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Abstract

This article presents the state of practice of consistency management in thirteen industrial model-based development settings.
Our analysis shows a tight coupling between adopting shorter development cycles and increasingly pressing consistency
management challenges. We find that practitioners desire to adopt shorter development cycles, but immature modeling
practices slow them down. We describe the different patterns that emerge from the various industrial settings. There is
an opportunity for researchers to provide practitioners with a migration path toward practices that enable more automated
consistency management, and ultimately, continuous model-based development.
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1 Introduction

We define continuous model-based development (MBD) as
developing in short cycles using models as core development
artifacts for system design, software implementation, or both.
Continuous integration [36] and Agile [8] practices have
gained popularity in conventional software development. We
hypothesize that developing in shorter cycles and frequently
integrating work is beneficial in MBD too. A key difference
between our scope and the Agile modeling paradigm [3] is
that we consider models as core development artifacts, rather
than just aids to the agile development process.
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In our scope, we consider MBD to entail those practices
in which models are core development artifacts during sys-
tem and software development, i.e., models are developed
and maintained throughout the development and the even-
tually implemented system shall conform to them. Models
can be used in many phases of the development including
requirements, architecture, detailed design, implementation,
and testing. In continuous MBD, we consider the agile devel-
opment of models in each of these phases. We offset these
short development cycles with long and gated development
following the V-model [26].

For example, practitioners often use diagrammatic models
for their software designs [32]. Moreover, these design mod-
els may be supplemented with implementation models, from
which code is automatically generated. In addition, MBD
also includes those practices in which models are used for a
high-level system design that is later implemented manually.
Continuous MBD refers to settings in which these mod-
els are continuously developed iteratively and maintained
throughout the development life-cycle. In contrast, in a non-
continuous MBD setting, the high-level system design would
be made upfront and then frozen so that the next phase of
development can work with it.

Automated support to manage the consistency, among
models or between models and other development artifacts,
is vital throughout the development and (long-term) main-
tenance of complex software systems [27]. By consistency,
we refer to the agreement and completeness of artifacts on
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aspects of the system they describe, i.e., consistent artifacts
do not contradict each other and describe those parts of the
system they are expected to (for example, we might expect an
implementation to refine certain information from an archi-
tecture model). In this context, one of the most important
impediments to adopting continuous MBD practices is the
lack of support for consistency management (i.e., consis-
tency checking and repairing) [28]. The literature is rich
in approaches for tackling various MBD challenges related
to consistency management, e.g., bidirectional transforma-
tions between models [24], model-metamodel co-evolution
[13], and rule-based consistency checking between mod-
els [16]. But, in our industrial collaborations, we observe
that it is not straightforward to adopt these approaches as
part of the state of the practice. The challenges are multi-
ple: consistency management tasks are often not prioritized;
also, commonly large amounts of legacy projects need to
be maintained; moreover, there are usually many people and
processes involved that cannot be changed overnight. Hence,
our goal is to aid companies in migrating from their cur-
rent states of practice toward practices in which they benefit
more from the modeling activities they do, at first to support
more automated consistency management, and ultimately, to
enable more continuous MBD.

To be able to provide the companies with a path toward
continuous MBD, we need to understand their current states
of practice and envisioned goals. We formulate the following
overarching research goal:

RG Our goal is to identify the main characteristics of
consistency management challenges encountered when
adopting continuous MBD in industrial settings.

In particular, we focus on identifying the current state of
practice of consistency management and desired future direc-
tions. We formulate the following research questions:

RQ1 Which problems related to inconsistency between
development artifacts do companies experience in their
MBD practices?

RQ2 How do they currently handle consistency manage-
ment?

RQ3 Which future achievements do they envision for their
consistency management practices?

To answer the research questions, we collected the states of
practice in terms of thirteen MBD settings across nine com-
panies. The remainder of this paper is organized as follows.
In Sect. 2, we provide an overview of the background and
related work. In Sect. 3, we describe our research method in
detail. The results in terms of the gathered industrial settings
are included in Sect. 4. A discussion of the results follows in
Sect. 5 and includes answers to the research questions, a com-
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parison between the identified challenges and approaches in
the literature, and threats to validity. The paper is concluded
in Sect. 6.

2 Background and related work

In this section, we discuss background on model-based devel-
opment (MBD) and, in particular, work toward introducing
Agile MBD practices. Furthermore, we discuss consistency
management based on a selection of recent secondary stud-
ies. Finally, we relate our work to other works presenting the
state of practice or challenges for consistency management.

2.1 Continuous model-based development

Continuous integration has been widely adopted since it was
proposed as one of the possible Agile development prac-
tices [3]. Studies of its adoption in industrial practice have
highlighted significant impediments related to test automa-
tion [40], the usability of tools, and the decomposition of
complex engineering tasks [35]. Consequently, introduc-
ing continuous development practices (integration, delivery,
deployment) is not a one-time action but a phased process
over a longer term [41]. While these studies focus on tradi-
tional software development projects and do not target MBD
specifically, we can expect a similar set of challenges to per-
tain to transitions from gated MBD processes toward short
development cycles.

Similar to the adoption of continuous development prac-
tices, also several studies have examined the adoption of
MBD in industry. Our work is closely related to these, as
we will see later that there is a tight coupling between adopt-
ing “more” modeling practices and advancing consistency
management. A commonly recurring frustration is a lack
of tool performance [6,37]. But also organizational factors
related to, e.g., established processes can be impeding factors
to introducing MBD [25]. In combination, these two imply
difficulty in interoperability of tooling across the organiza-
tion, which indeed is a factor in industrial adoption as well
as a steep learning curve for MBD and its tools [32]. The
aforementioned challenges are well-established across the
literature and are fundamental to the adoption of MBD.

There are few reports of industrial experiences of com-
bining agile methods and modeling [1]. A few studies
have shown early-stage benefits from agile MBD, but with
few details on how continuous development practices are
established [1,17]. Some experiences of introducing Con-
tinuous Integration (CI) in an MBD project have shown
several hurdles to overcome, e.g., the challenge of model
differencing and merging [20]. A top-down analysis of
agile model-based systems engineering identifies consis-
tency management among several challenges and proposes
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lightweight, incremental, approaches to it [14]. Indeed these
reported challenges are among the usual suspects of chal-
lenges of MBD adoption that are still relevant today [11].

