
Validating Temporal Behavior Models of Complex Real-Time Systems

Johan Andersson, Anders Wall and Christer Norström
Department of Computer Science and Engineering

Mälardalen Real-Time Research Centre
Mälardalen University, Sweden

{johan.x.andersson,anders.wall,christer.norstrom}@mdh.se

Abstract

When constructing a model of the behavior of a software
system, model validation is necessary in order to assure that
the model accuratly describes the system at an appropriate
level of abstraction. How to validate a model is however not
obvious, since a model is an abstraction of the real system.
This paper presents an approach for validation of tempo-
ral behavior models, targeting complex industrial real-time
systems. The paper also proposes a method for robustness
analysis, how to determine if the model is robust with re-
spect to the typical changes to the system.

1 Introduction

As large industrial software systems evolve, their soft-
ware architecture may degrade. This since maintenance ac-
tivities are often performed in a less than optimal manner
due to resource restrictions e.g. limited time budgets. As
a result of these maintenance activities, not only the size
but also the complexity of the system increases. Eventually
it becomes hard, or even impossible, to predict the impact
that changes will have on the system’s behavior. As a conse-
quence of the low understandability of the system’s behav-
ior, the engineers are dependent on extensive testing, which
is time- consuming and costly. By introducing analyzability
with respect to properties of interest, the understandability
of the system can be increased.

If the software system has real-time requirements, it is of
vital importance that the system is analyzable with respect
to timing related properties, e.g. deadlines. Introducingan-
alyzability, and consequently introducing the possibility of
understanding the impact that changes will have on the sys-
tem behavior with respect to timing, can be done in two
distinct ways:intrusivelyor non-intrusively. In an intrusive
approach the system is re-designed in order to make it ana-
lyzable. An example of an intrusive approach is switching
from event triggered scheduling to time triggered schedul-

ing or introducing a server algorithm to handle aperiodic
tasks. The intrusive approach is, however, associated witha
high cost as it might require a considerable effort to change
the system. It is also a risk since errors might be introduced
that, in worst case, are not captured during testing.

In a non-intrusive approach a model of the system is con-
structed. Hence, the system is kept intact and the cost and
risks of changing the system is avoided. The work presented
in this paper focuses on a non-intrusive approach which has
been developed as part of a case study. A probabilistic mod-
eling and analysis framework was developed and a model
was constructed describing the temporal behavior of a robot
control system developed by ABB Robotics [8]. While con-
structing the model we discovered that it was not clear as
how to validate the model.

The validation of a software model is the process of de-
termining whether or not the model is a correct description
of the system with respect to the properties of the system
that the model is intended to describe. This is typically done
by comparing observations of the system’s behavior with
the predictions made by analyzing the model. Moreover, in
order to facilitate future usage of the model, it should be
easy to keep the model and the system consistent as the sys-
tem evolves. The effort of adjusting the model to reflect the
impact of a maintenance operation should not be similar to
constructing the initial model, the change required to up-
date the model should be intuitive and similar to the change
in the system. Therefore, it is necessary to verify that the
model isrobustwith respect to typical types of changes of
the system.

The contribution of this paper is a methodology for vali-
dation of models describing the temporal behavior of com-
plex real-time systems. This methodology consists of an
equivalence relation and a method for analysing model ro-
bustness. to typical changes.

The outline of this paper is as follows: Section 2 de-
scribes related work, in Section 3 we outline potential error
sources when constructing a model, in Section 4 we discuss
how to compare a timing model with the temporal behavior

of the real system and define an equivalence relation be-
tween timing models and system implementations, in Sec-
tion 5 we propose a method for analyzing the robustness of
timing models by sensitivity analysis. Finally we conclude
the paper and give hints on future work in Section 6.

2 Related Work

Validity of models has been studied in the simulation
community. In [3], model validation is defined as ”the pro-
cess of determining whether a simulation model is an ac-
curate representation of the system, for the particular ob-
jectives of the study”. They address validity of models that
are to be used for general simulation-based analysis, e.g.
simulation of a physical process, but they do not discuss
the problems of performing the actual validation when the
model describes the timing of a complex software system.

