

Existing Approaches to Software Integration

– and a Challenge for the Future

Rikard Land, Ivica Crnkovic
Mälardalen University, Department of Computer Science and Engineering

PO Box 883, SE-721 23 Västerås, Sweden
+46 21 10 70 35

{rikard.land, ivica.crnkovic}@mdh.se, http://www.idt.mdh.se/{~rld, ~icc}

Abstract
This paper analyzes three fields of practice

and research from a software integration
perspective: component-based software, standard
interfaces and open systems, and Enterprise
Application Integration (EAI). The circumstances
under which each is applicable are presented, as
well as the expected benefits and drawbacks seen
from the integrator’s perspective. The paper
concludes with describing an integration context
encountered in practice that challenges the
established approaches, and outlines future
research from there.
Keywords
Component-Based Software, Enterprise Application
Integration, Open Systems, Software Integration,
Software Merge, Software Standards.

1. Introduction
The IEEE Standard Glossary of Software

Engineering Terminology [34] defines
integration as “the process of combining software
components, hardware components, or both, into
an overall system”. This paper analyzes
approaches to integrating existing software,
ranging from relatively small components to large
complex systems, as described by literature in
different fields.

1.1 Motivation
The motivation for this work is an industrial

integration project we have studied earlier, where
after a company merger the new company wished
to integrate or merge their products by taking the
best of each [43]. We had difficulties finding
literature on related work on integration in this
particular context. This paper is the result of a

broad search of approaches to software
integration. Our starting point was the qualitative
question:

In what contexts does software reuse
and integration occur, and how does
this apply to our case?

Additionally, we were interested in the
expected benefits and possible drawbacks with
existing approaches, as reported by the literature.
Thus, at the outset of the literature review, we
tried not to let our expectations color our
findings, but to as large extent as possible let the
literature speak for itself. We do not want to
provide a classification framework, but merely
report a snapshot of what “software integration”
may mean today.

Numerous other surveys of software
integration have been published previously
[26,31,38,50,71,86,98], but each is done from a
particular point of view and the field is large.

1.2 Methodology
Major databases such as IEEE Xplore and

ACM Digital Library were searched with
keywords like “integration”, “interoperability”,
“reuse”, and “merge”. We limited ourselves to
what we considered most relevant for our
purposes and consciously excluded integration as
one of the activities during new development
when newly developed components are made to
work together. Integration of hardware was also
excluded. Even so, the amount of remaining texts
on integration is enormous. Newer publications
were given precedence over older, with the
motivation that we wanted to mirror the newest
research. Also, by searching in article databases,

textbooks are found only indirectly (via
references in the papers found). There is therefore
a risk that older, seminal references, especially in
the form of textbooks are missing.

Surveys and classifications are always
subjective to the mind and purposes of the
researcher. When organizing the material into the
present paper, it appeared to us that most of the
literature was presented as belonging to either of
three fields of research and practice, in which
integration is one, but not the only important
challenge: (i) component-based software, (ii)
standard interfaces and open systems, and (iii)
Enterprise Application Integration (EAI). There
were also some texts on integration at low level
(e.g. language interoperability), on interfaces and
architecture in a fairly general sense, and on
information integration. These texts will also be
presented briefly.

Some of the characterizations made are not
exclusive to a particular field, and there are
clearly overlaps between the fields as well.
Aware of these limitations, we believe this
classification suits the purpose of this paper: to
survey existing approaches to software
integration in different fields and relate the case
study to them.

In section 2, we discuss the basic concepts of
interface, architecture, and information in the
context of integration. Component-based software
is presented in section 3, standard interfaces and
open systems in section 4, and Enterprise
Application Integration (EAI) in section 5. In
section 0, the case study is discussed in the light
of these approaches.

2. Basic Concepts
Some general concepts important of inte-

gration are here briefly discussed.

2.1 The Interface
Interoperability is the ability for two or more

software components to communicate and
cooperate with one another despite differences in
language, interface, and execution platform
[98,99]. To be able to do this, components need
to have the same understanding of their interface,
i.e. the “shared boundary across which
information is passed” [34]. The idea of a
mutually understood interface is present at all

levels of integration, from function signatures to
protocols for transactions, and the present paper
treats the term “interface” in this wide sense.

2.2 Architecture
When two software systems or components

are to be integrated, there is a risk that their
understanding of the shared interface is incorrect.
For example, there is a problem if two
components each assume they control the overall
execution of the system and will call other
components upon demand. This “architectural
mismatch” as it has been called [25] will result in
system malfunction, or no possibility to integrate
at all. Although a general integration approach
cannot mandate any specific architecture (in the
sense “structure of components” [6]), one of the
main goals of integration approaches is to make
components’ assumptions about interfaces match
the actual situation.

Designing for future reuse, maintenance,
evolution, and integration is difficult since the
new contexts and requirements are unknown.
Some design patterns [24] and architectural
patterns [14,80] address reuse, maintenance and
evolution, but there is to the authors’ knowledge
only little research on design patterns facilitating
integration [40,58,104].