In general, adopting continuous development practices is
challenging because of the need to automate many manual
steps involved in complex development settings. A study of
adopting CI in the automotive domain notes that a lack of
interoperability causes manual actions for moving informa-
tion between tools [31]. A conceptual approach to counteract
these challenges is to integrate modeling tools into the con-
tinuous delivery pipeline, which is far from a straightforward
task and would require mature tooling and model awareness
throughout the pipeline [19].

In our previous work, we interviewed practitioners at
three industry partners to identify impediments to introduc-
ing continuous integration in their model-based development
settings [28]. One of the most pressing challenges identified
was consistency management across different central devel-
opment artifacts, such as system models or software models
and the implementation models or code. Therefore, we focus
specifically on what types of approaches to consistency man-
agement there are and how they affect the development
practice.

2.2 Consistency management approaches

More automated consistency management is among the
promises of model-driven engineering (MDE) [46]. Thereis a
plethora of work on consistency management and multi-view
modeling, as is evidenced by recent SLRs on these topics
with little overlap: five secondary studies from the last five
years [10,12,34,38,51] contain 299 unique studies out of a
cumulative 306 collected primary studies. These 299 papers
are only a subset of the total work on consistency manage-
ment, given the specific focuses of each SLR. As identified by
those secondary studies, acommon weakness in the literature
is a lack of alignment of proposed approaches with industrial
practice. Indeed, there are few industrial evaluations of pro-
posed approaches. It is also unclear to what extent reported
challenges in the literature are, with what relative priorities,
experienced in the industry today. Therefore, it is interesting
to see what the required support for consistency management
in various industrial settings is.

In Sect. 5, we discuss related literature for specific iden-
tified challenges. Here, we now summarize the remainder
of the literature based on the previously mentioned five
secondary studies in reverse chronological order of their pub-
lication.

1: A systematic literature review of cross-domain model con-
sistency checking by model management tools [S1]. This
paper focuses explicitly on model management tools and con-
sistency across models in different domains. It finds that tools

can predominantly check interface consistency. Addition-
ally, the authors identify challenges in tool interoperability
and consistency maintenance. The paper also acknowledges
that no single solution will serve all purposes, as is natural
given the heterogeneity of industrial practices. This observa-
tion aligns with our research direction of identifying current
practices and the future direction of consistency management
practices of companies.

2: Multi-view approaches for software and system modeling:
a systematic literature review [12]. One of the main topics
in this SLR is the consistency management between views.
The paper finds that no presented multi-view approaches
have been evaluated in industrial settings. Moreover, the
authors identify several limitations of existing multi-view
approaches. These are, among others: tool support, consis-
tency management, versioning, distributed development, and
lack of semantic consistency management.

3: A feature-based survey of model view approaches [10]. This
paper shows an overview of modeling views, focusing on
their provided features for synchronization, both at design
time and at run-time. The authors present a feature model
characterizing model view approaches, which gives a good
perspective from the literature for knowing what type of
mechanisms exist and what features they present. A limita-
tion of the paper is that it does not provide much insight into
what industrial use cases these approaches aim to address.

4: Systematic review of software behavioral model con-
sistency checking [38]. This paper focuses on behavioral
models, providing an overview of challenges and proposed
solutions, as well as studying evidence of their application
in industrial settings. The paper studies what consistency
problems are addressed in the literature and distinguishes
between static/dynamic/simulation and horizontal/vertical
consistency. Among the suggestions for future research, the
authors mention the need for more rigor in industrial evalua-
tions, since they find that the current evaluations are mostly
weak.

5: Feature-based classification of bidirectional transforma-
tion approaches [34]. This paper builds a feature model of
model-repair approaches. The authors focus on model repair
and explicitly exclude papers that focus on “just” impact
analysis, papers that avoid inconsistency by enforcing con-
sistent states, and papers that consider other artifacts than
models in their consistency management scope. Conversely,
approaches with a broad application focus (on multiple types
of models and inconsistencies) are included. The authors
mention as an area of future work, or lack of maturity of the
field, that the proposed approaches do not guarantee the cor-
rectness of the repair actions in terms of functional semantics.
Moreover, they note a lack of insight into industrial adoption:
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“lack of information regarding the effective implementation
of the approaches” [34].

There are further secondary studies that look at con-
sistency management specifically for UML [33,52]. These
studies reveal a multitude of approaches focused primarily on
managing consistency between different diagrams of UML
models. While the technical specifics of these approaches
may not be transferable to settings where there are multiple
models rather than a single model with multiple views, there
are other considerations about, e.g., definition and invoca-
tion of consistency checks that can be considered also in our
settings.

A tertiary study [49] has built a feature model of concepts
related to model management based on other studies present-
ing feature models, namely: [4,10,12,15,22,23,30,34]. Given
the variety of domains and perspectives by which consistency
management problems can be described, sometimes the ter-
minology used throughout the literature can be confusing;
in this respect, the feature model proposed in [49] provides
a common vocabulary. We adopt such a vocabulary in this
article; in particular, in Sect. 4 we use the same consistency
management aspects as included in the feature model in [49]
to categorize industrial settings.

2.3 Consistency management practices and
challenges

In practice, complete consistency is often infeasible and
undesirable because enforcing it would inhibit the soft-
ware development process. Therefore, the idea of “tolerating
inconsistency” was proposed [7]. That paradigm prioritizes
devising methods to identify and keep track of inconsistency
rather than providing means to automatically synchronize
models.

Practitioners report using models as key software develop-
ment artifacts for tasks such as simulation, code generation,
and test case generation [32]. The same paper shows that
models are also used for structural and behavioral con-
sistency checking. Interestingly, the paper reports that not
enough data was gathered to support the hypothesis that man-
aging the consistency of models over time is challenging. We
expect that this is the case, given that still nowadays, model
synchronization is a commonly considered impediment to
the adoption of MBD in industry [44].

