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Abstract Path planning and task scheduling are two
challenging problems in the design of multiple autonomous
agents. Both problems can be solved by the use of ex-
haustive search techniques such as model checking and

algorithmic game theory. However, model checking suf-
fers from the infamous state-space explosion problem
that makes it inefficient at solving the problems when

the number of agents is large, which is often the case in
realistic scenarios. In this paper, we propose a new ver-
sion of our novel approach called MCRL that integrates
model checking and reinforcement learning to alleviate

this scalability limitation. We apply this new technique
to synthesize path planning and task scheduling strate-
gies for multiple autonomous agents. Our method is ca-

pable of handling a larger number of agents if compared
to what is feasibly handled by the model-checking tech-
nique alone. Additionally, MCRL also guarantees the
correctness of the synthesis results via post-verification.
The method is implemented in UPPAAL STRATEGO

and leverages our tool MALTA for model generation,
such that one can use the method with less effort of

model construction and higher efficiency of learning
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than those of the original MCRL. We demonstrate the
feasibility of our approach on an industrial case study:
an autonomous quarry, and discuss the strengths and
weaknesses of the methods.
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1 Introduction

With the rise of artificial intelligence (AI), autonomous
agents such as driverless cars, drones, and autonomous
construction equipment, are increasingly integrated in
all aspects of society. Autonomy requires that the in-

volved agents are able to sense the often unpredictable
environment and act on changes over time in order to
pursue their goals [20]. For instance, in a construction

site, the autonomy of the agents (machines) bear the
promise of increasing people’s safety, while improving
industrial productivity by automating repetitive tasks.
Two major problems need to be solved to achieve the
autonomy during operations: path planning and task
scheduling. Computing both automatically is calledmis-
sion plan synthesis. Path planning aims to calculate a
path that visits all target positions (a.k.a. milestones)
and avoids static obstacles. Algorithms like A* [35],
Theta* [15], and Rapidly-exploring Random Tree [29]
are adopted widely for calculating the shortest path be-
tween two points in a 2-D map. While path plans spec-
ify the movement between every two milestones, the
order in which tasks should be completed at milestones

is often dealt with as a subsequent optimization prob-
lem. The optimization problem of task scheduling is
often paired with additional constraints, such as finish-
ing tasks in a certain order, and repeating some tasks
until the agents are informed to execute other tasks.
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The requirements on tasks can involve temporal con-

ditions, e.g., “always start task A before task B is fin-

ished”, and timing constraints, e.g., “always finish all

tasks within 8 hours”. All these constraints make the

task scheduling difficult to complete in practice, in par-

ticular if constraints on computation time are given. In

fact, a simplified version of task scheduling is the classic

job-shop problem [19], which is NP hard [1].

In our previous work [22], we proposed an approach

based on Timed Automata (TA) and Timed Computa-

tion Tree Logic (TCTL) to formally describe the agents’

movement and task execution, as well as their require-

ments, respectively, to facilitate synthesis of plans by

model checking. The approach has been implemented

as a tool named TAMAA (Timed-Automata-based Mis-

sion planner for Autonomous Agents). The tool shows

the feasibility of solving the mission-planning problem

by using model checking when time of movement and

task execution are fixed. However, TAMAA has two lim-

itations: (i) if moving and executing tasks take unpre-

dictable durations, TAMAA fails to generate complete

mission plans that address all eventualities; (ii) TAMAA

alone does not scale well with the number of agents

growing, as the state space of the model explodes when

the number of agents becomes large.

In this paper, we first solve problem (i) by synthe-

sizing comprehensive strategies of timed games (TG),

which use time intervals instead of fixed times as the

moving and task execution times. TG are solvable by

UPPAAL TIGA [5], which is for synthesizing strategies

of TG. The TAMAA-generated TA can be re-used and

easily converted into TG by labeling actions as con-

trollable and uncontrollable ones in UPPAAL TIGA. As

the TG models consider all possible times of task exe-

cution and moving within given intervals, and UPPAAL

TIGA utilizes liveness properties to find the state-action

pairs of the models that always eventually reach the

goal states, the results represent the complete mission

plans that address all eventualities.

However, as the synthesis in UPPAAL TIGA is still

based on exhaustive symbolic exploration, this method

inevitably suffers from the same state-space explosion

problem as ordinary TAMAA. The state-space-explosion

problem is one of the most stringent issues when em-

ploying exhaustive search techniques such as model check-

ing [14], therefore many studies have explored ways of

fighting it [34,9]. To solve problem (ii), we proposed

a novel method called MCRL [23] that combines model

checking with reinforcement learning [36] to synthesize

mission plans for large numbers of agents. Instead of

exhaustively exploring the state space, MCRL samples

the state space randomly within a time frame, and then

uses these samples to train the agent models so that

their behavior becomes increasingly efficient in reaching

their goals such as finishing all tasks. Since the method

does not need to traverse every state of the model, state-

space explosion is avoided.

In this paper, we improve the original MCRL by in-

tegrating it with UPPAAL STRATEGO1 [18], which is a

tool that integrates the UPPAAL model checker, simu-

lation, algorithmic synthesis (i.e., UPPAAL TIGA), and

learning-based synthesis. Thanks to the integration, we

can merge the sampling phase and the training phase

of MCRL so that the temporary synthesis results can be

used in the simulation and accelerate it to get to the

goal state. Specifically, after each round of simulation,

the sampled trace is provided to a learning module,

which runs Q-learning [38] to populate a Q-table. Q-

learning is a reinforcement learning algorithm that cal-

culates a value for each state-action pair in the trace.

The state-action pairs and their values are stored in

the Q-table, which is then used as a strategy. Strategies

are mission plans that constantly provide suggestions of

actions to the agents, at each of their states. The sug-

gested actions include moving to a certain milestone, or

executing a certain task. After the learning algorithm is

invoked, an intermediary strategy is generated, which

does not necessarily cover all the eventualities in the

unpredictable environment. However, it is still input

into the next round of simulation so that the simulator

explores the state space in a heuristic way, by increas-

ing the probabilities of choosing the actions that have

higher values than other actions of the same state in

the Q-table. In this way, the simulation can get to the

goal state increasingly likely and faster.

Although exhaustive model checking suffers from

state-space explosion, it is beneficial at ensuring the

correctness of the synthesized strategies, that is, the

latter satisfy all requirements, and the completeness,

meaning that the synthesized strategies cover all the

eventualities in the unpredictable environment. There-

fore, we leverage exhaustive model checking after a strat-

egy is synthesized by the Q-learning algorithm, to verify

if the agent models behave according to the require-

ments specification, under the control of the strategy.

In this work, we further extend the model checker of

UPPAAL STRATEGO to support the exhaustive verifica-

tion of the learned strategies. In this way, model check-

ing and reinforcement learning are combined effectively

by our method (MCRL), in solving the mission-plan syn-

thesis problem of multiple autonomous agents. More-

over, the new version of MCRL reuses the automation

of model construction provided by our toolset named

MALTA.

1 https://people.cs.aau.dk/∼marius/stratego/
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To summarize, this paper is an extension of our pre-

vious work [23] and the new contributions are:

– An improved version of TAMAA that employs UP-

PAAL TIGA to synthesize mission plans (i.e., strate-

gies) that consider all the eventualities in the re-

spective environments.

– A new version ofMCRL integrated in UPPAAL STRAT-

EGO, which provides advantages such as a merged

phase of sampling and training that benefit each

other. The new version of MCRL is implemented

in an extensible scheme with the help of UPPAAL

STRATEGO, so that users can replace the learning

algorithm with their own pre-compiled libraries.

– Experimental evaluation of the new methods by ap-

plying them on an industrial case study to demon-

strate their merits and weaknesses.

The remainder of the paper is organized as follows.

In Section 2, we introduce the preliminaries of this pa-

per, that is, definitions of timed automata, (stochastic)

timed games, (stochastic) strategies, and reinforcement

learning. Section 3 describes the problem of strategy

synthesis for multiple agents, as well as its challenges.

Section 4 presents all the solutions and their applica-

tion ranges. This section provides a general view of the

methods and describes their differences. In Section 5,

we overview our previous method TAMAA, which is the

foundation of the new methods, and introduce the im-

proved version of TAMAA in UPPAAL TIGA. Section 6

continues with the introduction of the learning-based

method for strategy synthesis. It first analyzes the root

of the scalability problem of TAMAA, after which it de-

scribes the new MCRL. Section 7 presents the imple-

mentation of MCRL and the integration with UPPAAL

STRATEGO, as well as the automated model generation

supported by our existing toolset. Next, we describe the

evaluation experiments in Section 8, where we present

the results of the experiments, as well as a discussion

of the merits and weaknesses of the simulation-based

methods and the improved version of TAMAA. In Sec-

tion 9, we compare to related work, before concluding

the paper in Section 10.

