data
[4,5,9,16]. The goal of the study at hand is to investigate
a test results exploration and visualization (TREV) tool to
support the development of embedded software in parallel
code branches with continuous integration and nightly test-
ing. We implement and evaluate a tool, Tim,! for TREV,
to allow developers, testers, project managers and others,

! Tim is named after Tim the Enchanter, portrayed by the British actor
John Cleese, in Monty Python and the Holy Grail.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-022-00647-1&domain=pdf

P.E. Strandberg et al.

to make sense of the massive but sparse and heterogeneous
data that come from nightly testing at Westermo Network
Technologies AB (Westermo), a company that develops net-
worked embedded systems. Tim replaces an existing TREV
system [48] with three problems:

1. Requirements The old system was developed ad hoc, and
it is not clear if the implementation matches what users
need.

2. Technological Flora The building blocks of the old system
were not developed in accordance with current company
values such as modularity, testability and maintainability.

3. Scalability With the increased test intensity and paral-
lelism, graphical elements no longer fit on the screen, and
some database queries have grown slow, making the sys-
tem appear unresponsive.

This paper builds on our previous work [48] where the
old TREV system was presented and several areas of future
enhancements were elicited to solve the above mentioned
problems. Based on those elicited requirements, we present
a new and complete tool (Tim), its underlying architecture
and database layout, as well as its continuous implementa-
tion and evaluation with an industrial reference group. With
respect to the problems of the old system, we describe how
Tim was implemented in a development process involving an
industrial reference group of users that assisted in prioritizing
tasks and evaluating the implementation; that technological
choices were made based on preferences of the test frame-
work team at Westermo, and finally, that the performance of
the database queries was monitored; the visualizations now
fit on screens and better allow filtering on the views of Tim.

In addition to the solution of problems with the exist-
ing TREV system, the main contributions of this paper
are as follows: First, the identification of four solution pat-
terns: filtering, aggregation, previews and comparisons (in
Sect. 4.2). Second, eight views for TREV, as well as an
empirical evaluation of their use (in Sects. 4.3 and 4.4).
Third, the identification of six challenges for TREV: expec-
tations, anomalies, navigation, integrations, hardware details
and plots (in Sect. 4.5).

The rest of this paper is organized as follows: In Sect. 2, we
present some background to the study such as the industrial
context. The research process is described in Sect. 3. The
functionality and evaluation of the Tim tool are described in
Sect. 4. In Sects. 5 and 6, we discuss and conclude the paper.

2 Industrial motivation and context

This section motivates the study and introduces the industrial
context and some factors that lead to TREV being an impor-

@ Springer

tant but sometimes time-consuming and non-trivial activity
for industry practitioners.

2.1 Visualization

Visualization can be seen as a process of “representing data,
information, and knowledge in a visual form to support the
tasks of exploration ... and understanding” [56]. This is
a mental process that occurs when interacting with visual
elements. The visual elements are, in turn, representations
of data that have been collected, stored, fetched, filtered,
transported and transformed to and from some data stor-
age. Figure 1 illustrates an overview of Tim’s visualizations
based on simplification of previous work [28,31,43,53,56]:
(i) Data are collected from the test systems in the test environ-
ment: verdicts, log files, etc. (ii) The configuration of how test
resources are partitioned is a valuable reference for the user.
(iii) Visual elements such as icons, plots and tables are gen-
erated either beforehand or, e.g., inside a web browser with
some JavaScript library. (iv) The user will navigate between
the views, and (v) the TREV process occurs, while the user
interacts with the visual elements. In the figure, we indicated
challenges with question marks (e.g., Anomalies?) and solu-
tion patterns with exclamation marks (e.g., Filter!)

In a software testing context, the visualizations support
hypothesis generation, decision-making, and can map to
information needs [1]; e.g.: Is this the same bug as I saw
yesterday? Has the bug already been fixed? Is this bug only
present on some types of devices? What version of the test
case did we run? Why was my new test case not selected for
testing tonight? Is the level of quality sufficient for this feature
to be considered completed? Can we release the software?,
etc. We use the term test results exploration and visualization
(TREV) for when users interact with a system that generates
visual elements to support answering these types of ques-
tions.

2.2 Context

This study was conducted as an industry-academia copro-
duction involving the Software Testing Laboratory research
group at Milardalen University and Westermo Network
Technologies AB (Westermo), both in Visteras, Sweden.
Westermo develops embedded systems for communication
networks in industrial applications. A typical product is a
router with hardware suitable for a harsh industry environ-
ment, and software that enables standard communication
protocols providing communication for other systems. Typi-
cal customer domains are onboard rail, track-side rail, power
distribution and industrial automation. Westermo has more
than 300 employees, does R&D in several European coun-
tries, has offices globally and targets an international market.
The test framework team in Visteras develops the Fawlty

Software test results exploration and visualization with continuous integration and nightly...

Data (i, ii)

Visual Elements in Views (iii)

outcomes

Test Environment @\\é’- Filter!
&
¢
) /

TREV (v)

Compare!

Fig.1 Overview of software test results exploration and visualization. Challenges are indicated with question marks (e.g., Anomalies?), and solution
patterns with exclamation marks (e.g., Filter!). Steps (i) to (v) are described in Sect. 2.1

test framework? for automated testing of the software com-
ponents in the Westermo Operating System (WeOS), an
embedded OS based on GNU/Linux running in many prod-
ucts and developed by several software teams. This team
also develops, builds and maintains physical and virtual test
systems to allow testing in realistic conditions. A typical
physical test system has between 6 and 20 WeOS devices
connected in a network topology, controlled by a PC running
the test framework which communicates with the devices
over a serial console connection. In addition to the devices
under test, many test systems also have devices used to sim-
ulate loss of connection, traffic generators, as well as I/O for
powering units on and off.

Software development at Westermo is conducted in an
agile process based on Kanban, where isolation of fea-
ture development in separate feature branches is central. By
branching and merging the WeOS code base, the develop-
ment of one feature is isolated from the development of
another feature. The different WeOS branches are also tested
separately and resources for nightly testing are distributed
between branches. Once a feature branch is implemented,
tested, passed risk analysis and several other quality assur-
ance activities, the branch is merged into a main branch. After
a number of such merges, a release branch is branched off
from the main branch, and in this release branch, a software
release is created.

2.3 Complicating factors

In the past decade, the testing at Westermo has scaled up
significantly, see Fig. 2. Since the introduction of the test
results database, the number of test systems in use in nightly
testing has increased from 5 to 27, the number of parallel code
branches changed drastically in 2016 when the approach to

2 Fawlty is named after Basil Fawlty, portrayed by the British actor
John Cleese, in Fawlty Towers.

30 4

20 4

10 A

Test Systems

(U o e o o o o o e e e B LI B B s s e s i e o e e

1200 4
900 A
600 -

Test Cases

300 A

(U o e o o o o o e e e e e o LI B o i B s s e s e e o e e

Branches

600 -

400 -

200 A

Outcomes (k)

2012-Q2 4
2013-Q1
2014-Q1

2015-Q1
2016-Q1
2017-Q1
2018-Q1
2019-Q1
2020-Q1 -
2021-Q1 4

Quarter

Fig. 2 Growth in complexity over time: number of test systems, test
cases (with parameter combinations) and code branches used, as well
as produced verdicts (in thousands) broken down per quarter since the
introduction of the test results database

test feature branches was introduced and went from about
two to more than 65 in Q1 2021. The number of test cases
(distinct combinations of test script and parameter settings)
increased from about 350 to about 1025, and the number of
started test cases increased from about 80k to about 525k per
quarter.

@ Springer

P.E. Strandberg et al.

At Westermo, the complexity of testing involves, not only
the creation and execution of test cases, but also regression
test selection [47,51], where test cases are prioritized in each
test suite for nightly testing. This means that certain risk fac-
tors, such as previous history of failures and code changes,
play arole in the selection. In addition, each test system has a
number of devices (six in the test system illustrated in Fig. 1)
that each test case may or may not use. A firewall test might
require three devices—the first will act as the device to be
protected behind the firewall, the second will try to reach the
inner device through the firewall, and the third would fill the
role of the firewall. Now, if a test case requires three devices
and a test system has six, then there are many ways of select-
ing these three [50]. If the devices in the test system are
somehow different, then the actual hardware selection may
be very relevant to a user of a TREV system. Furthermore,
if a test case cannot be mapped onto a test system, perhaps
because the test case requires hardware resources or a net-
work topology that is not supported by the test system, then
that test case cannot start and thus cannot go pass or fail,
instead this result is called unmappable. In addition, results
from test cases that do not run to completion (because of
an unexpected exception, etc.) are called invalid, test cases
that cannot be found when they are to be loaded before the
suite are unloadable, and test cases that are part of a suite but
not executed due to constraints in time produce the verdict
skipped.

Finally, a challenge described in electrical systems in the
1940s, in the aerospace domain in the 1960s and for agile
test automation in blogs four decades later is intermittent
faults and intermittently failing tests [2,8,15]. In the soft-
ware engineering domain, the term flaky tests is often used
and this topic is heavily researched for unit-level testing on
open source systems, and more recently also on system-level
testing [49]. Typical root causes of the intermittence may be
shortcomings in the software under test, the hardware of the
embedded systems or in the test environment including the
test cases themselves.

If a user of a TREV tool investigates test cases from one
night at a time, and nightly testing only contained a portion
of available tests, then one might not realize if tests are flaky
or not—one needs to aggregate test results data over time in
order to determine the level of intermittence. Furthermore,
if a user only investigates failing tests and a certain test case
is not shown, then there could be several reasons for this:
perhaps the test case passed, perhaps it was not selected for
nightly testing, or perhaps it could not be executed on a cer-
tain test system (it was unmappable), etc.

@ Springer

3 Research process

As previously mentioned, the goal of the study is to investi-
gate a test results exploration and visualization (TREV) tool,
in order to support the development of embedded software.
This work was conducted as a case study [40] that also drew
inspiration from action research [36] and Munzner’s nested
model for visual design [28]. The case in the case study was
the new TREV tool Tim, as it was being defined, imple-
mented and adopted in the context at Westermo. The study
can be seen as a holistic single-case study since the case is
also the unit of analysis. We focus on two data sources: (i) a
reference group that represents users of the system and give
input on what the problems are and what decisions the system
should support and (ii) an open? alpha version of the system
and logs from its usage.

This study is to some extent also action research because
it covers “how an intervention, like the introduction of a
method or tool, affects a real-life context” [36]. This is rel-
evant because we want the intervention (implementation of
Tim) to have an effect (users improve their capacity to explore
test results). Action research is also applicable when “the
change and its observation are an integral part of addressing
the research question and contribute to research.”

3.1 Data collection

Reference group In order to provide the most utility to
the company, and also to validate the implementation, we
recruited a reference group of twelve individuals. We aimed
at diversity and the group contained line managers, project
managers and software developers both in the test frame-
work and WeOS teams. The differences in roles could be
considered a sort of triangulation, thereby addressing some
threats to validity. The test framework team manager, the
product owner of Tim, was also part of the group. Reference
group meetings were led by the first author of this paper (who
is employed at Westermo as well as a member of the test
framework team). At every meeting, there was at least one
WeOS developer, test framework developer and manager rep-
resented, with the exception of one meeting that specifically
targeted project and line managers. However, many meet-
ings had a majority of WeOS developers, which might have
biased the work in their favor. In discussions with the refer-
ence group, we were particularly interested in three critical
decision points in the development process: in daily work, at
merge time (when a feature is completed and its code branch
is to be merged into the main code branch) and at release time
(when a new software version is about to be released). The
reference group gave feedback on mockups (implementation

3 Open in the sense that every employee could use it.

Software test results exploration and visualization with continuous integration and nightly...

proposals), evaluated implementation and helped prioritize
continued work.

The first reference group meeting was held in Novem-
ber 2020, and the seventh in April 2021. Each meeting had
about seven participants and lasted for about one hour. The
meetings were held in a video chat tool due to the pandemic,
and they were recorded and transcribed into a total of 36 A4
pages of text which was later analyzed with qualitative cod-
ing [6]. Toward the end of the study, member checking was
conducted during one meeting. In each meeting, we tried to
capture not only the desires of the reference group, but also
the motives or problems behind their preferences. In parallel
with the meetings, the implementation was ongoing (illus-
trated in Fig. 3).