A process for constructing simulation models is de-
scribed in [1], where the assessment of model accuracy is
integrated. The different activities required for qualityas-
surance is described. This process is quite complex as it
contains 10 processes and 13 credibility assessment stages.
However, this is guidelines on a quite high level of abstrac-
tion. The work does not address what or how to observe and
compare the system with a model when validating.

Model validity from a general simulation point of view
is also discussed in [4]. Different processes for validation of
models are described in the paper, one process isIndepen-
dent Verification and Validation, IV&V. It states that a third
party reviewer should be used to increase the confidence in
the model. A scoring model is also described, where various
aspects are weighted and a total score can be calculated as
a measure of validity for the model. This is, as pointed out
in the paper, dangerous since it seems more objective than
it really is and might cause over-confidence in the model.
The author describes a simplified version of the modeling
process described in [1], consisting of the Problem Entity
(the system), a Conceptual Model (the understanding of the
system), and a Computerized Model (the implementation
of the Conceptual Model). Furthermore, Conceptual Model
validity is defined as the relation between the Problem En-
tity and the Conceptual Model, i.e. if the person construct-
ing the model has a correct understanding of the system.
Operational Validity is the relation between the Computer-
ized Model and the Problem Entity, i.e. if the Computerized
model was correctly implemented.

In [3] many aspects of the validity of models in general is
discussed and a seven-step approach for conducting a suc-
cessful simulation study is described. This approach is on
a quite high level of abstraction and can be applied on any
model. The steps are problem formulation, collecting data
and construction of the conceptual model, validation of the
conceptual model, programming the model, validation of

programmed model, experiments and analysis, and presen-
tation of results. The paper stresses the importance of a def-
inite problem formulation, comparisons between the model
and the system, and the use of sensitivity analysis. This
is in line with the earlier work of this project [7][8]. This
work does not address models of software systems and the
difficulties of validating them.

3 Sources of Error in a Model

The need for model validation emerges from the risk of
constructing a model that contains errors or lacks informa-
tion about important details of the system’s behavior. The
process of constructing a model of a software system con-
sists of several different activities and errors could be intro-
duced in any of them. There are at least five potential error
sources:

• the understanding of the system,

• the understanding of modeling language and tools,

• the observations of the system,

• the probe effect, and

• the level of abstraction in the model.

The understanding of the system The modeling team
must understand both the structure and the behavior of the
system in order to develop a valid and robust model. The
type of systems considered in this paper is very complex and
hard for a single person to grasp. People with knowledge of
different parts of the system should therefore be included in
a modeling team. The modelers should discuss their under-
standing of the system with (other) system experts and let
them review the resulting model in order to avoid errors in
the conceptual model. This is in line with the independent
verification and validation approach (IV&V) described in
[4].

The understanding of modeling language and tools
The modeling team must have adequate knowledge about
the different tools that are used for modeling and analy-
ses and the semantics of the modeling language, especially
if more complex or unusual, modeling languages are used.
To avoid misunderstandings or misinterpretations, the tools
and modeling language must be well documented and com-
municated.

The observations of the system When constructing a
model based on observations of a systems behavior, it is
important that the observations are made in several differ-
ent but representative situations. This in order to ensure

that as much as possible of the behavior of the system is
captured. For instance, it is likely that a system that gets
exposed to stimuli from its intended environment behaves
differently from a system that is in its idle mode. This is
further discussed in Section 4.3.

The probe effect If software probes are used when mea-
suring the system, the probe-effect [5] has to be considered.
One solution to avoid that the probes affect the system be-
havior is to use specialized hardware monitors, that non- in-
trusively can observe the system without affecting the tem-
poral behavior of the system [6]. Another solution is to
leave the probes in the system, so that the impact imposed
by the probes is not removed. In this work we assume that
the probes can remain in the system.

The level of abstraction If information about important
details of the systems behavior is missing, the model will
be less accurate and less robust. A sensitivity analysis, de-
scribed in section 5, can evaluate whether or not this is the
case.