2 Preliminaries

2.1 Timed Automata and Timed Games

Definition 1 A Timed Automaton TA [2] is a tuple:

A =< L, l0, X,Σ,E, I >, (1)

where L is a finite set of locations, l0 is the initial

location, X is a finite set of non-negative real-valued

clocks, Σ is a finite set of actions, E ⊆ L × B(X) ×
Σ × 2X × L is a finite set of edges, where B(X) is the

set of guards over X, that is, conjunctive formulas of

clock constraints of the form x ▷◁ n or x−y ▷◁ n, where

x, y ∈ X, n ∈ N, ▷◁∈ {<,≤,=,≥, >}, and I : L →
B(X) assigns an invariant to each location. □

The semantics of a TA A is defined as a timed transi-

tion system over states (l, v), where l is a location and

v ∈ RX represents the valuation of the clocks on that

location, with the initial state s0 = (l0, v0), where v0
assigns all clocks in X to zero. There are two kinds of

transitions:

(i) delay transitions: (l, v)
d−→ (l, v⊕d), where v⊕d is

the result obtained by incrementing all clocks of the au-

tomaton with the delay amount d such that v⊕d |= I(l),

and

(ii) discrete transitions: (l, v)
a−→ (l′, v′), correspond-

ing to traversing an edge l
g,a,r−−−→ l′ for which the guard

g evaluates to true in the source state (l, v), a ∈ Σ is an

action, r is the clock reset set, and clock valuation v′ of

the target state (l′, v′) is obtained from v by resetting

all clocks in r such that v′ |= I(l′).

We denote the timed transition system of a TA A
by SA. A run π of a TA A is a sequence of alternating

delay and discrete transitions of its SA: π = (l0, v0)
d1−→

(l0, v1)
a1−→ (l1, v

′
1)

d2−→ ...
dn−→ (ln−1, vn)

an−−→ (ln, v
′
n),

where di refers to a delay transition and ai refers to a

discrete transition. We denote the set of finite runs of

A starting from (l0, v0) as Πf (A).

A Timed Game G (TG) [13] is a TA whose actions

Σ are partitioned into controllable (Σc) and uncontrol-

lable (Σu) actions. The timed transition system, runs,

and a set of runs of a TG are denoted as SG , π, and

Π(G), respectively. TG is a useful mathematical model,

suitable to describe a system consisting of several play-

ers that compete or collaborate to win the game, e.g.,

by finishing their tasks. Each player can take arbitrary

numbers of actions before other players act. The num-

bers depend on the design of the TG. Informally, a strat-

egy is a function that during the course of the TG con-

stantly suggests the players what to do next in order

to win the game. The suggestion is either a controllable

action a ∈ Σc or a delay. Delays in strategies are de-

noted as λ, which do not indicate the lengths of delays,

whereas the symbol di used in the definition of runs

refers to concrete delays with specific lengths. The for-

mal definition of strategies is as follows, where last(πf )

is used to denote the last state of a finite run πf :

Definition 2 (Strategy) Let G =< L, l0, X,Σc∪Σu,

I > be a TG. A strategy σ over G is a partial function:

πf → Σc ∪ {λ} such that for any finite run πf ending
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in state q (i.e., q = last(πf )), if a ∈ σ(πf ) ∩ Σc, then

there must exist a transition q
a−→ q′ ∈ SG. □

Definition 2 indicates that a strategy is a function that

takes finite runs of the TG as input and output control-

lable actions or delays as suggestions of actions to the

agents. If the strategy σ ismemoryless, that is, the deci-

sions on actions depend only on the current state, it can

be represented as a function: last(πf ) → Σc ∪ {λ}. In
this paper, we focus on memoryless and non-lazy win-

ning strategies [17], which either urgently decide on a

controllable action or wait until the environment acts2.

2.2 Stochastic Timed Games and Stochastic Strategies

In principle, more information is often known of the

environment, for instance, the likelihood of actions or

the probability distribution of delays. In this section,

we consider Stochastic Timed Games, where a stochas-

tic environment is assumed. The environment makes

choices of delay and uncontrollable actions stochasti-

cally, according to a density function for a given state.

We define the Stochastic Timed Game as a Timed Markov

Decision Process (TMDP) [17]:

Definition 3 (Stochastic Timed Games) A Stochas-

tic Timed Game (STG) is a TMDP P =< G, µu >, where

G = < L, l0, X,Σc ∪ Σu, E, I > is a TG, and µu

is a family of density-functions. Let µu
q(d, u) ∈ R≥0

be a member of µu, which assigns a probability den-

sity of the environment taking the uncontrollable ac-

tion “u” after a delay of “d” at the state “q”, where

{µu
q : ∃l∃v.q = (l, v)}, u ∈ Σu is an uncontrollable ac-

tion, and q is a state (l, v). □

Stochastic strategies [17] for STG are correspondingly

defined as follows:

Definition 4 (Stochastic Strategy) A stochastic

strategy µc for a STG is a family of density-functions.

Let µc
q(d, c) ∈ R≥0 be a member of µc, which assigns a

probability density of the controller taking the control-

lable action “c” after a delay of “d” from state “q”,

where {µc
q : ∃l∃v.q = (l, v)}, c ∈ Σc is a controllable

action, and q is a state (l, v). □

Remark 1 The STG models are for sampling the state-

action pairs in the corresponding TG. They are used in

the simulation and learning phases of MCRL. The TG

models, which reflect the agents’ behavior more realis-

tically, are used in the verification phase of MCRL, and

the algorithmic synthesis in UPPAAL TIGA.

2 This kind of strategies are shown to suffice for optimal
scheduling of Duration Probabilistic Automata [27].

2.3 UPPAAL, UPPAAL TIGA, and UPPAAL

STRATEGO

2.3.1 UPPAAL

UPPAAL [6] is a state-of-the-art model checker for real-

time systems. It supports modeling, simulation, and

model checking, and uses an extension of TA as the

modeling formalism. We use an example depicted in

Fig. 1 An example of a UPPAAL timed automaton (UTA)
of a traffic light

Fig. 1 to illustrate a simple UPPAAL TA (UTA) model-

ing traffic lights. Locations are circles, such as the ones

labeled Red and Green, which model the two colors of

the traffic lights. The initial location is the double cir-

cle (i.e., Red). One UTA can have only one initial loca-

tion. The UTA’s edges are directed lines that connect

locations, which can be decorated by guards. A clock

variable x is defined to measure the elapse of time, and

used in the invariants on locations (e.g., x<=6), which

specify how long the UTA can delay on that location,

and guards on edges (e.g., x>=3).

A network of UTA models a parallel composition

of UTA that can synchronize via channels (i.e., a! is

synchronized with a? by handshake). In Fig. 1, the

edges are labeled with channels named STOP and GO,

which synchronize this UTA with other UTA. In UP-

PAAL, there are two special kinds of locations, namely

urgent and committed locations. Urgent locations are

denoted by encircled u, and require that the time does

not elapse on those locations (e.g., Yellow); committed

locations are denoted by encircled c, and require that

not only no time elapses there but also the next edge

to be traversed must start from one of the committed

locations in the network of UTA (e.g., Switch). UTA

also extends TA by introducing discrete data variables

that can be updated via functions on edges. Functions

are written in a subset of the C language. Clocks can

be reset over edges, e.g., x=0 in Fig. 1.

The UPPAAL queries that we verify in this paper are

properties of the following form, where p is an atomic

proposition over the locations, clocks, and data vari-

ables of the UTA: (i) Invariance: A[]p meaning that

for all runs, for all states in each run, p is satisfied, (ii)

Liveness: A<>p meaning that for all runs, p is satisfied
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by at least one state in each run, and (iii) Reachabil-

ity: E<>p meaning that there exists a run where p is

satisfied by at least one state of the run.

2.3.2 UPPAAL TIGA and UPPAAL STRATEGO

UPPAAL TIGA [5] is an extension of UPPAAL, which

supports solving games based on TG with respect to the

temporal properties aforementioned. In this paper, we

use UPPAAL TIGA to solve our task scheduling problem

in the first solution based on game-theoretic synthesis.

UPPAAL STRATEGO [18] is a tool that integrates UP-

PAAL with two of its branches, that is, UPPAAL SMC

[16] (statistical model checking) and UPPAAL TIGA [5].

In addition, it also supports learning-based algorithms

for solving STG, and we use this tool to develop our

second solution to strategy synthesis that is based on

simulation and learning.

2.4 Reinforcement Learning

MCRL employs reinforcement learning (RL) for strat-

egy synthesis. RL is a kind of machine learning method

for training reactive systems by rewarding desired be-

haviors and/or punishing undesired ones. Agents that

constantly act in an environment and receive feedback

(i.e., rewards/penalties) from the environment are re-

active systems. RL aims to calculate how agents should

take actions in an environment, in order to maximize

the accumulated rewards of actions. Model-free RL,

such as Actor-Critic algorithms [28], relies on samples

from the environment, which can be a model or a real

environment, to estimate the rewards of the next state-

action pairs. Model-based RL, such as Dynamic Pro-

gramming [36], uses the model’s predictions or distri-

butions of the next state-action pairs and their rewards

to calculate optimal actions.