In addition to the reference group meetings, several edu-
cation efforts were conducted: one session on how to use the
tool, a second targeting familiarization with the implemen-
tation of the frontend and a third session on all of Tim’s code
including an introduction to the continuous integration pro-
cess set up with the dev.ops. team. All three of these meetings
were also recorded as a sort of “user guide” and “developer
guide.”

Web server logs Initially, the plan was to develop Tim
off-line and only open it more broadly to Westermo staff
after some time. However, early on we were asked to make it
available despite not having much functionality in place (only
early versions of the first three views). Therefore, we made
an “open alpha” available that ran in parallel with the system
to be replaced. In addition to providing utility to Westermo
staff, we also enabled logging in the open alpha which gave
us clues on slow database questions, navigational profile, etc.
The open alpha also helped the reference group champion the
adoption of Tim among other colleagues, and opened up for
ad hoc feature requests (e.g., during meetings that were not
related to Tim).

From the alpha, we stored the logs from the nginx web
server. In addition to what nginx writes to log by default
(e.g., each request for data), we also stored the request time,
which is the duration needed by the backend to generate con-
tents for the frontend. In the case where non-trivial database
queries are needed to generate contents, the request time can
be expected to be noticeable, which is a risk identified by
Munzner [28].

3.2 Ethical considerations

According to our previous work in research ethics when
involving both an academic and an industrial partner [46],
ethical principles include: consent, beneficence, confidential-
ity, researcher skill, etc. The main ethical threat we identified
for this study was for researchers to expose sensitive data or
opinions from the company or the participants. This was mit-
igated by anonymizing transcripts from the reference group

meetings while transcribing and never letting raw data out of
company computers. Furthermore, we anonymized all mock-
ups, as well as the screenshot of Tim, and have requested and
received permission to conduct and publish this research. To
avoid harm, such as making incorrect decisions based on Tim,
we also suggested that Westermo staff use the old system in
parallel, at least when making important decisions or when
results in Tim seem suspicious.

4 The Tim tool

This section covers technical details of Tim (in Sect. 4.1),
as well as the main findings of this study: recurring patterns
in the views we implemented (Sect. 4.2), the views and how
they were evaluated (Sects. 4.3 and 4.4), as well as challenges
with TREV that were frequently discussed at reference group
meetings (Sect. 4.5).

A screenshot of one of the actual views in Tim is shown
in Fig. 4. However, for reasons of readability and confiden-
tiality, mockups are used in the remainder of the paper. (The
mockup showing the same view is illustrated in Fig. 8.)

4.1 Technical details

Before work with the reference group started, the old TREV
system had been up and running since 2012. Based on the
old system and interviews conducted at the company, we had
a set of user stories describing desirable functions for Tim.
Parts of the old system and the user stories are described in
our previous research [48]. In addition, we had a skeleton-
implementation and definition of technical constraints for the
continued implementation of Tim. This had been a significant
undertaking and involved refactoring of the database schema,
introduction of containerization, as well as technological tri-
als with tools and frameworks (programming languages, web
frameworks, etc.). In addition, a prototype in Python 3 and
Django had been implemented in 2019, which was rejected
based on technologies used. Much of the motivation for deci-
sions on technical flora was based on business decisions (such
as focus on scalability and maintainability), tool preferences
in the test framework team and partially on a master’s thesis
on potential advantages of statically typed languages [41].
In 2012, when the testing at Westermo was done on two
parallel code branches on four physical test systems, it was
observed that exploring test results in PDF-files was no longer
scalable (each test session generated a separate PDF, so the
number of documents to read increased linearly with both
number of test systems and code branches). At that time, the
first author of this paper suggested and later implemented a
test results database, and an overview of the database schema
is illustrated in Fig. 5. The main motivation for implement-
ing the database was to make it easier to store information

@ Springer

P.E. Strandberg et al.

Fig.3 Overview of the research
process. Tim was updated
iteratively with repeated
reference group meetings. Based
on data from transcribed
meetings and logs from the open
alpha, we identified solution
patterns (Sect. 4.2), views

(Sect. 4.3), challenges

(Sect. 4.5), as well as
information on the performance
(Sect. 4.4.4) and navigational
profile (Sect. 4.4.5) of Tim

Tim Pre-Alpha

related to the state of the test systems and also to aggre-
gate results, i.e., test verdicts. During the implementation of
Tim, the database schema was slightly simplified and modi-
fied to better fit the naming conventions used in the database
communication library (SQLBoiler). An example of a raw
sql-query to the database in order to generate the output
shown in Table 1 and Fig. 8 is:

select

system, branch, result,

path as test, outcomes.id as oid
from sessions

join outcomes on session_id = sessions.id

join tests on test_id = tests.id
where

sessiontype = ‘‘nightly’’ and

branch = ‘‘brA’’ and

result in (1, 2) and

*12021-04-03 14:30:00""
'112021-04-04 14:30:00""
test;

sessions.started > and

sessions.started <=
order by system, branch,

In order to support development of Tim and the testing of
database queries, we implemented functionality to populate
the database with random data, and also to sync data from
the legacy database as an alternative. Generating random data
makes Tim independent of the environment in which nightly
testing is conducted, thereby allowing rapid development and
test cycles of the Tim tool itself. Using real data in the devel-
opment of Tim enables manual high-level acceptance testing.

The overall architecture of Tim is illustrated in Fig. 6. Sig-
nificant technologies included are: (i) containerization with
docker, docker-compose and kubernetes; (ii) a test results
database in MariaDB (a fork of MySQL); (iii) a backend in
the Go language using SQLBoiler for object relational map-
ping (ORM); (iv) a web-based API that exports or imports
test results data in json format (part of the backend); (v)
a command-line interface for showing test results—at first
implemented before the frontend was in place, but found to be
very useful, fast and lightweight; (vi) a web frontend imple-
mented in JavaScript with Vue/Vuex; (vii) a server storing
log files from historic test executions; and (viii) the current

@ Springer

Open Alpha

Reference Group Meetings
—— '@ > > challenges

videos transcripts

W]‘a 1_)~ Up

.................. > views

........................ » solution patterns "
) P] Improved Tim
----- > navigational profile

------------- » performance
nginx logs

configuration of how to distribute test resources in nightly
testing. In the future, more integrations are planned (e.g.,
with the source code repositories to more easily navigate to
documentation showing the purpose of a certain test case,
etc.).

Important technical differences between Tim’s code base
and that of the system to be replaced include: (i) Container-
ization: e.g., the database resides in its own docker container,
making it possible for different projects to have different
instances of a test results database, and to experiment with
changes in database schemas, etc. (ii) Testability: the Go
libraries in the backend can be tested with dummy test data
that can be generated and re-generated rapidly—a complete
cycle that creates a database, populates it with data, and
runs all unit tests and database integration tests, requires
less than 20 seconds. (iii) Continuous integration: each code
change in any of Tim’s components triggers linting of Go
code with golangci-lint (a lint aggregator configured to use
33 linters) and Vue code with prettier. The purpose of lint-
ing on each code change is to capture potential shortcomings
in the code (e.g., unused variables, “magic numbers,” etc.),
and to enforce a common coding style (which is not trivial
for a language such as JavaScript [52]). Running the tests
on each code change is desirable and will likely be added
in the future. (iv) Technology choices such as programming
language, JavaScript framework, web style, etc. have been
based on team consensus to build a feeling of team owner-
ship.

4.2 Solution patterns

During the implementation of Tim, four concepts were
repeated in different ways in the views. Despite the risk of
researcher bias and biases coming from what is possible or
easy in the technological platform (e.g., using Go or Vue),
these patterns may be valuable for other researchers or prac-
titioners since they augmented TREV in Tim. Furthermore,
some of the patterns were discussed with the reference group,

Software test results exploration and visualization with continuous integration and nightly...

“ Y Filter » §* Branches v #% Systems v £ Areas v I Analysis v i About]

Viewing), and on %), "), and for tests in), and
C0, (0D =nd (5D o (23D 5D D D D -« D @d @b - @D

from 2021-06-07 14:30 to 2021-06-10 14:30.

Sort by Search
Date v m Filtered Fail Trend Plots
Sort direction — — -
Descending - Filter by result
ttems per page [Pass Fail %
50 v Invalid (3 unmappable
Filter by branch/system/area Unloadable (O skipped -
& @éd (O unsupported (3 other May 1 s Jun 10
COCDODCDODCD s [}
0%
System Branch Result Test Date Output May 1 Jun10
Or Jun10,0239
Or Jun10,0233 () 9%
Or Jun 10,0228 (]
0% 4
or Juno,0328 @ ot &>
Compare branches.

System Summary

(191) B o
B o BB s
52 2 [N E »

Branch Summary

Or Jun9,02:46 |
Or Jun 9, 02:42 (
' 4 E
Or Jun9,0232 (]
?
[Jung,0229 # Flaky Tests ?
Min. Q-Score Min. Verdicts
Or Jung, 0231 (J =— & v
Or Jung, 0121 (J
QofN Test Where
Or Jung,00:52 (]
=)
]
F Jung, 0047 o
Or Jung, 0043 (] 2 DUTs 2
Or Jun7,22:18 @ System outT Model Serial
Or Jun7,21:58 (]
Or Jun7,21:44

Fig.4 Screenshot of the outcomes view (mockup in Fig. 8)

which encouraged their use. The patterns are illustrated in ~ 4.2.1 Filtering

Fig. 1 and highlighted with exclamation marks. Examples of

usages of the patterns in the Tim views are also provided in ~ Testresults data from nightly regression testing come in many

the below text. dimensions. From one night, data are generated over test
cases, over test systems and over code branches. Each out-
come also represents a verdict: In addition to pass or fail, a
verdict at Westermo may also be invalid (the test case could

@ Springer

P.E. Strandberg et al.

outcomes
id, session _id, test id,
result, duration, etc...

sessions
id, system, branch,
started, duration, etc...

tests
id, path

messages
id, outcome _id, topic,
message, etc...

!

deviceinfos
id, model, firmware,
serial

devices |
id, session_id,
deviceinfo id, etc...

measurements
id, outcome _id, topic,
val, reported, etc...

mappings
id, outcome _id,
deviceinfo id, etc...

Fig. 5 Overview of Tim’s test results database: tables as boxes, with
fields in text and relations (i.e., foreign keys) as arrows. Example: an
outcome (e.g., “‘a fail”’) involves one test case and is part of one session.

not run to completion), unmappable (the resources required
of a test system were not fulfilled), unloadable (the test case
did not exist or had syntax errors) or skipped (when time did
not permit continued testing). While looking at test results,
one has typically applied a filter along some of these dimen-
sions, sometimes without even realizing it. Answering the
question “which tests failed in my branch tonight?” implies
filtering along the dimensions: verdict, time and code branch.
Exploring test results without filtering is inconceivable—
there is just too much data. However, there are limitations
in which filters a user interface can support, and which filters
can be implemented. Implementing support for all possible
filters might be wasteful, but implementing too few filters
could frustrate the user as desirable filters might be absent.
It is also difficult to fit all possible filters in a user interface
in such a way that the user can make sense of them (such
as when navigating to the “next” test case in a test session,
discussed in Sect. 4.3.3).

Different from filtering is selecting—as opposed to filter-
ing out a set of verdicts or test sessions, a user may want
to select one verdict or one session. Based on the selection,
one may want to filter within that set. For example, in the
mockup of the session view (Fig. 10) , we illustrate how a
user filters on type of verdict from a selected test session. In
the outcome view (Fig. 9), we show one verdict where we

Data Sources

Core logic

Each session typically involves several unique devices that are described
as adeviceinfo with details on device model, firmware version and serial
number

Table 1 Example output from a database query to generate the data
needed for what is shown in Fig. 8

System Branch Result Test oid

sysl brA 1 src/test/protocol-a/test1 36822
sysl brA 2 src/test/protocol-b/test2 36827
sys2 brA 1 src/test/protocol-b/test2 36901
sys3 brA 1 src/test/protocol-b/test2 36976

For the query that generates the table, see main text. At the company, a
result of 0 means pass, 1 means fail, 2 means invalid, etc.

filter on which log files to show, and also the filter on time
span for log messages to show within a log file.

4.2.2 Aggregation

Based on a filtered data set, say all verdicts from a certain
night, one may want to aggregate data into certain categories.
In the mockup of the start view (Fig. 7), test results from one
night are aggregated based on their branch and verdict. In
the trend plot, the data are instead aggregated based on date
and shown as a time series (Fig. 17). The aggregation may be
very natural, like number of fails per night in the last week, or
number of executed tests shown branch by branch or system
by system. The aggregation may also be more artificial, like

Frontends

S —8 |

Legacy DB

db libs.
other libs.

log file libs. http export

Web Frontend

analysis
cli libs.

