
Kubernetes Orchestration of High Availability
Distributed Control Systems

Bjarne Johansson1,2, Mats Rågberger1, Thomas Nolte2, Alessandro V. Papadopoulos2

1 ABB, Västerås, Sweden, {bjarne.johansson, mats.ragberger}@se.abb.com
2 Mälardalen University, Västerås, Sweden,{thomas.nolte, alessandro.papadopoulos}@mdh.se

Abstract—Distributed control systems transform with the In-
dustry 4.0 paradigm shift. A mesh-like, network-centric topology
replaces the traditional controller-centered architecture, enforc-
ing the interest of cloud-, fog-, and edge-computing, where
lightweight container-based virtualization is a cornerstone. Ku-
bernetes is a well-known container management system for con-
tainer orchestration in cloud computing. It is gaining traction in
edge- and fog-computing due to its elasticity and failure recovery
properties. Orchestrator failure recovery can complement the
manual replacement of a failed controller and, combined with
controller redundancy, provide a pseudo-one-out-of-many redun-
dancy. This paper investigates the failure recovery performance
obtained from an out-of-the-box Kubernetes installation in a dis-
tributed control system scenario. We describe a Kubernetes based
virtualized controller architecture and the software needed to set
up a bare-metal cluster for control systems. Further, we deploy
single and redundant configured containerized controllers based
on an OPC UA compatible industry middleware software on the
bare-metal cluster. The controllers expose variables with OPC
UA PubSub. A script-based daemon introduces node failures,
and a verification controller measures the downtime when using
Kubernetes with an industry redundancy solution.

I. INTRODUCTION

Distributed control systems (DCS) are large-scale control
systems with multiple Distributed Controller Nodes (DCN)
interconnected. A traditional DCN consists of dedicated hard-
ware running the real-time controller firmware (FW). A high
availability DCN is often achieved with hardware duplication
– i.e., two DCNs, an active (primary) and a passive (backup).
If the primary fails, the backup takes over the primary role,
providing a one-out-of-two (1oo2) redundancy. The controlled
process dictates the critical upper bound takeover time, which
translates to around 500 ms for DCS in process automation [1].
Manual replacement of a failed DCN is required to restore
redundancy.

The Industry 4.0 [2] data thirst drives DCS towards a
network-centric architecture with an increased possibility of
information and data retrieval. Figure 1 shows a simplified
view of a traditional controller-centric system and network-
centric system. The interconnectivity provided by a network-
centric architecture allows data exchange between all devices
connected to the network. Access to data produced near the
process, i.e., the I/O, sensors, and actuators, does not need to
involve the DCN.

This work is funded by the Knowledge Foundation (KKS), projects ARRAY
and SACSys, by The Swedish Foundation for Strategic Research (SSF),
project FuturAS, and by the Swedish Research Council (VR), project PSI.

Data consumerControllersProcess

To
da

y Controller
Centric

data shared
through

controller

Network
Centric

data shared
through
network

To
m

or
ro

w

Fig. 1. A simplified view of a controller-centric and network-centric system.

Interconnectivity and interoperability are key concepts in
the Open Process AutomationTM Standard 1 (O-PAS). The O-
PAS standard for DCN communication utilizes the OPC-UA
2 model making OPC UA suitable as communication means
for our virtualized controller.

Virtualization is a cornerstone in realizing the computational
elasticity provided by cloud-, fog-, and edge-computing. Con-
tainers are a lightweight and more performant virtualization
alternative to Virtual Machines (VM) [3].

The widespread use of containers has led to container
orchestration management systems such as Docker Swarm,
Marathon on Mesos, and Kubernetes. The central functionality
provided by the orchestrator is situation-aware scheduling and
deployment of containers on the available resources.

We study the failure recovery properties provided by a
vanilla out-of-the-box Kubernetes installation in a DCN con-
text and the additional plugins needed to set up a bare-
metal cluster hosting Virtualized DCN (VDCN). Kubernetes
failure recovery, combined with 1oo2 VDCN redundancy,
provides a pseudo-one-out-of-N (1ooN) VDCN redundancy
and complements manual replacement of failed DCNs.

II. RELATED WORK

DCNs are embedded real-time systems, i.e., the temporal
aspect of function output is as important as the output it-
self. Therefore, container performance is of primary concern.
Struhár et al. [4] survey the usage of real-time containers
and conclude that tool support, communication, and shared
resources are open challenges. Even though challenges remain,
ongoing research on real-time containers has been developed
over the past few years [5], [6]. Felter et al. [3] show that the
container overhead for CPU and memory utilization is negli-
gible, but there can be a performance impact on I/O intensive
applications. A similar conclusion is reached by Watada et

1https://publications.opengroup.org/p190
2https://opcfoundation.org/



al. [7], who also identify several challenges, i.e., persistent
storage, complex networking, and orchestration management.

Fog computing addresses the inherent communication la-
tency with geographic distant cloud computing by utilizing
computational resources geographically closer [8], implying
that the temporal aspect is vital in fog computing. Bellavista
et al. [9] show that Single Board Computers (SBC), such
as Raspberry Pis, are viable as fog computing nodes. They
emphasize that providing real-time guarantees in a system with
complex temporal utilization resource patterns is challenging.
In a virtualized environment, resource inference can occur
even if the utilized resources are different. Kim et al. [10] show
that a network-bound application can saturate the CPU with
softirq processing induced by the network communication.

