
A Change Process Model in an SCM Tool

Ivica Crnkovic
ABB Industrial Products, 721 67 Västerås, Sweden

ivica@sw.seisy.abb.se
Abstract

 This paper is a survey of a change process model devel-
oped and used at ABB Industrial Products. The change
process is based on a Software Configuration Management
(SCM) tool and the Capability Maturity Model (CMM).
CMM emphasizes the importance of controlling the
changes made in a development project. The SCM tool,
developed at ABB Industrial Products, is a change oriented
tool by means of which changes are managed through
Change Requests. A Change request is a document which
describes changes processed in a software. During the
development process, Change Requests collect information
about the changes implemented in configuration items and
they pass through different states. Since Change Requests
are under version control, the data obtained from them give
information about both the number and types of changes
and the change process behavior. Experience has shown
which an SCM tool that supports Change Management is
very important in large software systems, especially in the
project planning, verification and maintenance phases.

1. Introduction

ABB Industrial Products develops different families of
process-control systems. Several hundred programmers are
involved in this development. The quality and functionality
of the software configuration management must be of a
high order. It must be possible to reproduce earlier soft-
ware releases, correct any errors in these, and if required
implement the same changes in other products, or product
versions. For these reasons SCM tools have been essential
parts of development work at ABB Industrial Products for
more than 10 years.

The company has recently reached the CMM level 2
[1]. Since the SCM process is a key process area at the
CMM level 2, SCM questions have been focused on the
process rather than on the tools. During the period of CMM
introduction at the company, the main issue was how to
implement the SCM process and relate its activities to the
existing SCM tool and methods. The change process was a
particular focus of interest. Since the SCM tool used in the

company is change-oriented, the features from the tool are
utilized in the SCM process definition.

Change-oriented SCM tools deal with logical changes
introduced into software, rather than with component ver-
sions, the approach of Version-oriented tools [2]. A change
management process defines different roles for different
groups of people involved in a software development pro-
cess. The people responsible for the product (managers,
project leaders) are interested in changes on the general
functional level. Quality assurance personnel are interested
in the changes made which necessitate testing, verification
and documentation of the relevant parts of the software.
Change-oriented SCM tools give better support to the
implementation of SCM processes as specified in CMM.

This paper describes how a Change Management pro-
cess is defined in relation an SCM tool which supports
Change Management.

Chapter 2 gives an overview of SDE, the SCM tool. The
basic characteristics of Version Management and Change
Management are described here.

Chapter 3 describes the Change process in a develop-
ment project. The process is designed according to CMM
requirements for SCM planning, verification and measure-
ment.

The last chapter contains examples of measurements
performed on data collected by the SCM tool in a develop-
ment project. These measurements contribute to an under-
standing of the development process and make possible
improvements the process.

2. Overview of SDE - a Change-oriented CM
Tool

SDE (Software Development Environment) is an SCM
tool based partly on Revision Control System (RCS) [3].
Using slightly modified RCS commands and certain new
commands related to RCS files, SDE enables easy and fast
browsing through hierarchical system structures and ver-
sioned files. The SDE and RCS commands are encapsu-
lated in GUI-applications.

SDE includes the basic features of an SCM tool: Ver-
sion Management, Configuration and Build Management,

Change Management, Work Space Management and Prod-
uct Management.

This chapter briefly describes version and configuration
management, and change management implemented in the
tool.

2.1 Version and Configuration Management

Version management embraces identification all of the
items of a software system. The RCS package is used for
version management at the file level. Versioned files are
deposited in RCS libraries. To modify a file, a developer
must check out a specific file version from an RCS library.
The modified file is then checked back in, and a new file
version created in the RCS library.

In addition to managing file versions, SDE operates on
the versions of structures, designated SDE software sys-
tems. An SDE system contains system versions, called sys-
tem configurations. A configuration consists of a tree
structure of subsystems. A subsystem collects files which
make a logical (sub)function of the system. The files are

under version control. The existence of different configura-
tions makes possible parallel development and mainte-
nance of different product versions.

The baseline process in a configuration consists of the
tagging the selected file versions with a baseline name. The
versions specified in this way are used for the building of a
final version of a software product. Several baselines can
be included in a system configuration and eventually an
approved baseline will be used for a new product version.

The file version selection depends on the type of the
development process. In a rapid development model, typi-
cally, the latest versions of files will be selected. In a more
formal approach the file versions will be selected on the
bases of well defined criteria and will pass through a qual-
ity assurance process, such as code review and testing. In
such a case the versions are selected in accordance with a
version State. SDE provides support in the management of
state of file versions.

 Figure 1 shows an example of a process of changing
states of file versions.

FIGURE 1. Changes in version states in the development process

A new development or maintenance begins with the cre-
ation of a new system configuration. The file versions
imported from the source configuration are given the
Unchanged state. If a developer modifies a file, the new
file version automatically enters the Exp (Experimental)
state. The following state management depends on the ver-
ification process. Typically, when a developer completes
the changes, he/she sets the Completed state on the file ver-
sion. The changes performed can go through the code-
review process and eventually the file ends in the Stable
state. In the baseline procedure, the stable file versions are
tagged by a baseline name.