2.3 Information
To be able to integrate systems, the systems’

views of the data – i.e. their data models,
taxonomies, or ontologies [27] must be
integrated, an undertaking not so trivial
[33,43,67,73,87]. Geographic Information
Systems (GIS) [13,57] is one significant example
of a domain where ontology integration has
attracted attention [17,66,84,96].

3. Component-Based Software
The integration context of component-based

software is when there are pre-existing software
components with clearly defined interfaces
available for integration [5,61,82,90,97]. A
Commercial-Off-The-Shelf (COTS) component is
a commercially available, already existing and
available component; an Off-The-Shelf (OTS)
component is a non-commercial ditto. Some
claim that that a component typically presents
90% of the desired functionality [69], and the

developing organization then has to decide
whether the additional 10% can justify a much
higher cost and delayed release date. The market
for commercial software components has
increased during the nineties [97] but currently
seem to decrease.

To make components interact, there are
component technologies such as COM [7],
CORBA [81,85], J2EE [63,75], and .NET [92].
These and more middleware technologies have
been evaluated for interoperability [105].
Interface Definition Languages (IDLs) are a
central part of a component technology, and
integration at the function call level is relatively
straightforward. But IDLs can today only achieve
syntactic interoperability [39,100] which is not
enough to make two components interact as
desired [98]. To ensure true interoperability
between systems or components, the semantics
must be specified as well [31,98]. To arrive at
integration at a higher level, XML [29,102] has
become a popular encoding language which may
be a common denominator of systems and used
for integration [3,15,22].

Even when a system is completely developed
in-house, a component-based approach may be
chosen. A product line approach [16] means that
there is a strategy for internal development of
components to be reused in different products.
Both the products and the architecture of the
product line itself must be evolved and the
situation is not too different from component
integration [37,88,89,93,94].

Expected Benefits. By using already
developed and tested components, the desired
benefit is that the system can be built rapidly and
cheaply (compared to developing everything from
scratch), and that the system will be of high
quality.

Drawbacks. There are some limitations with
this approach. The functionality desired but not
implemented may be crucial. If a component is
updated, the system may cease to function (most
often due to semantic differences). Requirements
for keeping control of compatibility call for new
types of configuration management [44,46].
Using a component in a long-lived system creates
a dependency on a third party regarding
maintenance, updates, error corrections, etc. Also,

it may be very costly to exchange one component
to one that is similar. There is not yet a
standardized way of certifying component quality
and behavior although there is research on how it
could be achieved [20,32,45]. And as said,
semantic interoperability is not completely
solved.

4. Standard Interfaces and Open
Systems

The common understanding of an “open”
system is that it should e.g. be portable, scalable,
and (which is important for this paper)
interoperable through means of a standard
interface. Meyers and Oberndorf argue that
although these are desirable properties, they are
difficult to demonstrate in general [61,62,82]. It
is impossible to demonstrate interoperability in
isolation, without specifying something concrete
a component should interoperate with. Their
definition of an open system is therefore: a set of
components with interface specifications fully
defined, available to the public, maintained
according to group consensus, and in which the
implementations of components are conformant
to the specification. Also, anyone may produce
(and profit from) implementations of that
specification. Major organizations for software
standards are ANSI [4], IEEE [35], and ISO [36].

In computer networks and tele-
communications, open systems with standard
interfaces (in the form of protocols) are prevalent
[28,64]. One of the major driving forces is there
interoperability between vendors. Other fields in
similar contexts, where systems from different
vendors need to interoperate and exchange
information are Geographic Information Systems
(GIS) [17,49,66,91], and hypermedia [2,3,33] to
mention a few. Application domains with an
identified need to create their own standard
interfaces for interoperability include – just to
illustrate the applicability of the approach –
public libraries [70], mathematical computations
[48], and photo archives [42]. Interoperability
through standardized interfaces is also a concern
of software agents [101]. Although autonomous,
agents need to communicate and exchange data,
and to enable interoperability between agents

developed with different technologies this needs
to be done in a uniform manner [49].

From an integration point of view, the
importance of standards applies not only to
interfaces but domain-specific architectures as
well. There may be standard reference
architectures [61,83], or vendor-specific archi-
tectures (which are implementations as much as
specifications), like ABB’s Industrial IT
architecture [9].

As said, the desirable properties of open
systems cannot be shown in general. Confor-
mance testing is carried out to show conformance
to a standard, while interoperability testing means
testing whether two products (said to adhere to
the same standard) actually work together as
intended [41]. Conformance to a standard is in
practice not enough to ensure interoperability
between two implementations [12,53,59].

Expected Benefits. There appears to be two
major reasons for building systems based on
standard interfaces. First, building open systems
is suitable when an integrator wants to avoid
being dependent on a single vendor [23,76,76].
Second, when there is no single integrator, the
only possibility to make different components
and systems interoperate is to ensure they
conform to a standardized interface [70].