Ali et al. [2] describe how it is sometimes hard to make a
business case for architectural consistency because it is hard
to quantify the effects of consistency management efforts and
they are rarely visible for customers of the product. Another
common argument is that consistency is not important, since
the purpose of the model was merely to create an initial design
rather than arigid specification. In settings where consistency
is regarded as important, feedback on inconsistencies during
this tolerating phase was found to help developers correctly
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resolve the inconsistencies [29]. Besides any of such afore-
mentioned practical challenges, there are also fundamental
limitations to applying a series of bidirectional transforma-
tions to manage consistency in networks of models [48].
In summary, reported industrial settings are needed to com-
plement the existing work reporting specific approaches to
particular consistency management challenges.

3 Research method

To supplement the literature with descriptions of industrial
practices and their challenges, we conduct a multiple case
study in which we collect industrial MBD settings from a
diversified set of companies, describe them in detail, and
discuss them with respect to our research questions. In total,
we describe thirteen settings across 9 companies. MBD is
practiced in each setting, and we identified various ambition
levels toward continuous MBD. To illustrate a broad range
of practices and consequent challenges, we have not further
filtered the settings to include only those with a high desire
to adopt continuous MBD. Whenever we mention a “setting”
originating from companies, we refer to a particular group or
a small part of the company only; this also explains why we
identified multiple settings in some of the companies. Due to
the different collaboration nature with different companies,
we use different complementary ways for collecting data as
summarized in Table 1.

We describe four settings (S09—S12) based on the data
gathered in workshops in our previous and ongoing research
collaborations. Within these collaborations, we had sev-
eral meetings where researchers and companies agreed on
research questions to be studied. As part of these meetings,
we gathered data on the state of practice at the involved com-
panies. To supplement the four initial settings, we asked
other partner companies to complete a questionnaire. We
followed up on the results of the questionnaires with inter-
views with the participants. The combined input resulted
in five additional settings (S01-S05) from two companies.
We organized two online workshops with companies; there
we gathered three additional settings (S06-S08). As a final
data source, we derived an additional setting (S13) descrip-
tion from a self-reported case description from a company
as part of another research project. To avoid misunderstand-
ings about the collected data, we asked for feedback from the
practitioners. In the case of workshops, we summarized our
findings and asked for confirmation by e-mail. In the case of
structured interviews, the interviewer shared his screen and
together with the interviewee filled out a spreadsheet contain-
ing columns for each question in our classification scheme
and rows for separate use cases.

To systematically gather data throughout the study and
across the different collaborations, we used the same classi-
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Table 1 Companies involved in

1)) Domai D heri hods ing ID:s
our study listed by anonymous omain ata gathering methods Setting IDs
IDs, their domains, how we. Cl1 Tool vendor Questionnaire and follow-up struc- S01, S02, S03
ggthered the data presented in tured interview with senior architect
this study from them, and the . . )

IDs of the settings that were C2 Automotive Questionnaire and follow-up struc- S04, S05
collected per company tured interview with company
researcher

C3 Automotive Online workshop with two man- S06, S07

agers and one system architect

C4 Automotive Online workshop with a researcher S08

who was embedded in the company

C5 Avionics Workshops with two system engi- S09

neers

C6 Industrial automation Workshops with architect and sys- S10

tem engineer

c7 Railway Workshops with an architect and S11

two software engineers

C8 Consumer electronics Workshops with two architects S12

C9 Industrial automation Questionnaire and self-reported use S13

case documentation

fication scheme for all settings. The content of the schema
is determined by our research questions. An overview of the
considered dimensions of the classification scheme is shown
in the feature model in Fig. 1. Some abstract features repre-
sent open questions, while the others are broken down into
their possible concrete features. This breakdown was done
after data gathering, upfront we only decided on the abstract
features.

In particular, we gather information related to the follow-
ing items:

1. Artifacts to be consistent

(a) What type of artifacts shall be consistent with each
other? (conceptually, e.g., system model and code.)

(b) Whatrelationship exists between those artifacts? (e.g.,
generated, manually implemented, or hybrid)

(c) What specific artifacts shall be consistent? (con-
cretely, e.g., SysML BDD and C/C++ method dec-
larations)

2. Inconsistency problems

(a) What kind of problems are caused by inconsistency
between these types of artifacts?

(b) What is the severity (frequency and impact) of those
problems?

3. Consistency checks

(a) What type of consistency (e.g., structural or behav-
ioral) is desired to be checked?

(b) What kind of consistency checks (e.g., none, implicit,
manual, automated detection, automated repair sug-
gestions, or other) are currently used in the setting,
and how are they invoked?

(c) How are the identified inconsistencies currently
repaired (e.g., not, manually, hybrid, automated, or
other), with what frequency, and using what tools?

4. Correspondence links

(a) What kind of correspondence links exist between the
artifacts? (e.g., implicit by name matching, explicit by
maintaining a separate model, or none at all)

In the following section, we present the gathered settings.

4 Industrial settings

In this section, we present the thirteen industrial MBD set-
tings that we gathered and that are summarized in Table 2.
We categorized the collected settings based on the types of
artifacts that should be kept consistent. In the remainder of
the section, we discuss the following four categories:

1. Software design models—Implementation (S03, S04,
S10)

2. Software design models—Tests (SO1, S02, S11)

3. System/architecture models—Implementation (structure
and behavior) (S06, S08, S09, S12)

4. Many-artifacts (S05, S07, S13)
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Legend
® Mandatory Alternative
group Consistency management
—o Optional 'f“elﬁg:;t in industrial MBD
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. Manually Relationship 6 Type Severity Desired Currently
implemented types used Automated
l Repair
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/0\ Other
On- Event-
Demand Based

Fig.1 The employed classification scheme, shown using feature model notation

Table 2 Summarized state of
. . ID
practice of modeling and

Summary of MBD practice

continuous development in
studied companies

S01
S02

Modeling on software level, code generation, test cases in code

S03
S04

Modeling on software level, code generation, test cases also models (sequence diagrams)
Modeling software, code generation. Continuous integration of models.