CLI

Fig.6 Overview of Tim’s architecture

@ Springer

Software test results exploration and visualization with continuous integration and nightly...

counting verdicts for test cases covering one functional area
when compared to test cases for another area—what about
test cases that cover both areas?

4.2.3 Previews

One of the main tasks when exploring test results is to look
at test execution logs, e.g., by reading the test framework log
message “atest failed because the firewall did not block pack-
ets as expected.” If a user has reached one view, say the list of
outcomes, and the system allows the user to peek at the most
important log messages from another view, without navigat-
ing to that view, then many clicks and context switches would
be saved. (Fig. 8 illustrates this.) The old system has no pre-
view function, but in Tim this was so appreciated that we
sometimes asked the reference group what a preview would
mean in a view that did not have it (such as in the start view),
and then we implemented a preview based on their sugges-
tion (for the start view: results per system). In some views, the
preview was instead implemented as expand or collapse of
details, e.g., in the compare branches and the analyze branch
views.

4.2.4 Compare

The fourth recurring theme is to compare. The simplest exam-
ple is to compare logs from two failing tests in the same test
session—this way one may determine if the tests failed for
the same reason. Comparisons could of course, at least in
theory, be done along almost any test results dimension—if
more tests fail on one test system and not another, then per-
haps there is some hardware dependency in the software? If
tests failed more today then yesterday, then perhaps a bug
was introduced? If my development branch has other fail-
ing tests than the main branch I want to merge it into, then
perhaps I would decrease the software quality of the main
branch (an example of this is illustrated in Fig. 13)?

4.3 Implemented views

Eight views were implemented in Tim. Mockups are shown
in Figs. 7, 8,9, 10, 11, 12, 13, and 14. Each view was either
first implemented in Tim and then evaluated at a reference
group meeting, or first drawn as a mockup and discussed
at a reference group meeting before being implemented. The
mockups in the figures have been anonymized and simplified
to show principles and to increase readability.

4.3.1 The start view
The start view shows an overview of each branch active

in nightly testing. The results are aggregated over all sys-
tems and color-coded—blue for pass, red for fail, yellow for

Tim Start Page

<Filters>

Branch Stats Nightly OK? Details
branchA ([o
branch B A -

[

branch C o
N)

system 1

system 2 (no data) A Lost Session
system 3

branch D

Fig.7 Mockup of the start view

Outcomes

<Filters>

System Branch Result Test Details
sys 1 br A I test t1 ®
sys1 br A OF test t2 [
sys2 brA OF test t2 @®
sys 3 br A OF test t2 ®

Fig.8 Mockup of the outcomes view. Log text is illustrated with lines

invalid, and test cases that could have been tested given more
resources on time or devices are gray. In order to have redun-
dant information coding, we have strived to never use color
alone as carrier of information—it has always been combined
with size, shape or position. When colors alone is used to
carry information, there is a risk that users cannot receive the
information in particular when shown on a projector, when
printed in grayscale, or when the person viewing the graphic

@ Springer

P.E. Strandberg et al.

Test Case t2 [Faill

on system 1 and branch A, part of session N

Recentresults 90022920 00Q0

Log Filter X test fw [device 1 [device 1
[] device 3

[device 4 PAdevice 5
t1 t2 t3 t4
Time Filter | |]

g

time test framework log

time device 5 communication log

Heatmap

<Filters>

<Sort Order>

Br. Sys. Test Heat

brA sys1 testt2 (VX]
brA sys1 testt418 (VX
brA sys2 testt2 (VX]
brA sys2 testt418 o (1] (1 N
brB sys2 testt2 (VX

brB sys2 testt418 (VX

Fig.9 Mockup of the outcome view. Log text is illustrated with lines

System 1, BranchA [P
Session N, at <datetime>
Metadata and Links
Filter on Verdict This Session
O pass Q%000009%9 0O 0O
& fail Q0000000 0O O
O invalid Q0000000000
[skipped
Test Result Details
test t2 OF -%
testt418 O F ®

Fig. 10 Mockup of the session view. Log text is illustrated with lines

is color-blind [57]. Anomalies from nightly testing—such
as when a test session should have started but did not, are
highlighted with a warning sign. A button can be pressed to
expand the results from one branch, thereby showing results
from the branch split on test systems. In the example illus-
trated in Fig. 7, the expand feature shows the user that all
of the non-passing tests in this code branch came from one
particular test system. This would narrow down the search

4 Roughly 8% of all men and 0.5% of all women have some form of
color blindness [24]; the first author of this paper is one of them.

@ Springer

Fig. 11 Mockup of the heatmap view

Measurements

<Filters>

Measurement M1 from test t418, br B, sys 2

388

Measurement M1 from test t418, br C, sys 2

55

Feb 3 Feb 23

Fig. 12 Mockup of the measurements view

for the failing tests, and if the user knows that this system
also had issues yesterday and that replacement parts have
been ordered but not installed, then perhaps no further click
is needed. We hypothesize that a non-negligible amount of
clicks and effort will be saved.

At first, this view was not organized in a table and it had no
details button for a preview. In order to save space in the view,
and to fit the potentially many branches on one screen, they
were placed in alphabetical order as compact as possible.
Some rows would fit many branches and their results, but

Software test results exploration and visualization with continuous integration and nightly...

Compare Branches

Compare: Main A and Feature F
Last 3 days

Main A Feature F Details

areaal N ®

Area

area a2 -
sys 1 %
svs 2
test t1
test t2
test t3
area a3 o

Fig. 13 Mockup of the compare branch view

Analyze Branch
<Trend plot of number of systems used>

<Trend plot of pass/fail>

Last 5 days

Test N Bad Stats Details

test t1 8 98 @

testt418 5 -
systeml @ @ VX (VX %
system 2 000 (VX
system3 @ 0o () 09

test t31 1

°

Fig. 14 Mockup of the analyze branch view

others would only fit a few (if the branch names were long).
The reference group expressed irritation of the lack of straight
lines and they perceived it as hard to use this view. When
shown a mockup which led to the implementation shown in
Fig. 7, a WeOS developer said “It’s much easier to read...I
like when there are columns <waving hands to show>.” One
of the members of the test framework team mentioned that
the expand feature “would save me clicks...I’d almost never
have to click on to the next view before the daily meeting.”

The poor usability of Tim’s initial start page was one of
the reasons individuals would keep using the old system.
Since Tim is expected to be able to handle a large number
of branches, annoying scrolling to find one’s branch is to be
expected. We therefore implemented support for filtering on
branch name, which might reduce the need for scrolling.

4.3.2 The outcomes view

The outcomes view shows filtered test results without aggre-
gating it along any dimension. Each verdict occupies one
row in a table that can split over several pages if needed.
Typically, a user would enter this view from the start view
and the active filters would by default show results from one
night, from one branch and only include failing, invalid and
unloadable tests. Also in this view, is a list of flaky tests, a
list of devices in the test systems used for testing, as well as
trend plots for the branches selected (shown in the screenshot
in Fig. 4, but not in the mockup in Fig. 8).

The outcomes view also includes a type of preview to see
details from the test framework log messages (error messages
are shown but not debug information). If several test cases
have failed due to one root cause, a user could rapidly figure
this out by expanding the preview for these tests, without the
need to navigate to another view. Again, this is expected to
save clicks and allow the user to keep situational awareness.

The outcomes view was one of the first to be implemented,
even before Tim reached alpha-phase, and before the refer-
ence group meetings started. Therefore, the reference group
discussions were centered around the secondary information
in the side bar of this view. Some expressed frustration over
the design of the plots (further discussed in Sect. 4.5.6), and
others that too much secondary information (such as flaky
tests) was shown. As opposed to implementing an “advanced
mode,” or some role-based views, where, e.g., a project man-
ager would see fewer details than a software developer, the
additional information will remain as is, but stay in the side-
bar (see Fig. 4).

4.3.3 The outcome view

The outcome view shows the details of one executed test case,
on one test system, using one code branch, at one particular
point in time, see Fig. 9. Recent results of the same test case,
code branch and system are shown in a dotted pattern where
each icon represents one verdict. This facilitates understand-
ing when a failure first appeared, if the test case is flaky, and
also navigating over verdicts in time. The mockup illustrates
a user looking at the third failure in a streak of four failures.

The most important part of the outcome view is for a user
to be able to read logs coming from the testing. In addi-
tion to the test framework log, there are also communication
logs for each device that had a role in the test. The view

@ Springer

P.E. Strandberg et al.

allows for zero, one or more log files to be visible at the
same time, by clicking check-boxes next to names of the log
files. The previous system only allowed viewing one file at
a time and users would frequently open multiple browser
windows, which risks leading to lost focus when exploring
results. Showing multiple logs simplifies comparisons, such
as when two devices are expected to behave the same way.
By default, the test framework log is shown, and as discussed
in Sect. 4.4.5, not all users request any device log.

Log files typically have hundreds or thousands of lines of
log information, and seeing all at once can be cumbersome.
Two ways of filtering log contents are in place. First, a time
filter that acts on the time stamps on each log entry. This
is useful, e.g., when the test framework reports of an issue
on a particular device at a particular point in time—now a
user can filter away all log information except what happened
from a few moments before that point in time up until a few
moments after. Second, a filter on log level is also present.
This acts in the framework log, where each log entry has a
severity attached to it, e.g., warning, info, debug, etc. (this
filter is not shown in the mockup). The reference group was
positive to the time filter, which is new when compared to
the old system.

The outcome view also has buttons for navigating to the
next or previous verdict in the same test session (not shown
in mockup). Implementing this navigation between test cases
is not necessarily straightforward—what do we mean when
we wish to see the next test case: The next in the session?
But if that represents an unmappable test case, would the
user like to see the next executed test case? But if that test
case passed, would the user like to see the next executed but
non-passing verdict? Should these navigation options have a
button each? If so, how do we fit so many buttons in the user
interface without making the tool too complicated to use?

In the end, the simplest form of navigation was imple-
mented in Tim, one that shows the next test case regardless
of verdict.

4.3.4 The session view

Test results are produced by running a test suite in a test
session on a test system while having software from a certain
WeOS code branch on the devices under test. The results
from one such test session can be seen in the session view,
see Fig. 10. The view shows, by construction, result from
one night, on one test system and one code branch; it has
therefore been placed late in the exploration—a user would
have to navigate from the start page, through the outcomes
and outcome views before reaching it. Instead, the outcomes
view is a more central view, and the outcomes view is also
more flexible in that it can easily adapt to show several test
systems, code branches and also show results from more than
one night.

@ Springer

In the session view, the verdicts from each test case in
this particular session are illustrated with icons, as in the
outcome view. This can be very valuable at times, e.g., when
one test case pollutes the system state for consecutive test
cases. When this happens, a user would see a continuous line
of red or yellow (for fail, invalid or unloadable), instead of
scattered red or yellow dots, among the blue and gray tests
(for pass, skipped or unmappable). The same type of test
framework log file preview as in the outcomes view is used.

Not shown in the mockup is a trend plot of the results
from the same branch and system in question, over time. The
plot is clickable and allows the user to navigate between test
sessions over time. Furthermore, the view supports filtering
on test cases in case many are shown, such as when viewing
passing tests (not shown in mockup). Again, the session view
was one of the first to be implement (before work on the
reference group started)—most discussions on it involved
the trend plot and how the filters on test cases works.

4.3.5 The heatmap view

One of the most appreciated views is the heatmap view, see
Fig. 11. The main idea of it is to show results over time in
a dotted pattern. Each row represents a test case executed
over time on one test system in one code branch, where each
verdict is illustrated with an icon based on the type of verdict.
The view has filters on number of days to show results from
as well as systems, branches and test cases to include (not
shown in the mockup). The table can also be resorted (sort
on test system, code branch or test case). Furthermore, the
view shows the separation of the test cases’ test script and
parameter settings (not shown in the mockup).