Domain-specific container scheduling prerequisites have
driven scheduling-related research. Eidenbenz et al. [11] eval-
uate three different Kubernetes scheduling integration alter-
natives to reduce communication latency and conclude that
the Kubernetes native scheduling is the better alternative.
Further, Eidenbenz et al. evaluate failover times, similar to our
work, but just with Kubernetes native approach, and conclude
that it is not fast enough. Vayghan et al. [12] propose an
enhanced Kubernetes controller that gives a shorter downtime
if a stateful application fails by having a redundant, passive
instance ready to resume when told so by the controller.

Struhár et al. [6] introduce monitoring of real-time proper-
ties utilized by a Kubernetes scheduler extension to strengthen
the temporal aspects. Großmann et al. [13] develop a resource
utilization measurement tool with a small footprint. Using this
tool, they compare the resource utilization between Kuber-
netes and Docker Swarm. Docker Swarm is less resource-
demanding, but they also highlight that the comparison is not
fair since Kubernetes provide more functionality.

A DCN in a network-centric context relies on network
connectivity for various purposes such as communication with
field devices, i.e., the network is fundamental. In a container-
ized context, the network is typically partly virtualized. Con-
tainer Network Interface (CNI) and Container Network Model
(CNM) are two specifications, with corresponding libraries,
plugins, and interfaces that a container runtime can utilize to
configure the network. Kubernetes supports CNI, and CNI is
a de-facto standard [14]. There exist many CNI plugins, and
researchers have studied the performance of some of them.
Qi et al. [15] categorize a selection of CNI plugins in four
categories and perform a benchmark, measuring throughput
and Round-Trip Time (RTT). Depending on the plugin and the
type of communication, the performance degradation ranges
from a fraction of a percent up to 30% [14], [16], [15], [17].

As for automation-related controller virtualization research,
Hegazy et al. [1] show that automation as a Service (AaaS)
is feasible with a latency compensating control algorithm.
However, recouping for the latency is impossible when an
RTT shorter than communication time to the remote cloud
is required, for example, a quick reaction to a discrete
event. Goldschmidt et al. [18] presented and benchmarked
a containerized controller architecture, concluding that the

VDCN component

Kubernets component
Installed component

VDCN
Image

Control plane
kube-controller-mgr

kube-api-server

kube-scheduler

VDCN
Config

Compute node
kubelet

kube-proxy

Container Network.

Legend:

VDCN Pod
VDCN Container

VDCN
Application

VDCN Image

Configured component

VDCN Pod Controller

VDCN Pod ControllerVDCN Pod Controller

Persistent StorageVDCN OPC UA Service

Local Container Reg.

External Access.

Container Runtime

Container Network

Installed Comp.Kubernetes Comp.

Configured Comp.
VDCN
Comp.

Fig. 2. A Kubernetes-based VDCN cluster architecture.

introduced overhead is insignificant.
To the best of our knowledge, no related work combines

orchestrator failure recovery with VDCN redundancy. The
combination results in a pseudo-1ooN VDCN redundancy. Our
contribution is the description of the components needed to
realize a Kubernetes orchestrated cluster for hosting single
and redundant VDCN combined with the measurement and
evaluation of failure recovery performance.

III. SYSTEM DESCRIPTION

Docker is a well-known container runtime; examples of
other alternatives are rkt3 and LXC4. We select Docker as
the container runtime, mainly due to its popularity and per-
formance [3], [5], [18]. Rodriguez et al. [19] presented an
overview of orchestration systems. We chose Kubernetes since
it is relatively mature with a large open-source community.
Marathon on Mesos is a relevant alternative due to its high-
availability properties. We identify Marathon on Mesos and
Kubernetes dependability evaluation as potential future work
and focus solely on Kubernetes in this work.

A. Kubernetes components and architecture

Control plane is the name for the logical consolidation of
the cluster control logic, i.e., the brain of the orchestrator.
Compute node is the name for the nodes, physical or virtual,
doing the actual work. Kubernetes offer a high-availability
setup that prevents a single point of failure to bring down
the control plane functionality. This work focuses on compute
node failure and notes that evaluating control plane failure in
a DCS context is relevant future work.

The central component in Kubernetes is the Pod. A Pod is a
collection of one or more containers that are co-scheduled and
co-located. Kubernetes do not schedule or deploy containers
directly; Kubernetes operates on Pods.

The main components in the Kubernetes architecture, di-
vided into control plane and compute node components, are
shown in Figure 2, and briefly described below. Control plane
components:

• kube-apiserver: the frontend of the cluster, all
cluster interaction, including configuration, takes place
through the kube-apiserver.

3https://github.com/rkt/rkt/
4https://linuxcontainers.org/



• kube-scheduler: assigns pods to nodes based on
scheduling constraints and node resource availability.

• kube-controller-manager: control loops driving
the actual state towards the desired state.

Compute node components:
• kubelet: Kubernetes node agent that monitors the node

and the Pod deployed containers.
• kube-proxy: maintainer of node network rules, allow-

ing inter-pod communication.

B. Kubernetes DCN cluster architecture

A VDCN Kubernetes cluster requires additional compo-
nents, configuration of Kubernetes components, and VDCN
specific components. Figure 2 show the architecture. We divide
the components into three categories and give a short overview
below and a more detailed description in Section IV.

The installed components are: (i) the Container Runtime
(CR) and Local Container Registry (LCR), (ii) the Container
network, for intra-cluster container communication, and (iii)
the External access, for inter-cluster communication.