Q-learning is one of the model-free algorithms, which,

at the limit, converges to optimal policies for reactive

agents in a stochastic environment. Policies are associ-

ated with a state-action value function called Q func-

tion. The optimal Q function satisfies the Bellman op-

timality equation:

q∗(s, a) = E[R(s, a) + γ max
a′

q∗(s′, a′)], (2)

where q∗(s, a) represents the expected reward of ex-

ecuting action a at state s, E denotes the expected

value function, R(s, a) is the reward obtained by tak-

ing the action a at state s, γ is a discounting value, s′

is the new state coming from state s by taking action

a, and max
a′

q∗(s′, a′) represents the maximum reward

that can be achieved by any possible next state-action

pair (s′, a′). The Bellman equation calculates the re-

wards of state-action pairs by considering both the cur-

rent reward and the discounted maximum future re-

ward. Watkins [38] shows that under the assumption of

sufficient repeated sampling, the Q-learning algorithm

converges towards the optimal Q-values and thus the

solution to the Bellman equations. These values are

stored in Q-tables, which serve as the strategies that

we aim to synthesize.

3 Problem Description and Analysis

In this section, we introduce the autonomous quarry

that serves as the industrial case study provided by

VOLVO Construction Equipment (CE) in Sweden. Based

on this practical case study, we formulate our research

problem and two associated challenges.

3.1 An Industrial Case Study: The Autonomous

Quarry

As depicted in Fig. 2, the quarry contains various au-

tonomous vehicles, e.g., trucks and wheel loaders, which

are the agents in the environment. A typical mission

Fig. 2 An example of an autonomous quarry

of the agents is to transport stones from stone piles to

crushers. Specifically, wheel loaders first dig stones at

the stones piles and load them into trucks that are re-

sponsible for transporting the stones to crushers. The

primary crushers crush the stones into fractions, af-

ter which trucks load the crushed stones and transport

the material to the secondary crushers, which is the

final destination of the stones. During the transporta-

tion, the agents (that is, autonomous wheel loaders and

trucks) must avoid static obstacles (e.g, holes and rocks

on the ground, larger than given sizes) and dynamic ob-

stacles (e.g., humans, other mobile machines). In brief,

these agents must be able to plan their paths to the

target positions (a.k.a. milestones) and schedule their

tasks so that the entire mission could be accomplished
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respecting some requirements, e.g., quarrying 1500m3

of stones per day.

Generalizing from this case study, our research prob-

lem of mission planning involves task scheduling, path

planning and following, and collision avoidance for mul-

tiple agents. In our previous work [24][25], we have in-

troduced a solution for the collision-avoidance problem

of dynamic obstacles, and proposed a method for verify-

ing this function. In this paper, we focus on synthesizing

static mission plans, while assuming that the dynamic

avoidance among agents as well as other moving obsta-

cles functions correctly.

3.2 Problem Analysis

Algorithms such as Theta* [15] and RRT [29] are capa-

ble of computing collision-free paths between two mile-

stones. We adopt the Theta* algorithm to solve path-

planning in this study and the experiments, as the al-

gorithm is especially good at generating smooth paths

with any-angle turning points, in 2-D maps. Note that,

our toolset (introduced in Section 7) supports more

path-planning algorithms. After the paths are calcu-

lated, the execution order of tasks on milestones must

be decided to achieve correct and efficient strategies.

Based on the requirements from VOLVO CE, we formu-

late and categorize the requirements of tasks as follows:

– Milestone Matching. Tasks must be performed at

the right milestones, e.g., digging stones must be

carried out at stone piles.

– Task Sequencing. The task execution order must

be correct, e.g., unloading stones into the primary
crusher must be executed after digging stones is fin-

ished, but before loading stones starts.

– Timing. All tasks that contribute to the goal (e.g.

transporting 10 tons of stones to the secondary crusher)

must be finished within a prescribed time (e.g. within

1 hour).

Task scheduling now reduces to synthesizing a plan of

task execution such that, by following the plan, agents

can work independently or collectively to accomplish

the entire mission according to the requirements. The

classic scheduling problem called the job-shop prob-

lem [19] is a simplified version of the task scheduling.

Being an NP-hard problem, even a simple instance of

the job-shop problem with very restrictive constraints

remains difficult to solve [1]. Additionally, our task-

scheduling problem poses some unique extra challenges,

as described in the next section. For simplicity, hence-

forth, we call the problem of path planning and task

scheduling for autonomous agents as mission planning.

3.3 Non-determinism and Scalability of Mission

Planning

Different from the classic job-shop problem, there are

two types of uncertainties existing in the environment

that must be considered in the mission-planning phase,

that is, the non-deterministic execution time of tasks

and non-deterministic duration of agent movement.

– Non-deterministic task execution time. The execu-

tion time of a task is usually a time interval between

the BCET (best-case execution time) and WCET

(worst-case execution time) of the respective task.

– Non-deterministic movement time. The devices at

some milestones could be exclusively occupied by

agents. Therefore, other agents that are approach-

ing these milestones must wait until those devices

are released, respectively, and then start their tasks.

This yields a non-deterministic movement time.

These features complicate our task scheduling even more

than in the classic job-shop case. Our target is not only

calculating mission plans, but also guaranteeing their

correctness, that is, showing that the synthesized mis-

sion plan (a.k.a., strategy) satisfies all the requirements,

and that it is complete, namely, covers all eventualities

in the environment.

In our previous work [22], we have proposed an ap-

proach called TAMAA, based on the model-checking

technique, to synthesize mission plans for agents. This

approach can automatically generate mission plans, as-

suming feasible numbers of milestones and tasks up to

100. However, the approach cannot cover all eventual-

ities when the environment is non-deterministic. Addi-

tionally, when the number of agents exceeds 5, TAMAA

exhausts the physical memory due to the notorious state-

space-explosion problem of model checking [14].

4 Overall Description of the Solutions

Facing the limitation of TAMAA, we propose two solu-

tions in this paper, that is, 1) a game-theoretic synthesis

(i.e., TIGA), and 2) a simulation-based synthesis (i.e.,

MCRL). Table 1 lists the solutions and their charac-

teristics. TAMAA uses UTA as the modeling language

and is suitable for 1-player games, in which agents have

the full control over their environment. As depicted in

Fig. 3(a), the agent models in TAMAA have no un-

controllable actions, which means the agents can to-

tally control their movement and task execution times.

Therefore, the goal of TAMAA is to find the best mission

plans that finish all tasks the fastest.

However, strategies of 1 1
2 -player and 2-player games

can only choose controllable actions, whereas the un-
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Fig. 3 Examples of symbolic state spaces of different models of games. Probabilities in (b) are only used in 11
2
-player games

Table 1 Summary of all solutions.

TAMAA TIGA MCRL STRATEGO
Model UTA TG TG & STG STG
Game 1 player 2 player 2 player 11

2
player

Techniques
Model

Checking [22]

Symbolic
On-The-Fly

Algorithm [13]

Reinforcement
Learning &

Model Checking [23]

Reinforcement
Learning [18][26]

controllable actions are taken by the environment either

non-deterministically in 2-player games, or stochasti-

cally in 11
2 -player games (Fig. 3(b)). Therefore, the

goal of 2-player games, solvable by UPPAAL TIGA and

MCRL, is to find the comprehensive strategies that en-

able the agents to finish their tasks no matter which

and when uncontrollable actions are taken. Taking into

account the probabilities of performing the uncontrol-

lable actions, the goal of 1 1
2 -player games, solvable by

UPPAAL STRATEGO, is to find the strategies that have

the highest probability of finishing all tasks.

In summary, different methods are suitable for dif-

ferent applications, and have their own advantages and

disadvantages. When stochastic behaviors are observed

in the system, 1 1
2 -player games and UPPAAL STRAT-

EGO can provide a suitable solution. When agents can

fully control their task execution times, 1-player games

and TAMAA can be the right choice (Section 5). When

the task execution times are flexible rather than fixed

and the uncontrollable actions are non-deterministic,

UPPAAL TIGA (Section 5) and MCRL (Section 6) are

capable of handling the problem.

UPPAAL TIGA is sound and complete in the sense

that when a strategy is synthesized, it is guaranteed to

be correct by construction, and conversely, when such

a strategy exists in the state space of the model, UP-

PAAL TIGA is able to find it. However, UPPAAL TIGA

suffers from the scalability problem as the method re-

lies on the exhaustive graphic search. MCRL uses a

simulation-based method for synthesis and proposes a

post-verification of the synthesized strategies, which al-

leviates the scalability problem while sacrificing the com-

pleteness of the method, that is, althoughMCRL has the

ability to deal with more agents than UPPAAL TIGA, it

does not guarantee to synthesize a strategy even if such

strategy exists.

We will introduce these methods in detail in Sec-

tions 5 and 6, and then compare their performance in

different application scenarios in Section 8.

5 Solution 1: Game-Theoretic Synthesis

In this section, we introduce the first solution, that is,

our game-theoretic synthesis, which is based on an ex-

haustive search of the state spaces of agent models. We

have two methods belonging to such kind of synthesis,

namely the original TAMAA [22] and TAMAA in UP-

PAAL TIGA [5]. As aforementioned, the original TAMAA

is designed to solve 1-player games, whereas TAMAA in

UPPAAL TIGA leverage the models of TAMAA and the

algorithmic method of synthesis of UPPAAL TIGA to

synthesize complete plans that take into account any

(possibly antagonistic) environmental action. First, we

overview TAMAA, which provides an automatic model
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generation and synthesis of mission plans for 1-player

games.