4 Model equivalence

In this section we will present our notion ofobservable
property equivalence. The proposed equivalence relation
enables a comparison between the temporal behavior pre-
dicted when analyzing a model and the temporal behavior
observed when executing the system. Since models are ab-
stractions of the system, the predicted behavior will con-
sequently be an abstraction of the behavior of the system.
Hence, it is not feasible to compare the predicted behavior
with the observed behavior directly.

As an example consider the measured response times and
the predicted response times for a task shown in Figure 1.
Each dot represents an instance of the task, where the Y
axis is the response time and the X axis is the time when
the instance started. One instance is one execution of the
task. The data presented in this figure was collected in the
case study at ABB Robotics [7][8] mentioned in the intro-
duction.

We can see that the temporal behaviour predicted by the
model is very close to the one observed on the real sys-
tem. Distinct classes of response times can be identified
in the observed and the predicted behavior and these match
very well. As mentioned earlier, it is not possible to com-
pare these two data sets instance by instance, as they do not
match directly. Instead, the system and the model are com-
pared with respect to a set ofsystem propertiesthat charac-
terize the temporal behavior of the system.

A system property in our framework is a probabilistic
statement regarding an aspect of the behavior of the system

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0 1 2 3 4 5 6 7
0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0 1 2 3 4 5 6 7

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0 1 2 3 4 5 6 7

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0 1 2 3 4 5 6 7

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0 1 2 3 4 5 6 7

Instance Start Time (ms)

R
es

po
ns

e
T

im
e

 (
s)

Simulation

Instance Start Time (ms)

R
es

po
ns

e
T

im
e

 (
s)

Measurement

Figure 1. Observed and predicted response
times for a task

that we can observe directly or derive from observations of
a system, but not find explicitly in the implementation or
configuration of the system.

Thus, the priority of tasks, the execution time of a task
and the rate of periodic tasks are not system properties. The
priority and rate of tasks can be found in the implementation
and the execution times of tasks can often be calculated us-
ing tools. Examples of system properties are how often the
response time of a task exceeds a certain limit, i.e. a dead-
line, or the probability of a message queue being empty or
being full.

4.1 Using system properties for compari-
son

When a model is to be compared with its correspond-
ing system in order to establish equivalence, a set of system
properties has to be selected as a point of view for the com-
parison. This set of system properties, thecomparison prop-
erties, are evaluated both with respect to the observed sys-
tem behavior and with respect to the results from analyzing
the model. The comparison properties typically include ex-
plicitly defined system requirements and other system prop-
erties of interest but may also include system properties that

is of less interrest when analysing the model in order to in-
crease the coverage of the comparison. Thesesupporting
propertiesmay be affected by many aspects of the system
and characherize the temporal behavior. A typical support-
ing property could be the average number of messages in a
message queue.

Selecting the appropriate system properties for the com-
parison is very important in order to get a valid comparison.
As many system properties as practically possible should be
included in the set of comparison properties in order to get
high confidence in the comparison. If too few relevant sys-
tem properties are included a partially mismatching model
might be accepted and regarded as valid. In [4], this is men-
tioned as themodel user’s risk. However, if some of the
comparison properties are irrelevant, there is a risk of re-
jecting a valid model due to differences in irrelevant system
properties. Rejection of a valid model has mentioned in [4]
as themodel builder’s risk.

The selected system properties should not only be rele-
vant, but also be of different types in order to compare a
variety of aspects of the temporal behavior. In this paper
we have identified three general types of system properties,
related the temporal behavior of systems:

• response-time properties,

• pattern properties, and

• resource utilization properties.

Response-time properties The response time of tasks
can be used as a comparison property, since it is dependant
on not only the execution time of the task, but also depends
on the temporal behavior of other tasks. The response time
can be interesting in terms of worst case, since it might be
a requirement (a deadline), but also the distribution of re-
sponse times can be used as a supporting property, as it
contains a lot of information about the temporal behavior
of the system.

Pattern properties It is often possible to identify patterns
in the scheduling of tasks and in the occurrence of different
internal events. For instance, a system property of this type
could be that a certain fraction of the instances of Task A
are preempted by Task B. Another system property of this
type could be that a specific internal event always comes
in bursts of 5, with 2-3 ms separation between the events
within a burst. The occurrence of a certain pattern in the
execution times of tasks is also a system property that can
be used for comparison.

