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Abstract—Security attacks on sensor data can deceive a
control system and force the physical plant to reach an
unwanted and potentially dangerous state. Therefore, attack
detection mechanisms are employed in cyber-physical control
systems to detect ongoing attacks, the most prominent one
being a threshold-based anomaly detection method called
CUSUM. Literature defines the maximum impact of stealth
attacks on a plant as the maximum deviation in the plant’s
state an undetectable attack can introduce and formulates
it as the solution to an optimization problem. This paper
proposes an optimization-based attack with different satu-
ration models, and it investigates how the attack duration
significantly affects the impact of the attack on the state of
the control system. We show that more dangerous attacks
can be discovered when allowing saturation of the control
system actuators. The proposed approach is compared with
the geometric attack, showing how longer attack durations
can lead to a greater impact of the attack while keeping the
attack stealthy.

I. INTRODUCTION

Cyber-physical systems realize critical infrastructure
control (e.g., electric power, water resources), distributed
robotics (telepresence, telemedicine, automated manufac-
turing), healthcare systems, assisted living, environmen-
tal control, traffic control, advanced automotive systems,
unmanned vehicles, and more. Infamous cyber-attacks on
nuclear centrifuges (Stuxnet in 2010) and power networks
(Havex/Dragonfly in 2014) raised awareness on the vul-
nerability of control systems, and the risks for society.
According to Kaspersky Lab, 41.2% of factories were
attacked by malicious software at least once in the first
half of 2018. Hence, many different companies tried to
secure their industrial control systems [1], [2].

This led to the prominence of intrusion detection meth-
ods for cyber-physical systems [3], [4]. The detection
process is usually based on the concept of anomaly, and it
involves some form of verification through a model. A way
to detect anomalies is to verify the controller calculations
using redundancy, e.g., [5]. However, if sensors or actuators
are attacked, redundant execution is not enough to guaran-
tee detection, because the compromised component is not
the execution of the control software. To detect anomalies
at the interfaces (sensors and actuators), there is a need for
physics-based detection [6]. The anomaly detection strat-
egy, in this case, usually consists of comparing the signals
produced and consumed by sensors and actuators with a

physical system model, i.e., a digital twin that mimics the
behavior of the physical process. In control terms, this
component is often realized with a state estimator, that
determines the expected state of the system and compares
it with the state that is apparent via measurements. The
difference between the signals of physical plant and those
of the digital twin are called residuals. Due to the exis-
tence of unknown disturbances, model uncertainties, and
numeric approximation, the detection process is necessarily
probabilistic, and at run-time, a threshold is employed to
discriminate the null hypothesis (absence of attacks) from
the presence of an attack in progress.

Many researches on cyber-physical security use a state-
less anomaly detector based on the current residual e.g.,
[7], [8]. Other approaches investigate stateful approaches,
which sum up the residual, therefore, considering the
history of the residual signal. Usually, these systems result
in a Cumulative Sum (CUSUM)-based intrusion detection
method [9], [10], [11].

Attacks that take into account the presence of anomaly
detection strategies are called stealth, and they are designed
to remain undetected [12]. This work focuses precisely on
stealth sensor attacks or stealth attacks that consist of in-
jecting false measurements in sensors. Many stealth attack
functions have been experimented with [12]. However, the
literature usually does not take into account implementation
elements like the saturation of the control signal (i.e.,
physical limitations that prevent the control signal from
exceeding maximum values or being below prescribed
minimum values).

We devise a new optimisation-based method to deviate
as much as possible the state of the control plant from its
nominal value. An optimisation problem is solved once,
to produce a vector of sensor attack values that can be
injected into the system at every time step. We show that
the way actuators’ saturations are modeled can produce
significantly different results.

Related work: The literature explored simulated stealth
attacks, based on specific attack functions and empirically
evaluated the minimum time required to cause damage [13]
or the maximum impact that can be caused [12]. The
takeaway message is that an exponentially-shaped attack
on the sensors, also called geometric attack, is the most



effective attack function because it is capable of intro-
ducing the most significant deviation from the nominal
plant conditions. For example, stealth-by-design geometric
attacks have been applied to a robot [14]. In the works
mentioned above, there are two main limitations. First, the
definition of stealthiness for an attack is limited to physical
auto-regressive models, i.e., control systems that do not
employ a state estimator. Second, considering only specific
attack functions like the geometric attack may hinder more
dangerous unknown attack functions.