The configured Kubernetes objects are: (i) Persistent stor-
age, (ii) VDCN Pod, containing a container instantiated from
the VDCN Image, (iii) VDCN Pod Controller, for managing
VDCN Pod instances, and (iv) VDCN OPC UA Service, for
OPC UA Server endpoint lookup amongst VDCN Pods, i.e.,
intra-cluster OPC UA traffic routing.

VDCN components include: (i) VDCN Application, i.e., the
controller software, (ii) VDCN Image, containing the VDCN
Application image, and (iii) VDCN Configuration, containing
the specific VDCN configuration.

IV. COMPONENTS

In this section, we describe the cluster components to pro-
vide a holistic view of a bare-metal cluster capable of hosting
redundant and single VDCNs, that together with Kubernetes,
constitute the VDCN cluster.

Docker runtime and registry: The Docker runtime pulls the
container image from the LCR and starts the containerized
process, the VDCN Application. Upon termination, the run-
time cleans up the allocated resource.

The LCR serves as a cluster repository for container images,
i.e., the VDCN images.

Container network: Container Network (CN) is the network
that connects containers, intra-, and inter-node. The CN can be
the physical network directly, set up with IP address routing
and Ethernet switching, i.e., the underlay network, e.g., a
traditional switched Ethernet network. A CN can also be
a virtual network built upon the underlay using tunneling
protocols such as VXLAN5, i.e., an overlay network.

An example of an underlay network is a network created
using the macvlan driver. The macvlan driver creates a
virtual Ethernet interface, with an additional MAC address
tied to a physical Ethernet interface. By making the virtual
macvlan interface accessible from the container network
namespace, the container gets access to the network.

5https://tools.ietf.org/html/rfc7348

A more common approach to allow the container to partake
in network communication is to use a Virtual Ethernet Device
(veth) adapter pair, veth are always created in pairs. One
of the adapters resides in the container namespace and is
therefore visible from the containerized application. The other
veth lives in the host namespace. Together, the veth pair
form a tunnel from the container namespace to the host
namespace.

CNI Plugins are software components that comply with the
CNI specification and provide a CN. For example, Flannel6,
Weave7 and Cilium8 create a VXLAN based overlay while
Calico9 and Kube-router10 uses IP-in-IP11 [15].

To summarize and relate CNI to Kubernetes context, each
Pod has an IP address. The CNI plugins are responsible
for providing the IP address and realizing the Pod-to-Pod
communication within the cluster.

Qi et al. [15], evaluate the performance of Flannel, Cilium,
Weave, Calico, and Kube-router and conclude that there is
no all-around winner performance-wise. Cilium has the best
intra-host performance, while Kube-router and Calico are more
performant in inter-host communication.

The VDCN utilizes UDP multicast, described in the fol-
lowing. Searching the internet and available CNI-plugins
project pages tells us that Calico has multicast support on the
roadmap, but it is currently not implemented. Weave is the
only plugin we found with multicast support; hence Weave is
the plugin we use for the VDCN cluster.

External access: The CN setup the intra-cluster commu-
nication. For inter-cluster ingress traffic, Kubernetes provides
three alternatives12:

• NodePort: expose the service on a statically allocated port
on each node’s IP. I.e., a node IP address combined with
the static port is the externally exposed access point.

• Load balancer: load balances and directs the traffic to the
service endpoint. The load balancer specifies the external
access point, and typically the cloud provider provides
the load balancer.

• External IPs: ingress traffic reaching a cluster node, on
an IP address that matches the IP address specified in the
Kubernetes external IP service specification, is routed to
the service endpoint by Kubernetes Services.

A VDCN cluster use case where external access is needed is
when an OPC UA Client outside the cluster requests services
from a cluster VDCN OPC UA Server. The OPC UA Client
should always reach the same VDCN on the same IP address,
provided that the VDCN is available.

How feasible are the different alternatives for realizing the
above? NodePort requires that the client outside the cluster
re-connects to a new IP address in case of failure of the node

6https://github.com/flannel-io/flannel
7https://www.weave.works/oss/net/
8https://cilium.io/
9https://www.projectcalico.org/
10https://www.kube-router.io/
11https://tools.ietf.org/html/rfc1853
12https://kubernetes.io/docs/concepts/services-networking/service/



owning the IP address the client currently uses. NodePort also
requires mapping between the original port and the port used
for exposing the service. NodePort does not ensure that the
OPC UA Client only needs to know one IP address per DCN.
Hence, NodePort is not an alternative.

External IP is not per se managed by Kubernetes; the cluster
administrator must ensure that the external IP address exists
and routes to a node in the cluster. Kubernetes forwards cluster
ingress traffic with a destination IP matching the external IP to
the endpoint designated for the port. For example, external IP
could ensure that an OPC UA Client only needs to know one
IP address per VDCN; however, it would require the cluster
administrator to set up a solution tolerant to node failures.

Load balancers, as mentioned, are typically provided by the
cloud provider hosting the cluster. However, an on-site, bare-
metal cluster does not necessarily utilize the cloud, and it is
not desirable to route time-critical traffic through the cloud
provider. Hence, the load balancer alternative requires a bare-
metal load balancer.