Drawbacks. To have a practical impact,
standards need implementations. A drawback
(from the interoperability point of view) with
standards is the commercial marketplace itself
with the option for implementers to adhere to
standards or not – the choice depends on
commercial forces. Another drawback is that
reaching consensus often takes a long time, and
both vendors and acquirers may need to act
quickly in order to produce products and
integration solutions on time [54]. This may lead
to a number of similar but incompatible de facto-
standards. Also, a vendor strong enough may
provide an implementation violating the standard
and force its competitors to follow.

5. Enterprise Application
Integration (EAI)

Information systems are systems with the
primary purpose to store and manage data [47].
Enterprise Resource Planning (ERP) [8,65]

systems such as SAP R/3 [78], Product Data
Management (PDM) and Software Configuration
Management (SCM) systems [19] are typical
examples of systems, used to plan and manage an
enterprise’ assets and resources. As enterprises
need to streamline their processes to be
competitive there is a need for integrating
different information systems [30,47] to make
information consistent and easily accessible. The
typical solution is “loose” integration, where the
system components operate independently of
each other and continue to store data in their own
repository. Building unique interfaces between
each pair of systems that needs to communicate is
not cost efficient [23]. Enterprise Application
Integration (EAI) [21,38,55,56,77] is the name of
structured integration of information systems
within an organization [30,50,58,87]. EAI
includes building wrappers, adapters, and using
standardized middleware to connect and integrate
the systems.

Many information systems are long-lived.
They have to be adapted to ever-changing
requirements, and thus evolve, often over decades
[51,52,72]. Evolving and integrating these
systems may be crucial for an organization to
become more efficient and competitive, but due
to problems like lacking or outdated
documentation, few people having overview over
the whole system, design erosion [72,95], and
different technologies from different eras being
mixed, maintenance, evolution, and integration is
a major challenge. Still, there is often no practical
option to start over from scratch, since these
systems represent enormous efforts invested in
requirements engineering, designing, implemen-
tation, testing, debugging, tuning etc., and
choosing among two bad things, organizations
usually stays with the existing systems.

EAI is a broad term and may include
activities such as data mining and reverse
engineering [1] and content integration [87] (to
understand the existing data and systems),
migration [11] (to get rid of the most problematic
technologies and solutions), using a common
messaging middleware [10,55,56,60,77,105] (of
which there are many commercial solutions), and
encapsulating and wrapping legacy systems in a
component-based approach [79]. The market for

application integration and middleware (AIM) is
large ($6.3 billion worldwide in 2003) and is
expected to continue growing [18].

As of the business case leading to EAI
efforts, EAI addresses the context of in-house
integration of systems an organization uses rather
than produces. The usage may be in terms of in-
house usage of ERP systems [21,50] or electronic
business [103], such as business to business, B2B
[56]. Also, EAI is the choice when it is not a
practical option to modify the existing systems –
source code or documentation may not be
available (physically or due to legal restrictions),
or they may too large and complex.

There is a correlation between the structure
of an organization and that of its software [30],
hence the notion of “enterprise architectures”.
The integration may occur at different levels,
ranging from data and application to the more
difficult levels: business processes and humans
[74]. The “Zachman Framework for Enterprise
Architecture” is a framework within which a
whole enterprise is modeled in two dimensions:
the first describing its data, its people, its

functions, its network, and more, and the other
dimension specifying views of different detail
[106,107]. Another, similar, enterprise
information systems framework is “The Open
Group Architectural Framework” (TOGAF) [68].

Expected Benefits. The benefit of integrating
information systems is to have information
synchronized and more accessible. The reason for
choosing the EAI approach is that it provides
ways of achieving this that are structured and
more cost-efficient than integrating systems pair-
wise with unique solutions in an ad-hoc manner.

Drawbacks. EAI requires a high degree of
commitment, coordination, and upfront
investments [50]. EAI may break down when
integration occurs between enterprises, when data
is operational rather than historical, and more
unstructured data need to be integrated [87]. And
the integration problem continues: as systems
being integrated use different (not fully
compatible) commercial technologies, the need
arises to integrate the integration technologies
[26].

Table 1: Summary of the integration approaches.

 Context Expected benefits Possible drawbacks

C
om

po
ne

nt
s Parts of a system’s functionality

already available in external,
general components, or
A product-line approach with
internally pre-developed
components.

Faster and cheaper
development process.
High system quality.

Not all desired functionality
available.
Risk of components being of low
quality.
Risk of strong vendor dependency.

O
pe

n
St

an
da

rd
s Vendor independence desired, or

No single integrator.
Smooth integration of
components.
Possibility to switch to
another provider.

No standard applicable at all.
No standard yet in place, leading to
vendor-specific variants of the
expected standard.
Conformance testing not always
enough in practice.

E
A

I

Existing information systems,
practically impossible to rewrite or
replace systems.

Information consistent and
easily accessible.
EAI more cost-efficient than
building pair-wise inte-
gration solutions.

Expensive, requires long-term
commitment.
Does not address integration between
enterprises.
Integration problems remain at a
higher level.