Recent works like Urbina et al. [15], Umsonst et al. [11],
and Teixeira et al. [7] avoid considering specific attack
functions and solve an optimization problem to obtain
the “worst case” stealth attack, i.e., the one delivering
maximum distance between the state and the setpoint (also
called maximal impact). The works mentioned above have
two major limitations. First, the proposed optimization
problem does not take actuators’ saturations into account.
Secondly, the attack duration is not considered a parameter
for an attack.

In this work, we show that one can discover more
dangerous attacks by using different actuators’ saturation
models. Moreover, we show that the duration of an attack is
crucial to determine more dangerous attacks. The attack we
propose addresses control systems with and without state
estimators and correctly handles control signal saturation.

The first work that took into account the limits of the
actuator is [16], where the authors propose to limit the
saturation thresholds to ensure that no attack can reach a
harmful state. While this is in principle a viable defense
against attacks, in our opinion the actuators’ limits are
imposed mostly by physical requirements (it is not possible
to further increase the flow rate of a liquid through a
pipe when the valves are already completely open), and
we consider their minimum and maximum values as a
parameter of the problem.

Contribution: This paper provides the following contri-
butions: (i) it shows that considering actuators’ saturations
is necessary for the definition of a meaningful attack,
(ii) it proposes an attack based on solving an optimization
problem that explicitly includes actuators limits, and it
compares two different ways of expressing the actuators’
saturations.

Outline: In Section II we present the model of the
control and the detection system, together with our assump-
tions. In Section III we present our attack and in Section IV
we evaluate its effectiveness. Finally, in Section V we
conclude the paper.

II. MODEL AND ASSUMPTIONS

A. Closed-loop: plant and controller

Consider a discrete-time feedback control system com-
posed of a physical plant and a controller, subject to
a “sensor attack” [17], [18]. The plant is sampled at
prescribed times, indicated with k ∈ Z. At every sampling
instant k, the controller receives a measurement ỹk of the
plant output yk, and produces an actuation signal uk, to

drive the future output towards a reference value wk, that
is passed to the controller as input. The value of the control
signal uk is saturated to belong to the interval [umin, umax]
due to physical limitations, generating ũk. Furthermore, we
denote with xk the (internal) state of the system at time
k. We assume that an attacker can tamper with the system
behavior by producing an attack signal ak that is added to
the actual measurement of the output,

ỹk = yk + ak. (1)

According to our threat model, an attacker forges ak to
divert the output yk of the system from its desired value
wk to reach a dangerous state.

We assume that the plant is linear, time-invariant, con-
trollable, and observable. The discrete-time dynamic equa-
tions of the plant under attack are

Plant =
{

xk+1 = Axk +B ũk

yk = C xk +D ũk
(2)

where A ∈ Rn, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, n is
the number of states, m is the number of inputs, and p is
the number of outputs.

The controller is a Linear Quadratic Regulator (LQR)
that is designed to stabilize the system, it employs a
Luenberger observer to produce an estimate x̂k of the state
of the plant at time k, and a state-feedback control law K
to drive the system toward wk. Specifically, the controller
equations are

Controller =


x̂k+1 = A x̂k +B ũk + L (ỹk − ŷk)

ŷk = C x̂k +D ũk

uk = −K (wk − ŷk)
ũk = sat (uk)

(3)
where x̂k and ŷk are respectively the estimated plant
state and output, and uk and ũk are the control signals
respectively produced by the controller and received by the
plant, due to saturation levels. The function sat(·), saturates
the control signal within the values [umin, umax].

B. Attack detection system

State-of-the-art defenses for control systems typically
include an Attack Detection System (ADS) that determines
whether an attack is occurring [19]. ADS usually employ
models of a system that, under the null hypothesis of
absence of attacks, receives the same input as the real
system, and produces as output a prediction of the system
output. The difference between the predicted output and the
real one (under the null hypothesis) is due to disturbances
like noise and model inaccuracies. If the null hypothesis is
false, however, the predicted system output diverges with
respect to the measured one, and the difference can be used
to detect an ongoing attack. Our controller already includes
an observer, that determines ŷk, see Eq. (3), which we can
reuse for attack detection.