Modeling implementation in DSLs, also maintaining DSL metamodel

S05

Modeling implementation in DSLs, also including many other artifacts in different

formats describing aspects of the system

S06
S07
S08

Modeling system level and at lower levels for simulation or further decomposition
Modeling system level and at lower levels for simulation or further decomposition

On the way to adopting system modeling, additionally doing some simulation modeling

and some Simulink for implementation (code generated). Agile development for
software implementation (code+Simulink). Frequent integrations (even multiple daily).

S09

System modeling in SysML. Agile development for software implementation based on

the design outlined in the system model.

S10

Modeling in in-house developed DSL with a code generator. Generated code is

sometimes manually changed.

S11

Modeling only for implementation and testing, complete code generation. Moving

toward adopting CI for their MBD.

S12
S13

Modeling system arch in UML. Agile development for software implementation

Part of the software is modeled in state machines (Yakindu) and code is generated from

them. Other parts are manually implemented. There are also many other documents
and models used to represent other parts of the system.

4.1 Software design models—Implementation

In this category, we consider those settings where models are
used to describe the low-level design of software, including
its structure and detailed behavior. These software design
models are realized through automatic generation, manual
implementation, or hybrid (a mix of the previous two). In the
case of automated code generation, consistency from model
to code is achieved by construction. Completely manual
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implementation is uncommon since it would imply redoing
work already done when creating the design models. In this
category, we consider specifically the hybrid form, since it
triggers some interesting use cases for consistency manage-
ment.

Indeed, challenges arise when automatically generated
code is manually supplemented or modified. Modifications
may happen to customize the code for different target applica-
tions, complete incomplete specifications, or simply because
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some functionality is easier to express in a textual nota-
tion than in diagrammatic models. Typically, these problems
are dealt with by generating code with protected regions,
which are not overwritten upon code re-generation (as in,
e.g., Epsilon Generation Language [45]). This approach is
suitable in cases where the code expresses additional things
that cannot be expressed in the model. In cases where the
model and code must express the same information (e.g.,
for maintenance reasons), additional measures are needed to
enable the propagation of changes from the code back to the
model. We have identified three industrial use cases in this
category, as described in Table 3 following the structure of
the classification scheme presented in Sect. 2.

S03: In this setting, the company is generating C/C++ code
from state machines expressed in UML-RT. A consistency
management challenge occurs here because it is desired to
treat both models and code as two views of the same artifact:
not only should changes in the model be reflected in the
code through re-generation, but also any change to the code
should be directly and completely reflected in the model.
An automated synchronization mechanism is in place that
propagates changes between artifacts automatically when a
change occurs; the mechanism is based on protected regions.
S04: In this setting, the company uses several powerful MDE
concepts for developing Domain-Specific Languages (DSLs)
and automatically generating code from models conforming
to those DSLs. Models conforming to these DSLs are inter-
related through dependencies and are therefore in need of
maintenance upon evolution of the DSLs. Indeed, the main
consistency challenge here relates to the problem of meta-
model and model co-evolution [13]. Specifically, an update
to one DSL can result in non-resolvable references in a model
conforming to another DSL. Inconsistencies in this regard are
very impactful since they prevent building and running the
software. Currently, the company has some automatic checks
to detect such reference issues. Resolving the inconsistency
is currently a manual task for the developer, but this might
be enhanced with suggestions for fixes in the future.

S10: In this setting, the company is generating PLC (pro-
grammable logic controller) code from a model expressing
a functionality. The model is created in a DSL that is tightly
integrated into a modeling tool, both developed in-house. The
generated code is a combination of automatically generated
instructions from the model, libraries, and other static pieces
of code.

To customize this code for different operational environ-
ments, the generated code, rather than the model, is modified,
leading to inconsistency between the code and the model.
This inconsistency mainly impacts the maintainability of the
code, since the models can no longer be used as accurate
documentation of the implementation. Hence, the company
aims to re-establish consistency between the models and the
code, but this is complicated by the manual changes to the

generated code. Currently, consistency is restored manually,
at fixed steps in the development process. In the future, the
company aims at a more continuous feedback loop and more
frequent checks of the consistency between model and code.

4.2 Software design models—Tests

In this category, we consider test cases and their consistency
with the model or code under test. When tests are consis-
tent with the design models, it is meant that not only the test
cases pass, but also that the test cases appropriately cover the
models, i.e., test the correct things. When a system evolves,
challenges arise. Inconsistency caused by, e.g., a drop in test
coverage is much more subtle to detect than test case failure.
We found challenges in keeping test cases and implemen-
tation models consistent in the three industrial use cases
summarized in Table 4. Here, the consistency checks do not
refer to running the test cases but instead refer to (currently
manual) alignment checks of test cases and the implementa-
tion.

SOI and S02: In these settings, models are tested, and then
code is generated. The tests can be expressed in either
test scripts (e.g., Python) or as models (e.g., UML state
machines). The main consistency management challenge in
this setting relates to co-evolving tests with the model. Again,
when the tests fail, their need for co-evolution is obvious, but
in other cases, this need is less evident. The danger of incon-
sistent artifacts here is that the tests become meaningless if
they do not cover the models appropriately. Currently, man-
ual assessment of consistency and handling of repair actions
is required.

S11: In this setting, consistency between tests and model
under test is desired. Models are used for complete code
generation (unlike in S03, here the code is not itself modi-
fied). Engineers spend significant manual effort on analyzing
the impact of changes to these models on their test cases. In
particular, it must be analyzed if the tests still cover the imple-
mentation models correctly and completely. Moreover, in this
setting variants created through a clone-and-own method [18]
need to be considered too. One of the consequences is that
there may be significant overhead needed to analyze existing
test models and assess to what extent they are appropriate for
a newly branched-off product variant too.

Development cycles could be made shorter if there were
more support for managing the consistency between the
evolving models and tests, and hence to reduce manual anal-
ysis effort. One direction that could help this setting is to
migrate from clone-and-own to more structured re-use fol-
lowing the product line engineering paradigm. Nevertheless,
even with adoption of the best practices of that paradigm,
there remain a need for impact analysis to assess the effects
of a changes model on the test cases. Hence, we foresee
that in the future, this setting could be enhanced by auto-
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mated support for the co-evolution of the test cases. Given
the complexity of co-evolution in the general case, this sup-
port would most likely consist of repair hints, rather than
automated repair actions.