We have been able to identify three bare-metal load bal-
ancers, MetalLB 13, PorterLB 14 and PureLB 15. The selection
and evaluation of the load balancer is a potential work on
its own. For the work presented here, we conclude that using
a load balancer with network redundancy capabilities and IP
Address Management (IPAM) would make the load balancer
alternative the better of the three presented alternatives. Met-
alLB provides both; hence the load balancer alternative with
MetalLB as the bare metal load balancer is the one we use.

MetalLB supports two modes: (i) layer 2 mode, and (ii)
Border Gateway Protocol (BGP) mode. In layer 2 mode, all
incoming traffic pass through one of the cluster nodes kube-
proxy, the leader node. From kube-proxy and onward, it is the
internal Kubernetes service endpoint handling. MetalLB elects
a new leader node if the leader node fails, and MetalLB will
send gratuitous ARP packets, announcing that the IP address
association changed to the MAC address of the new leader.

MetalLB BGP mode requires a router; MetalLB uses BGP
to announce multiple routes, routes leading to different nodes
in the cluster, i.e., the load balancing is the multipath handling
in the router. When the traffic reaches the cluster node, the
handling is the same as in layer 2 mode.

We use MetalLB in layer 2 mode, leaving load balancing
related questions as possible future work. MetalLB provides
IPAM, and the IP address managed are provided to MetalLB
as an IP address pool. The specification of an externally
accessible Kubernetes Service contains an IP address from the
MetalLB IP address pool.

Persistent storage: Traditionally, memory on the DCN pro-
vides the DCNs persistent storage, for example, a non-volatile
RAM or an SD card. The DCN stores the configuration,
application, and current state in the persistent storage, which
allows the DCN to resume operation after a failure, such as a

13https://metallb.universe.tf/
14https://porterlb.io/
15https://gitlab.com/purelb/purelb

power failure. A VDCN in a Kubernetes cluster is deployable
on multiple nodes. Hence the persistent storage needs to be
accessible from the nodes that host the VDCN.

Kubernetes provides the possibility to use various storage
solutions. Volume is the Kubernetes term for file storage. A
Volume, from a Kubernetes Pod perspective, is just a direc-
tory. Kubernetes do not care how that directory comes into
existence. Setting up the storage is the cluster administrator’s
responsibility.

Kubernetes manages the lifetime of the Volume. There are
two types of Volumes, Volume and Persistent Volume (PV). A
Volumes lifespan is the same as the Pod’, i.e., when the Pod
ceases to exist, Kubernetes destroy the Volume. On the other
hand, the PV lifespan is independent of the Pod. A Persistent
Volume Claim (PVC) is the mean for a Pod to claim a PV.
The PVC specifies the Pods requirements on the PV, such as
size, access modes, etc.

In our experiment setup, we use a Network File System
(NFS)16 hosted on the control plane node to provide storage.
The storage is not redundant – but that is not crucial for the
evaluation since the control plane reschedules the Pods, i.e.,
no control plane, no Pod rescheduling.

VDCN Pod: The VDCN Pod is the Kubernetes Pod en-
capsulation of the VDCN Container. The VDCN Pod claims
a PV using a PVC; the VDCN Pods in the test setup claim
100 MB that is read and writable. Due to multicast not being
supported by MetalLB, the VDCN Pod has access to the node
(host) network directly.

VDCN Pod controller: The VDCN Pod controller is the
name we have given to denote the functionality we achieve
by utilizing Kubernetes for controlling the VDCN Pods. An
application running on a Kubernetes cluster is a workload, e.g.,
the VDCN is a workload. Workload resources are Kubernetes
objects that specify the desired state for a Pod or Pods.
Kubernetes controllers, executed in the context of the kube-
controller-manager, strive to maintain the workload resource
desired state.

A Kubernetes Deployment is a workload resource type for
managing Pods. A Deployment strives to ensure that at least
as many Pods as specified in the Deployment description are
available in the cluster. In addition, if the Pods use PV, all
the Pods created by the same Deployment share the same PV.
Thus, Deployments are well suited for stateless applications.

Statefulset is another workload resource type that ensures
that, at most, the number of Pods specified in the Statefulset
description is available in the cluster. The Statefulset creates
the Pods in a predetermined order with a known identity. If
the Pods use PV, each Pod gets its PV.

The VDCN Pod Controller is the Kubernetes controller with
a Statefulset describing the desired state. We use Statefulset
as the workload resource since we want stricter control of the
number of VDCN instances running than the Deployment can
provide to avoid situations where two or more VDCN with
the same identity are active but in different states.

16https://tools.ietf.org/html/rfc3010



Our testbed cluster uses two separate VDCN Pod Con-
trollers, i.e., Statefulsets, one for the single VDCN and one
for the redundant. For the single VDCN, the number of Pods
is one. The number of Pods in the redundant VDCN is two
since the redundant VDCN is a pair. We use Pod anti-affinity
to ensure that Kubernetes does not schedule both VDCN of
the redundant pair on the same node.

VDCN OPC UA Service: Kubernetes Services is the front-
end of a cluster-hosted application function. The containers
running inside Pods are the Service endpoint. Pods’ IP ad-
dresses and whereabouts are not static; they can change from
one moment to another. Kubernetes Services is the mechanism
to find the Pod that offers the Service for the requested
function, independent of the current deployment. Kubernetes
Services is the intra-cluster solution to find the endpoint.
The kube-proxy handles the Service endpoint lookup on each
node, watches the control plane for Service and endpoint
updates through the kube-api, and updates the node iptables
accordingly.