Stateful ADS accumulate the difference between the
predicted output ŷk and the measured output ỹk over
multiple periods k, and fire an alert once the cumulative
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ỹ

w

ŷ ỹ
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Fig. 1. Control system, under sensor attack a, protected by an attack
detection system.

difference exceeds a specific threshold τ . Figure 1 shows
the closed-loop and detection system. Around each block,
in gray, we highlight specific block parameters and, in
parenthesis, internal block states.

We consider a CUSUM-based ADS in non-parametric
form [20], because this formulation can identify anomalies
without any a priori hypothesis about a particular attack
and attack function [13]. The equations for the detection
mechanisms are

Detection =


rk = ỹk − ŷk
zk = ∥rk∥
Sk = max (0, Sk−1 + zk − b)
S1 = 0

alarm = logic (Sk > τ)

(4)

where rk is the residual between the measured output ỹk
and the predicted output ŷk. Here, zk is a norm of the
residual and Sk is the nonparametric CUSUM statistic at
time k (initialized to zero).

Finally, b ∈ R is a small nonnegative constant, chosen
to implement a forgetting factor. A common choice is b =
d σ, where σ is the standard deviation of the output noise,
and d is a positive constant determining an arbitrary low
percentage of outliers when the attack signal a = 0 (e.g.,
≈ 0.3% when d = 2). For our purposes, we assume there
is no output noise and hence we select b = 0.

At run-time, an alarm is fired if Sk > τ . When this
happens, Sk+1 is set to 0 and the detection mechanism is
reinitialized.

C. State-of-the-art attacks

Cardenas et al. [13] define various (sensor) attack func-
tions. A surge attack is a constant signal, a bias attack is
a constantly increasing signal, and a geometric attack is
an exponentially increasing signal. Literature studies [13],
[21], [14], [22] report that the geometric attack is one
of the most effective, i.e., the one that provokes the
maximum state deviation. As a consequence, we compare
our proposed attack against geometric attacks. A geometric
attack consists of defining

ak = −β α1+h−k, k ∈ (1, 2, . . . , h) (5)

where α ∈ R, 0 < α < 1, determines the shape of
an exponential function, β ∈ R+ is a positive scaling
factor, and h is the duration of the attack. In the literature,
the geometric attack is performed on systems that do not
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Fig. 2. Variables influence unfolding two steps dynamics. The gray
background indicates purely physical quantities.

use a state estimator [13], and hence can be defined as
stealthy by construction. In this case, the attack consumes
exactly τ , independently of the values selected for α, β,
and h. However, this is not the case when a state estimator
is included in the controller. To properly compare our
proposed attack (Section III) with the best geometric attack,
we enforce stealthiness as a constraint in an optimization
problem and determine the optimal values for α and β
(and various values of h among which the optimal one)
with respect to the deviation provoked to the plant’s state
(see Section IV).

Works like [7] search for the maximum deviation from
a stealth attack through an optimization problem without
restricting to a particular function (like the geometric
attack). However, no works include an explicit model of
the actuators’ saturation in the optimization problem.

To the best of our knowledge, the literature selects the
attack duration of an attack h using thumb-rule criteria.

III. OPTIMIZATION-BASED ATTACK

In order to study the security of a control system, we
want to assess if at least one dangerous state is reachable
by a stealth attack, starting from the steady-state condition.
The state deviation is a map D : Rn×1 → R that expresses
how much the state x deviates from 0, defined as:

D (x) = ∥x∥22. (6)

We aim at performing a stealth attack, and ensuring that
the system state x reaches a deviation as large as possible
from the origin, i.e., the attack that maximizes Eq. (6),
while remaining undetected.

A. Optimization problems

Figure 2 shows in a graph the influences of an attack
ak for two steps of the dynamic evolution of the plant and
controller from Eqs. (2) and (3). For generality, we set up
the optimization problem for h steps (i.e., for the entire
attack duration).