6. Discussion
Table 1 summarizes the contexts, expected

benefits, and drawbacks (from the point of view
of the integrator) for each of the presented
approaches separately. As hinted at in the
introduction, these fields may overlap in practice
(there may e.g. be EAI solutions using
commercial components with standard interfaces,
if several of the contexts of the table apply to a
given situation).

6.1 Case Study – Challenging Existing
Approaches

We have participated in an industrial
integration project that does not seem to fit in any
of the presented approaches. Here, we present the
case very briefly, focusing on what is relevant for
the present paper; please refer to [43] for details.
A company merger led to a wish to integrate three
of the software tools of the previous two
organizations, products that overlapped
functionally. These systems were completely
owned and controlled by the integrating
organization.

The desired effects of integrating the systems
were several. There was a desire to have only one
product to market as well as to use internally,
which should contain the best from each of the
existing systems. Also, there was a hope that an
integrated system would be less costly to
maintain and evolve than the existing separate
systems.

Considering the contexts and expected
benefits in Table 1, none of the existing
integration approaches seems entirely suitable.
The situation reminds of a component-based
approach in that the future system would be built
by existing parts. However, although the systems
were modularized, only one was componentized
in the sense “supported by a component
technology”. If the systems in the case study were
first componentized, there would be duplicate
components with similar functionality and the
situation would remind of an EAI context,
although in a smaller scale. As all software were
developed and used internally, the case reminds
somewhat of a product line approach. However,
there would only be one system; there was no

payoff in creating general and reusable
components. Using standard interfaces would be
necessary only if the system was to be
interoperable with other systems from other
vendors, which was not the case. The context was
not totally unlike EAI, since there was a
possibility to not modify source code, although it
was available, and instead wrap the systems. EAI
was not explicitly considered mainly because the
approach was not known. Even if it was, it seems
unlikely it would be chosen since it would not
achieve all of the integration goals: such a loose
integration would give some benefits to the users
such as data consistency, but not a homogeneous
user interface. The integrated system would
arguably be more difficult to maintain than some
other type of integration since even more program
code and technologies would be added. Also, it
appears that EAI would require too much in terms
of commitment and investments compared to
what would be gained.

Some of the techniques of EAI and
component-based software were considered
though, most notably the idea of wrapping some
existing parts of one system and treat them as
Java components in the other.

6.2 Solutions Discussed
Instead of suggesting solutions adhering

completely to any of the existing approaches, the
following integration solutions were the main
topics of analysis and discussion in the case
study:
• Data level integration. This solution would

mean keeping the applications separate but
consolidating their data models and put all
data in a common database. This would keep
all data accessible and consistent, i.e.
improve usability, but not necessarily make
maintenance easier. The integration would
also be fairly costly, since consolidating the
data models (ontologies) would result in
ripple effects throughout the program logic of
the systems. This reminds both of a
component-based approach and of EAI, but
the database structure and some source code
would be modified to minimize duplication of
data and functionality.

• Code level integration. This would mean
integrating the systems “component by
component” and merge the “best” parts (with
most functionality and highest quality) of the
source code of the existing systems. This
would give the users the most homogeneous
system as well as be the easiest to maintain.
The drawback is the commitment and
resources required to integrate systems on
time, which imposes a major risk. This
alternative utilizes the fact that it is possible
to modify the source code to the fullest
extent, something the surveyed approaches do
not.

• Extending one system. There was also the
alternative of basing all future development
on one of the systems. The resulting system
would arguably have a homogeneous user
interface and be relatively simple to maintain.
One drawback is that functionality is
rewritten, implying a high cost that is difficult
to motivate. Also, the organization must be
committed to a long term strategy for how to
discontinue and retire the other systems. This
became the final decision (made after the
previous publication of the case study [43]).

Although these proposed solutions are not
entirely new, research is needed to explore and
describe the benefits and drawbacks of these (and
more) in the context of the case study, i.e. when
there is a wish to merge existing software systems
into one product.

7. Summary and Conclusions
This paper analyzed three large fields of

practice and research from a software integration
perspective: component-based software,
standards and open systems, and Enterprise
Application Integration (EAI). An industrial
integration project was presented where none of
the existing integration approaches were
considered suitable. Total ownership over the
systems to be integrated gives more possibilities
than the existing approaches takes into account,
and other solutions may be more suitable for the
new needs.

Challenges for the future include finding
more cases in a similar context and investigating

what integration solutions are considered and
chosen, and during which circumstances.

7.1 Acknowledgements
Many thanks to Imad Eldin Ali Abugessaisa,

Igor Cavrak, Goran Mustapic, Johan Schubert,
and the anonymous reviewers for their valuable
comments on this paper.

8. References
 [1] Aiken P. H., Data Reverse Engineering : Slaying the

Legacy Dragon, ISBN 0-07-000748-9, McGraw Hill,
1996.

 [2] Anderson K. M., Och C., King R., and Osborne R.
M., “Integrating Infrastructure: Enabling Large-Scale
Client Integration”, In Proceedings of eleventh ACM
Conference on Hypertext and Hypermedia, pp. 57-
66, ACM Press, 2000.