The main use case for the heatmap view is to gain an under-
standing of when and where a test case has been failing. If a
test case passed in one code branch, but not in another, then
perhaps a problem is present in one of the code branches, but
if the test case fails on one particular test system regardless
of code branch, then perhaps the hardware of that test sys-
tem has some shortcoming, and if the test case fails on all
branches and systems, then perhaps an error in the test code
has been introduced. Furthermore, if tests are intermittently
failing or flaky, a user would rapidly see if the intermittence
is isolated to a certain test system or code branch, which
can be very helpful when root causing the flakiness. By also
allowing a user to see results from more than one test case, a
number of hypotheses can rapidly be confirmed or rejected.
Clicking the icons would lead the user to the outcome view
of that verdict.

When shown a mockup of the heatmap view, a member
in the reference group said “this is a dream when compared
to the old system.” For reference, the old system shows pre-
generated images rendered to file. These images are rendered
a few times each day, so when looking at them recent results

Software test results exploration and visualization with continuous integration and nightly...

might not be included. Each of the images in the old TREV
tool shows a heatmap for all available test systems for one
test case and one branch (without separation of parameter
settings). The view then shows all images in branch order in
a very long web page. This would make it difficult for a user
to compare results from a particular test system as one would
have to scroll up and down without being able to see the lines
of heat of interest at the same time in the view. Furthermore,
in order to compare over test cases, the user would have to
open separate windows and look at only one test case per
window. The clickability of the old system is also poorer
since the user would first have to click one image to open it
and then click the verdict to navigate to the outcome view of
it. We have been unable to overcome the technical thresholds
of removing the middle step in the old system.

In the example illustrated in the mockup (Fig. 11), we
see that test cases t2 and t418 had an issue leading to invalid
results on branch A on test systems 1 and 2. Two days ago, the
issue was repaired and these test cases no longer go invalid on
branch A. These tests seem to go pass on branch B. However,
t418 on test system 2 seems to also sometimes fail, so perhaps
there were two issues present at the same time for this test
case on this branch and system, and this issue might not yet
have been corrected.

Also note that the dotted pattern of the heatmap view
(Fig. 11) and the session view (Fig. 10) is different. In the ses-
sion view, each verdict in the session is illustrated, as if it was
a long word, with no dimension other than time (in the order
of seconds or minutes) between each icon. In the heatmap
view, typically about a month of time has passed from the
leftmost to the rightmost verdicts (the mockup shows eleven
nights), and each line represents one combination of test case,
parameter settings, test system and WeOS code branch.

4.3.6 The measurements view

In addition to producing passing or failing verdicts, some
test cases also generate measurements as a side effect. One
such measurement could be the number of milliseconds for
a redundancy protocol to react to changes in a network
topology. In the measurements view, these measurements are
visualized (Fig. 12). Similar to the heatmap view, this allows
for comparisons between test systems, test cases and code
branches. As illustrated in the example in the mockup, test
case 418 has logged values between 0 and 388 on branch B,
but no value on branch C go above 55, so something is slower
in branch B than in branch C. Not shown in the mockup is
the possibility to also see the raw data in a table, in case one
would like to copy and paste to a spreadsheet, an email, etc.

The reference group expressed that this view is very help-
ful for detecting unexpected degradation in performance that
has to be corrected. Without the recording of measurements
and the visualizations, one might not be aware that code

changes in a feature branch actually had an impact on perfor-
mance, and only realize it close to a release. It is easier and
preferable to detect performance issues in a feature branch
and correct before the code is merged to a main branch.
(In addition to metrics collected by the Fawlty test frame-
work, Westermo also measures performance with third party
measurement tools from Ixia/Keysight, etc.). In discussions
with the test manager, a task for future work was created to
enhance the measurements data with anomaly detection, so
that warnings would be emitted if a performance degradation
is detected.

4.3.7 The compare branch view

The view for comparing branches was implemented to sup-
port decision making at merge time, typically when a feature
branch is to be merged into a main branch. To start with,
the user selects one, two, three or four branches to compare.
(In theory more branches could be compared, but that would
be hard to fit in a usable interface.) The view then shows
results aggregated over time and test systems but split by
branch and functional area (such as communication protocol
or other feature). A concern expressed by several members
in the reference group is to add poor quality from a fea-
ture branch to the main branch. (The software development
process also aims at mitigating this.) They desired a view
showing that relevant tests have been running as expected.
Also, if there are failing tests in a feature branch, then one
must easily be able to tell if the same tests fail in the main
branch or not. It would of course be preferable to have no fail-
ing tests, but if tests do fail and also fail in the main branch,
then one would have less reason to suspect poorer quality in
the feature branch than in the main branch.

The compare branch view was based on a common pattern
in many shopping websites, where a user can compare, e.g.,
two different types of mobile phones side by side, and see
details category by category (the screen size, screen resolu-
tion, memory, etc.). As can be seen in the mockup in Fig. 13,
a user can also expand the aggregated data to see the same
results split on test system or split on test case. As illustrated
in the mockup, area a2 has had some non-pass results, and
the details show that these results come from the same test
system, but different test cases. The test case t3 is shown
to go both pass and invalid in the main branch, but has not
been executed in the feature branch. The mockup also shows
that area a3 is passing on both branches, but area al has no
test that has been executed on feature branch F. The refer-
ence group was positive to the view: “That’s nice, I like it,
like when [the development team] comes and what to run a
merge and go through the [quality assurance] checklist, to
get an overview. As a project manager I like that.”

@ Springer

P.E. Strandberg et al.

4.3.8 The analyze branch view

At release time, the project managers in the reference group
expressed an interest in being able to get an overview of
any and all failing tests in the last days. To support this, the
analyze branch view was implemented and discussed at a
reference group meeting with only project managers. Not
illustrated in the mockup in Fig. 14 are two plots showing
trends of number of passing, failing, invalid and unloadable
tests over time, as well as number of test systems used in
nightly testing. The main part of the view shows a table of
all failures in the last days, aggregated over test case. In the
mockup, three tests have at least one non-pass verdict, first
tl with eight bad results, t418 with five and t31 with one.
Expanding a row would show the same verdicts split over
systems and time, similar to what is shown in the heatmap
view (Fig. 11). In this example, we see that t418 produced
a number of bad verdicts in the last two weeks, but that it
was mostly passing yesterday, and only passing tonight—so
perhaps the issue has already been corrected.

Below the table of tests with bad verdicts is also a second
table of the test cases that passed, as well as a third of test
cases that have not been executed (not shown in mockup).

4.4 Risk-based evaluation of the implemented views

Papers on software visualization often have poor or no eval-
uation according to Merino et al. [27], who recommend
to evaluate in situ with a case study, or to conduct exper-
iments. In addition to a lack of evaluation, the different
levels of the visualization come with separate threats and
approaches, according to Munzner [28]. In short, we have
relied heavily on the reference group for the first three risks
mentioned by Munzner. (Solve the wrong problem, use bad
data abstractions, or use bad visualizations.) In addition, we
have collected web server log data, primarily to evaluate
the performance of the back-end for the fourth risk (bad
or slow algorithms). The logs were also used to identify a
navigational profile. Finally, we have used standard software
engineering code quality tools such as lint (static code anal-
ysis), and automated tests on the unit and integration levels
for the fourth risk.

4.4.1 Risk 1: solved the wrong problem?

The first challenge is to consider if a visualization targets the
wrong problem, in Munzner’s words, the risk is that “they
don’t do that.” With respect to our study, a risk on this level
would, e.g., be to implement visualizations for code com-
plexity of test scripts—it would be interesting to know, but
is not at the core of test results exploration and visualiza-
tion. Having an author from the case company is of course
one mitigation to this threat, another mitigation is the fre-

@ Springer

quent meetings with the reference group. Munzner suggests
to measure the adoption rate at the company, but warns that
thisis notalways areliable metric: “many well-designed tools
fail to be adopted, and some poorly-designed tools win.”

4.4.2 Risk 2: bad data abstraction?

In short, one risks to visualize “the wrong thing,” e.g., by
using incorrect data types. From a test results database per-
spective, the data types stem from the data collection: log
files, verdicts, test sessions, etc. As can be seen in the top
of Fig. 2, the number of test systems in use each quarter has
grown over time, and there has been a shift at Westermo,
from investigating test results in one test session at a time, to
aggregating results from several test systems, and sometimes
several nights. Without this aggregation, a user would have
to investigate “what failed on my branch on test system A
tonight?”, then “...on test system B?” and so on. One could
argue that the PDF test reports from each test session that
Westermo used prior to implementing a test results database
represents an instance of this risk: visualization focused on
sessions, and not results aggregated over systems and time.

Two approaches suggested by Munzner are to let members
of the target audience use the tool and collect data on the use-
fulness of the tool, which is in line with how we worked with
the reference group, or to observe users when they use the
tool. We have not conducted long-term observation studies,
but consider it for future research.

4.4.3 Risk 3: bad visualizations?

On an interaction (or encoding) level, the risk is that “the way
you show it doesn’t work.” An example of this risk is how the
reference group reacted to the trend plots we implemented.
Based on comments from the reference group, we allowed
them to vote on alternatives and it was obvious that the way
we showed it did not work. We discuss the challenge of plots
more in Sect. 4.5.6. Munzner suggests to conduct formal user
studies on laboratory experiments where individuals perform
tasks using visualizations. Another proposed mitigation tech-
nique is qualitative discussion using images or videos, which
again is in line with how we worked with the reference group.

4.4.4 Risk 4: bad or slow algorithms?

With poor algorithms, one risk is that “your code is too slow,”
or that the code is wrong and generates incorrect visual ele-
ments. Munzner suggests complexity analysis as mitigation.
We have, however, only conducted manual code reviews sup-
ported with linting and unit tests as part of the development of
Tim (i.e., no formal analysis of complexity was conducted).
Another suggested mitigation is to measure duration needed
to generate visualizations. When we did this, we analyzed

Software test results exploration and visualization with continuous integration and nightly...

40%
30% 76.34%

22.04%

12.2% 12.4%

20%

10%

L 1.62%
1.7% 0.7% 0.3% 0.6%
T T T

0 005 01 025 05 1 25 5 10 25 50
seconds

51% 5.1%

0%

Fig. 15 Distribution of speed of backend calls. Most bars cover a time
interval roughly twice as large as the previous one

logs from 201 days of use and found that about 98.4% of
backend calls were faster than 10 seconds (see Fig. 15). One
could also consider time required by the frontend to render
plots from data collected from the backend, which we have
not done. Again, this could be done as part of future work
as part of a long-term user study. Regarding the functional
correctness, we have implemented automated unit level and
database-integration level testing of the backend code. The
frontend has been manually tested. We have also used Tim in
parallel with the old system to be replaced in order to identify
incorrect behaviors.

4.4.5 Navigational profile

Based on 201 days of log data from the web server, we iden-
tified the dominating navigational profile in Tim, illustrated
in Fig. 16. The data were collected in parallel with develop-
ing the system. The typical user first navigates from the start
view to the filtered outcomes view, and then to an outcome.
Once at a particular outcome, the user would sometimes nav-
igate to the session the outcome was part of, or back. From
an outcome, users would sometimes go to other outcomes
(e.g., earlier or later in the suite), and sometimes also to
the heatmap. Surprisingly, the movement from a heatmap to
an outcome was stronger than the opposite direction, which
would indicate that a user viewing a heatmap would open
several outcomes, or that the user found the heatmap from
the navigation bar (not shown in mockups) instead of going
to it from the outcome view.

As expected, most log files from nightly testing were
viewed in the outcome view, almost 70% of all requests to
load a log file came from that view (52.4% for the test frame-
work log and an additional 17.4% for device logs). Also,
about 29% came from the outcomes view and an additional
1.4% from the session view. This indicates that quite many
users use the preview function in the outcomes view and
possibly that some clicks from the outcomes view to the out-
come view are “saved.” About 17.4% of all requested log

files were for device communication logs (in the outcome
view). We speculate that this typically happens when a user
needs more details on what happened, or perhaps in what
order. Another way to interpret the data is that in about a
third® of the cases where user wishes to explore an outcome,
he or she also wishes to see a device communication log (the
test framework log is shown by default in the outcome view,
whereas the device logs have to be added by selecting them).

4.5 Challenges identified by reference group

Thematic data analysis from the transcribed reference group
meetings indicated the existence of six challenges. These are
listed in Table 2, highlighted with question marks in Fig. 1
and discussed in the below subsections.