Resource utilization properties This type of properties
include those related to message buffers, for instance the
minimum or maximum number of messages, how long a

task waits for a message, how often a task writes or reads
messages from the buffer. Another example of such a prop-
erty is the probability of a certain message buffer being
empty or full.

Even if a large set of system properties are used for a
comparison, if they represent too few types of system prop-
erties, there is a risk of accepting an invalid model. For in-
stance, imagine that only response-time properties are used
as comparison properties. The rate of a task could in that
case differ between the system and model without being dis-
covered in the comparison. If system properties related to
patterns in the scheduling had been used as well, this would
have been discovered.

4.2 Observable Property Equivalence

In order to determine the validity of a model, the model
has to be compared with the real system from a certain point
of view. In this section we present a validation method
where this is done by investigating if the model is equivalent
to the real system with respect to a set of system properties.
To do that we have to specify a set of system properties
that are to be compared, as described in section 4.1. Since
we decide on equivalence based on a comparison between
properties of the observed behaviour, we refer to this equiv-
alence relation asObservable Property Equivalence.

Definition 1. R = Rec(X, E, d)
The function Rec returns a recording of the execution of X,
in the environment E, with the duration d time units.

In Definition 1 we formulize the observation of a sys-
tem,X , that is either the real implemented system, execut-
ing on the real hardware, or model of a system executed in
a simulator. The resulting recording is a list of timestamped
events related to tasks-switches and operations on logical
resources. The environmentE specifies the configuration
of the system and any external stimuli that is to occur.

Definition 2. V = Eval(P, R)
The function Eval evaluates the property P with respect to
the recording R. The resulting value, V, is either a boolean
or a decimal value.

The next definition, Definition 2, presents the function
Eval, that evaulates a system propertyP with resepct to
the the recordingR. In this work, we use the PPL query
language to formulate the comparison properties. An early
specification of the PPL language can be found in [8]. A
tool has been developed that evaluates PPL queries with re-
spect to a recording, corresponding to theEval function.

Definition 3. If M is a model of the system S and
P is a set of system properties then iff∀p ∈ P :
Eval(p, Rec(M, E, D)) = Eval(p, Rec(S, E, D)), then
S ≡ M , i.e. S and M are observable property equvialent
with respect to P.

Definition 3 presents the equivilence relation. If the eval-
uations of all comparison properties returns the same value
for the model as for the real system, the model and the sys-
tem are observable property equivilent.

Since the model is an abstraction of the system, it might
be desired to have a certain amount of tolerance in the
equivalence relation. This tolerance can however be encap-
sulated within the formulation of the system properties.

4.3 Using model equivalence for valida-
tion

The method for establishing an equivalence relation be-
tween a model and a system described in section 4.2 com-
pares two data sets, one from the observation of the real
system and one from the analysis of the model. If the two
data sets are equal when comparing them, with respect to a
set of system properties, they are equivalent, according to
Definition 3.

In order to use the equivalence relation for validation of a
model, a single observation is however not sufficient. Mul-
tiple observations of the system should be used to get con-
fidence in the validity of the model. This since a single
observation of the system will probably only cover a minor
subset of potential behaviors of the system, as mentioned in
Section 3. The system might have many different modes of
operation, with different temporal behavior. These modes
must be identified and observations should be made in as
many of these different situations as possible and included
in the model. Comparing the model with the system in dif-
ferent situations can point out differences that only occur
in some situations, i.e. a dependency that has been missed
when constructing the model.

There are other reasons as well for basing a validation
on multiple observations. One reason is if a certain tran-
sient scenario is of special interest when validating, e.g.the
temporal behavior during a state transition in the system. In
many cases it is only possible to capture one occurrence of
the situation per observation, since the time it takes to put
the system in the appropriate state that allows the scenario
is often quite long, especially if it requires input from the
user. Multiple observations can be used to capture several
occurrences of the scenario and thus improve the confidence
in the model.