The VDCN has three network communication dependent
functions: (i) the cyclic exchange of variables over OPC UA
PubSub, (ii) acyclic communication using OPC UA Client
Server, and (iii) the redundancy communication. OPC UA
PubSub and the redundancy communication use UDP mul-
ticast and do not need a Kubernetes service. The network
IGMP support provides the means to match publishers with
subscribers.

OPC UA Connection Protocol (UACP) is the abstract pro-
tocol that describes the full-duplex communication channel
between client and server. OPC UA supports TCP, HTTPS,
and WebSocket as the UACP underlying transport protocols,
and the VDCN OPC UA Client-Server uses TCP. In other
words, the OPC UA Client-Server communication is unicast-
based, point-to-point.

A request addressed to a VDCN OPC UA Server can
originate from an OPC UA client inside or outside the cluster.
The external handling described above ensures that the request
reaches a cluster node. When the request has reached a cluster
node, the Kubernetes Service handling provides the endpoint
reaching means.

Our example setup consists of three VDCNs, the single
configured and the redundant pair. We use two VDCN OPC
UA Services, one for the single VDCN and one for the primary
VDCN. The redundancy state of the redundant VDCN is
application-specific. To allow Kubernetes to redirect the traffic
to VDCN in primary mode, we need Kubernetes to update
the routes depending on the application state. A Kubernetes
mechanism for that is the probes, probes that probe the
application’s state. The application tailors the application end
of the probe for its need.

Kubernetes provides three types of probes. The Liveness-
probe determines if the application is responsive (alive) or not.
If not, Kubernetes can restart the container. The Startup-probe
tells Kubernetes that the container application has started, and
the Readiness-probe tells if the container application is ready
to accept traffic. If the Readiness-probe result is negative, the

probed application is removed from the list of potential service
endpoints. The VDCN Application uses the readiness probe to
direct traffic to the primary VDCN in the redundant VDCN
configuration; the backup VDCN Application reply negatively
to Kubernetes Readiness-probe requests.

VDCN Application: In a traditional DCN, the VDCN Ap-
plication is the FW capable of executing the control loop logic.
The VDCN Application used in our testbed is an ABB pro-
prietary software, i.e., a modern DCN FW. It consists of three
main parts, an OPC UA stack for industrial use, a middleware,
and the control loop logic. The OPC UA stack provides the
OPC UA communication means, and the middleware offers
functionality to the control logic. The middleware functionality
relevant for this testbed is redundancy-related. Finally, the
control logic in the VDCN Application consists of a cyclic
task with a configurable interval time. The cyclic task updates
configured variables each iteration and exposes the updated
variables externally using OPC UA PubSub.

In addition to the cyclic OPC UA PubSub communication,
the VDCN Application also contains means for OPC UA
Client-Server request-based acyclic communication. An OPC
UA Server is the VDCN Application side of the request-based,
acyclic OPC UA communication, exposing Remote Procedure
Calls (RPC) callable from an OPC UA Client.

As the name implies, OPC UA PubSub is a publisher-
subscriber-based solution. The publishers do not directly con-
nect to the subscribers, and vice versa. Two models are sup-
ported, broker-based and broker-less. A broker-based publisher
sends messages to a central broker from which subscribers
subscribe. Two concrete broker-based solutions are supported,
Message Queue Telemetry Transport (MQTT) and Advanced
Message Queuing Protocol (AMQP). The broker-less model
relies on properties provided by the network, specifically
multicast and broadcast possibilities. UDP multicast is the
supported realization of the broker-less model. A network
infrastructure supporting IGMP ensure that published message
only is forwarded to the subscribers. Network infrastructure
without IGMP support broadcast the messages, i.e., published
messages reach the whole broadcast domain. The VDCN ap-
plication uses the broker-less OPC UA PubSub model realized
with UDP multicast.

The OPC UA PubSub publishing and subscribing function
run in a task of its own - unsynchronized with the pro-
ducer/consumer of the exchanged variable values. Figure 3
shows a conceptual view of the data flow between the tasks.

The VDCN Application redundancy mode is configurable as
single or redundant. In single mode, there is no backup ready
to resume operation in case of failure. The single configured

PubSub CyclicTask

incVar++

Network

Fig. 3. The VDCN Application is involved in the cyclic exchange.



VDCN Application stores the dynamic state (variable values
etc.) on a file located in the PV, allowing a re-deployed single
VDCN to resume operation from the last stored state.

The redundant VDCN Application runs in a one-out-of-two
(1oo2) setup. One VDCN Application is active, publishing
updated variable values using OPC UA PubSub, and the other
is passive, ready to resume operation in case of failure of the
active. We refer to the active as the primary and the passive
as the backup.

Two mechanisms are fundamental in a redundant setup
where only one is active, the state transfer and the failure
detection. The state transfer provides the backup with the pri-
mary’s latest checkpointed dynamic state, allowing a backup
to resume the role as primary, without historic signal values
outputted. The VDCN application utilizes an ABB proprietary
state transfer mechanism based on UDP multicast. Heartbeat
Bully [20] over UDP multicast constitutes the failure detection
and role selection mechanism.

VDCN Image: The container image. When instantiated
by the container runtime, the VDCN image of the VDCN
Application becomes the VDCN. The VDCN image is built
with Docker and pushed to the LCR.

VDCN Configuration: The VDCNs are configurable, and
VDCN Pod PV holds the configuration files, ensuring that they
are accessible from each node that hosts the VDCN. Section
V describes the specific configuration used in the test setup,
such as task cycle times and the variables exchanged.