Additional selection requirements can be defined
through the change process: Only those file versions which
are parts of approved changes are selected for the new
baseline.

2.2 Change Management in SDE
Any change performed in SDE is under change-set con-

trol. A basic item of SDE change management is a Change
Request (CR), an entity which describes a logical change
to be performed in a software system. Change Requests are
created from Requirement Specifications or from error
reports. During the development process CRs collect infor-

State

File version
New file version
created

State

State

State

verification process

State

Baseline B1New configuration

Non modified file

Unchanged

State
Exp Stable Stable

State
Unchanged

State
Unchanged

Completed Reviewed

B1

B1

mation about physical changes made in the system: When
a developer checks in a modified or a new file, he/she
refers to a related CR. The file name and version are regis-
tered in the CR. The final version of a CR includes both a
description of a logical change made and information about
all modified file versions.

Every SDE system configuration includes a CR library -
and therefore all the logical changes introduced in a soft-
ware version are contained in this.

Change Requests are implemented as text files which
follow a specific syntax. The header part of a CR includes
keywords such as Priority and CR Type, creation date and
termination date. A list of files being checked in follows.
The body part includes a description of the change and log
messages of the files checked in. Figure 2 shows an exam-
ple of a CR:

CR-History-Parameters
Term icrnkovi 1997/12/03 13:17:32
Change input parameters for History command

Terminated: 97-12-03
Created: 97-01-13 by icrnkovi

Function: rcshist.exe
Reason: Improvement
Priority: Medium

File: ./history/rcshist.vbp 1.2
File: ./history/frmdummy.frx 1.1
File: ./util/sde/classhistory.cls 1.4

Description:
Modify input parameters so that they work
for File Manager, Explorer, Visual studio
and Visual Basic.

Log Messages:
./history/rcshist.vbp 1.2

Initial Version
./history/frmdummy.frx 1.1

Initial Version
./util/sde/classhistory.cls 1.4

Add ShowHistoryLine method in the SdeAc-
tiveXVB control

FIGURE 2. A Change Request Example

CRs are modified by different commands, not manually.
For example, the original RCS ci command has been mod-
ified: When a developer checks in a file he/she selects a
CR. The selected CR will be checked out, modified and
checked in. In this way a CR collects information about
modified file versions. A check in dialog box that uses the
ci command is shown in Figure 3.

FIGURE 3. Check in a file and select a CR

Change Requests are under version control. Each time a
CR is changed it is automatically checked out and after the
modification checked in. CRs are saved in a RCS directory
located in a CR library. As a versioned file under RCS con-
trol, a CR also includes attributes from the RCS: a state, a
responsible user (author) date of change and other RCS
attributes. A history of a CR is shown in Figure 4.

FIGURE 4. Change Request History

3. Change Management Process

CMM requires that CM activities are planned and that
the changes introduced in the software are under control.
Software Configuration Control Board (SCCB) approves
the changes entered in the new software baseline. Change
Requests are used in SDE for planning, following up and
approving changes entered in a software version. SCCB
and the SCM group (a group with special access rights to

the SCM structures) define Change Requests to be imple-
mented in the project.

Change Requests originate from development plans,
identified as Development items, and from error reports.
When created, Change Requests are updated by the devel-
opers. When a developer checks in a modified or a new
file, he/she refers to a related CR. The file name and ver-
sion are registered in CRs. In the verification phase of the
project SCCB approves completed CRs which are used as
a basis for creating a baseline (Figure 5).

FIGURE 5. Controlling Change Requests during the development process

After each baseline new Change Requests can be cre-
ated. They define new activities or possible corrections of
the previous baseline.

In a maintenance project Change Requests originate
from error reports. One error report can produce several
Change Requests if different parts of software have to be
changed.

In the final stage of a project a report listing CRs is pro-
duced. The listing can be used as a basis for testing the new
product version.

A Change Request passes through different states dur-
ing the development process. When a CR is created it is in
the Init state. During the work sessions it passes through
other states, such as Exp (Experimental), Implemented,
Tested and eventually reaches the Terminated state. The
CRs integrated in a product release are in the state
Released.

Figure 6 shows the different states through which a CR
passes in a development process.

FIGURE 6. Change Requests in a development process

Planning phase

Development
proposals

Error reports

Implementation phase

Modified
files

File registration

Change
Requests

Approve CRs

Verification and Integration Phase

Create CRs

Modified
files

Released
product

SCCB and SCM group

Project Members

Baseline

Check out/check in files

Change
Requests

Exp ImplInit

Complete

Test

Test

Term

Approve

Rel

ReleaseModify files
changes (check out/in)

Initiate
project

CR states

s a
o-
 a
ral
s,
r-
of
s -

ne-
c-
he
gu-

e is

ject
-
CRs
has
the
4. Change measurements

The information stored in Change Requests includes
much data which can be used for software metrics. The
number of changes, their states, classification according to
priority, type or function, number of changed files, etc. is a
basis for size-type metrics. Since CRs are under version
control, the history of every change is also available. The
states of all changes are available for the whole period of
the development process. The data from the state change in
a time period is input to another type of metrics - process
metrics [4].