5.1 Overall Description of TAMAA

TAMAA [22] enables users to configure their agents,

tasks, and working environment in a graphical user in-

terface (GUI), and automatically generate UTA net-

works that model the movement and task execution of

agents. After users finish the configuration, UPPAAL

is called to verify the UTA models in order to gener-

ate runs that satisfy various properties. The verifica-

tion used in TAMAA is not for checking if the model

is correct or not, but for generating runs of the model,

which are then parsed to generate mission plans.

5.2 Mission-Plan Synthesis by TAMAA

To pave the foundation of the synthesis method, we

first elaborate the UTA models generated by TAMAA

by an example illustrated in Figure 4(a). These models

are also used in the improved solution of TAMAA with

some slight adjustments (see Section 5.3).

(a) An example of quarries (b) Map decomposition and the
calculated paths

Fig. 4 An example of calculating paths by decomposing the
map and running the Theta* algorithm.

In the quarry example, there are four autonomous

trucks starting at milestone A, which aim to trans-

port stones from milestone B to the primary crusher at

milestone C or D, and eventually go to the secondary

crusher at milestone E. A wheel loader is working at

milestone C to dig stones and load them into the trucks.

Only the autonomous trucks are the agents that we are

interested in. First, the environment is decomposed into

a Cartesian grid and the Theta* algorithm [15] is exe-

cuted to calculate the shortest paths among milestones

A - E (See Figure 4(b)). Note that the trucks only need

to choose one primary crusher at position C or D, to

unload stones.

Next, UTA models are automatically generated by

TAMAA, based on the shortest paths. For brevity, in

Figure 5(a), we show a part of the UTA model in UP-

PAAL describing the movement of the autonomous trucks

between milestones A and B. The movement to other

milestones is modeled in a similar way. Locations A and

B represent milestones A and B, respectively. The out-

going edge from the urgent initial location to location A

indicates that the trucks start from milestone A. Loca-

tions FATB and FBTA are created to count the traveling

time between A and B. A constant variable MT stores

(a) Part of a movement UTA

(b) Part of a task execution UTA

Fig. 5 TA models of an agent’s movement and task execution

the traveling time. The agent is only allowed to move

when it is not executing any tasks. Therefore, chan-

nel move[id] is used to synchronize the transitions in

the movement UTA with the task execution UTA (Fig-

ure 5(b)) so that the moving actions are only enabled

when the agent is idle, where the variable id refers to

the current agent in both the movement UTA and the

task execution UTA. A two-dimensional Boolean array

named position is updated in this UTA, in which each

element stores whether a certain milestone is being oc-

cupied by an agent. To model the agents’ movement on

the paths in Fig. 4(b), TAMAA instantiates movement

UTA similar to Fig. 5(a).

The task execution UTA models the actions that

an agent can choose to execute at a milestone. One

such UTA is partly depicted in Fig. 5(b), where lo-

cation Idle represents the status of “no operation”,

when the agent is allowed to move, and location T2

represents the task of unloading stones into a primary

crusher. The self loop of location Idle labeled by chan-

nel move[id] regulates the movement UTA to start to

move only when the task execution UTA is at loca-

tion Idle. Two Boolean arrays named ts and tf are

updated in the UTA, representing whether a task has
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been started or finished, respectively. Assuming trucks

need to iterate their tasks multiple times before trans-

porting all the stones, the guard of the incoming edge

of location T2 enables this edge if the following con-

ditions are true: (i) the task of loading stones from

the wheel loader is done (i.e., tf[id][1] is true), (ii)

the agent must be at milestone C or D, where the

primary crushers are located (i.e., position[id][2] ∥
position[id][3] is true), (iii) no other agent is exe-

cuting this task (i.e., !isBusy(2) is true), and (iv) the

task has not been done in this round of transportation

(i.e., isNecessary(2) is true). Location T2 has an in-

variant indicating that the execution time of the task

must not exceed its WCET. Similarly, the guard on the

outgoing edge of location T2 ensures that task is fin-

ished after the execution time is greater than or equal to

BCET. The function updateIteration() updates the

integer of task iteration.

After the resulting UTA model is automatically gen-

erated by TAMAA, properties that formalize the re-

quirements mentioned in Section 3.2 are also gener-

ated by using the configuration information and well-

designed TCTL templates. The Timing requirement is

used for synthesizing mission plans that finish all tasks

within a prescribed time limit. Others are for verifying

if the models guarantee that the mission plans are func-

tionally correct. For brevity, we only show the TCTL

property of the Timing requirement used in UPPAAL.

The rest of the properties are reported in our previous

work [22]. The TCTL reachability Query (3) checks if

agents can accomplish their missions within TL time

units, where ite is an integer array storing the itera-

tion of the tasks, that is, finishing all tasks once counts

for one round, x is a clock variable that is never reset, N
and M are two integers indicating the number of agents

and the requested iterations of tasks, respectively:

E<> ((forall(i:int[0,N-1]) ite[i]>=M) && x≤TL) (3)

The target of mission planning in a 1-player game is

to find the run that reaches the goal state where, for

example, agents finish all the tasks. Fig. 6 depicts a

segment of such run belonging to a model of 2 agents,

where states of the models are symbolically represented

by the locations of the UTA, mi and tei stand for ac-

tions in movement and task execution UTA of agent i,

respectively, and move[i]:tei->mi stands for the syn-

chronized actions of starting to move. As depicted, all

the actions are controllable by the agents (i.e., solid

lines), which consecutively or alternately move the re-

spective agent and execute tasks. They can stay at the

same milestone (e.g., B) but cannot execute the same

Fig. 6 A segment of a run generated by TAMAA

task (e.g., two T1 cannot appear at the same state) un-

less the agents are not mutual exclusive of the task.

As explained in Section 4, runs like the one in Fig. 6

are mission plans of 1-player games. To obtain such

runs, TAMAA uses the model checker of UPPAAL to

verify the UTA models of agents against reachability

properties in the form of Query (3). If the properties

are satisfied, UPPAAL can generate runs that can be ei-

ther the fastest, shortest, or random run, respectively.

Hence, TAMAA can generate these three kinds of mis-

sion plans.

However, when the problem becomes a 1 1
2 -player

game or a 2-player game, TAMAA is not able to solve

it, because the task execution times are decided by the

uncontrollable actions taken by the environment. We

need another method to deal with these problems such

that the mission plans can cover all possible scenarios,

even in the face of an antagonistic environment.

5.3 Synthesizing Strategies in UPPAAL TIGA

In this subsection, we apply UPPAAL TIGA instead of

UPPAAL to synthesize strategies defined by Definition

2, which serve as the complete mission plans that the

original TAMAA is not able to synthesize.

We recast the models of TAMAA from the UTA for-

malism into the TG formalism of UPPAAL TIGA as fol-

lows. As depicted in Fig. 7(a), the edge from location

FATB (resp., FBTA) to location B (resp., A) is marked

as uncontrollable. This change indicates that the de-

cision of choosing a milestone to visit is made by the

agent, whereas the duration of the movement to reach

the milestone is determined by the environment. Note

that the invariant on FATB (i.e., t<=MT) and the guard

on the outgoing edge of FATB (i.e., t>=MT) force the du-

ration to be MT. Similarly, in Fig. 7(b), the edge from lo-

cation T2 to location Idle is marked as uncontrollable,

indicating that the duration of the task is determined

by the environment.
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(a) Part of a movement TA

(b) Part of a task execution TA

Fig. 7 TGmodels of an agent’s movement and task execution
in UPPAAL TIGA

Besides the change of uncontrollable actions, the

synchronization between the task execution UTA and

movement UTA is removed to avoid the input non-

determinism of random simulation in UPPAAL. Instead,

a global Boolean array idle is introduced in the TG

models to store whether the agents are idle or not.

This array is used in the function named isReady in

the movement TG, which returns true when the corre-

sponding element in idle is true and the agent has not

finished its requested iteration of tasks.

Query (3) is also adjusted to synthesize complete

strategies that deal with the non-determinism of the

environment, as follows:

strategy st = control: A<> ((forall(i:int[0,N-1])

ite[i] ≥ M) && x≤TL)
(4)

Query (4) applies the universal quantifier A on runs

and the “eventually” temporal operator <> on states,

which means that the synthesized strategy st must al-

ways guide the agents to finish their tasks for M rounds

within TL time limit, no matter how long the time of

task execution is.