We aim to find the maximal impact from a stealth
attack to sensors. Therefore we search for the attack with
duration h maximizing the state deviation with respect
to the setpoint. We assume that the attacker has prior
knowledge of the system matrices (A, B, C, D), the
controller parameters (L, K) and the ADS threshold (τ ).
Moreover, we assume that when the attack begins the state
is on the setpoint. The problem is formulated as:

maximize
(ak,...,ak+h)

D (xk+h) (7a)

subjected to:
xi+1 = Axi +B ũi i = k, . . . , k + h− 1

(7b)
yi = C xi +D ũi, i = k, . . . , k + h (7c)
ỹi = yi + ai, i = k, . . . , k + h (7d)
x̂i+1 = A x̂i + C ũi + L (ri) , i = k, . . . , k + h− 1

(7e)
ŷi = C x̂i +D ũi, i = k, . . . , k + h (7f)
ui = −K x̂i, i = k, . . . , k + h (7g)
ũi = sat(ui), i = k, . . . , k + h (7h)
ri = ỹi − ŷi, i = k, . . . , k + h (7i)
Si = Si−1 + ∥ri∥, i = k + 1, . . . , k + h (7j)
Sk = 0 (7k)
Sk+h = τ (7l)

where (7b)–(7c) are the plant equations, (7d) models the
sensor attack, (7e)–(7g) are the controller equations, (7h)
models the saturated control signal, and finally (7i)–(7l)
model the CUSUM dynamics, setting that the attack should
consume the whole available CUSUM, while remaining
stealthy. The solution of the optimization problem is the
optimal attack sequence [ak, . . . ak+h] of duration h, which
provides maximum final state deviation, see Eq. (10).

Eq. (7h) models the saturation of the system from
Eq. (3), but depending on how it is modeled, the resulting
attack can be more or less effective. In the following we
discuss two different ways to model the saturation in the
optimization problem:

1) Overflow-prevent (Opt-P) constraint:

umin ≤ ũi ≤ umax, i = k, . . . , k + h

ũi = ui, i = k, . . . , k + h
(8)

The constraint imposes that the attack vector
(ak, . . . ak+h) by construction ensures that u does not
exceed the saturation values (it prevents overflowing
the saturations). Such an approach is similar to the
way saturations are typically included in optimal
control problems, e.g., in Model Predictive Control
(MPC).

2) Overflow-allow (Opt-A) constraint:

ũk = max (min (uk, umax) , umin) , i = k, . . . , k + h
(9)

The constraint does not impose any constraint on u,
but it clamps ũ, i.e., the attack vector (ak, . . . ak+h)
may produce u which exceeds the actuators’ saturation
values umax and umin, but only their saturated value
is applied to the plant (it allows overflowing the
saturations).

For the geometric attack we solve the following opti-
mization problem (G-A):

maximize
α,β

D (xk+h) (10)

subjected to constraints (7b)–(7l), where (7h) is imple-
mented as in Equation (9), and the constraint:

ak = −β α1+h−k, i = k, . . . , k + h− 1

IV. EXPERIMENTAL RESULTS

This Section compares the numerical solutions for the
maximal impact when overflow-prevent and overflow-allow
constraints are employed. More specifically, we compare
the impact from Opt-A, Opt-P and the geometric attack
(G-A). Results show that the most dangerous attack is
discovered with Opt-A, and that both Opt-A and Opt-P
are more dangerous than G-A for the considered system.

The simulated plant (in continuous time) is the mass-
spring-damper system,

ẋ1 (t) = x2 (t)

ẋ2 (t) = −K
M x1 (t)− D

M x2 (t) +
1
M u (t)

y (t) = x1 (t) ,

(11)

with mass M = 1 kg, elastic constant K = 1N/m,
and damping D = 0.01Ns/m. The model is discretized
trough zero-order hold with sampling period Ts = 0.05 s.
The actuator limits are umax = 1, umin = −0.5. The
controller’s parameters obtained with a LQR optimization
are K = [2.015, 3.52], and L = [0.49, 1.06]⊤.