 [3] Anderson K. M. and Sherba S. A., “Using XML to
support Information Integration”, In Proceedings of
International Workshop on XML Technologies and
Software Engineering (XSE), IEEE, 2001.

 [4] ANSI, ANSI, American National Standards Institute,
http://www.ansi.org, 2004.

 [5] Bachman F., Bass L., Buhman S., Comella-Dorda S.,
Long F., Seacord R. C., and Wallnau K. C., Volume
II: Technical Concepts of Component-Based
Software Engineering, report CMU/SEI-2000-TR-
008, Software Engineering Institute, Carnegie
Mellon University, 2000.

 [6] Bass L., Clements P., and Kazman R., Software
Architecture in Practice (2nd edition), ISBN 0-321-
15495-9, Addison-Wesley, 2003.

 [7] Box D., Essential COM, ISBN 0-201-63446-5,
Addison-Wesley, 1998.

 [8] Brady J., Monk E., and Wagner B., Concepts in
Enterprise Resource Planning, ISBN 0619015934,
Course Technology, 2001.

 [9] Bratthall L. G., van der Geest R., Hofmann H.,
Jellum E., Korendo Z., Martinez R., Orkisz M.,
Zeidler C., and Andersson J. S., “Integrating
Hundred's of Products through One Architecture: the
Industrial IT architecture”, In Proceedings of the
24th International Conference on Software
Engineering, pp. 604-614, ACM, 2002.

 [10] Britton C. and Bye P., IT Architectures and
Middleware: Strategies for Building Large,
Integrated Systems (2nd edition), ISBN 0321246942,
Pearson Education, 2004.

 [11] Brodie M. L. and Stonebraker M., Migrating Legacy
Systems: Gateways, Interfaces & the Incremental
Approach, Morgan Kaufmann Series in Data
Management Systems, ISBN 1558603301, Morgan
Kaufmann, 1995.

 [12] Bub T. and Schwinn J., “VERBMOBIL: The
Evolution of a Complex Large Speech-to-Speech
Translation System”, In Proceedings of Fourth
International Conference on Spoken Language
(ICSLP), pp. 2371-2374, IEEE, 1996.

 [13] Burrough P. A. and McDonnell R., Principles of
Geographical Information Systems (2nd edition),
ISBN 0198233655, Oxford University Press, 1998.

 [14] Bushmann F., Meunier R., Rohnert H., Sommerlad
P., and Stal M., Pattern-Oriented Software
Architecture - A System of Patterns, ISBN 0-471-
95869-7, John Wiley & Sons, 1996.

 [15] Chester T. M., “Cross-Platform Integration with
XML and SOAP”, In IT Professional, volume 3,
issue 5, pp. 26-34, 2001.

 [16] Clements P. and Northrop L., Software Product
Lines: Practices and Patterns, ISBN 0-201-70332-7,
Addison-Wesley, 2001.

 [17] Clément G., Larouche C., Gouin D., Morin P., and
Kucera H., “OGDI: Toward Interoperability among
Geospatial Databases”, In ACM SIGMOD Record,
volume 26, issue 3, pp. 108-, 1997.

 [18] Correia J. M. and Biscotti F., Forecast: AIM
Software, Worldwide, 2003-2008, Gartner, 2004.

 [19] Crnkovic I., Asklund U., and Persson-Dahlqvist A.,
Implementing and Integrating Product Data
Management and Software Configuration
Management, ISBN 1-58053-498-8, Artech House,
2003.

 [20] Crnkovic I. and Larsson M., Building Reliable
Component-Based Software Systems, ISBN 1-58053-
327-2, Artech House, 2002.

 [21] Cummins F. A., Enterprise Integration: An
Architecture for Enterprise Application and Systems
Integration, ISBN 0471400106, John Wiley & Sons,
2002.

 [22] Decker S., Melnik S., van Harmelen F., Fensel D.,
Klein M., Broekstra J., Erdmann M., and Horrocks I.,
“The Semantic Web: The Roles of XML and RDF”,
In IEEE Internet Computing, volume 4, issue 5, pp.
63-74, 2000.

 [23] Emmerich W., Ellmer E., and Fieglein H., “TIGRA -
An Architectural Style for Enterprise Application
Integration”, In Proceedings of 23rd International
Conference on Software Engineering, pp. 567-576,
IEEE, 2001.

 [24] Gamma E., Helm R., Johnson R., and Vlissidies J.,
Design Patterns - Elements of Reusable Object-
Oriented Software, ISBN 0-201-63361-2, Addison-
Wesley, 1995.

 [25] Garlan D., Allen R., and Ockerbloom J.,
“Architectural Mismatch: Why Reuse is so Hard”, In
IEEE Software, volume 12, issue 6, pp. 17-26, 1995.

 [26] Gorton I., Thurman D., and Thomson J., “Next
Generation Application Integration Challenges and
New Approaches”, In Proceedings of 27th Annual
International Computer Software and Applications
Conference (COMPSAC), pp. 585-590, IEEE, 2003.

 [27] Guarino N., Formal Ontology in Information
Systems, ISBN 9051993994, IOS Press, 1998.