4.3 System/Architecture models—Implementation

In this category, we consider models at a higher level of
abstraction than those discussed in the previous categories.
Both the software aspect of system models and architecture
models typically focus on describing the distribution of func-
tionality over components of the system and the interactions
between them. From system and architectural models, there
is no possibility to generate code since they are not intended
to (and therefore do not) describe the detailed behavior of the
components. Nevertheless, consistency between these mod-
els and code is still imperative for correct development and
manageable maintenance of the system. An overview of the
industrial settings in this category is shown in Table 5.
S06: In this setting, high-level models are mostly means
to understand what needs to be built. For some parts, a
decomposition is made into software components, which are
modeled too. The eventual implementation is done manually,
based on these models. Since the systems under development
are usually very large, requirements are captured in some of
these models to keep the engineering process manageable. It
is accepted by engineers that the models are not fully consis-
tent with the eventual implementation, so the initial impact
of an inconsistency is small. Nevertheless, it is required that
the eventual implementation conforms to the requirements.
In the current setting, there is no feedback loop between the
model and implementation and consequently, the software
engineers lack insight into the bigger picture that the model
provides. An adjacent challenge is that the scope of model-
ing is not well defined in the company, causing uncertainties
about what must be modeled at what level of abstraction.
Currently, there is no automated support to check consistency
between the model and the implementation, nor is there any
support for repair actions.
S08: The company is working toward adopting model-based
systems engineering. In this setting, the rationale for depen-
dencies between separate subsystems is captured in a SysML
model. Moreover, the implementation of these subsystems is
modeled in Simulink, from which code is generated. The
main goal of modeling in this setting is to document design
decisions. This makes it slightly different from the other set-
tings, where models play a more central role and are used
for the development itself. Nevertheless, also in this setting
consistency between system (SysML) and implementation
models (Simulink) must eventually be kept intact; otherwise,
the documentation becomes unreliable.

The link to continuous MBD in this setting is less clear
since the aim of modeling in the first place is a bit question-

@ Springer

able. It would be more beneficial to, e.g., generate a skeleton
model from the SysML model that then can be completed by
Simulink models.

S09: In this setting, the implementation is done manually in
C++ based on a high-level description of components and
their interfaces in a SysML system model. In this setting,
the system model does not contain many low-level behav-
ioral details of the software parts; therefore, code cannot be
generated automatically. Rather, the model focuses on divid-
ing the functionality of the system over multiple software
components and assigning them to different hardware com-
ponents. To enable long-term maintenance of these complex
systems, consistency between model and implementation is
imperative. On the one hand, the implementation must fol-
low the design as outlined in the system model. On the other
hand, the system model must provide a reliable image of the
actual implementation. Moreover, the company aims to re-
use components across multiple products, which requires the
models and code to be synchronized.

During development, incremental changes of the system
are performed on the model and communicated in small
chunks to the software engineers who then implement the
new or changed functionality. This manual implementation
and the communication overhead deriving from it inhibit
to some extent the introduction of more continuous devel-
opment practices. Consistency checks between model and
code could help by indicating to what extent the model and
code agree, thereby decreasing the amount of manual effort
currently spent on consistency checking and impact analy-
sis. Indeed, the company has set the goal to provide system
and software engineers with support for synchronization of
model and code. In particular, they envision a bridge that
enables automated analysis of the completeness and consis-
tency of the implementation as compared to the model, and
vice versa. The main challenges toward this goal are to align
syntactic and semantic differences between model elements
and their corresponding code elements.

S12: In this setting, the system architecture is modeled
using UML diagrams that describe the system’s compo-
nents, interfaces, and connections between them. Some of the
components are implemented in-house and others are open-
source components. Consistency management is achieved
through a set of scripts that check the code for structural con-
sistency, particularly focusing on interface violations. The
main challenge for consistency management in this setting is
to deal with different variants and versions of both software
components and the system. For example, it may happen
that until version n of the system, component X is used, but
from version n + 1 onward, X is replaced by Y and Z. More-
over, each component may exist in different versions through
time, e.g., releases of open source components. Accurately
reflecting this in the model is rather challenging and using
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that information as input for the consistency checks already
in place is challenging too.

When in place, consistency checks between all variants
and versions of the architecture model and the code will allow
for better management of the software components (both
those developed internally and open-source components on
which the system relies). The company has set the goal of
explicitly modeling variants and versions in their architecture
model and benefiting from that information through auto-
mated consistency checking mechanisms. It is worth noting
that these needs exceed standard variability management due
to the additional dimensions that need to be incorporated in
the model, including the variants and revisions of compo-
nents as well as of the system itself.

4.4 Many-artifacts

In this category, we consider those settings that require con-
sistency among three or more development artifacts, ranging
from requirements to implementation. An overview of the
industrial settings in this category is shown in Table 6.

S05: In this setting, the main consistency management
problems are related to the late detection of contradictions
between different complementing artifacts. Some of the arti-
facts need to be consistent for accurate implementation, such
as requirements and integration tests. Other artifacts must be
consistent for system maintenance activities such as step-by-
step guidance (commands) and root cause analysis (sensor
values and formulas). The different data sources containing
the artifacts are not always models but can also reside in
unstructured formats such as spreadsheets and text docu-
ments. The automated support for consistency checking is
limited to a few types of models, that, when loaded, reuse
information from the shared knowledge space. When these
checks fail, the engineers have some help with repair actions
from visualizations indicating where the inconsistency is.
Other inconsistencies are detected manually, increasing the
risk of them going undetected. Moreover, these manual activ-
ities mean that only a few pre-defined types of inconsistencies
are checked. In addition to what was mentioned in S04,
here we also consider requirements specified in natural text,
other artifacts describing the intended functionality of the
system, and integration tests. These additional artifacts give
consistency management a different focus. The company is
currently working on establishing consistency checks via a
normalized format for several artifacts. This work entails
extracting data from the different tools, representing it in a
common format, running consistency checks across the nor-
malized representations, and finally visualizing the results.
S07: In this setting, as in S06, system modeling is used as
a way to capture requirements and create a first decom-
position of the system. Within this process, consistency
management between several different artifacts is relevant,