Another reason for using multiple observations is if the
memory available for the monitoring of a system is limited.
In many embedded systems, not much memory is available
for monitoring of extra-functional properties such as timing;

it is very likely that at most only a few seconds of execution
can be measured. If a longer observation is desired, i.e.
more data, several shorter observations can be made instead.

To conclude this section, when performing a validation
of a model, it is important to use multiple observations in or-
der to observe as much as possible of the system behavior,
but it is also important that different types of system prop-
erties are used for the comparison (as mentioned in Section
4.1), in order to compare as much as possible of the ob-
served behavior of the system with the predictions based on
the model. A third issue is to test different system alter-
ations to verify that their impact on the model is the same
as on the real system, i.e. to determine if the model is ro-
bust. In the next section, we will discuss how to use multiple
model validations in order to analyze the model robustness.

5 Model Robustness

A model is robust with respect to a change in the im-
plementation of the system if the change when applied to
the model affects the predictions based on the model in the
same way as it affects the observed behavior of the system.
If a model is robust, it implies that the relevant behaviors
and semantic relations are indeed captured by the model at
an appropriate level of abstraction. In this section we pro-
pose a method for determining the robustness of a model in
our framework. We refer to this activity assensitivity anal-
ysis.

To exemplify the importance of model robustness, imag-
ine a system containing a binary semaphore protecting a
shared resource. A timeout occurs if a task has been waiting
on the semaphore for a certain predefined time. If the time-
out occur, the execution time of the task is increased due
to the error handling necessary. However, in all previous
versions of the system, this timeout has never occurred. If
the timeout is left out when constructing the timing model
of the system the model still seems accurate since the time-
out never occurs. However, as a result from changing the
system, e.g. increasing the execution time of another task,
the timeout will in some cases occur. Since the timeout was
not captured in the model the system’s behavior will diverge
from the behavior predicted based on the model.

Our approach to sensitivity analysis is influenced bysys-
tem identification. System identification is a technique used
in the domain of control theory [2]. By measuring and ob-
serving the input-output relationship between signals in the
process a model can be determined in terms of a transfer
function. Validating models based on the system identifi-
cation approach is somewhat related to testing. Typically,
output signals predicted using the model is compared with
the output signals of the physical process. Hence, the model
is regarded as correct if the analysis and the physical pro-
cess generate approximately the same output, if fed with the

same input.
Testing the model with different input signals and com-

paring the prediction with the signals produced by the ac-
tual system is fine if the process is continuous in its nature.
It is fair to assume that we can interpolate the behavior in
between the tested signals. However, computer software
is not continuous; they are discontinuous systems mean-
ing that the behavior may change dramatically as a result of
small changes in the system. A model of a software system
can thus quickly become invalid when the system evolves,
if the model is not robust with respect to typical changes.
By analyzing the impact on the system caused by different
changes, it is possible to determine if the model is sensitive
to such changes, i.e. less robust.

5.1 Sensitivity Analysis

In this section, we will present how to analyze the robust-
ness of a model using a sensitivity analysis. The basic idea
is to test different alterations and verify that they affectthe
behavior predicted by the model in the same way as they
affect the observed behavior of the system. First a set of
change scenarioshas to be elicitated. The change scenarios
should be representative for the probable changes that the
system may undergo. Typical examples of change scenarios
are to change the execution times of a task or to introduce
new types of messages on already existing communication
channels. The change scenario elicitation requires, just as
developing scenarios for architectural analysis, experienced
engineers that can perform educated guesses about relevant
and probable changes.

The next step is to construct a set of systems vari-
ants {S1, ..., Si} and a set of corresponding models
{M1, ..., Mi}. The system variants{S1, ..., Si} are versions
of the original system,S0, wherei different changes have
been made corresponding to thei different change scenar-
ios. Note that these changes only needs to reflect the impact
on the temporal behavior caused by the change scenarios,
they do not have to result in any functional improvements
of the system. These changes are therefore easy to imple-
ment. The model variants are constructed in a similar way.
{M1, ..., Mi} are the result of updating the initial modelM0

according to the same change scenarios.
Each model variant is then compared with its corre-

sponding system variant by investigating if they are equiva-
lent as defined in Definition 3. If all variants are equivalent,
including the original model and system, we say that the
model is robust. Formally we define robustness as follows:

Definition 4. A model M is robust with respect to a system
implementation S iff:

∀iSi ≡ Mi

where0 ≤ i < N corresponds to a change scenario and
N is the number of change scenarios.