As depicted by Fig. 8, the runs generated by UP-

PAAL TIGA contain controllable (solid lines) and un-

controllable actions (dashed lines). The other notions of

the figure are the same as in Fig. 6. The first four steps

in Fig. 6 and Fig. 8 are the same, being all controllable

actions. The fifth step in Fig. 8 starts to be different,

because it is an uncontrollable action, which means that

the environment decides which actions to perform, in-

stead of the agents. Assuming that the agents travel at

the same speed, at state (FATB, Idle, FATB, Idle),

Fig. 8 A segment of a strategy generated by UPPAAL TIGA

the environment can choose agent 0 to arrive at mile-

stone B first via the uncontrollable action in m0; or

choose agent 1 to arrive first via the uncontrollable ac-

tion in m1. The actions of finishing tasks are also uncon-

trollable, so the task execution times are uncertain from

the agents’ point of view. The strategies synthesized by

UPPAAL TIGA are complete in the sense that no mat-

ter which and when uncontrollable actions are taken,

the agents can always finish their tasks with respect to

various requirements by following the strategies.

Although the strategies are now complete, since UP-

PAAL TIGA is also (in the worst case) exhaustively ex-

ploring the state space to synthesize strategies, the scal-

ability problem of TAMAA still exists in UPPAAL TIGA.

As depicted in Table 2, the number of explored states,

and the computation time increase exponentially with

the agent number growing linearly, which implies that

UPPAAL TIGA encounters the state space explosion.

Table 2 Performance evaluation of synthesis in UPPAAL
TIGA with different number of agents running 3 tasks among
3 milestones.

Number of
agents

Number of
explored states

Computation
time

2 775 5 ms
3 222,88 220 ms
4 764,001 18.1 s
5 33,312,229 53.8 mins
6 Out of memory Unknown

6 Solution 2: Simulation-Based Synthesis

In this section, we introduce our second solution for the

task-scheduling problem, which is based on simulation

and learning. First, we describe the root of the state-

space-explosion problem that the both the original and

improved versions of TAMAA have.
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6.1 State-Space Exploration of TAMAA

The states of the agent models are the Cartesian prod-

uct of states in each individual agent. Therefore, the

state space of multiple agents grows exponentially with

the number of agents growing linearly. The interleaving

actions among the agents also increase the state space.

Running TAMAA in UPPAAL TIGA requires searching

the state space of the model. The essence of the method

is about searching and storing the state space in or-

der to find the runs that reach (respectively, avoid)

certain states for reachability properties (respectively,

safety properties). Since it relies on an implementa-

tion of an on-the-fly symbolic algorithm, UPPAAL TIGA

may terminate before having explored the entire state

space, which alleviates the state-space-explosion prob-

lem. However, the searching algorithm is either breadth-

first, depth-first, or random, which is not heuristic be-

cause it constantly follows the same order of searching

without using the historical information of the searched

state space. Therefore, the synthesis method in UP-

PAAL TIGA can take a long time to find the desired runs

when the state space is large. The simulation-based syn-

thesis, which is presented in the next subsection, im-

proves the method in this aspect.

6.2 Learning Strategies

Instead of using a symbolic and potentially exhaustive

method, we study here the use of simulation-based syn-

thesis algorithms such as Q-learning [38]. Rather than

exploring the state space exhaustively, simulation-based

methods sample the state space strategically, which hap-

pens often in a reactive manner, hence they can avoid

state-space explosion. Nonetheless, simulation-based ap-

proaches sacrifice completeness over speed of synthesis,

but gain the ability to accommodate a stochastic reso-

lution of environment choices.

In this subsection, we go through the workflow of the

new version of MCRL, which is integrated with UPPAAL

STRATEGO. In the rest of Section 6, we introduce the

new features of the new MCRL while briefly introducing

the functions and parameters in UPPAAL STRATEGO.

For technical details of UPPAAL STRATEGO, readers

are referred to the literature [18] [26].

As depicted in Fig. 9, MCRL explores the state space

of the TG model via random simulation at the initial

step, during which runs of the model are sampled. These

runs serve as input to the learning algorithm to com-

pute the rewards or penalties of the state-action pairs.

As a result, the pairs belonging to the runs that reach

the states where tasks are finished faster than those in

other runs are assigned with higher rewards, whereas

Fig. 9 Workflow of MCRL

the pairs that end up into deadlocked states, or are won-

dering meaninglessly, are assigned with lower rewards

or even penalties. The accumulated values (i.e., rewards

or penalties) of the state-action pairs contribute to syn-

thesize an intermediary strategy, which is then used in

the next round of simulation until a user-defined num-

ber of runs is sampled. Specifically, the simulator ex-

ploits the intermediary strategy in its following rounds

of simulation by increasing (respectively, decreasing)

the probabilities of choosing the actions with higher

values (respectively, lower values). In this way, the sim-

ulator can reach the goal state faster and easier than

the previous rounds of simulation do. This integration

of simulation and learning is not provided by the initial

version of MCRL [23].

When a user-defined number of runs is sampled, a

strategy is considered to be produced. The simulation-

based synthesis cannot guarantee the correctness of the

strategies. Therefore, we propose a post-verification of

the strategies by using model checking. Specifically, the

TG models are verified together with the synthesized

strategies. When the model checker encounters multi-

ple controllable actions during verification, it enquires

the strategy to choose the ones with the highest val-

ues. Details of the verification are presented in Subsec-

tion 6.2.3. Strategies that pass the verification are guar-

anteed to be correct in the sense that they satisfy the

temporal constraints of requirements. If the verification

fails, a new iteration of the synthesis and verification

can be carried out, where the user-defined number of

runs is increased for a more thorough learning. In ad-

dition, the state space of the model is restricted by the

synthesized strategy, which enables MCRL to deal with

more complicated problems than TAMAA and UPPAAL

TIGA do.
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In the following subsections, we introduce the key

definitions, algorithms, and techniques that are used in

the new version of MCRL. Since UPPAAL STRATEGO

integrates UPPAAL, UPPAAL SMC, and UPPAAL TIGA,

the following algorithms and techniques are designed

and implemented collectively in UPPAAL STRATEGO.

6.2.1 Model Conversion

The initial step of MCRL is random simulation (see

Fig. 9). The non-deterministic choices of actions in the

synthesis of UPPAAL TIGA are replaced by random

sampling of actions in the simulation. Consequently, the

TG must be converted into STG by assigning probabil-

ities to actions.

Fig. 10 shows the model conversion in the process of

learning and verifying a strategy. In step 1, the task-

Fig. 10 Overview of various models and strategies and their
relations in UPPAAL TIGA and UPPAAL STRATEGO
(adapted from [18])

execution TG is changed to an STG, where the proba-

bility of finishing a task between its BCET and WCET

is uniformly distributed. Note that the uniform distri-

bution can be changed to a user-defined distribution

that can make the agents finish their tasks easier, in

the simulation. However, it does not change the fact

that the synthesized strategies lack a correctness guar-

antee, which means that the post-verification is needed

anyway. The reason why we choose to use the uni-

form distribution is because it is the default distribu-

tion on time-bounded delays in UPPAAL STRATEGO3.

Therefore, the syntactic structure of the TG does not

need to be changed. We name the first step probabilis-

tic quantification because it assigns quantitative prob-

abilities to the actions that are originally chosen non-

deterministically in UPPAAL TIGA.

Step 2 is MCRL’s synthesis (also seen in Fig. 9),

which learns a stochastic strategy σ◦ based on the STG.

σ◦ is then abstracted to a strategy that does not contain

any probability, in step 3. The abstraction of stochastic

strategies is introduced in Subsection 6.2.3. In the final

3 The uniform distribution is used in UPPAAL SMC by
default. UPPAAL STRATEGO includes UPPAAL SMC.

step, the TG and the synthesized strategy σ are verified

together by the model checker of UPPAAL STRATEGO4.

This is supported by queries in the form of Query (7)

that is introduced in Subsection 6.2.3.

The model conversion does not spoil our assumption

of the environment, because the probabilities assigned

to the uncontrollable actions in the TG are only used in

the learning phase. The formal verification of the syn-

thesized strategy is still by exhaustive model checking,

which guarantees that the agents satisfy the require-

ments regardless of how the environment behaves.

6.2.2 Q-learning Algorithm

Although we adopt Q-learning [38] in this work, our

framework is open for extension with any other learn-

ing algorithms. In order to apply Q-learning on our

STG models of the agents, we first define the states

and actions of the Q-table generated by the learning

algorithm. To differentiate the states of STG, we define

Q-states and Q-actions as follows.

Definition 5 (Q-State) A Q-state is defined as the

following tuple:

QS =< RT ,CT ,CP ,ST >,

where:

– RT ∈ Nd is a set of natural numbers denoting the

iteration of executing all tasks for each agent, where

d is the number of agents,

– CT ∈ N denotes the index of the current task,

– CP ∈ N denotes the index of the current milestone,

– ST is a set of Boolean variables encoding the respec-

tive execution statuses of tasks (EST) of all agents.

□

Definition 6 (Q-Action) A Q-action is defined as

the following tuple:

QA =< MT ,TT >,

where:

– MT ∈ {1, 2} denotes the type of motion, i.e., 1 :

moving, 2 : executing a task, and

– TT ∈ N denotes the target of the motion, which can

be a milestone or a task. □

In practice, “RT” is declared as an array of integers

in our UTA models. “CT” and “CP” are represented

by the current locations of the movement UTA and

4 The model checker is UPPAAL [6], which is included in
UPPAAL STRATEGO.
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task-execution UTA, respectively. “ST” is declared as a

two-dimensional array of Boolean variables that stores

the execution statuses of tasks (EST ), that is, finished

(true) or unfinished (false), for all agents in the environ-

ment. “TT” can be the index of the target milestone,

or the index of the next task.