V. EXECUTION AND RESULT

The purpose is to measure the failure recovery time of single
and redundant VDCNs, deployed in VDCN Pods orchestrated
by Kubernetes. First, we let Kubernetes deploy the VDCN
Pods on the cluster compute nodes while bringing down the
nodes hosting the primary or single VDCN after a random
time. Then, Kubernetes failure detection and rescheduling re-
deploy the VDCN affected by the node failure. In the redun-
dant VDCN case, the backup VDCN resumes operation as
primary, while Kubernetes re-deploy a new backup VDCN. A
Verification DCN sample the signal values and gather statistic
related to the cyclic exchanged variables, see Section V-A3,
i.e., it checks the cyclic communication. The Verification OPC
UA Client test the acyclic communication, see Section V-A4.

A. Testbed

Four main parts constitute the testbed, the cluster, a failure
daemon, a cyclic communication verification node (Verificator
DCN), and an acyclic verification client (OPC UA Client Ver-
ificator). Figure 4 shows the testbed deployment and Table I
list the used software.

Comp. Nd.

Verification
DCN

Verification
OPC UA
Client

Control
Plane

Switch

CN

CN

CN

CN

VDCN
Cluster

Control
Plane

Verification
DCN

Verification
OPC UA
Client

Switch

VDCN
Cluster

Comp. Nd.
Comp. Nd.
Comp. Nd.

Control
Plane

Verification
DCN

Verification
OPC UA
Client

Switch

VDCN
Cluster

Comp. Nd.
Comp. Nd.
Comp. Nd.
Comp. Nd.

Fig. 4. Testbed deployment.

TABLE I
SOFTWARE USED.

Name Version Comment
Ubuntu Server 20.04 Control plane OS

Raspberry Pi OS 10 Compute node OS
PREEMPT RT 4.4 Compute node kernel patch

KubeAdm 1.21 Kubernetes installer
Kubernetes 1.21 Kubernetes version

Docker 20.10.1 Container runtime
Weave 2.8.1 CNI plugin

MetalLb 0.9.6 Bare-metal load balancer

1) Cluster: The compute nodes in the testbed consist of
four Raspberry Pi 4B, with four GB RAM. The control plane
runs on a 2GHz Intel I7 I7-9700T PC, with 16 GB RAM.

2) Failure daemon: The failure daemon is a systemd
daemon installed on all compute nodes that check if a VDCN
Pod runs on the node. If it does, and the VDCN Application
is in single or primary mode, the failure daemon shuts down
the node after a random time of 5 minutes, ±10s.

3) Verification DCN: The Verification DCN hardware is
a 2GHz Intel I7 I7-9700T PC, with 16 GB RAM, running
VxWorks 7.0 and the verification application (VA). The VA
checks VDCN output values and measures the time between
updates. The VA is the same application as the VDCN
Application but with a different cycle time configuration.

4) Verification OPC UA Client: The Verification OPC UA
Client runs on a Windows 10 PC. Every 10s, it establishes a
connection to the VDCN OPC UA servers, one to the primary
and one to the single VDCN, measuring the time between two
successful connection attempts.

B. Exchanged variables

The variables published by the VDCN and monitored by the
VA in the Verification DCN are: (i) incV ar, 32-bit unsigned
integer, incremented by the VDCN each iteration, and (ii)
nodeId, a string identity of the node currently hosting the
specific VDCN. We expect application size to affect a VDCN
similar to a DCN since container overhead is neglectable [3].
Furthermore, we deploy one VDCN per node. Hence vari-
able handling and communication come down to resource
utilization and prioritization within the VDCN and node, and
the critical VDCN task has real-time priority. Ensuring real-
time properties when running multiple VDCN in the context
of containers/pods on one node, with more extensive use of
virtualized networks, is future work.

C. Task interval and updating period

We base the calculation on the simplification of the VDCN
Application shown in Figure 3. In reality, the span will be
larger due to task interleaving patterns with other high-priority
tasks in the VDCN Application. The PubSub and Cyclic
task in the VDCN Application has 5 and 20ms cycles. The
corresponding cycle time in the VA is 1ms for both.

With the cycle times above, the VDCN publishing interval
of updated variable values is in the range PubUpdIntv ∈
(20, 25)ms. The interval in which the Cyclic task in the VA
can receive and check variable values is V aCheckIntv ∈



(1, 2)ms. We denote the VA measured update interval of
incV ar, V aUpdIntv = PubUpdIntv±V aCheckIntv, thus
being in the range V aUpdIntv ∈ (18, 27)ms. In relation to
interval times used, the network propagation time is deemed
negligible and not included.

The redundant VDCN failure detection mechanism is Heart-
beat Bully [20]. The backup VDCN expects heartbeat mes-
sages regularly from the primary VDCN. The time between
primary VDCN failure to the backup VDCN resuming the
primary role depends on the heartbeat interval and the number
of missing heartbeats allowed. The heartbeat interval used is
10ms, and the number of missed heartbeats allowed is two.
The VDCN Application polls the heartbeats receiving status,
adding a heartbeat interval to the detection time, resulting in
the primary failure detection time range PriFailDetT ime ∈
(30, 50)ms. On top of that, the VDCN has a resume pri-
mary role functionality with an execution time interval of
BePriExec ∈ (12, 34)ms that contributes to the total failover
time. Resulting in failover time range FoT ∈ (42, 84)ms.