In order to validate if the reference group agreed that these
were indeed challenges, we conducted member checking by
presenting the challenges, one by one, and allowing members
to vote in a manner similar to poker planning, the level of
agreement of the reference group is shown in Table 2. In
addition to ranking the challenges, the members were also
asked to prioritize future work on Tim. Some tasks were
closely related to some challenges. To our surprise, the link
between what was a challenge and what was important for
future implementation sometimes seemed contradictory. For
example, the challenge of hardware details had a relatively
low importance, but all three tasks related to it had a very high
priority for future implementation. Similarly, the reference
group did not agree that the implemented plots represented a
challenge, but still they ranked all other possible ways to plot
trend data higher and gave the existing plots the incredibly
low rank of 1.5 of 5 in terms of how useful it was.

4.5.1 Expectations

The challenge of expectations was phrased as: “I’m not really
sure that the right tests are selected over time. Sometimes my
branch runs on three systems, and I’m not sure if these are
the right ones. It’s hard to know if the testing I get is enough.
I don’t have ground truth to compare with.” The reference
group voted this as one of the two most important challenges.

The reference group mentioned that this was related to
test coverage and test selection, and that, by not having a
baseline of what an expected level of testing is, there is a risk
of over-testing. It was requested that if the regression test
selection tool is trying to prioritize a functional area, but that
this feature cannot be tested on the test systems allocated for
this branch, then Tim ought to visualize that somehow.

This challenge has some overlap with the next challenge,
on anomaly detection—if we could expect something we

5 524% /174% ~ 3

@ Springer

P.E. Strandberg et al.

Y

- Outcomes - Outcome D g

28.9%

Fig. 16 Illustration of the dominating navigational profile in Tim. Por-
tion of log views and previews indicated in percent below each view,
for outcomes and session only a preview of the test framework log
is available, and for the outcome view the first number indicates the

52.4% +17.4% 1.4%

test framework log and the second number the device communication
logs. Solid arrows indicate the main profile and dotted lines a weaker
navigational profile

Table2 Results after member checking: Challenges are ranked on average score given by participants, from strongly agree (5) to strongly disagree

ey

Challenge Avg. Summary

Expectations 4.11 In a large-scale test automation scenario, where very many testing
opportunities exist, it’s hard to know if a certain level of testing is
suitable or inadequate

Anomalies 4.11 In a large-scale test automation scenario, anomalies such as interrupted
test suites or flaky tests may be overlooked

Navigation 3.44 Navigating from a high-level view of test results down to a detailed level
of test results offers many opportunities for getting lost

Integrations 3.44 A test results exploration system needs to be integrated with other
systems, in order to provide a richer exploration of test results, and not
only involve test results

HW Details 3.22 The recipient of the test results may not understand enough details on the
hardware of the testing context in which the results were produced

Plots 2.44 Plots in Tim ought to be improved in order for users to make more sense

of the results

Top four challenges were interpreted as agree, and the bottom two as neutral and disagree

did not get, then that represents an anomaly whose detec-
tion could perhaps be automated. The most important task
related to any of the challenges (with a score of 4.67 of 5)
was “Someone should warn me if a test system only ran 3
tests when we expected 300.”

4.5.2 Anomalies

The challenge of anomalies could be phrased as: “To avoid
anomalies in testing (e.g., flaky tests), apply measurements,
supervision and/or warnings.” During the reference group
meetings, four main anomalies were discussed: test ses-
sions that did not start, sessions that stopped prematurely,
tests cases that were flaky and test case dependencies (e.g.,
where an incorrect cleanup of resources from one test case
had an impact on the following test cases). The reference
group strongly agreed that anomaly detection is a challenge.
However, implementing anomaly detection can be difficult:
a member of the test framework team asked whether “we
have the right data” for detecting anomalies. Another mem-
ber of the test framework team also mentioned that without

@ Springer

anomaly detection, some test patterns might be interpreted
as anomalies when in fact they are not, e.g., if a test case
cannot run on a certain hardware, one might get worried and
ask “why has this stopped working” when perhaps it never
worked.

Regarding the four anomalies identified, the start view
targets lost test sessions (see Fig. 7) and in the outcomes
view flaky tests are listed (shown in screenshot in Fig. 4).
This leaves the two challenges of sessions that ended prema-
turely and test case dependencies unaddressed in Tim. Both
of these were given tasks in future work that the reference
group ranked very high (priority of 4.0 or above).

4.5.3 Navigation

The challenge of navigation was phrased as: “To navigate
from a high-level view of results down to a detailed view
is hard. It’s easy to get lost, break filters, forget what I was
doing, etc. Sometimes I just have to start over.” The reference
group agreed somewhat with an average score of 3.44 for this
challenge. A developer mentioned that this was more of a

Software test results exploration and visualization with continuous integration and nightly...

problem in the old system; another developer said that “I open
new tabs all the time...and then I have tabs on everything I
want to see. So I still have the start position...If you only
click in one window, then you might more easily get lost.”
Other topics discussed was missing navigational paths and
the need to sometimes take detours to get from one view to
another, e.g., to reach the heatmap of a test case—this was
mitigated by adding a path in the navigation bar (not shown
in mockups) to a blank heatmap that could then be populated
by the user.

Navigation tasks deemed important were related to how
the filter on time span worked (e.g., should clicking in a
plot result in filters being altered), and error handling in the
frontend (e.g., when the backend fails to reply). Initially, the
default filter on time span was three nights such that one
would not miss results if exploring on a Monday morning,
but the reference group members requested it changed to one
night. How well the users were aware of which filters they
had activated (either the “global” date filter in a dropdown in
the navigation bar, or “local” filters within each view) was
not explored in this study.

4.5.4 Integrations

A rule of thumb related to the challenge of integrations with
other systems could be: “To achieve a richer experience in
test results exploration, implement integrations with other
systems such as log servers, issue trackers, requirements
trackers, etc.” As seen in the overview of Tim’s architec-
ture (Fig. 6), a number of data sources are central to showing
test results or log files in Tim. When the reference group
was asked whether or not Tim needed integrations with addi-
tional systems such as the issue tracker, risk analysis artifacts,
the requirements management tool or code changes, their
response indicated a weak agreement that this was a chal-
lenge. One developer that agreed that this was a challenge
mentioned “that the number of tools is increasing...In the
long run, it’s better with many things in one tool.” A mem-
ber of the test framework team that was also of the opinion
that this is a challenge mentioned that it is sometimes diffi-
cult to go from a change in test results to the code change
that triggered the error. The reference group members that
disagreed mentioned that the challenge of integrations has
mostly been solved now that Tim already has integrations
with the test results database and the log file server.

Several tasks for future work were related to integrations,
and the ones that the reference group ranked highest were
related to getting information on code changes, test system
status (i.e., if a test system is deactivated for maintenance)
and issue tracker links. After discussions with Tim’s product
owner, an integration with the requirements tracking system
was deemed to be the most important future integration.

4.5.5 Hardware details

The challenge of hardware details was phrased as “When a
test fails on a system, it’s hard for me to understand what
hardware was involved. I have to invest a long time to figure
out which architecture or port type, that it failed on.” With an
average rank of 3.22 we interpret this as a neutral answer—
this was not seen as a challenge. A developer argued that
“...we have some support in Tim, at least you see what type of
[device under test] there is, but then you must know what that
means...” They also mentioned that this is mostly a challenge
for new colleagues.

Despite this not being seen as a challenge, three tasks for
future work with a clear link to hardware details received
votes between 4.16 and 4.33. These tasks relate to presenta-
tions of what devices a certain test system has, how a test used
those resources (i.e., the “mapping,” as discussed in detail
in [50]) and the possibility to filter verdicts based on hard-
ware details (perhaps allowing filters like “show me results
from firewall tests on test systems where the devices have
architecture XYZ”).

4.5.6 Plots

We asked the participants if improved plots would improve
their understanding of the test results. The reference group
mentioned that improved graphical elements might be more
important at merge time, than during development: “for me
as adeveloper, I'm more interested in looking at tests that fail,
and see those details, rather than seeing an overview...[when
you are] about to merge, and want an overview, then I guess
it’s more important.” The reference group ranked this chal-
lenge the lowest with an average below 3 which could be
interpreted as a weak disagreement.

Several views show a trend plot. However, the plot is rarely
the central information of a view, and it is thought of as a
support to the core of the view. A trend plot for test results
data could potentially show many different things: number
of test systems involved in testing, number of passing tests,
number of failing tests, percentage of passing or failing tests,
etc. In the old system, the pass ratio per test session is plotted,
with one line per test system. This led to the problematic
scenario where there are dozens of overlapping lines, where
most fluctuate between 95 and 100%—in practice, it was
difficult to see how a code branch performed with the many
overlapping lines. For Tim, we implemented the fail ratio
over time, with a circle for each night of testing. The size of
the circle was a function of the number of executed tests in
the session. If, during one night, all tests passed, the circle
was filled with blue, otherwise with a red color. If a circle
was hovered with the mouse pointer, it would change color
and data labels would be shown (see left in Fig. 17). During
the reference group meetings, it became obvious that this plot

@ Springer

P.E. Strandberg et al.

was not very well liked. A member of the test framework team
said “T get confused about the size and colors,” and at a later
meeting “I have to look at it for so long that I give up and look
at the details instead.” From the transcripts of the reference
group meetings, it also became clear that time that could have
been used discussing what we as researchers had planned
to discuss was wasted on discussing the plots. We interpret
this as a frustration with a plot we, as researchers liked, but
that the users wasted time on. To address this frustration,
we prepared twelve different types of mockup plots based
on data from two real branches: a stable main branch with
much testing and only few failures and an unstable feature
branch with less testing and a large portion of failures. The
members were given the chance to vote for each plot using
a similar scale as the challenges and tasks—a scale from 1
(not helpful at all) to 5 (very helpful). The alternatives we
suggested included: using a linear or log scale on the y-axis;
splitting pass from non-pass in separate series or aggregate
them into one; if the series are split, should the they have the
same scale or separate scales on the y-axis; should there be a
bar chart or a line plot, and if so, should the values be stacked,
etc. The implemented plot received the very poor average of
1.5, which was the lowest result of all the plots. Instead the
reference group preferred a plot in log scale where passing
verdicts were separated from fail and invalid and on the same
scale for both series. As can be seen in the mockup illustrated
in the right in Fig. 17, the log scale is somewhat violated to
allow zero fails to end up on the x-axis (where 0.1 should
have been had the scale been correct).

5 Discussion

In this case study, we have followed the implementation
of Tim, a tool for test results exploration and visualization
(TREV) at Westermo, a company that develops embedded
systems for industry networking applications. The main find-
ings of this paper are (i) four patterns for TREV: filtering,
aggregation, previews and comparisons; (ii) the eight views
implemented for TREV in Tim; as well as (iii) the identifica-
tion of six challenges with respect to TREV: expectations,
anomalies, navigation, integrations, hardware details and
plots. These findings can serve as a starting point, or be
of relevance more generally for other researchers or prac-
titioners that strive to implement a TREV tool in a similar or
slightly different context. For the case company, the Tim tool
is already in use and continued improvements are planned.
Similar studies, such as those stemming from Q-Rapids®
(discussed on more detail in Sect. 5.3.2), have found simi-
lar challenges as we have, which implies that these are not
unique to the case company. When it comes to the choices

© https://www.q-rapids.eu/

@ Springer

of views, many tools and visual elements are possible. In
their theory of distances, Bjarnason et al. [3] argue that
software development practices increase, decrease or bridge
distances between actors. Using their terminology one could
argue that TREV strives to decrease or bridge cognitive and
navigational distances between, on the one hand, actors in
the software development process (software developers, test
framework developers, project managers, etc.) and on the
other hand artifacts such as aggregated, split and/or plain
test results and log files.

5.1 Revisiting the industry problems and process

The old system had three main problems. First, to counter the
problem of an unknown match between implementation and
user needs, the same kanban process that is already in use
in the test framework team was used also for Tim (includ-
ing, e.g., requirements, development and testing of functional
increments). Requirements were elicited in the form of user
stories or tasks, both in our previous work [48] and during
the implementation. Prioritization and scoping of tasks was
done with the reference group and the test framework team
manager.

The second problem was related to scalability in that
visual elements would not fit on screen and that the perfor-
mance had degraded. The database performance issues were
addressed by refactoring the database layout (see Fig. 5),
improving the architecture (Fig. 6) and separating the test
environment for the tool from the environment in with it is
used. This separation facilitated the implementations of test
data generators to allow rapid testing of database calls in the
backend, i.e., testing of both the functional correctness and
the performance of the backend and its database queries. Fur-
thermore, we logged actual usage of Tim and conclude that
98.4% of backend calls were faster than 10 seconds (Fig. 15),
which is acceptable for the needs of the company. Second,
to address poor scalability of the user interface, we imple-
mented Tim incrementally with a reference group that also
evaluated the views of the tool (Figs. 7, 8,9, 10, 11, 12, 13,
and 14).