Note that a Q-state does not contain continuous

variables such as clocks, because it is impossible to sam-

ple all the possible values of continuous variables in

the simulation. Moreover, the mission-planning prob-

lem concerns the EST of agents, which are covered

by Q-states already. Introducing other variables, e.g.,

a global clock variable that measures the entire time of

mission execution, would be redundant. In addition, to

symbolise Q-states with clock variables, we need to use

zones [6] instead of their concrete values, which compli-

cates the problem unnecessarily. The existence of “ST”

in Q-states requires the agents to communicate with

each other, which introduces overhead and unreliabil-

ity in the implementation of these agents. However, to

solve the mission-planning problem with uncertain task

execution times, this cost is necessary.

To apply Q-learning, we need to define a formula

to calculate the rewards for state-action pairs. The re-

wards should encourage the agents to accomplish their

tasks as fast as possible. Hence, a global clock vari-

able named gt that measures the total execution time

of agents is defined in our UTA model, although it is

not included in the Q-states. UPPAAL STRATEGO pro-

vides a special query [26] that allows us to simulate the

model, sample the specific runs, and pass them to the

learning algorithm (e.g., Q-learning):

strategy opt = minE(x)[<=T]{dv}-->{cv}:<> P (5)

In Query (5), minE(x) simulates the model while exe-

cuting the learning algorithm to minimize “x”, which

can be a variable or an expression. Parameter T is the

maximum simulation time, dv is a set of discrete vari-

ables, and cv is a set of continuous variables. The learn-

ing algorithm observes the state space of the model par-

tially, by detecting the values of the variables in dv and

cv. The formula “<>P” is a (T)CTL property satisfied

by the runs sampled from the simulation. These runs

are used as input to the learning algorithm to evalu-

ate state-action pairs. In this mission-planning prob-

lem, the global clock variable gt is x, the attributes of

Q-state constitute dv, cv is an empty set, and P is as

follows, being also used in Query (4):

(forall(i:int[0,N-1]) ite[i] ≥ M) && gt ≤ TL (6)

Algorithm 1 presents the process of executing queries in

the form of Query (5) in UPPAAL STRATEGO. Param-

eters stg, iterationNum, totalNum, and goodNum, for-

mula represent the STG model, the user-defined num-

ber of iterations of learning, the user-defined maximum

rounds of simulation, the maximum number of runs

that satisfy the property, and the property (<> P in

Query (5)), respectively.

Algorithm 1: Simplified algorithm behind the

minE-query of UPPAAL STRATEGO

1 Main(stg, iterationNum, totalNum, goodNum, formula)

2 int iterations = 0
3 int bestFitness = ∞
4 Strategy best = empty

5 Strategy aStrategy = empty

6 for iterations < iterationNum do
7 int totalRuns = 0
8 int goodRuns = 0
9 for totalRuns < totalNum do

10 Run aRun = simulate(stg, aStrategy)
11 if aRun satisfies formula then
12 aStrategy = learn(aRun)
13 goodRuns ++
14 if goodRuns ≥ goodNum then
15 break

16 totalRuns ++;

17 if goodRuns ≥ goodNum then
18 fitness = evaluate(aStrategy)
19 if fitness < bestFitness then
20 bestFitness = fitness
21 best = aStrategy

22 iterations ++

23 return best;

At lines 4 and 5 of Algorithm 1, two empty strategies

are defined, which are two arrays for storing Q-tables,

in practice. In line 10, random simulation starts, from

which the runs that satisfy “<> P” (a.k.a., good runs)

are sent to the learning algorithm (line 12), which can

be an internal function of UPPAAL STRATEGO or a pre-

compiled library. The check of satisfaction of “<> P” is

done by UPPAAL STRATEGO. For details, we refer the

interested reader to the literature [18]. The learning al-

gorithm calculates the rewards of the state-action pairs

in these good runs based on the value of “x”, and stores

the rewards in the variable aStrategy (line 12).

The simulation and learning terminate under two

conditions: (i) when the total rounds of simulation reach

the limit (line 9), or (ii) when the number of good runs

reaches the limit (line 15). When the simulation termi-

nates in case (i), no strategy is generated as the good

runs collected from the simulation do not support gen-

erating a complete strategy; if the simulation termi-
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nates in case (ii), a strategy is generated and stored as

a Q-table. Lines 17 to 21 evaluate the learned strategy.

The fitness of a strategy is the expectation of “x” when

the model is under the control of the strategy up to the

horizon provided in the query. If the query is minE (re-

spectively, maxE), the evaluation observes the fitness of

the current strategy and judges if its value is less (re-

spectively, larger) than the value of the best strategy,

and updates the best strategy accordingly.

6.2.3 Verification of the Synthesized Strategies

As depicted in Fig. 9, after a strategy is synthesized,

the model checker of UPPAAL STRATEGO is employed

to verify the TG of the system under the control of the

strategy. UPPAAL STRATEGO provides a special query

to realize this function, which is shown in Query (7),

where P is a Boolean expression, e.g., Query (6), opt is

the strategy that is synthesized by Query (5) and that

controls the behavior of the model:

A<> P under opt (7)

Specifically, when UPPAAL STRATEGO reaches a state

where it faces multiple controllable actions, the model

checker can filter out non-optimal choices (according to

the strategy) from the exploration of the system.

We extend UPPAAL STRATEGO such that a subset

of strategies generated by Query (5) can also be veri-

fied by Query (7). This is an extension of the original

work on UPPAAL STRATEGO [18] where only strategies

generated by the game-theoretic synthesis of UPPAAL

TIGA [5] can be verified. The subset of strategies here

refers to the ones that do not have clock variables. As

defined in Definitions 5 and 6, the strategies (i.e., Q-

tables) of MCRL do not contain clocks.

This verification is step 4 of the method (see Fig. 10).

For the users of this method, synthesizing a strategy

and verifying it are two consecutive operations of run-

ning Queries (5) and (7). However, there are two im-

portant steps of model conversion that are executed

underneath, by the tool: probabilistic quantification and

abstraction (Fig. 10). Probabilistic quantification is ex-

plained in Section 6.2.1. Now we introduce the abstrac-

tion from stochastic strategies σ◦ of STG to strategies σ

of the corresponding TG. As stated in Definitions 4 and

2, σ◦ assigns probabilities to the controllable actions of

the agents, whereas σ explicitly informs the agents what

is the next action to do at each state.

In practice, given a Q-table that contains the val-

ues of state-action pairs defined in Definitions 5 and

6, we construct strategies σ by using the rewards as

the priorities of choosing actions at the corresponding

states, that is, the actions with the highest values are

always chosen by the model checker. When multiple

actions have the same value at some states, the model

checker will exhaustively select each one of them to ex-

ecute and check, in a non-deterministic manner. In this

way, we can verify if the strategies synthesized by Q-

learning are guaranteed to be complete and correct in

the sense that the new models of the agents, which are

controlled by the strategies, satisfy the requirements

considering all the possible task execution times. In ad-

dition, the state-space explosion of the original TAMAA

is overcome, since the state space that is explored by

the model checker for verifying the new models is much

reduced by the strategies.

To guarantee that the synthesized strategies meet

all the requirements mentioned in Section 3.2, we de-

sign queries as presented below. In these queries, ten
and moven are the task execution TG and movement

TG of agent n, respectively. The variable tf is a two-

dimensional Boolean array of agents’ task execution

statuses, e.g., finished, or unfinished, x is a clock vari-

able, and opt is the synthesized strategy.

– Milestone Matching. Query (8) checks that agent’s

n position is always at milestone Pi, when it is ex-

ecuting task Ti:

A[] (ten.Ti imply moven.Pi) under opt (8)

– Task Sequencing. Query (9) checks if the precedent

task Ti−1 is always finished, when agent n is exe-

cuting task Ti:

A[] (ten.Ti imply tf[n][i-1]==true) under opt (9)

– Timing. Query (10) checks if the agents can always

finish all their tasks within TL time units, where

N is the number of agents, M is the requested tasks

iteration number, and TL is an integer of time limit:

A<> ((forall(i:int[0,N-1]) fin[i]≥ M)

imply x≤TL) under opt
(10)

7 Tool Support

In this section, we describe the automated support for

our method, our toolset MALTA5, which is depicted

in Fig. 11. A GUI named Mission Management Tool

(MMT) is designed at the top level to enable users to

configure the map, agents, tasks, and milestones, etc.,

5 MALTA is published: https://github.com/rgu01/MALTA.
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Fig. 11 The structure of the toolset.

capturing the information of the environment. A mod-

ule named Path Planner is designed at the second level,

to support various path-planning algorithms, e.g., A*

[35], Theta* [15], and DALi [33]. The Path Planner ob-

tains the information of the map, including the naviga-

tion area, forbidden areas, milestones, etc., and calcu-

lates paths among the milestones and avoid all the for-

bidden areas. DALi can even select paths intelligently,

when encountering temporary obstacles, crowed areas,

etc. We refer the reader to literature [33] for details.