 [28] Halsall F., Data Communications, Computer
Networks, and Open Systems (4th edition), ISBN
020142293X, Addison-Wesley, 1996.

 [29] Harold E. R. and Means W. S., XML in a Nutshell
(2nd edition), ISBN 0596002920, O'Reilly, 2004.

 [30] Hasselbring W., “Information System Integration”,
In Communications of the ACM, volume 43, issue 6,
pp. 33-38, 2000.

 [31] Heiler S., “Semantic Interoperability”, In ACM
Computing Surveys, volume 27, issue 2, pp. 271-273,
1995.

 [32] Hissam S. A., Moreno G. A., Stafford J., and
Wallnau K. C., Packaging Predictable Assembly
with Prediction-Enabled Component Technology,
report Technical report CMU/SEI-2001-TR-024
ESC-TR-2001-024, 2001.

 [33] Hunter J., “Enhancing the Semantic Interoperability
of Multimedia Through a Core Ontology”, In IEEE
Transactions on Circuits & Systems for Video
Technology, volume 13, issue 1, pp. 49-59, 2003.

 [34] IEEE, IEEE Standard Glossary of Software
Engineering Terminology, report IEEE Std 610.12-
1990, IEEE, 1990.

 [35] IEEE, IEEE, IEEE Standards Association Home
Page, http://standards.ieee.org/, 2004.

 [36] ISO, ISO, ISO - International Organization for
Standardization, http://www.iso.org, 2004.

 [37] Johansson E. and Höst M., “Tracking Degradation in
Software Product Lines through Measurement of
Design Rule Violations”, In Proceedings of 14th
International Conference in Software Engineering
and Knowledge Engineering (SEKE), ACM, 2002.

 [38] Johnson P., Enterprise Software System Integration -
An Architectural Perspective, Ph.D. Thesis,
Industrial Information and Control Systems, Royal
Institute of Technology, 2002.

 [39] Kaplan A., Ridgway J., and Wileden J. C., “Why
IDLs are Not Ideal”, In Proceedings of 9th
International Workshop on Software Specification
and Design, ACM, 1998.

 [40] Keshav R. and Gamble R., “Towards a Taxonomy of
Architecture Integration Strategies”, In Proceedings
of third International Workshop on Software
Architecture, pp. 89-92, ACM, 1998.

 [41] Kindrick J. D., Sauter J. A., and Matthews R. S.,
“Improving conformance and interoperability
testing”, In StandardView, volume 4, issue 1, 1996.

 [42] Kramer R. and Sesink L., “Framework for
Photographic Archives Interoperability”, In
Proceedings of The 3rd Conference on
Standardization and Innovation in Information
Technology, pp. 135-140, IEEE, 2003.

 [43] Land R., An Architectural Approach to Software
Evolution and Integration, Licentiate Thesis,
Department of Computer Science and Engineering,
Mälardalen University, 2003.

 [44] Larsson M., Applying Configuration Management
Techniques to Component-Based Systems, Licentiate
Thesis, Dissertation 2000-007, Department of
Information Technology Uppsala University., 2000.

 [45] Larsson M., Predicting Quality Attributes in
Component-based Software Systems, Ph.D. Thesis,
Mälardalen University, 2004.

 [46] Larsson M. and Crnkovic I., “New Challenges for
Configuration Management”, In Proceedings of 9th

Symposium on System Configuration Management,
Lecture Notes in Computer Science, nr 1675,
Springer Verlag, 1999.

 [47] Laudon K. C. and Laudon J. P., Management
Information Systems (8th edition), ISBN
0131014986, Pearson Education, 20030.

 [48] Le H. and Howlett C., “Client-Server
Communication Standards for Mathematical
Computation”, In Proceedings of International
Conference on Symbolic and Algebraic
Computation, pp. 299-306, ACM Press, 1999.

 [49] Leclercq E., Benslimane D., and Yétongnon K.,
“ISIS: A Semantic Mediation Model and an Agent
Based Architecture for GIS Interoperability”, In
Proceedings of International Symposium Database
Engineering and Applications (IDEAS), pp. 87-91,
IEEE, 1999.

 [50] Lee J., Siau K., and Hong S., “Enterprise Integration
with ERP and EAI”, In Communications of the ACM,
volume 46, issue 2, pp. 54-60, 2003.

 [51] Lehman M. M. and Ramil J. F., “Rules and Tools for
Software Evolution Planning and Management”, In
Annals of Software Engineering, volume 11, issue 1,
pp. 15-44, 2001.

 [52] Lehman M. M. and Ramil J. F., “Software Evolution
and Software Evolution Processes”, In Annals of
Software Engineering, volume 14, issue 1-4, pp.
275-309, 2002.

 [53] Li M., Puder A., and Schieferdecker I., “A Test
Framework for CORBA Interoperability”, In
Proceedings of Fifth IEEE International Enterprise
Distributed Object Computing Conference, pp. 152-
161, IEEE, 2001.

 [54] Libicki M., “Second-Best Practices for
Interoperability”, In StandardView, volume 4, issue
1, pp. 32-35, 1996.