For the ADS we set τ = 10. We employ YALMIP
and Gurobi to solve the optimization problems defined in
Section III-A. For G-A we optimize Eq. (III-A) using the
Matlab function fmincon. As we are dealing with time-
invariant systems, we assume without the loss of generality
that an attack starts at k = 0, i.e., the last sample of an
attack is when k = h.

Effects of the attack duration.
Figure 3 shows on the top diagram the maximal impact

as the attack duration h varies, for the two optimization
problems Opt-A and Opt-P, and G-A. Each point in the
figures is the impact of the optimal attack sequence, given
h. For both Opt-A and Opt-P we iteratively increase h of
a fixed quantity h∆ = 50, and we use as a stop criteria
for h the condition [a0 · · · ah∆

] ≈ 0, because this means
that the attack becomes significant only after k = h∆ (i.e.,
the attack is delayed). We noticed that further increasing
h results in extremely long computation time without
significantly improving the solutions. The bottom diagram
of Figure 3 shows the computation time for Opt-A and
Opt-P (time to optimize G-A is negligible). We enforce
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h; (bottom) Time to found a solution on a 12 thread I7-8700K CPU.

a maximum computation time of 104 seconds for each
optimization problem, which is sufficient to render true
[a0 · · · ah∆ ] ≈ 0.

The results show that both Opt-A and Opt-P have a
monotonically increasing impact with the attack duration,
while G-A has a maximum when h = 60. The G-A has
been considered as one of the most effective attacks in the
literature [13], [21], [14], [22], and for a short duration
of attack (h < 60) its maximum impact is the same from
Opt-A and Opt-P. However, for longer attack duration, the
impact of G-A is orders of magnitude smaller than the one
from Opt-A and Opt-P. In particular, Opt-A provides the
overall greater maximal when h = 550. On the other hand,
Opt-P always performs worse than (or at most equal to) the
Opt-A. Therefore Opt-A is the preferable attack. In our
simulations, a difference in the maximal impact between
Opt-A and Opt-P manifests only if the attack duration is
long enough (i.e., h = 300).

Notice that Opt-A can outperform the Opt-P approach,
as we are considering a sensor attack (1), that can influ-
ence the observer dynamics directly (3). Decoupling the
constraint of ũ from u means that even x̂ and ŷ are not
constrained, yielding a higher degree of freedom to change
ŷ in a way that does not increase the CUSUM state, while
keep attacking the system.

Solutions from Opt-A and Opt-P.
Figure 4 shows the comparison of the results of two

optimization problems Opt-A and Opt-P with the highest
maximal impact (i.e., h = 550, corresponding to 27.5
seconds). Both Opt-A and Opt-P produces a quasi-periodic
signal on ũ having the same frequency of the resonance
frequency of the plant, i.e., 1.91 rad/s.

Figures 5 and 6 details the signals respectively from
Opt-A and Opt-P. The graphs of the control signal u and
ũ highlight how the choice of the saturation model of Opt-
A allows creating a value of u that manages to keep ỹ
and ŷ close to each other, without significantly increasing
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the CUSUM S. However, Opt-A produces instantaneous
increases of S (i.e., z) that are an order of magnitude
greater than Opt-P. Therefore, a stateless detector could
detect more easily an attack from Opt-A (e.g., in the
considered system, a stateless threshold of 1 detects the
attack of Opt-A at time 2.3s, while it cannot detect the
attack of Opt-P).
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V. CONCLUSION

In this paper, we present a novel formulation for a
maximum impact attack on a cyber-physical control sys-
tem. We show that parameters like attack duration and the
choice of how to implement actuator saturation are crucial
variables for determining the maximum impact of a stealth
sensor attack. In particular, we compare two optimization-
based approaches implementing the saturation function.
The optima could be found using trivial stop criteria, i.e.,
increasing the attack duration and stopping when no further
improvement is experienced.