The UpdIntvFail is the longest time between VA observed
updates of incV ar when a failover happens we have that:

UpdIntvFail = 2 · PubUpdIntv + FoT ± V aCheckIntv

resulting in the range UpdIntvFail ∈ (80, 136)ms.

D. Kubernetes settings

Kubernetes reschedule Pods on failure and the failure de-
tection and reaction time are configurable, and those setting
impacts the single configured VDCN UpdIntvFail and re-
dundant VDCN timeframe without a backup. The Kubernetes
kubelet monitors the Pod and updates the status of the Pod
and node to the kube-apiserver on the control plane. By
default, the kubelet reports the node status every 10s, and
the kube-apiserver has a grace period of forty seconds
before setting the node status to not-available.

The default Pod eviction timeout is five minutes, and when
a node failure is detected, Kubernetes reschedules the Pod
after the eviction timeout expiration. Statefulsets are used for
Pod management, i.e., the VDCN Pod controller. We use a Pod
eviction timeout of 3s, specified in the Statefulset specification.
A VDCN Pod hosted in a failing node is rescheduled after 43s;
hence UpdIntvFail for the single VDCN is higher than 43s.

When a node running stateful Pods fails, Kubernetes do
not schedule a new stateful Pod by default. Since missing
updates from that node’s kubelet could be a consequence
of network partitioning. Kubernetes cannot be confident that
the node and Pod are gone. Hence, Kubernetes requires the
cluster administrator to delete the failed node stateful Pods
manually in a node failing situation.

We assume that the network is redundant and reliable with
minimal risk of network partitioning. Even though our testbed
network is not redundant, the network on an actual site is
likely to be. Hence, we configure Kubernetes to reschedule
stateful Pods by setting their termination grace period to 0s.

TABLE II
MEASURED INTERUPDATE TIME.

Mode Primary Single
Min Max Avg SD Min Max Avg SD

Normal 3.0ms 36ms 20ms 1.3ms 3.0ms 224 ms 20ms 1.8ms
Failure 83ms 129ms 110ms 10.5ms 43.5s 74.7s 55.4s 8.1s

E. Result

The test ran for ten hours and accumulated 200 node
failures, one hundred failures each on primary and single
VDCNs hosting nodes and 3.6 million interupdate measures
without node failures in between.

Table II shows the interupdate times per VDCN and mode.
The Normal mode row shows the interupdate time measured
during the failure-free periods and the Failure mode row
when two updates span a node failure of the node hosting
the VDCN publishing the variable. The Normal interupdate
time is a reference for update time in a normal situation.
The measured interupdate (or update interval) times without
failure are on average 20ms, and that is in the expected range
V aUpdIntv from Section V-C. The single VDCN interupdate
time standard deviation is higher than from the primary. The
NFS-based PV state storage induces a longer execution time
for the single VDCN. Max and min interupdate measured
from the primary are outside the theoretical limit due to task
interleaving patterns in the VDCN Application used that we
do not address in the theoretical simplification. The SD tells
that the vast majority is within the expected interval.

The min and max interupdate during a node failure of
the primary VDCN is within the expected range. The single
VDCN minimum interupdate time during node failure is 43.5
seconds, reached when the Pod is scheduled on the same node
again. That can happen since the failure injection is a reboot.
After the reboot, the node is failure-free again. In that case
the container image is not pulled from the LCR, reducing the
time. The max of 74.7s includes pulling the image from the
LCR.

OPC UA Client connection reestablishment to the new
primary VDCN took a max of 41 seconds with an average
of 40 seconds, which is the pod eviction time. For the single
VDCN, the connection reestablishment times are the same as
the failure interupdate times, which is feasible since that is the
time it took Kubernetes to replace the failed single VDCN.

F. Availability discussion

We base the replacement scenarios in this section on input
from experienced engineers working close to end-users. When
a DCN fails today, it needs manual replacement and the
replacement time depends on the situation. The best circum-
stance is when the failed DCN is close to both a spare DCN
and maintenance personal that can exchange the broken DCN.
In that case, a replacement within an hour is optimistic but
realistic. A less favorable scenario is a failure in a remote
location. It could take time for maintenance personnel to reach
the site, causing repair time to range from several hours to
many days. With an orchestrated VDCN cluster, the orches-



trator could redeploy the failed VDCN on compute nodes with
enough available capacity and reduce the replacement time.

A commonly used measure in reliability context is Mean
Time Between Failure (MTBF), a statistical measure of the
probability of failure within a specific period. DCN MTBF
depends on the hardware components used, temperature, and
more. Based on public product information17,18, we use a mid-
range MTBF approximation of twenty years for the DCN
and compute node hardware in the following discussion.
Depending on the product and equipment type, it can be higher
and lower.

Availability is the proportion of time that a system is
available, often denoted in the number nines in the availability
percentage; for example, 99.99% has four nines. A DCN
replacement mean-time, Mean Time To Repair (MTTR) of one
hour with MTBF of twenty years translates to an availability
of five nines and an MTTR of twenty-four hours to four nines.

The average time for a redeployment of VDCN upon failure
on the compute node currently hosting it is 55 seconds, see
Table II, which translates to an availability of seven nines for
the single configured VDCN. A four nines availability level
gives a yearly downtime of roughly 52 minutes, five nines and
seven nines correspond to 5 minutes and 3 seconds downtime
respectively and annual.