In the experiments of this paper, we use Theta*

for path planning, due to its capability of calculat-

ing smooth paths that minimize the amount of sharp

turns. The Path Planner sends the paths to the third

level, where a module named Model Generator is de-

signed to produce the TG/UTA models of agents, au-

tomatically. These models are used in the fourth level

called Task Scheduler, which invokes TAMAA, UPPAAL

TIGA, or UPPAAL STRATEGO, based on the require-

ment and scale of the problem of synthesizing strategies.

Strategies (respectively, runs), synthesized by UPPAAL

TIGA or UPPAAL STRATEGO (respectively, TAMAA),

are then sent back to the third level, where a module

named Strategy & Run Parser is designed to parse the

strategy or runs into the format that is understandable

for the second level. Last, the task schedule and the

path plan are combined as a mission plan and shown in

MMT GUI.

A detailed description of levels 1 to 3 of the toolset

can be found in previous work [22]. We focus on level

4, Task Scheduler, in this section. In our previous work

[23], we have proposed an implementation of MCRL,

which uses the simulation query in UPPAAL SMC to

randomly simulate the models, gathers enough runs

that satisfy a condition, and prints the rewards of the

state-action pairs of the runs into text files. Next, the

files are parsed and used as the source data for the Q-

learning algorithm to populate Q-tables. The Q-tables

are then injected back into the models. A new UTA

named conductor is designed to read the Q-tables ev-

ery time when the agent needs to make a decision.

The conductor sends signals to the movement and task-

execution UTA, in order to control them to perform dif-

ferent actions according to the Q-table.

This implementation separates the data-gathering

phase from the learning phase, so the rewards of state-

action pairs accumulated in the data-gathering phase

cannot easily be exploited for guiding the sampling in

a strategic manner. In every round of simulation, the

simulator explores the state space randomly, with un-

changed probabilities of the actions. Moreover, the UTA

models allow the most permissive behaviors of agents,

such as wondering without executing any tasks. The

separation of phases makes the simulation unlikely to

reach the states where rare events happen, e.g., mul-

tiple iterations of tasks, or finishing a large number of

tasks in a strict time frame. Therefore, the new version

of the method embeds MCRL into UPPAAL STRATEGO

to fix this inconvenience, which will be introduced in

the next subsection.

7.1 Integration of Task Scheduler and UPPAAL

STRATEGO

As shown in Algorithm 1, in the new version of MCRL,

once a run that satisfies our requirement is obtained

from the simulation (line 11), it is directly fed into

the learning algorithm to synthesize a strategy (line

12). The strategy is not necessarily complete, but it is

then input into the next round of simulation (line 10),

where the simulator can exploit the existing strategy

by using the rewards accumulated in the past rounds of

simulation as the probabilities of actions (see Subsec-

tion 6.2.2). Therefore, the actions with higher rewards

will be chosen more likely than the ones with lower re-

wards, and thus, the learning phase is accelerated.

After a certain rounds of simulation (the number

is configurable), a candidate strategy is produced and

sent to the model checker to verify if it guarantees to

enable the agents to finish all tasks according to the

requirement, regardless of how the environment reacts.

This process iterates until the verification passes. In our

previous implementation of MCRL [23], the movement

and task-execution UTA are modified, and a UTA named

conductor is created to control the models according to

the Q-table. In our current implementation, the original

movement and task-execution TG are directly verified

in UPPAAL STRATEGO by running queries in the for-

mat of Query (7). When UPPAAL STRATEGO verifies

the models against these queries, it calls back a func-

tion in the external library of the learning algorithm,
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where the Q-table is stored, whenever it faces multi-

ple available controllable actions. This function searches

the Q-table and returns the highest priority for the ac-

tions with the highest rewards to the model checker.

UPPAAL STRATEGO then exhaustively explores the ac-

tions that have the same highest priority, but ignores

the ones with lower priorities. In this way, the models’

behavior is under the control of the strategy without

introducing new models, such as a conductor UTA.

Additionally, the new version of MCRL is imple-

mented in an extensible scheme. The learning algorithm

is programmed in standard C or C ++, and compiled

into an external library, which UPPAAL STRATEGO

calls back when learning is required. Hence, the users

of the tool can replace the Q-learning with their own

learning algorithms, and leverage the formal aspects of

the method to guarantee the completeness and correct-

ness of the synthesized strategies.

8 Experimental Evaluation

In this section, we evaluate the improved version of

TAMAA and the new version of MCRL in several ex-

periments. The experiments are conducted on a laptop

running an Intel Core i7 processor with 12 cores, 16 GB

of RAM and a 64-bit Linux OS.

8.1 Design of Experiments

Fig. 12 depicts a working environment of agents created

in MMT. Our mission planner calculates paths that en-

able the agents to visit the milestones in a certain order

so that they finish their tasks in a correct and efficient

way. According to previous investigation [22], the num-

ber of agents is the factor that impacts the computa-

tion time of the mission planners most profoundly. As

shown in Table 2, UPPAAL TIGA could not handle more

than 5 agents. Therefore, we vary the number of agents

from 3 to 6 in the experiments in order to show that

the new MCRL is capable of dealing with more agents

than the improved version of TAMAA in UPPAAL TIGA.

To demonstrate the extensibility of MCRL, the exper-

iments are conducted on two versions of MCRL. One

uses an external library of Q-learning and one uses the

Q-learning function in UPPAAL STRATEGO [26], which

are called external and internal Q-learning for brevity6,

respectively. We experiment with both an internal and

an external version of Q-learning to study the impact

6 Although the internal Q-learning is a part of UPPAAL
STRATEGO, MCRL provides a post-verification to it and
thus it is called MCRL with internal Q-learning.

Fig. 12 A working environment of agents in MMT. Module
A is the configuration panel, where users configure the pa-
rameters of the map, vehicles, tasks, etc. Module B is the
map, where the environment is visualized. Synthesized mis-
sion plans will also be shown in this module. Pinpoints like
C are the milestones, where tasks are assigned to. Red areas
like D are the special areas, which can be fixed/temporary
forbidden areas (a.k.a., static obstacles), crowed areas, etc.
Tags like E are the initial positions of agents.

of (1) a fully extensible implementation of the learn-

ing algorithm, and (2) the overhead of communication

between UPPAAL STRATEGO and the external library.

In addition, this construction allows us to define a cus-

tom strategy output format for an integration into our

toolset MALTA. We also vary the number of milestones

(correspondingly, tasks) to see how this factor influ-

ences the computation time.

8.2 Results of Experiments

Table 3 shows the numbers of explored states and com-

putation time for the three mission planners synthe-

sizing mission plans for 3, 4, 5, and 6 agents, respec-

tively. The number of milestones and tasks are fixed,

such that the difference of the results among the mis-

sion planners would only be caused by the increased

number of agents. We run the experiments 5 times for

each mission planner in each scenario containing differ-

ent number of agents, and use the mean values as the

results. Clearly, UPPAAL TIGA can only deal with situ-

ations with less than 6 agents, whereas MCRL can cope

with 6 agents within reasonable computation times: 7.9

minutes or 14.8 minutes. The difference in computation

times of the two versions of MCRL is due to the differ-

ent implementations of Q-learning and the overhead of

communication between UPPAAL STRATEGO and the

external library. They collectively confirm the conclu-

sion that MCRL outperforms TAMAA when the number

of agents is large.
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Table 3 Explored states and computation time of synthesiz-
ing mission plans for different numbers of agents. The envi-
ronment contains 3 milestones and 3 tasks.

States Time Agents
TIGA 222,88 220 ms

3MCRL with
Internal Q-learning

143,044 572 ms

MCRL with
External Q-learning

428,550 2.0 s

TIGA 764,001 18.1 s
4MCRL with

Internal Q-learning
772,619 2.2 s

MCRL with
External Q-learning

1,150,349 7.3 s

TIGA 33,312,229 53.8 mins
5MCRL with

Internal Q-learning
9,822,914 38.2 s

MCRL with
External Q-learning

6,700,782 53.0 s

TIGA Out of memory Unknown
6MCRL with

Internal Q-learning
10,322,666 7.9 mins

MCRL with
External Q-learning

100,901,760 14.8 mins

As depicted in Table 4, strategies synthesized by

MCRL with the external and internal Q-learning are

complete in the sense that they satisfy liveness queries

in the form of Query (7). When the number of agents

is greater than 4, internal Q-learning needs more simu-

lation rounds to sample enough runs for learning than

that of the external Q-learning. The reason for this is

discussed in the next subsection.

Table 4 The numbers of sampled traces and total simulation
rounds that are needed for synthesizing strategies by using
the MCRL with the internal and external Q-learning, as well
as the completeness of the synthesized strategies.