The challenge of the too wild technological flora was
addressed with technological trials, in particular in the pre-
alpha period, which also meant that several person months
per person were spent on learning the new tools and lan-
guages alone. (Some more details on the contents of the
technical flora are discussed in Sect. 4.1.)

The views in Tim are enablers for TREV in different
phases in the development process. During the implemen-
tation, and in the user documentation and training material
for using Tim, we used the three phases of daily work, merge
time and release time, when explaining the views. In short,
the first views are mainly targeting daily work, when a devel-
oper desires to dive deep into data and explore individual

https://www.q-rapids.eu/

Software test results exploration and visualization with continuous integration and nightly...

Trend Plots

Branch A, fail rate over time

62.37% of 396
63%.

Dec 28 Jan 14

Feb 8

Same data, different plot

F+1:247
1000

Dec 28 Jan 14 Feb 8

Fig. 17 Mockups of two types of trend plots based on the same raw data. Left: the plot proposed and implemented by researchers. Right: plot

preferred by the reference group

Table 3 Mapping of the steps in the software development process—

daily work (D), branch merge (M) and release (R)—with implemented

views in Tim

View D? M? R? Figures
Start Y - - 7
Outcomes Y - -

Outcome Y - - 9
Session Y - - 10
Heatmap Y (Y) - 11
Measurements (Y) Y (Y) 12
Compare branch - Y (Y) 13
Analyze branch - Y) Y 14

Y indicates that a view is primarily targeting a step in the process and
(Y) indicates a partial match

verdicts, debug messages, or perhaps timing within individ-
ual log files. In the case of debugging, a user might want
to know if an issue is present also in other code branches,
on other systems, if it has been present over time and if it
is intermittently failing, which motivates the heatmap view.
As features have been implemented, a new perspective might
be needed: Do we have the desired test coverage? Have the
non-functional aspects degraded? Is the main branch we want
to merge into as stable as our branch? These questions are
addressed by the measurements and compare branch views.
Finally, when a new WeOS version is about to be released,
the analyze branch view can answer if any test case has failed
on this branch in the last few days, and a user can drill down
into where (on which test system) and when (in time) the
failures occurred. This view also shows the test intensity the
branch has received in terms of number of test systems used
and test cases executed (not shown in heatmap).

In Table 3, we map the views with the steps in the process,
for example: The measurements view can be seen as primar-
ily giving support for work and decisions at merge time, but
can also be somewhat useful in daily work and at release
time.

5.2 Validity analysis

In this section, we discuss the validity of the findings in terms
of rigor, relevance, generalizability, construct validity, inter-
nal validity and reliability.

At the core of rigor are carefully considered and trans-
parent research methods [23,40,42,54]. This study was both
planned and also conducted as a case study, based on the
well-known guidelines written by Runeson et al. [40]. The
study involves both quantitative and qualitative data that were
collected and analyzed in a systematic manner.

One way for research to be relevant is for the research
party and the industry party to share a common under-
standing of the problem and to be able to communicate
[12,19,22,42]. This can be a challenge, as Sanno et al. point
out [42], because these two parties typically have differ-
ences in perspective with respect to problem formulation,
methodology and result. The constructs of this study are
rather straightforward—challenges, patterns and views pose
no major threats to construct validity. It is of course possible
that we, in academic communication, “speak another lan-
guage” than the participants of the reference group, which
could lead to threats to construct validity. One could argue
that the prolonged involvement and frequency of reference
group meetings are part of the mitigation for the threats to
both relevance and construct validity.

In a paper titled “...Generalizability is Overrated,” Briand
et al. argue just that [7]. Similarly, Hevner et al. argue that
one ought to make work in an environment which may
decrease generalizability [20]. Generalizability explores to
what extend the findings are applicable to other researchers,
practitioners or domains. Very often case studies claim lim-
ited generalizability, and this study is no exception. One could
argue that developing a similar tool as Tim for a more gen-
eral audience (perhaps as part of an open-source tool for
unit-level testing, etc.) would have improved the study’s gen-
eralizability. However, that might not have incorporated the
complexities of working in the industry context (with test

@ Springer

P.E. Strandberg et al.

selection, hardware selection, parallel branches, etc.), which
are at the core of our work on Tim.

Ralph et al. argue that, for action research, it is essential to
cover: the evaluation of the intervention, the reactions from
the reference group, as well as a chain of evidence from
observations to findings [36]. These are all related to the
causality in the study and the internal validity. As we have
discussed above, the motivation for implementing Tim was
driven by problems with requirements, technological flora
and scalability. To summarize, desirables for the new system
were defined, both in previous work and with the reference
group. Implementation was done iteratively and evaluated at
reference group meetings. Data were collected at meetings
and from logging use of Tim. However, one could ask if we
implemented a certain view because it enables test results
exploration better than any other view, because the reference
group wanted it, or because we as researchers, for some other
reason, desired to implement it to see what would happen.
Furthermore, during one of the reference group meetings a
project manager requested “In general, start migrating exist-
ing functionality from the old system into the new system,
then work with improvements,” which implies the cognitive
bias of anchoring—the users (and researchers) were used to
the old system and other systems. In other words, the views
in Tim are not free from bias.

Threats to reliability can be summarized as “would
another researcher in this setting produce the same results?”
Implementing visualizations as a researcher is very depen-
dent on the skills a researcher has in a tool—a researcher
already skilled in a JavaScript framework other than Vue/Vuex
might have favored that instead, and a researcher very skilled
in native MacOS GUI development would perhaps have
implemented a desktop application for Apple computers,
whereas a researcher with expert knowledge in pie charts
would have favored those, etc. We speculate, however, that
those views would have had many similarities to the ones
we produced—perhaps a “pie-stack” with top-pies, sub-pies
and sunburst charts could all have be implemented with the
same patterns we observed. Perhaps this hypothetical pie-
stack would work just as well or better than Tim? In short,
other researchers might have produced other views, but we
argue that at least some of the patterns would have been sim-
ilar or the same. For example, one would still have to filter
and aggregate at the least, and both comparisons and previews
would most likely be useful as well, even for a pie-stack.

Related to validity are the two principles in research ethics
on scientific value, that “research should yield fruitful results
for the good of society, and not be random and unnecessary”
and researcher skill, “the researchers should have adequate
skills” [46]. If we, as researchers, implemented views at ran-
dom with poor or no skills in, e.g., web development, then
the research would not only have poor validity, it would
also be unethical. To combat these ethical threats, many

@ Springer

person months have been invested in technological skills
(learning database, backend and frontend programming) and
researcher skills (participating in a research school, etc.), and
we have included what is valuable to society (in particular
the case company) when prioritizing implementation.

To conclude, there are validity and ethical threats to this
study, but as suggested by Merino et al., Munzner, Runeson
et al., Strandberg [27,28,40,46], and many others, we have
made efforts to mitigate risks one could have expected by
means of triangulation (collecting data using diversity), pro-
longed involvement (both in terms of knowing the domain,
by conducting the study over several months, by collecting
data from 201 days of use) and by using member checking,
etc.

5.3 Related work

This subsection on related work is divided into three parts.
First, we cover some of the findings by Ahmad et al. that
identified eight information needs in software testing, e.g.,
“Which test cases... have been run on which product?” By
covering these eight needs, we get a set of independent cri-
teria with which we investigate the utility of Tim. Second,
we discuss three papers from the Q-Rapids research project.
This was a large European project that had many goals in
common with Tim. Finally, we cover other related work.

5.3.1 Eight information needs for testing

In a recent case study conducted at six companies involving
38 interviewees, Ahmad et al. [1] identified eight information
needs for testing (T1-T8) for companies mostly develop-
ing industrial systems with a continuous integration process.
These represent a set of needs on a tool like Tim. Their
findings are very relevant for our work and represent a com-
plementary set of viewpoints when compared to our division
of the development process into three steps, or the three prob-
lems identified with the previous tool. In this subsection, we
discuss these needs with respect to Tim and our findings.
T1 “Which test cases... have been run on which prod-
uct?” Ahmad et al.’s first information need for testing relates
to being aware of which test cases that have been executed
on which hardware product. In Tim, this is supported in the
Outcomes view (Fig. 8), where a user is shown a list of test
cases that have been run (with optional filtering on verdict) on
which test system and code branch. A test system in our case
is built up of many devices (products) under test that may
have the same or different models, and a list of the devices
in use in the test system is shown in this view. Therefore, it
seems that Tim supports this information need rather well.
However, we note that, just like Ahmad et al., we have iden-
tified the challenge of hardware details (Sect. 4.5.5). The
reference group gave somewhat ambiguous importance to

Software test results exploration and visualization with continuous integration and nightly...

this challenge—on the one hand, it was not really a chal-
lenge, but on the other hand the reference group gave future
implementation on hardware details very high importance.

T2 “Which test cases... have been run on which branch?”
We speculate that the challenge identified by Ahmad et al.
on knowing what has been tested on which branch stems
from the possible bias of looking at test results session by
session, instead of aggregating results in one view. Perhaps
these companies have not properly addressed the risk of bad
data abstraction, identified by Munzner [28] (discussed more
in Sect. 4.4)? Tim solves this issue by aggregating results
over test systems and also over time, in the Outcomes view
(Fig. 8).

T3 “In which [test system] do specific test cases fail?”
We have also seen that some test cases may fail on certain
test systems but not on others. The heatmap view specifically
targets this information need and identifies verdicts from one
or more test cases, on one or more test systems, for one or
more code branches, over time, see Fig. 11.

T4 “Which test [cases’] execution times have increased
recently?” While Tim stores the duration of each test case
(and test session) in the test results database, see Fig. 5, visu-
alizing or showing this information has not been prioritized
or requested by the reference group. In the measurements
view (Fig. 12), we plot non-functional performance of the
system under test, but not performance of the test systems
or the test framework. Just like Ahmad et al. have identified,
the performance of the test environment ought to be mea-
sured, visualized, supervised and would be well served with
anomaly detection (a challenge we discuss in 4.5.2).

TS5 “What are the...test results of my commits?” When
resources for compiling/building and testing is limited, it
might not be trivial to understand if a code change was part
of a certain build, and if that build was part of nightly test-
ing, which increases the complexity of this information need
and challenge. Just like in Ahmad et al.’s study, our refer-
ence group desired information on code changes in the same
system as is used for TREV. As we discuss in Sect. 4.5.4,
this relates to the challenge of integrating systems with each
other. On the one hand, one could desire information on
code changes to be integrated in a tool like Tim, but on the
other hand information on test results could be integrated in
a source code management system.

T6 “What are the unstable areas of the code that require
more ... attention?” In addition to the outcomes view, where
results are shown without aggregation, Tim also has two
views that target this information need rather well: compare
branch (Fig. 13) and analyze branch (Fig. 14). Both these
views filter results on a certain branch and aggregates data.
The compare view aggregates over functional area, which
gives a good idea of test coverage and stability, whereas the
analyze view aggregates on test case. Both views also indi-
cate test cases that have not been executed.

T7 “Which of the test cases are flaky?” Tim identifies
intermittently failing tests by means of g-score, a metric
we proposed in previous work [49]. Rather than considering
flakiness to be a binary property, we consider frequency of
change as a scalar value between 0 and 100%—a high value
indicates that the test frequently changes verdict (e.g., goes
from pass to fail and back again several times per week or
month). These tests are listed in a table in the outcomes view
(Fig. 4). Furthermore, the level of flakiness can also be seen
as changes in colors/icons in the heatmap view. For example,
in Fig. 11, we can see that, for branch A on test system 2,
the test case 418 has changed verdict each time is has been
executed (giving it a g-score of 100%), whereas, for branch
A, on test system 1, test case 2 has changed verdict once in
8 executions (giving it a g-score of about 14%, because of
seven possible changes, it changed verdict once).

T8 “What is the test execution history of a specific test
case?” Tim supports this question in two main ways. First,
when a user is viewing an outcome (Fig. 9), the history of
the test case in question is shown as a “heatline” of verdicts
(filtered for the branch and test system in question). Addi-
tionally, the heatmap view supports this (Fig. 11).