A redundant DCN has high availability, with the twenty
years MTBF and the average takeover time from Table II the
availability level is nine nines. The orchestration benefit is
the automated and quicker backup VDCN return, resulting
in a pseudo-1ooN redundancy, with N being the number of
compute nodes in the cluster capable of hosting a redundant
configured VDCN.

An orchestration benefit is the increased availability that
follows the quicker replacement of a failed DCN. Other poten-
tial benefits are flexible maintenance. For example, a VDCN
can be moved to another compute node while upgrading the
base software of the former. Even if one compute node fails,
there might still be enough spare capacity to counter further
failures, allowing process operation until the next scheduled
maintenance with high confidence in the availability.

VI. CONCLUSION AND FUTURE WORK

By describing the components needed when setting up a
bare-metal Kubernetes cluster for VDCN, we provide a holistic
view of the system and show the multitude of component alter-
natives available. We created a testbed consisting of compute
nodes, on which we deployed two VDCN configurations, a
single and a redundant. Outside the cluster, we had a DCN
verifying the VDCN OPC UA PubSub published variables
and Windows application on a PC confirming the OPC UA
client-server communication.

The result shows that Kubernetes hosted VDCN are feasible
for both single and redundant VDCN. The measured redeploy-
ment of the single VDCN is too long to be a redundancy re-

17https://search.abb.com/library/Download.aspx?DocumentID=
3BSE091397&Action=Launch

18https://support.industry.siemens.com/cs/attachments/16818490/mtbf.zip

placement. As stated in Section I takeover time below 500 ms
can be needed for DCS in process automation. Nevertheless, it
can still serve as a faster alternative to a manual replacement
of a failed node. If shorter downtimes are required, a 1oo2
setup is feasible, where Kubernetes also ensure a quicker
reinstatement of a backup VDCN than manual replacement,
resulting in a pseudo-1ooN VDCN redundancy.

Kubernetes provide much more extensive customization
alternatives than we have utilized. Further work could evaluate
the feasibility of further customization of Kubernetes for VD-
CNs, such as the faster discovery of failed nodes. Kubernetes
scheduling in the DCS context is another natural extension of
this work, for example, finding and deploying the VDCN to
a suitable node capable of fulfilling the dependability needs
dictated by the VDCN.

We showed the plurality of different network virtualization
alternatives. Reliable, deterministic communication is essential
for DCS. VDCN in a containerized Kubernetes managed
context relies on virtualized network functions provided by
CNI plugins and load balancers. Ensuring dependability when
utilizing virtualized network is a future challenge, especially
when sharing the underlying resources between VDCN or
other entities on the compute node.

REFERENCES

[1] T. Hegazy et al., “Industrial automation as a cloud service,” IEEE Trans.
Par. and Distr. Syst., vol. 26, no. 10, pp. 2750–2763, 2015.

[2] R. Drath et al., “Industrie 4.0: Hit or hype? [industry forum],” IEEE
Industrial Electronics Magazine, vol. 8, no. 2, pp. 56–58, 2014.

[3] W. Felter et al., “An updated performance comparison of virtual ma-
chines and linux containers,” in IEEE Int. Symp. Perf. Analysis of Syst.
and Software, 2015, pp. 171–172.

[4] V. Struhár et al., “Real-Time Containers: A Survey,” in Fog-IoT, 2020.
[5] A. Moga et al., “Os-level virtualization for industrial automation sys-

tems: Are we there yet?” in SAC, 2016.
[6] V. Struhár et al., “React: Enabling real-time container orchestration,” in

ETFA, 2021.
[7] J. Watada et al., “Emerging trends, techniques and open issues of

containerization: A review,” IEEE Access, vol. 7, 2019.
[8] F. Bonomi et al., “Fog computing and its role in the internet of things,”

in Mobile Cloud Comp., 2012, pp. 13–16.
[9] P. Bellavista et al., “Feasibility of fog computing deployment based on

docker containerization over raspberrypi,” in ICDCN, 2017.
[10] E. Kim et al., “On the resource management of kubernetes,” in ICOIN,

2021, pp. 154–158.
[11] R. Eidenbenz et al., “Latency-aware industrial fog application orches-

tration with kubernetes,” in FMEC, 2020, pp. 164–171.
[12] L. A. Vayghan et al., “A kubernetes controller for managing the

availability of elastic microservice based stateful applications,” J. Syst.
and Soft., vol. 175, pp. 110 924–, 2021.

[13] M. Großmann et al., “Monitoring container services at the network
edge,” in ITC, 2017, pp. 130–133.

[14] J. Yoon et al., “A measurement study on evaluating container network
performance for edge computing,” in APNOMS, 2020, pp. 345–348.

[15] S. Qi et al., “Understanding container network interface plugins: Design
considerations and performance,” in LANMAN, 2020, pp. 1–6.

[16] N. Kapočius, “Performance studies of kubernetes network solutions,” in
eStream, 2020, pp. 1–6.

[17] H. Zeng et al., “Measurement and evaluation for docker container
networking,” in CyberC, 2017, pp. 105–108.

[18] T. Goldschmidt et al., “Container-based architecture for flexible indus-
trial control applications,” J. Syst. Arch., vol. 84, 2018.

[19] M. A. Rodriguez et al., “Container-based cluster orchestration systems:
A taxonomy and future directions,” Soft., Pract. & Exp., 2019.

[20] B. Johansson et al., “Heartbeat bully: Failure detection and redundancy
role selection for network-centric controller,” in IECON, 2020.