@ Springer

including system model, AUTOS AR models, code, and tests.
A portion of the system model is refined in AUTOSAR
models, from which code is generated. The other portion
of the system model is implemented manually. Similar to
S06, inevitably inconsistencies occur between these different
representations, but usually they are not a problem because
the engineers are typically aware of them. The engineers
do not update the artifacts once an inconsistency is intro-
duced. The only imperative consistency is the behavioral
consistency between requirements and the eventual imple-
mentation, since the impact of inconsistencies between these
artifacts is the largest. There are explicit consistency links
only between requirements in the system model and test cases
and they are defined by annotating the latter ones. Currently,
the engineers perform manual consistency checks rather late
in the process, any earlier noticed inconsistencies are ignored
until related problems arise and also then repair actions are
performed (manually). The future direction for the company
in this context is to enhance the consistency check by writing
more detailed requirements such that it will be easier to define
test cases that show inconsistency between requirements and
implementation.

S13: In this setting, there are several types of artifacts
involved: requirements, software design models, and a mix
of automatically generated and manually implemented code.
Moreover, there may be other relevant artifacts such as CAD
models that ideally should be kept consistent with the oth-
ers too. The engineers identify a need for reliable tools that
track different artifacts and do not hinder the existing work-
flow. Among the reasons for this need of tracking different
artifacts is that the company uses a wide range of differ-
ent modeling languages and tools across different projects.
For this reason, it is complicated for engineers to switch
between projects. Moreover, even within a single project, the
diversity of tools leads to complex documentation, which
is overwhelmingly written manually. One of the reported
problems with respect to consistency management is that
miscommunication occurs between different people working
in different phases of the same project. The severity of incon-
sistencies here grows proportionally to the system itself; in
small projects, the inconsistencies can be managed by brief
discussions between engineers, but in large projects resolv-
ing inconsistencies requires long analysis. Most probably,
this is because there is a lot of room for interpretation in each
step of the modeling process, given the plethora of model-
ing formalisms and tools used, and also because there are no
explicit links between these models. The company found it
difficult to concretize future directions related to consistency
management. The main intention is to somehow improve the
current disjoint state of all the models.
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5 Discussion

In this section, we analyze our findings described in Sect. 4
and answer our research questions. Moreover, we briefly indi-
cate support in the literature for our categories of industrial
MBD settings. We also reflect on the employed classifica-
tion scheme and its use for answering the research questions.
Lastly, we discuss threats to validity.

5.1 Consistency management characteristics

In this subsection, we summarize our findings presented in
Sect. 4 to answer the three research questions.

5.1.1 Encountered problems due to inconsistency (RQ1)

There are settings, such as S06, SO7, and SO8, where consis-
tency is not considered important. Usually, engineers in these
settings indicate that they use models merely for communi-
cating initial ideas and then abandon them. Hence, there is no
interest in keeping them updated and they are most probably
going to be inconsistent with the eventual implementation.

In other settings, such as SO1, S02, S04, S11, and S12,
inconsistencies are important since multiple development
artifacts are tightly connected. In SO1, S02, and S11, test
cases must co-evolve with the models such that they remain
up-to-date. In S04 and S12, inconsistencies can cascade to
other artifacts, but the problems related to inconsistency are
similar; it must be ensured that the closely related artifacts
do not contradict each other, such that the dependencies are
not violated and new changes do not rely on outdated infor-
mation.

In the remaining settings, S03, S09, and S10, inconsis-
tency problems are related to other aspects of maintainability,
particularly the correctness of models with respect to their
intended use. In S03, model and code represent two views
of the same artifact and must therefore be kept consistent. In
S09 and S10, there is a larger conceptual gap between model
and code. The model is used both for design and, differently
from those settings where consistency is not important, it is
used for documentation too. To ensure, on the one hand, that
the implementation conforms to the design and, on the other
hand, that the model accurately reflects the implementation,
inconsistencies between them need to be resolved. In these
settings, the model is typically ahead of the code, i.e., it pre-
scribed the future, whereas the code represents the current
status of the implementation. Therefore, it is not necessarily
useful to be constantly reminded of inconsistencies between
the artifacts, but it is crucial to not keep track of them over
time.

@ Springer

In summary, we answer RQ1 by identifying three types
of encountered problems due to inconsistency: one in
which inconsistency causes no or minimal problems,
one in which inconsistency causes cascading contra-
dictions between dependent artifacts and one in which
inconsistency causes incorrect models.

5.1.2 Handling of problems related to inconsistency (RQ2)

We noticed the trend across the studied settings that the bigger
the conceptual gap between the artifacts, the fewer explicit
correspondence links are in place. In a majority of settings
(S01, S02, S06-S09, S11, S12), there is a reliance on name
equivalence or name similarity for matching parts of the
model to parts of the implementation. The risk of this prac-
tice is that while engineers might be using code or modeling
guidelines to maintain these mappings, they are very eas-
ily eroded throughout development. Another consequence
of the bigger conceptual gap is that the type of consistency
that can be checked is usually only structural, simply because
the high-level model does not (and should not) contain the
amount of detail on the behavior that would be necessary
to check the behavioral consistency between the model and
its implementation. Indeed, the consistency types of inter-
est depend on the amount of detail modeled. In general, we
can notice the trend that the larger the conceptual gap, the
vaguer and more focused on structure the possible consis-
tency checks become.

Across the studied settings, there is often no support or
only implicit manual support for consistency checking (e.g.,
during code reviews in S06 or during integration and valida-
tion in S10). Therefore, also the execution of the consistency
checks is mostly done manually and on-demand, while only
a few settings (S02, S07, S11) adopt automatically triggered
consistency checks. Automated repair actions were found
only in S02, other settings did not have them, probably as
a result of the typically large conceptual gap between arti-
facts that makes automated repair impossible. In a majority
of the settings, inconsistencies are repaired manually and on-
demand. In settings S08, S09, and S13, there is currently no
work on repairing inconsistencies.