In addition to the eight information needs for testing dis-
cussed here, Ahmad et al. identified a total of 27 information
needs for testing, code and commit, confidence level, bugs,
as well as artifacts [1].

5.3.2 The Q-Rapids project

Q-Rapids was a 5 M€ EU-funded research project striving
for increasing quality awareness in agile software develop-
ment. Many of their findings are relevant to our work on
Tim. Their project targets software analytics to support agile
development and quality awareness. One difference between
Q-Rapids and Tim is that Q-Rapids strives to abstract data
into strategic indicators (e.g., from “time needed to resolve
issues” to “product quality””), while Tim does not abstract
data into KPIs. Another difference is that Q-Rapids seems to
strive for assessing and improving quality, while Tim strives
to enable exploration and visualization of test results. There
are also some similarities, e.g., both tools collect data and
visualize it, and both tools support navigation from a high
level to a low level. As far as we can tell, they have not in
their research explored in details the navigational profile, the
views implemented in the tools or how fast database ques-
tions are, which we cover in our study.

In one of the publications from Q-Rapids, Martinez-
Fernandez et al. [26] describe the architecture and principles
of their tool and how they evaluated it in a case study at
four companies. Some challenges they discuss are related
to deploying the tool in different industry contexts, such as
tailoring the tool, using a suitable terminology, as well as
installation and configuration of the tool. Other challenges

@ Springer

P.E. Strandberg et al.

almost perfectly overlap with what our data show: mak-
ing informative visual elements so that users “understand
whether a certain value of an indicator/factor is good or bad”
is related to our challenge of expectations and plots. Just like
us, they find it challenging with integrations to other sys-
tems. Unlike us, they identified a need for transparency and
more clarity on actions. On the one hand, it might be the case
that when a tool like Tim is used exclusively for data related
to testing, then this challenge is not as obvious. On the other
hand, this might be related to our challenge of expectations—
if a certain amount of testing has been conducted and a user
can see two hundred passing tests and one failing test, what
should he or she do with that knowledge? It is possible to
think of a defined set of actions for Tim, e.g., if a test case
is flaky, then Tim could suggest looking for any incorrect
assumptions on timing or tolerance ranges in the test case, if
the test context is well understood, or if there are resources
leaks in the software under test, etc.’

Also from the Q-Rapids project is a paper by Ram et al.
[38] that investigates what is required of a metric for it to
be actionable, and if all metrics ought to call to action or
not. One metric they mention concerns how well-defined
work tasks are: If the required properties that describe a task
has changed in the previous month on many tasks, then per-
haps an organization is making a poor job at working with
requirements or with describing issues. Our impression is that
Q-Rapids have explored this type of metrics in some detail.
Their paper lists almost 50 similar metrics in an appendix.
In a third paper from Q-Rapids, Ram et al. [37] explored
how organizations improved when using software metrics
programs. They identified that software metrics can have a
positive impact on software processes. The authors observed
that, by applying measurements on merge requests, indus-
try practitioners would increase the quality of code reviews.
Similarly, Ralph proposed that software processes could be
de-biased with metrics or processes such as planning poker
[35]. In our work with Tim, we have not explored if the devel-
opment process has actually improved for the users, instead
reference group satisfaction has been used as a proxy.

5.3.3 Other related work

Garousi and Elberzhager [17] argue that not only test exe-
cution ought to be automated, other activities including test
results reporting are well served by automation. Similarly,
Garousi et al. [18] explored how industry practitioners per-
ceived challenges in software testing activities. The challenge
of test results reporting was perceived as the least severe
among nine categories (test automation and test management
were the most challenging ones). Suggested research topics

7 These are three of the nine questions we suggest in our previous work
on intermittently failing tests [49].

@ Springer

for test results reporting were: (i) maintaining and document-
ing test results; (ii) metrics and visualization to support test
result reporting; (iii) appropriate key performance indicators
(KPIs); as well as (iv) visual display of test results. It is possi-
ble that for less complex testing, the test reporting might be
almost trivial® and the need for TREV systems is perhaps
minimal. We speculate that the challenges with reporting
discussed in our study originates in the relatively complex
testing conducted at Westermo—testing is done on a system
level, many code branches and test systems are tested each
night, not all test cases are executed each night, and not all
hardware is used in each test case. The testing in this study
might serve as a counter-example of test reporting being a
trivial problem.

Related to TREV is software visualization, which, accord-
ing to Diehl, revolve around structure, behavior or evolution
of software [10]. An example of a software visualization is
the study by Fernandez and Bergel [14], where they aggre-
gate and split data into a set of graphical elements which
also involves filtering, comparing and interactivity. However,
this work visualizes the source code and not the test results.
Nilsson et al. [30] conducted a study at four companies
that mostly developed software intensive embedded systems.
Their study targeted the challenges of visualizations from
continuous integration, including: getting an overview, slow
feedback loops and late testing of non-functional require-
ments. Regarding the overview, they found it “abundantly
clear that very few... if anyone... had a... complete overview
of all the testing activities going on...”. Brandtner et al. [5]
found that users of a system that had “mashed-up” software
quality information from continuous integration performed
better. We speculate that the start view of Tim fills a very
important role in that it serves as a summary, as a mash-up
of several sources and as a gateway to other views.

When it comes to how one could visualize, there is an
abundance of research on this. Worth mentioning is that the
first system Westermo built on top of the test results database
(almost 10 years ago) delivered a frugal test report in plain
text (pre-formatted to fit terminal windows 80 columns wide).
This could be contrasted with creating a 3D-visualization of
test results, as implemented by Borg et al. [4]. Their tool
reports on design and verification of an application-specific
integrated circuit (ASIC) and specifically target: general
exploration of large amounts of test results, localization of
error-prone areas and to identify coverage gaps. Similarly,
Wang et al. [55] visualized path coverage for model-based
testing when generating test cases randomly. Furthermore,

8 A trivial test reporting scenario could perhaps involve a developer
maintaining a small code base of one or only a few lines of code, in one
or a few software modules, with one or a small number of unit tests,
that run without the need for dedicated hardware, where the feedback
loop is faster than a second, where the results are always unambiguous,
and where there is no need to discuss results with colleagues.

Software test results exploration and visualization with continuous integration and nightly...

Orso et al. [32] visualized test coverage in terms of code
coverage at the levels of code, file and system. A common
metaphor for TREV is the creation of a dashboard (e.g.,
[9,16]), which is similar to using mash-ups and also simi-
lar what was done in the Q-Rapids project.

One of the challenges we have discussed and a poten-
tial enhancement one could build on top of a TREV system
is anomaly detection (discussed in Sect. 4.5.2). Oftentimes
anomaly detection involves identifying outliers that repre-
sent system faults in a dataset by using statistics or Al, such
that issues do not propagate or escalate [21,29]. We discussed
four types of anomalies and specifically want to raise alarms
if they occur. The first anomaly concerns flaky tests—this is
a hot research area and three interesting topics involve: root
causes for flaky tests [59], when tests become flaky [25], and
if we can predict if tests are to be flaky [34]. In our previ-
ous work, we have investigated intermittently failing tests at
Westermo [49]. Another type of anomaly we discussed, that
will remain for future work, is to identify issues in starting
test sessions, having sessions that stop too early, or sessions
in which one test case in the suite corrupts the system state
and makes the following tests fail. In addition to predefined
anomalies we expect to capture in Tim, one could also imple-
ment anomaly detection or automated fault analysis using
the log files coming from testing, not only identifying strings
from error messages, but also by investigating surrounding
events [33,39,58].

5.4 Future work

We would welcome continued research in software TREV
and we envision a few possible paths for future work. First,
a high-level path oriented toward technology: How could a
tool such as Tim be a better tool if more data sources had
been integrated? What is a suitable level of high-level met-
rics or KPI’s—would the decision-making process of various
stakeholders improve if Tim also had showed such metrics
or should they instead be used in other tools? How should
the possibly many tools with overlapping features communi-
cate or interface? Second, we imagine future work toward the
visual elements in a TREV tool: How would usability stud-
ies (perhaps with eye-tracking) help improve a tool such as
Tim? What colors and visual elements should be used? How
should one measure and, if needed, improve the performance
of the frontend? As TREV tools such as Tim evolve, how do
usage patterns change? How could the Tim tool better address
the phases in the software development and the information
needs? Third, a path oriented toward humans: How is the
internal cognitive process of the user affected when visualiz-
ing test results? One could imagine incorporating models of
the testers’ cognitive processes such as the ones proposed by
Enoiu et al. [13], or by using fMRI visualizations of the brain
while a user is exploring results (similar to what was done

by Duraes et al., e.g., in [11]). Last, we envision a research
path toward anomaly detection. Westermo already runs about
half a million test cases per quarter. As the testing will con-
tinue to scale up, an even larger amount of log files and other
data is to be expected. Parsing this data using humans is
already difficult. Would empowering the humans involved in
these processes with additional tools, perhaps artificial intel-
ligence and machine learning, be required in order to receive
the results in a meaningful way from a continued scale-up of
the testing?

6 Conclusions

Software testing is critical for quality assurance of embedded
systems such as industrial communication devices. However,
the increased complexity and parallelization of the software
development lead to challenges for teams when they explore
and visualize test results. In this paper, we have reported
on the implementation and evaluation of a tool, Tim, for
supporting test results exploration and visualization (TREV)
in a continuous integration process with nightly testing at
Westermo, a company developing embedded systems. Tim
is replacing another system with problems of scalability,
requirements and technological flora. The implementation
was conducted with a reference group and the test framework
team at the company over several months. For validation of
the tool, data were collected both from reference group meet-
ings in the form of recorded videos that were transcribed, and
we also logged usage of the tool. The data were analyzed
quantitatively and qualitatively. The main contributions of
this paper are (i) four solution patterns for TREV tools in
general (filtering, aggregation, previews and comparisons);
(i1) the eight views in Tim (start, outcomes, outcome, ses-
sion, heatmap, measurements, compare branch and analyze
branch); as well as (iii) six challenges frequently discussed at
reference group meetings (expectations, anomalies, naviga-
tion, integrations, hardware details and plots). Future work
could target integrations between a larger number of sys-
tems, abstracting data into KPIs, usability studies to increase
the performance of users, better understanding the human
aspects of exploring results or anomaly detection.

Acknowledgements This work was sponsored by Westermo Net-
work Technologies AB, the Swedish Knowledge Foundation (Grants
20150277 & 20170214), the European Union’s Horizon 2020 research
and innovation program (Grants 871319 & 957212) and the ECSEL
Joint Undertaking (JU) under Grant Agreement No. 101007350. Mock-
ups were drawn in the Inkscape graphics editor, using colors from the
Bulma style framework, icons from Font awesome and emojis from
OpenMoji. The screenshot was captured in Firefox 88.0.1 on a com-
puter running Xubuntu 18.04.5 LTS, on a monitor with 4k resolution,
then modified for anonymity and scaled to 1400 pixels width in the Gimp
graphics editor. The open alpha ran on a virtual machine in VMware
and was given one CPU och 4 GB of memory.

@ Springer

P.E. Strandberg et al.

Author Contributions PES, WA and DS contributed to methodology
and writing, review and editing. PES was involved in investigation and
writing, original draft. WA and DS contributed to supervision.