We found out that allowing actuators’ saturation
(overflow-allow constraints and the corresponding Opt-A
problem) results in more dangerous attacks, as shown for a
mass-spring-damper system. The second way to implement
actuator saturation prevents attack signals to induce cor-
responding actuator commands that exceed the saturation
limits (overflow-prevent constraints and the corresponding
Opt-P problem). While Opt-P results in less dangerous
attacks, it produces attack sequences that could be harder
to detect using a stateless anomaly detection system. The
takeway messages is that security assessment of a control
system should be performed using the Opt-A model, while
the overall security can benefit by combining a stateful
ADS (like the CUSUM) with a stateless ADS.

REFERENCES

[1] A. Humayed, J. Lin, F. Li, and B. Luo, “Cyber-physical systems
security—a survey,” IEEE Internet of Things Journal, vol. 4, no. 6,
pp. 1802–1831, 2017.

[2] N. Tuptuk and S. Hailes, “Security of smart manufacturing systems,”
Journal of manufacturing systems, vol. 47, pp. 93–106, 2018.

[3] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey
of intrusion detection systems: techniques, datasets and challenges,”
Cybersecurity, vol. 2, no. 1, 2019.

[4] Y. Zacchia Lun, A. D’Innocenzo, F. Smarra, I. Malavolta, and M. D.
Di Benedetto, “State of the art of cyber-physical systems security:
An automatic control perspective,” Journal of Systems and Software,
vol. 149, pp. 174–216, 2019.

[5] E. Casalicchio and G. Gualandi, “Asimov: A self-protecting control
application for the smart factory,” Future Generation Computer
Systems, vol. 115, pp. 213–235, 2020.

[6] T. K. Das, S. Adepu, and J. Zhou, “Anomaly detection
in industrial control systems using logical analysis of data,”
Computers & Security, vol. 96, p. 101935, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404820302121

[7] A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, “A secure
control framework for resource-limited adversaries,” Automatica,
vol. 51, pp. 135–148, 2015.

[8] A. Teixeira, K. C. Sou, H. Sandberg, and K. H. Johansson, “Secure
control systems: A quantitative risk management approach,” IEEE
Control Systems Magazine, vol. 35, no. 1, pp. 24–45, 2015.

[9] M. Basseville and I. V. N. Nikiforov, Detection of abrupt changes:
theory and application. prentice Hall Englewood Cliffs, 1993, vol.
104.

[10] G. Carl, G. Kesidis, R. R. Brooks, and S. Rai, “Denial-of-service
attack-detection techniques,” IEEE Internet computing, vol. 10,
no. 1, pp. 82–89, 2006.

[11] D. Umsonst, H. Sandberg, and A. A. Cárdenas, “Security analysis
of control system anomaly detectors,” in 2017 American Control
Conference (ACC). IEEE, 2017, pp. 5500–5506.

[12] A. Teixeira, K. C. Sou, H. Sandberg, and K. H. Johansson, “Quan-
tifying cyber-security for networked control systems,” in Control of
cyber-physical systems. Springer, 2013, pp. 123–142.

[13] A. A. Cárdenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and
S. Sastry, “Attacks against process control systems: risk assessment,
detection, and response,” in ACM Symp. on Information, Computer
and Comm. Security, 2011, pp. 355–366.

[14] G. Sabaliauskaite, G. S. Ng, J. Ruths, and A. Mathur, “A compre-
hensive approach, and a case study, for conducting attack detection
experiments in cyber–physical systems,” Robotics and Autonomous
Systems, vol. 98, pp. 174–191, 2017.

[15] D. I. Urbina, J. A. Giraldo, A. A. Cardenas, N. O. Tippenhauer,
J. Valente, M. Faisal, J. Ruths, R. Candell, and H. Sandberg, “Lim-
iting the impact of stealthy attacks on industrial control systems,” in
ACM SIGSAC Conf. on Computer and Comm. Security, 2016, pp.
1092–1105.

[16] J. Giraldo, S. H. Kafash, J. Ruths, and A. A. Cardenas, “Daria:
Designing actuators to resist arbitrary attacks against cyber-physical
systems,” in IEEE European Symp. on Security and Privacy (IEEE
Euro S&P), 2020.

[17] N. Hashemi, C. Murguia, and J. Ruths, “A comparison of stealthy
sensor attacks on control systems,” in American Control Conf.
(ACC), 2018, pp. 973–979.
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