Sampled
traces

Total
runs

Completeness Agents

External
Q-learning

100 2,000 true

Internal
Q-learning

100 2,000 true
4

External
Q-learning

200 10,000 true

Internal
Q-learning

200 20,000 true
5

External
Q-learning

200 100,000 true

Internal
Q-learning

200 150,000 true
6

Table 5 shows the number of explored states and

computation time for the three mission planners syn-

thesizing mission plans for 2 agents, but different num-

bers of milestones and tasks (tasks are assigned to mile-

stones, thus N milestones imply N tasks). As presented

in the table, the number of explored states and compu-

tation time of UPPAAL TIGA do not increase very fast

Table 5 Explored states and computation time of three
methods synthesizing mission plans for different numbers of
milestones and tasks. The environment contains 2 agents.

States Time
milestones &

tasks
TIGA 11,746 61 ms

5MCRL
Internal Q-learning

136,113 347 ms

MCRL
External Q-learning

200,963 1.1 s

TIGA 161,953 1 s
8MCRL

Internal Q-learning
49,489,463 3.4 mins

MCRL
External Q-learning

63,858,459 8.2 mins

TIGA 586,124 3.9 s
10MCRL

Internal Q-learning
324,257,087 33.7 mins

MCRL
External Q-learning

324,283,558 46.4 mins

with the increasing numbers of milestones and tasks,

which is consistent with our previous investigation [22].

However, two versions of MCRL with the internal and

external Q-learning perform much worse than UPPAAL

TIGA when the numbers of milestones and tasks are

greater than 5. Note that, when the numbers of mile-

stones and tasks are 10, the rates of synthesizing com-

plete strategies by using the external and internal Q-

learning are lower than 10%. We discuss the reason for

this result in the next subsection.

8.3 Discussion of the Experimental Results

As MCRL randomly searches the state space multiple

times during the learning process, the numbers of ex-
plored states of these two planners do not reflect the

size of the agent model. Hence, we compare the num-

bers of explored states obtained with UPPAAL TIGA in

Table 3 and Table 5, and conclude that the size of the

state space of the agent model is mainly influenced by

the number of agents. The numbers of milestones and

tasks increase the state space much less significantly,

but the trend of increase is still exponential.

The reason why MCRL with the external Q-learning

needs less total rounds of simulation than that of the

internal Q-learning is because the intermediary strate-

gies are adopted in the external Q-learning during the

course of simulation for a heuristic exploration of the

state space. The difference of heuristic exploration in

two versions of MCRL results in the different requested

rounds of simulation, which also contributes to the worse

performance of the simulation-based algorithms when

the numbers of milestones and tasks are more than 8.

Currently, the learning algorithms can only lever-

age the “good” runs that satisfy our requested condi-
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tion (e.g., Formula (6)). When the milestones and tasks

are few, random simulation can easily get to the states

where the property holds. As the numbers of milestones

and tasks increase, it becomes increasingly unlikely to

reach the terminal state by random simulations, which

in turns implies that a guided search cannot occur in

the simulation. Runs that do not satisfy the specified

condition are not provided to the learning algorithm,

and thus, do not contribute to the heuristic exploration

of the state space. Therefore, in cases with large num-

bers of milestones and tasks, large numbers of simula-

tion rounds are needed to generate enough “good” runs,

which result in a high number of explored states and a

long computation time. We leave the improvement of

the method for future work, but hypothesize that the

inclusion of negative reinforcement feedback (that is,

runs that do not meet the goal will receive a penalty)

will improve the performance of MCRL significantly.

In summary, when the number of agents is large,

MCRL with the internal Q-learning is the first option

because it scales better than UPPAAL TIGA and needs

less computation time than MCRL with the external Q-

learning does in this case. In the cases where the num-

bers of milestones and tasks are large, UPPAAL TIGA is

the first option as it scales and provides strategies that

are guaranteed to cover all possible scenarios. When the

users need to embed their own learning algorithms in

the method, MCRL with the external Q-learning is the

first option because the learning module is an external

library that can be replaced easily.

9 Related Work

Synthesis of strategies for multiple autonomous agents

has become an increasingly studied area. Wang et al.

[37] attempt to address the scalability challenge of solv-

ing POMDP (Partially Observable Markov Decision Pro-

cesses) with safe-reachability objectives. Similar to the

bounded model-checking technique [8], their method

constrains the state-space of the model by using a goal-

constrained belief space instead of the entire belief space.

Bouton et al. [10] focus on a concrete scenario of au-

tonomous cars: navigation in unsignalized intersections.

Their method is based on POMDP and Monte Carlo

sampling, thus avoiding the scalability problem. How-

ever, their method does not provide formal-verification-

based guarantees of correctness. Nikou et al. [32] pro-

pose a solution to synthesize controllers of agents for

path planning. Their synthesized controllers also sat-

isfy complex high-level constraints of tasks. However,

no proof of scalability with the number of agents is pro-

vided. Our approach is accompanied by a toolset that

is capable of handling mission-plan synthesis for multi-

ple agents, mitigating the associated lack of scalability

caused by the numbers of agents, milestones, and tasks.

Similar to our work, some studies also combine for-

mal verification with learning algorithms. The UPPAAL

STRATEGO [18] tool facilitates both sample-based op-

timization and correct-by-construction controller syn-

thesis. In addition, both these methods can be com-

bined for safe and (near-)optimal synthesis. Basile et

al. [3] use UPPAAL STRATEGO to solve the strategy

synthesis problem for autonomous driving in a moving

block railway system. They leverage the game-theoretic

method to synthesize safe strategies and reinforcement

learning to optimize the strategies. To achieve formal

correctness of a learned controller, UPPAAL STRATEGO

relies on learning under a prior construction of the safe

controller, specifically guarding the learning against un-

sound actions. This is contrary to our simulation-based

approach (namely, MCRL) where learning is conducted

on the original models directly to synthesize strategies

with no guarantee of correctness. The post-verification

in MCRL adds correctness guarantees on the learned

strategies, which eliminates the state-space explosion

problem that exists in the original models.

Similar to TAMAA, the approach of Gleirscher et

al. [21] is also based on graphic search. Their approach

is able to synthesize and verify safety controllers for

human-robot collaboration. Bersani et al. [7] present

the PuRSUE (Planner for RobotS in Uncontrollable

Environments) approach, which supports users to con-

figure their robotic applications and automatically gen-

erate their controllers by using UPPAAL TIGA. The

main difference between MCRL and theirs is that their

synthesis is based on graphic search and thus limited

on scalability.

Li et al. [31] focus on capturing complex and domain-

specific requirements of robotic systems by using formal

specification languages. Their method also makes the

reward generation of the learning process interpretable

and guarantees the satisfaction of specification, for crit-

ical components of the systems. The method proposed

by Bouton et al. [11] enforces probabilistic guarantees

on agents during the course of reinforcement learning.

Brázdil et al. [12] provide algorithms for searching MDP

(Markov Decision Processes) to verify various reacha-

bility properties. Legay et al. [30] present a scalable

approach of verification for MDP. When comparing to

these studies, we apply model checking on the learned

strategies and facilitate the verification for complex mod-

els with large state spaces by using reinforcement learn-

ing, rather than constructing initially a safe restriction

of the system. Our work is orthogonal to that of Brázdil,

Legay and Bouton, that is, their methods could be uti-
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lized for the initial construction of strategies to demon-

strate the non-existence of rare events. Our method can

be then used to verify their strategies. In addition, our

method has the ability to handle timed systems and

distributions over durations.

To the best of our knowledge, the earliest attempt

to employ reinforcement learning for solving the state-

space-explosion problem of model checking is done by

Behjati et al. [4]. The authors propose a bounded ratio-

nal verification approach for on-the-fly model checking.

However, this method is limited to LTL properties, and

it has not been applied on autonomous agents.

10 Conclusion and Future Work

In this paper, we have presented our method of solv-

ing the mission-plan synthesis problem of multiple au-

tonomous agents. The method is based on our tool

named TAMAA and improves the original TAMAA with

the ability of handling uncertain movement time and

task execution time of agents. Additionally, our method,

called MCRL, combines model checking with reinforce-

ment learning, so that it is capable of dealing with more

agents than the improved TAMAA, which applies model

checking alone. MCRL provides a means for verifying

and analyzing the synthesized mission plans by using

model checking, to ensure that safety-critical require-

ments are met. The method is fully integrated with

UPPAAL STRATEGO. We demonstrate MCRL’s ability

of handling multiple agents by experiments, and com-

pare the result with the original and improved TAMAA.

The number of explored states and computation time

of MCRL increase much slower than the two versions of

TAMAA when the number of agents increases. However,

the improved version of TAMAA in UPPAAL TIGA per-

forms better than MCRL when the number of agents is

less than two but the numbers of milestones and tasks

are more than five.

One of the future directions of work is to improve

the learning algorithm of MCRL to perform better in en-

vironments with large numbers of milestones and tasks.

Another future work direction focuses on estimating

the existence of strategies of timed games before syn-

thesis starts. Introducing variables that evolve contin-

uously, e.g., time, energy consumption, in the models

and strategies is another interesting direction of fu-

ture research, which would dramatically complicate the

strategy-synthesis problem.
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