However, note that each comparison made to decide
equivalence between a model and system variant should be
made according to the recommendations presented in Sec-
tion 4.3.

Comparison
M1 – S1

System S3

Comparison
M2 - S2

System S2

Comparison
M3 - S3

System S1

+

Change
Scenario 1

Change
Scenario 2

Change
Scenario 3

System S0

+

+

Model M3

Model M2

Model M1

+

Model M0 +

+

Figure 2. Analyzing model robustness

In Figure 2 we have depicted the general process of ana-
lyzing the robustness of a model. An alteration, one of the
identified change scenarios, is performed on the systemS0

and the modelM0 is updated to reflect the impact of the
change. This results in a system variantS1 and a model
variantM1, which are then compared as described in Sec-
tion 4.3. IfM1 are equivalent toS1 as defined in Definition
3, the modelM0 is robust with respect to that alteration.

6 Conclusion

In this paper we have addressed the problem of how to
validate a model describing the temporal behavior of a large
real-time system. We have proposed a methodology for
determining the equivalence between a timing model and
the temporal behavior of the corresponding system, with re-
spect to a set of system properties. Moreover, we have de-
scribed the different types of such properties and we have
also described how a sensitivity analysis can be used to
study the robustness of a model.

Further, different sources of errors in the model devel-
opment process have been identified. We plan to test this
approach in practice by applying it both on the case study
described in the introduction, (the ABB robot controller)

and also use it in another case study on a different system.
Furthermore, we plan to investigate how model construc-
tion and validation can be facilitated by tool support. We
believe that the model construction process is the weakest
link in this approach so automation of this part would be a
major benefit.

References

[1] O. Balci. Guidlines for Successful Simulation Studies.In
Proceedings of the 1990 Winter Simulation Conference. De-
partment of Computer Science, Virginia Polytechnic Insti-
tute and State University, Blacksburg, Virginia 2061-0106,
U.S.A., 1990.

[2] R. Johansson.System Modeling Identification. ISBN 0-13-
482308-7. Prentice-Hall, 1993.

[3] A. M. Law and M. G. McComas. How to Build Valid and
Credible Simulation Models. InProceedings of the 2001
Winter Simulation Conference. Averill M. Law and Asso-
ciates,Inc., P.O. Box 40996, Tucson, AZ 85717, U.S.A., 2001.

[4] R. G. Sargent. Validation and Verification of Simulation
Models. In Proceedings of the 1999 Winter Simulation
Conference. Department of Electrical Engineering and Com-
puter Science, College of Engineering and Computer Science,
Syracuse University, Syracuse, NY 13244, U.S.A., 1999.

[5] W. Schutz. On the Testability of Distributed Real-Time Sys-
tems. InProceedings of the 10th Symposium on Reliable
Distributed Systems, Pisa, Italy. Institut f. Techn. Informatik,
Technical University of Vienna, A-1040, Austria, 1991.

[6] M. E. Shobaki. On-chip monitoring of single- and multipro-
cessor hardware real-time operating systems. In8th Inter-
national Conference on Real-Time Computing Systems and
Applications. IEEE, March 2002.

[7] A. Wall, J. Andersson, J. Neander, C. Norström, and M. Lem-
bke. Introducing Temporal Analyzability Late in the Life-
cycle of Complex Real-time Systems. InProceedings of
RTCSA 03. Department of Computer Science and Engineer-
ing, Mälardalen University, P.O. Box 883, S-721 23 Västerås,
Sweden, 2003.

[8] A. Wall, J. Andersson, and C. Norström. Probabilistic
Simulation-based Analysis of Complex Real-time Systems.
In Proceedings of the 6th IEEE International Symposium
on Object-oriented Real-time distributed Computing. Depart-
ment of Computer Science and Engineering, Mälardalen Uni-
versity, P.O. Box 883, S-721 23 Västerås, Sweden, 2003.