 [55] Linthicum D. S., Enterprise Application Integration,
Addison-Wesley Information Technology Series,
ISBN 0201615835, Addison-Wesley, 1999.

 [56] Linthicum D. S., B2B Application Integration: e-
Business-Enable Your Enterprise, ISBN
0201709368, Addison-Wesley, 2003.

 [57] Longley P. A., Goodchild M. F., Maguire D. J., and
Rhind D. W., Geographic Information Systems and
Science, ISBN 0471892750, John Wiley & Sons,
2001.

 [58] Losavio F., Ortega D., and Perez M., “Modeling
EAI”, In Proceedings of 12th International
Conference of the Chilean Computer Science
Society, pp. 195-203, IEEE, 2002.

 [59] Mazen M. and Dibuz S., “Pragmatic method for
interoperability test suite derivation”, In Proceedings
of 24th Euromicro Conference, pp. 838-844, IEEE,
1998.

 [60] Medvidovic N., “On the Role of Middleware in
Architecture-Based Software Development”, In
Proceedings of the 14th international conference on
Software Engineering and Knowledge Engineering
(SEKE), pp. 299-306, ACM Press, 2002.

 [61] Meyers C. and Oberndorf P., Managing Software
Acquisition: Open Systems and COTS Products,
ISBN 0201704544, Addison-Wesley, 2001.

 [62] Meyers C. and Oberndorf T., Open Systems: The
Promises and the Pitfalls, ISBN 0-201-70454-4,
Addison-Wesley, 1997.

 [63] Monson-Haefel R., Enterprise JavaBeans (4th
edition), ISBN 059600530X, O'Reilly & Associates,
2004.

 [64] Newton H., Newton's Telecom Dictionary: Covering
Telecommunications, Networking, Information
Technology, Computing and the Internet (20th
edition), ISBN 1578203090, CMP Books, 2004.

 [65] O'Leary D. E., Enterprise Resource Planning
Systems: Systems, Life Cycle, Electronic Commerce,
and Risk (1st edition), ISBN 0521791529,
Cambridge University Press, 2000.

 [66] OGC, OGC, Open GIS Consortium, Inc.,
http://www.opengis.org/, 2004.

 [67] Omelayenko B., “Integration of Product Ontologies
for B2B Marketplaces: A Preview”, In ACM
SIGecom Exchanges, volume 2, issue 1, pp. 19-25,
2000.

 [68] OMG, The Open Group Architectural Framework,
URL: http://www.opengroup.org/architecture/togaf8-
doc/arch/, 2003.

 [69] Oreizy P., “Decentralized Software Evolution”, In
Proceedings of International Conference on the
Principles of Software Evolution (IWPSE 1), pp. 20-
21, 1998.

 [70] Paepcke A., Chang C.-C. K., Winograd T., and
García-Molina H., “Interoperability for digital
libraries worldwide”, In Communications of the
ACM, volume 41, issue 4, pp. 33-43, 1998.

 [71] Palsberg J., “Software Evolution and Integration”, In
ACM Computing Surveys, volume 28, issue 4es,
1996,
http://www.acm.org/pubs/citations/journals/surveys/1
996-28-4es/a200-palsberg/.

 [72] Parnas D. L., “Software Aging”, In Proceedings of
The 16th International Conference on Software
Engineering, pp. 279-287, IEEE Press, 1994.

 [73] Pinto H. S. and Martins J. P., “A Methodology for
Ontology Integration”, In Proceedings of
International Conference on Knowledge Capture,
pp. 131-138, ACM, 2001.

 [74] Pollock J. T., “The Big Issue: Interoperability vs.
Integration”, In eAI Journal, volume October, 2001,
http://www.eaijournal.com/.

 [75] Roman E., Mastering Enterprise JavaBeans and the
Java 2 Platform, Enterprise Edition, ISBN 0-471-
33229-1, Wiley, 1999.

 [76] Royster C., “DoD Strategy on Open Systems and
Interoperability”, In StandardView, volume 4, issue
2, pp. 104-106, 1996.

 [77] Ruh W. A., Maginnis F. X., and Brown W. J.,
Enterprise Application Integration, A Wiley Tech
Brief, ISBN 0471376418, John Wiley & Sons, 2000.

 [78] SAP, www.sap.com, SAP R/3, www.sap.com, 2003.

 [79] Sauer L. D., Clay R. L., and Armstrong R., “Meta-
component architecture for software
interoperability”, In Proceedings of International
Conference on Software Methods and Tools (SMT),
pp. 75-84, IEEE, 2000.

 [80] Schmidt D., Stal M., Rohnert H., and Buschmann F.,
Pattern-Oriented Software Architecture - Patterns
for Concurrent and Networked Objects, Wiley Series
in Software Design Patterns, ISBN 0-471-60695-2,
John Wiley & Sons Ltd., 2000.

 [81] SEI Software Technology Roadmap, Common Object
Request Broker Architecture, URL:
http://www.sei.cmu.edu/str/descriptions/corba_body.
html, 9-6-2004.