Funding Open access funding provided by Milardalen University.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Ahmad, A., Leifler, O., Sandahl, K.: Data visualisation in con-
tinuous integration and delivery: information needs, challenges,
and recommendations. IET Softw. (2021). https://doi.org/10.1049/
sftw2.12030

2. Ball, M., Hardie, F.: Effects and detection of intermittent failures
in digital systems. In: Proceedings of the November 18-20, 1969,
Fall Joint Computer Conference, pp. 329-335. ACM (1969)

3. Bjarnason, E., Smolander, K., Engstrom, E., Runeson, P.: A theory
of distances in software engineering. Inf. Softw. Technol. 70, 204—
219 (2016)

4. Borg, M., Brytting, A., Hansson, D.: Enabling visual design verifi-
cation analytics—from prototype visualizations to ananalytics tool
using the unity game engine. In: Proceedings of the Design and
Verification Conference Europe (DVCon EU), Munich, Germany
(2018)

5. Brandtner, M., Giger, E., Gall, H.: Supporting continuous inte-
gration by mashing-up software quality information. In: Software
Evolution Week—IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering. IEEE (2014)

6. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual.
Res. Psychol. 3(2), 77-101 (2006)

7. Briand, L., Bianculli, D., Nejati, S., Pastore, F., Sabetzadeh, M.:
The case for context-driven software engineering research: gener-
alizability is overrated. IEEE Softw. 34(5), 72-75 (2017)

8. Cooper, W.E.: Electrical control of dangerous machinery and pro-
cesses. J. Inst. Electr. Eng. Part II Power Eng. 94(39), 216-232
(1947)

9. Deissenboeck, F., Juergens, E., Hummel, B., Wagner, S., Parareda,
B.M.Y., Pizka, M.: Tool support for continuous quality control.
IEEE Softw. 25(5), 60-67 (2008)

10. Diehl, S.: Software Visualization: Visualizing the Structure,
Behaviour, and Evolution of Software. Springer, Berlin (2007)
11. Duraes, J., Madeira, H., Castelhano, J., Duarte, C., Branco, M. C.:
‘Wap: understanding the brain at software debugging. In: 2016 IEEE
27th International Symposium on Software Reliability Engineering

(ISSRE), pp. 87-92. IEEE (2016)

12. Eldh, S.: Some researcher considerations when conducting empir-
ical studies in industry. In: International Workshop on Conducting
Empirical Studies in Industry. IEEE (2013)

13. Enoiu, E., Tukseferi, G., Feldt, R.: Towards a model of testers’ cog-
nitive processes: software testing as a problem solving approach.
In: 2020 IEEE 20th International Conference on Software Quality,

@ Springer

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

Reliability and Security Companion (QRS-C), pp. 272-279. IEEE
(2020)

Fernandez, A., Bergel, A.: A domain-specific language to visualize
software evolution. Inf. Softw. Technol. 98, 118-130 (2018)
Fowler, M.: Eradicating non-determinism in tests (blog post).
https://www.martinfowler.com/articles/nonDeterminism.html
(2011). Online, Accessed 2021-07-05

Froese, M.-E., Tory, M.: Lessons learned from designing visualiza-
tion dashboards. IEEE Comput. Graph. Appl. 36(2), 83-89 (2016)
Garousi, V., Elberzhager, F.: Test automation: not just for test exe-
cution. IEEE Softw. 34(2), 90-96 (2017)

Garousi, V., Felderer, M., Kuhrmann, M., Herkiloglu, K., Eldh, S.:
Exploring the industry’s challenges in software testing: an empiri-
cal study. J. Softw. Evol. Process 32(8), 2251 (2020)

Garousi, V., Petersen, K., Ozkan, B.: Challenges and best prac-
tices in industry-academia collaborations in software engineering:
a systematic literature review. Inf. Softw. Technol. 79, 106-127
(2016)

Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in
information systems research. Manag. Inf. Syst. Q. 28(1), 6 (2008)
Hodge, V., Austin, J.: A survey of outlier detection methodologies.
Artif. Intell. Rev. 22(2), 85-126 (2004)

Hove, S.E., Anda, B.: Experiences from conducting semi-
structured interviews in empirical software engineering research.
In: International Software Metrics Symposium. IEEE (2005)
Ivarsson, M., Gorschek, T.: A method for evaluating rigor and
industrial relevance of technology evaluations. Empir. Softw. Eng.
16(3), 365-395 (2011)

Kalloniatis, M., Luu, C.: The perception of color. In: The Organi-
zation of the Retina and Visual System, Webvision (2007)

Lam, W., Winter, S., Wei, A., Xie, T., Marinov, D., Bell, J.: A large-
scale longitudinal study of flaky tests. Proc. ACM Program. Lang.
4(O0OPSLA), 1-29 (2020)

Martinez-Fernandez, S., Vollmer, A.M., Jedlitschka, A., Franch,
X., Lopez, L., Ram, P., Rodriguez, P., Aaramaa, S., Bagnato, A.,
Choras$, M., Partanen, J.: Continuously assessing and improving
software quality with software analytics tools: a case study. IEEE
Access 7, 68219-68239 (2019)

Merino, L., Ghafari, M., Anslow, C., Nierstrasz, O.: A system-
atic literature review of software visualization evaluation. J. Syst.
Softw. 144, 165-180 (2018)

Munzner, T.: A nested model for visualization design and valida-
tion. IEEE Trans. Vis. Comput. Graph. 15(6) 921-928 (2009)
Muruti, G., Rahim, F.A., Bin Ibrahim, Z.-A.: A survey on anoma-
lies detection techniques and measurement methods. In: 2018 IEEE
Conference on Application, Information and Network Security
(AINS), pp. 81-86. IEEE (2018)

Nilsson, A., Bosch, J., Berger, C.: Visualizing testing activities to
support continuous integration: a multiple case study. In: Inter-
national Conference on Agile Software Development. Springer
(2014)

Oppermann, M., Munzner, T.: Data-first visualization design
studies. In: 2020 IEEE Workshop on Evaluation and Beyond-
Methodological Approaches to Visualization (BELIV), pp. 74-80.
IEEE (2020)

Orso, A., Jones, J., Harrold, M.J.: Visualization of Program-
Execution Data for Deployed Software. In: Symposium on Soft-
ware Visualization. ACM (2003)

Parmeza, E.: Experimental evaluation of tools for mining test exe-
cution logs. Master’s thesis, Milardalen University (2020)

Pinto, G., Miranda, B., Dissanayake, S., d’Amorim, M., Treude,
C., Bertolino, A.: What is the vocabulary of flaky tests? In: Pro-
ceedings of the 17th International Conference on Mining Software
Repositories, pp. 492-502 (2020)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1049/sfw2.12030
https://doi.org/10.1049/sfw2.12030
https://www.martinfowler.com/articles/nonDeterminism.html

Software test results exploration and visualization with continuous integration and nightly...

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Ralph, P.: Toward a theory of debiasing software development. In:
EuroSymposium on Systems Analysis and Design, pp. 92-105.
Springer (2011)

Ralph, P, Baltes, S., Bianculli, D., Dittrich, Y., Felderer, M., Feldt,
R., Filieri, A. Furia,, C.A., Graziotin, D., He, P, et al.. ACM
SIGSOFT empirical standards. arXiv preprint arXiv:2010.03525
(2020)

Ram, P, Rodriguez, P., Oivo, M., Bagnato, A., Abherve, A.,
Choras, M., Kozik, R.: An empirical investigation into industrial
use of software metrics programs. In: International Conference
on Product-Focused Software Process Improvement, pp. 419-433.
Springer (2020)

Ram, P, Rodriguez, P., Oivo, M., Martinez-Fernandez, S., Bagnato,
A., Choras, M., Kozik, R., Aaramaa, S., Ahola, M.: Actionable
software metrics: an industrial perspective. In: Proceedings of the
Evaluation and Assessment in Software Engineering, pp. 240-249.
ACM (2020)

Rosenberg, C.M., Moonen, L.: Improving problem identification
via automated log clustering using dimensionality reduction. In:
Proceedings of the 12th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, pp. 1-10
(2018)

Runeson, P, Host, M., Rainer, A., Regnell, B.: Case Study Research
in Software Engineering: Guidelines and Examples. Wiley, New
York (2012)

Sabljakovic, H., Djordjevic, M.: Migrating and Evaluating a
Testing Framework from a Dynamically to a Statically Typed Lan-
guage. Master’s thesis, Milardalen University (2018)

Sanno, A., Oberg, A.E., Flores-Garcia, E., Jackson, M.: Increas-
ing the impact of industry—academia collaboration through co-
production. Technol. Innov. Manag. Rev. 9(4), 37-47 (2019)
Sedlmair, M., Meyer, M., Munzner, T.: Design study methodol-
ogy: reflections from the trenches and the stacks. IEEE Trans. Vis.
Comput. Graph. 18(12), 2431-2440 (2012)

Shahin, M., Babar, M.A., Zhu, L.: Continuous integration, delivery
and deployment: a systematic review on approaches, tools, chal-
lenges and practices. IEEE Access 5, 3909-3943 (2017)

Staron, M.: Automotive software architectures. Springer (2021).
https://doi.org/10.1007/978-3-030-65939-4

Strandberg, PE.: Ethical interviews in software engineering. In:
International Symposium on Empirical Software Engineering and
Measurement (2019)

Strandberg, P.E., Afzal, W., Ostrand, T., Weyuker, E., Sundmark,
D.: Automated system level regression test prioritization in a nut-
shell. IEEE Softw. 34(1), 1-10 (2017)

Strandberg, P.E., Afzal, W., Sundmark, D.: Decision making and
visualizations based on test results. In: International Symposium
on Empirical Software Engineering and Measurement (2018)

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Strandberg, P.E., Ostrand, T.J., Weyuker, E.J., Afzal, W., Sund-
mark, D.: Intermittently failing tests in the embedded systems
domain. In International Symposium on Software Testing and
Analysis, ISSTA 2020. ACM (2020)

Strandberg, P.E., Ostrand, T.J., Weyuker, E.J., Sundmark, D., Afzal,
W.: Automated test mapping and coverage for network topologies.
In: International Symposium on Software Testing and Analysis.
ACM (2018)

Strandberg, P.E., Sundmark, D., Afzal, W., Ostrand, T.J., Weyuker,
E.J.: Experience report: automated system level regression test pri-
oritization using multiple factors. In: International symposium on
software reliability engineering. IEEE (2016)

Témasdottir, K.F.,, Aniche, M., van Deursen, A.: Why and how
javascript developers use linters. In: 2017 32nd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE),
pp- 578-589. IEEE (2017)

Tukey, J.W.: Exploratory Data Analysis, vol. 2. Pearson, London
(1977)

Vermeulen, F.: On rigor and relevance: fostering dialectic progress
in management research. Acad. Manag. J. 48(6), 978-982 (2005)
Wang, R., Artho, C., Kristensen, L.M., Stolz, V.: Visualization and
abstractions for execution paths in model-based software testing.
In: International Conference on Integrated Formal Methods, pp.
474-492. Springer (2019)

Ward, M.O., Grinstein, G., Keim, D.: Interactive Data Visualiza-
tion: Foundations, Techniques, and Applications. CRC Press, Boca
Raton (2010)

Zeileis, A., Hornik, K., Murrell, P.: Escaping RGBland: select-
ing colors for statistical graphics. Comput. Stat. Data Anal. 53(9),
3259-3270 (2009)

Zhang, X., Xu, Y., Lin, Q., Qiao, B., Zhang, H., Dang, Y., Xie, C.,
Yang, X., Cheng, Q., Li, Z., et al.: Robust log-based anomaly detec-
tion on unstable log data. In: Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 807—
817 (2019)

Zolfaghari, B., Parizi, R.M., Srivastava, G., Hailemariam, Y.: Root
causing, detecting, and fixing flaky tests: state of the art and future
roadmap. Softw. Pract. Exp. 51(5), 851-867 (2021)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

http://arxiv.org/abs/2010.03525
https://doi.org/10.1007/978-3-030-65939-4

	Software test results exploration and visualization with continuous integration and nightly testing
	Abstract
	1 Introduction
	2 Industrial motivation and context
	2.1 Visualization
	2.2 Context
	2.3 Complicating factors

	3 Research process
	3.1 Data collection
	3.2 Ethical considerations

	4 The Tim tool
	4.1 Technical details
	4.2 Solution patterns
	4.2.1 Filtering
	4.2.2 Aggregation
	4.2.3 Previews
	4.2.4 Compare

	4.3 Implemented views
	4.3.1 The start view
	4.3.2 The outcomes view
	4.3.3 The outcome view
	4.3.4 The session view
	4.3.5 The heatmap view
	4.3.6 The measurements view
	4.3.7 The compare branch view
	4.3.8 The analyze branch view

	4.4 Risk-based evaluation of the implemented views
	4.4.1 Risk 1: solved the wrong problem?
	4.4.2 Risk 2: bad data abstraction?
	4.4.3 Risk 3: bad visualizations?
	4.4.4 Risk 4: bad or slow algorithms?
	4.4.5 Navigational profile

	4.5 Challenges identified by reference group
	4.5.1 Expectations
	4.5.2 Anomalies
	4.5.3 Navigation
	4.5.4 Integrations
	4.5.5 Hardware details
	4.5.6 Plots

	5 Discussion
	5.1 Revisiting the industry problems and process
	5.2 Validity analysis
	5.3 Related work
	5.3.1 Eight information needs for testing
	5.3.2 The Q-Rapids project
	5.3.3 Other related work

	5.4 Future work

	6 Conclusions
	Acknowledgements
	References