Problems related to inconsistency are hence mostly han-
dled in an ad-hoc manner. We believe that senior engineers
can initially keep track of important required consistencies
across specific artifacts, however in later stages, a mental
map no longer suffices, and the need for more structured and
automated approaches to consistency management arise.
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In summary, we answer RQ2 by observing that over-
all, while multiple companies have plans to invest in
improving their practices, these are often pushed back
by more immediate concerns. When handled, a major-
ity of settings relies on implicit correspondence links
such as name equivalence. As a consequence of the typ-
ically large semantic gap between the model and other
artifacts, consistency repair is almost always manual.

5.1.3 Identified future directions for consistency
management (RQ3)

Tables 3, 4, 5, and 6 reflect the current state of practice.
During the data collection, we also collected data to reflect the
future desired state of practice in the companies, following
the same classification scheme as for the current state of
practice. The developed artifacts, their relation, the desired
consistency, and associated problems, remain the same in all
settings. Since a lot of the data are repeated, we do not include
additional tables for them but instead provide a summary
here.

The companies indicated little ambition in improving the
traceability across artifacts, with only one indicating the
desire to adopt more correspondence links that will still rely
on name equivalence. For consistency checks, in a major-
ity of settings companies indicated the desire to adopt some
form of automated detection. This was expected to help both
to prevent cascading contradictions and to improve maintain-
ability (see RQ2). In several settings, the desire was to run
the automated consistency checks as soon as possible, before
cascading effects. For example, in SO1 and S02, the test cases
or a selection of them should be executed as soon as possi-
ble after a change to the model. In essence, the practitioners
in these settings want to go toward continuous MBD, where
changes to the model are continuously validated before con-
tradictions may propagate elsewhere. For repair actions, the
engineers agreed that large conceptual gaps between artifacts
prevent automated repair. Hence, the companies did not aim
for this.

In summary, we answer RQ3 by noting that overall,
future directions for consistency management indi-
cated by the companies are limited to slightly more
automated consistency checks. The primary goal of
the companies is to get an enhanced insight into their
various development artifacts. More advanced actions
such as automated repair are typically not planned.

5.2 Linking consistency management and
continuous MBD

The benefits of involving high-level models in continuous
development include the possibility of continuous architec-
tural consistency checking as well as continuous traceability
between high-level models and implementation. The for-
mer is particularly relevant in modern software engineering
projects, where the architecture is moving toward being more
dynamically evolving, rather than being fixed upfront. The
latter is relevant in any setting but becomes more pressing in
continuous development settings due to the need for, e.g., fast
change impact analysis for changes in the high-level models.

The implementation in the studied settings is typically
done in short cycles, even if the complete development
is not. Depending on the setting, there are different non-
functional impediments to achieving shorter development
cycles for also the higher-level models. This can be related
to a lack of traceability between model and code and the
corresponding difficulties in impact analysis (S09) or test
changes (S11). In other settings, objections are raised to
continuous development involving higher-level models. In
particular, practitioners fear that the current practices will
not scale due to manual actions in the current process that
would form bottlenecks when done in shorter cycles.

There is a tight relation between the two topics: consis-
tency management is a significant hurdle to jump toward
more continuous MBD. In almost all the studied settings, itis
clear that 1) the companies are struggling with manual actions
related to various forms of consistency management that
impede shorter development cycles, and 2) the companies
are trying to automate parts of their consistency manage-
ment activities as a step toward shorter development cycles
and indeed continuous MBD.

Among the reasons for the non-alignment between high-
level and low-level models is that they are typically developed
by different people, in different teams, with different prior-
ities. For example, practitioners (in S06 and S07) identified
a lack of willingness of developers to model: “develop-
ers will not look in the model if they can avoid it, nor
propagate changes back to model.” Consequently, the short
development cycles are limited to the implementation, and
consistency with the high-level model is not prioritized.

The current state of practice we encountered in the com-
panies does not utilize powerful modeling mechanisms from
the MDE paradigm, which would theoretically provide a lot
of the desired consistency management “out of the box.”
It seems that the amount of modeled information is typi-
cally limited and a move to more comprehensive modeling
approaches is not appealing. Sometimes, the modeling is
done as just one way of capturing some design decisions,
e.g., on the system decomposition or the architecture, how-
ever, the companies are not benefiting from the additional
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semantics of expressing this in a model. Instead, the mod-
els become somewhat interchangeable artifacts, i.e., from
the context of consistency management, it would make no
difference if a document-based system would be used for
what is now modeled. There is an opportunity to take more
advantage of the precise semantics that a modeling language
provides.

The degree to which continuous development practices
are used varies greatly among the settings. In most cases,
short development cycles are used only in the scope of the
implementation, probably because in that area there is a
lot of existing process and tool support for Agile develop-
ment. Usually, the design or architecture models of a system
are not included in these short development cycles, despite
the potential benefits of doing so. Overall, the companies
employing fewer modeling languages and tools (SO1-S05
and S11) can work in shorter development cycles, due to a
simplified synchronization and tool interoperability effort.
Conversely, a large gap between the models implies a largely
manual effort toward synchronization, which impedes the
adoption of shorter development cycles.

A reflection on our research goal “To identify the
main characteristics of consistency management chal-
lenges encountered when adopting continuous MBD
in industrial settings.”: In summary, companies are
struggling with their paths towards adopting more
continuous MBD. Managing consistency is compli-
cated and with more involved artifacts, this complexity
grows. Continuous development is typically limited to
the implementation and does not usually involve design
or architecture models. Time-consuming manual con-
sistency management activities impede the inclusion of
these higher-level models into the continuous develop-
ment cycle.