 [82] SEI Software Technology Roadmap, COTS and
Open Systems--An Overview, URL:
http://www.sei.cmu.edu/str/descriptions/cots.html, 9-
6-2004.

 [83] SEI Software Technology Roadmap, Reference
Models, Architectures, Implementations--An
Overview, URL:
http://www.sei.cmu.edu/str/descriptions/refmodels_b
ody.html, 9-6-2004.

 [84] Shanzhen Y., Lizhu Z., Chunxiao X., Qilun L., and
Yong Z., “Semantic and interoperable WebGIS”, In
Proceedings of the Second International Conference
on Web Information Systems Engineering, pp. 42-47,
IEEE, 2001.

 [85] Siegel J., CORBA 3 Fundamentals and
Programming (2nd edition), ISBN 0471295183,
John Wiley & Sons, 2000.

 [86] Stanford University, Stanford Annotated
Interoperability Bibliography, URL: www-
diglib.stanford.edu/diglib/pub/interopbib.html, 8-4-
2004.

 [87] Stonebraker M. and Hellerstein J. M., “Content
Integration for E-Business”, In ACM SIGMOD
Record, volume 30, issue 2, pp. 552-560, 2001.

 [88] Svahnberg M. and Bosch J., “Characterizing
Evolution in Product Line Architectures”, In
Proceedings of 3rd annual IASTED International
Conference on Software Engineering and
Applications, pp. 92-97, IASTED/Acta Press, 1999.

 [89] Svahnberg M. and Bosch J., “Issues Concerning
Variability in Software Product Lines”, In
Proceedings of Software Architectures for Product
Families: 7th International Workshop on Database
Programming Languages, DBPL'99, Revised Papers
(Lecture Notes in Computer Science 1951), Springer
Verlag, 2000.

 [90] Szyperski C., Component Software - Beyond Object-
Oriented Programming, ISBN 0-201-17888-5,
Addison-Wesley, 1998.

 [91] Teng W., Pollack N., Serafino G., Chiu L., and
Sweatman P., “GIS and Data Interoperability at the
NASA Goddard DAAC”, In Proceedings of

International Geoscience and Remote Sensing
Symposium (IGARSS), pp. 1953-1955, IEEE, 2001.

 [92] Thai T. and Lam H., .NET Framework Essentials
(2nd edition), O'Reilly Programming Series, ISBN
0596003021, O'Reilly & Associates, 2002.

 [93] van der Hoek A., Heimbigner D., and Wolf A. L.,
Versioned Software Architecture, 1998.

 [94] van der Hoek A., Heimbigner D., and Wolf A. L.,
Capturing Architectural Configurability: Variants,
Options, and Evolution, report Technical Report CU-
CS-895-99, 1999.

 [95] van Gurp J. and Bosch J., “Design Erosion: Problems
& Causes”, In Journal of Systems & Software,
volume 61, issue 2, pp. 105-119, 2002.

 [96] Visser U., Stuckenschmidt H., Schuster G., and
Vögele T., “Ontologies for Geographic Information
Processing”, In Computers & Geosciences, volume
28, issue 1, pp. 103-117, 2002.

 [97] Wallnau K. C., Hissam S. A., and Seacord R. C.,
Building Systems from Commercial Components,
ISBN 0-201-70064-6, Addison-Wesley, 2001.

 [98] Wegner P., “Interoperability”, In ACM Computing
Surveys, volume 28, issue 1, 1996.

 [99] Wileden J. C. and Kaplan A., “Software
Interoperability: Principles and Practice”, In
Proceedings of 21st International Conference on
Software Engineering, pp. 675-676, ACM, 1999.

 [100] Wileden J. C., Wolf A. L., Rosenblatt W. R., and
Tarr P. L., “Specification Level Interoperability”, In
Proceedings of 12th International Conference on
Software Engineering (ICSE), pp. 74-85, ACM,
1990.

 [101] Wooldridge M., Introduction to MultiAgent Systems,
ISBN 047149691X, John Wiley & Sons, 2002.

 [102] XML, XML.org, URL: http://www.xml.org/, 2004.
 [103] Yang J. and Papazoglou M. P., “Interoperation

Support for Electronic Business”, In
Communications of the ACM , volume 43, issue 6,
pp. 39-47, 2000.

 [104] Yau S. S. and Dong N., “Integration in component-
based software development using design patterns”,
In Proceedings of The 24th Annual International
Computer Software and Applications Conference
(COMPSAC), pp. 369-374, IEEE, 2000.

 [105] Young P., Chaki N., Berzins V., and Luqi,
“Evaluation of Middleware Architectures in
Achieving System Interoperability”, In Proceedings
of 14th IEEE International Workshop on Rapid
Systems Prototyping, pp. 108-116, IEEE, 2003.

 [106] Zachman J. A., “A Framework for Information
Systems Architecture”, In IBM Systems Journal,
volume 26, issue 3, 1987.

 [107] ZIFA, Zachman Framework for Enterprise
Architecture, URL: http://www.zifa.com/, 2003.