A CR-Metrics application, included in SDE, collects
data from CR libraries, by parsing all versions of all, or
specific, CRs. Information about every CR version, such as
creation date, state and author are taken. The results of
measurement are displayed as embedded Excel objects [5]
in form of different graphs.

All measurements are performed in a similar way. All
versions of all CRs are parsed and different criteria for
extracting data are used. Examples of the type measure-
ments are listed below:

• CR Current status -The current states of CRs for each
period are extracted. The result is presented in a time
graph which shows the dynamic of different CR activi-
ties.

• Accumulated CRs - CR versions are sorted according
to date and classified in two groups: completed, and
not-completed. The result is presented in a time graph.

• Latest Changes -The CRs which have changed a state
for a given period are extracted.

• CR life length - A distribution of CR life lengths is
shown. The life length of a CR is the time between the
creation and the final modification date.

• CR Type and Priority -The latest versions of CRs are
classified according to CR type (Error, Improvement,
New Function) and priorities are shown.

Figure 7 shows an example of a current status graph.
The graph shows the number of CRs created during a
development project’s life. CRs are classified according to
their states: New - those which are created but no work has
started on them, Open - those which are in the process,
Resting - those for which SCCB has decided not to process
in the current phase of the project, and finally Completed -
those which are implemented and finished.

The graph shows accumulated values, i.e. the history of
the process can be seen from it.

.

FIGURE 7. Current States of CRs during the
development process

This project has used a development model which i
combination of the spiral model and the evolutionary pr
totyping model [6]. The development was performed in
number of iterations, each iteration consisting of seve
phases: prototyping, evaluation of different alternative
refining the prototype, developing and building the delive
ables and a plan for the next iteration. An implication
this model is the constant increase in the number of CR
new requirements are defined during each iteration (refi
ments) and at the beginning of the new iteration (new fun
tions). The number of new CRs increases constantly. T
number of completed CRs also increases, but some irre
larities can be seen - when the time for a new deliverabl
approaching, a many CRs are terminated.

Figure 8 shows the same type of graph for another pro
which followed the Waterfall model. In the project initia
tion phase, all the requirements have been defined and
have been created. The graph shows how the work
improved. The number of open CRs increases, and in
final, test phase, the CRs are being completed.

FIGURE 8. Current states of CRs for a project using the
Waterfall model

Project WinSDE - Current status

0

20

40

60

80

100

120

96-12 97-01 97-02 97-03 97-04 97-05 97-06 97-07 97-08 97-09 97-10 97-11 97-12

C
R

s

Completed Open Resting New

C++ Complib 3.0 - Current status

0

5

10

15

20

25

30

95-08 95-09 95-10 95-11 95-12 96-01

C
R

s

Completed Open Resting New

4-
The objective is to use CR-metrics during the project
when the project manager, SCCB and project members can
follow up the project status. The final measurements can be
performed after completion of the project. The metrics can
be compared with those from other projects and related to
other facts.

5. Conclusion

The paper describes an SCM process model based on
SDE, a change-oriented SCM tool. The model has been
recently applied in new development projects. The use of
the tool has not been dramatically changed, but the focus
has been moved from the tool to the process. While version
management has remained as before, change management
has become more important.

A new project is started with the registration of new
functions which are intended to be developed. When a
function is implemented the corresponding CR is closed.
The baseline process starts with a decision regarding which
closed CRs will be included in the baseline. The corre-
sponding functions are then frozen. In a later development
phase, new CRs are introduced when the frozen functions
need to be changed (improved, or corrected). These new
CRs describe in more detail the changes which are to be
made. When a project approaches the final state, the treat-
ment of CRs is more formal. For example, after a beta
release, SCCB decides for each individual CR if it should
be processed or left for a next phase.

Focusing on change management has increased a possi-
bility of supervising a project and it has lead to better plan-
ning under the project work. The awareness of the project
state increases as the project advances to its final stage.

Experience has also shown that adequate support for the
CM process is indispensable. The SDE concept based on
Change Requests facilitates the process implementation.

References

1. Mark C Paul, Bill Cutris et al, Capability Maturity
Model for Software, Version1.1, Technical report
CMU/SEI-93-TR-024, Software Engineering Institute,
Carnegie Mellon University

2. Ian Sommerville (Ed.), Software Configuration Man-
agement - Introduction, Software Configuration Man-
agement ICSE’96 Workshop, Berlin, Match 1996,
Selected Papers, Springer Verlag, ISB N 3-540-6196
X, pages 1-7

3. Walter F. Tichy, RCS - A System for Version Control,
Software and Practice Experience, 15(7):635-654,
1985

4. The Software Measurement Laboratory, University of
Magdeburg,
http://irb.cs.uni-magdeburg.de/sw-eng/us/metclas/
index.shtml

5. Microsoft Visual Basic 5.0 ActiveX Controls Refer-
ence, 1997,
ISBN 1-57231-508-3

6. Steve McConnell, Rapid Development: timing wild
software schedules, Microsoft Press, 1996, ISBN 1-
55615-900-5