5.3 Approaches in the literature and identified gaps

We now briefly reflect on the support in the literature for
the categories of consistency management settings we iden-
tified in this paper. In summary, we find that in most cases
approaches are available for dealing with the industrial chal-
lenges, but it is still complicated to migrate from an existing
state of practice to one in which these approaches are adopted.
Software models—Implementation The challenges in the
described industrial settings SO3 and S04 relate to the
well-studied concepts of model-code round-trip engineer-
ing (e.g., [39]) and model-and-metamodel co-evolution (e.g.,
[13]), respectively. S10 is less well supported by exist-
ing approaches. Within the MDE paradigm, synchronizing
model and code is typically done using bidirectional transfor-
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mations (e.g., via triple-graph grammars [21]). We encoun-
tered limitations of these approaches in S10 because there,
not all changes to the generated code should be propagated
back to the model. In those cases, more control is needed on
what changes should be propagated back and what changes
should be ignored.

Software design models—Test A study on co-evolution of
test and production code found a mix of phased and contin-
uous co-evolution depending on the followed development
paradigm [53,54]. There have been studies looking at specific
instances of co-evolution in MBD, such as the co-evolution
of Simulink models and their test cases [43]. In our studied
settings, the main manual effort in evolving the test cases
effort is spent on performing a change impact analysis.
System/Architecture models—Implementation A challenge
for model transformation approaches occurs when the gap
between the high-level and low-level models cannot be
bridged by automated means. It is hard to quantify the effects
of architectural consistency and these effects are rarely vis-
ible to customers [2]. This is in line with our observation
in the introduction that consistency management tasks are
not often prioritized. At the same time, the main obstacles to
the adoption of consistency management approaches are the
too high expected cost and effort [50]. A more lightweight
approach is therefore required. Moreover, in these settings,
it should be possible to benefit from the more semantically
defined SysML model compared to sketched models.

The key element in existing approaches is the need to
bridge the semantic gap between architecture and implemen-
tation. As found also in other works on that gap: “current
approaches cannot handle the synchronization when there is
a significant abstraction gap between architecture and code”
[42]. A realistic example setting is S09, where work is needed
on synchronizing a system model in SysML and its corre-
sponding implementation in code.

Many-artifacts Atkinson and Stoll propose projective mod-
eling in the form of a single underlying model (SUM), where
all other artifacts are views on that SUM [5]. Consistency is
then guaranteed by construction since any edit to any view is
a change to the SUM and since other views are projections
of that SUM, the change is immediately propagated to them.
This approach requires a unified metamodel of all artifacts,
which is not always possible, especially not when free-form
artifacts such as textual requirements are included (e.g., in
S13). Moreover, code is usually not included in these kinds
of many-view management settings, probably due to the
abstraction gap between implementation and high-level mod-
els. The industrial settings could benefit from approaches that
provide insight into a large number of structured and unstruc-
tured development artifacts. In this context, megamodels have
been proposed for providing a kind of floor plan of a setting,
denoting all modeling artifacts the relations and transforma-
tions between them [9]. The basic idea of megamodels can
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be extended to be a framework supporting traceability and
consistency across model artifacts [47].

5.4 Assessment of classification scheme

We briefly reflect on the data gathering phase and specif-
ically on the employed classification scheme. In the data
gathering phase, we noticed that, given only the classifi-
cation scheme, industrial partners were not able to easily
answer our questions. In fact, it was often needed to have
a general conversation about the involved development arti-
facts and the relationships between them. The classification
scheme was then very useful for mapping the open answers to
a smaller and more structured set of categories. Initially, we
also aimed at gathering, as part of the classification scheme,
the challenges that the companies themselves identify in
migrating toward better consistency management and con-
tinuous MBD. The experience of data gathering showed that
it was more effective to derive those challenges during the
analysis since they were hard for practitioners to formulate
during conversations.

5.5 Threats to validity

A threat to the internal validity of the study is our sampling
of industrial settings and the ways we gathered information
from them. In the end, our sample is still a convenience sam-
ple, we included all settings from our research collaborations
that to some degree are practicing MBD. On the positive side,
we have gathered a broad range of varying settings. On the
other hand, as a consequence of this broad range of com-
panies and settings, we could not employ the same research
method for gathering information from all the companies.
To mitigate this risk, we have adhered to the same classifica-
tion scheme for the data, regardless of how the information
was gathered. Moreover, in each of the settings, we have
allowed the companies to provide feedback on the filled-out
classification scheme for their settings. We predetermined
the classification scheme before doing the study, to avoid
bias toward certain settings. In particular, the classification
is based on our research questions and the terminology used
in the literature.

A threat to external validity is that our results do not gen-
eralize beyond the studied settings. To limit this threat, we
considered a variety of settings while including not too many
from the same companies. Moreover, we excluded those set-
tings in which there was no MBD practice. In any case, our
study cannot provide a complete overview of the state of prac-
tice and that was also not our goal. Instead, we argue that if we
encounter these settings at a few companies, it is likely that
there are more industrial settings similar to them and there-
fore, our findings can contribute to providing researchers an

insight into the state of practice of model-based development
in current industrial settings.

6 Conclusions

In this paper, we studied thirteen MBD settings from nine
companies and analyzed them concerning continuous devel-
opment and consistency management practices. One of the
main threads in this paper is that we consider consis-
tency management as an essential ingredient for shorter
development cycles. Manual actions related to consistency
management are impeding shorter development cycles, and
therefore, the companies generally aim to somewhat auto-
mated consistency checks. To achieve more automation, the
companies need to make more use of the semantics of models
as development artifacts, instead of their current use, where
their use is often limited and may in some cases be con-
sidered interchangeable with textual descriptions. To move
toward continuous MBD in each different setting, we need
to close the gap between the development artifacts so that
traceability and consistency management can be supported
with automation. Moreover, when adopting new develop-
ment practices, we need to take into account the existing
development artifacts, complex development processes, and
a large number of involved engineers. Hence we identify the
need for researching, in addition to new approaches, also
migration paths from the current states of practice toward
ones in which these approaches are adopted. Our maturity
model shows high-level steps that must be taken from vari-
ous starting points.

We hope that these results give researchers insights into the
state of practice and encountered consistency management
challenges. Our analysis can help practitioners identify their
own state of practice better and help them to understand the
consistency challenges toward developing in shorter devel-
opment cycles. Moreover, our analysis can be of interest to
practitioners who are not currently working with consistency
management by identifying how they can benefit from doing
sO.
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