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Abstract

The MPEG-2 standard for video coding is predominant in consumer
electronics for DVD players, digital satellite receivers, and TVs today.
MPEG-2 processing puts high demands on audio/video quality, which is
achieved by continuous and synchronized playout without interrupts. At
the same time, there are restrictions on the storage media, e.g.., limited
size of a DVD disc, communication media, e.g., limited bandwidth of
the Internet, display devices, e.g., the processing power, memory and
battery life of pocket PCs or video mobile phones, and finally the users,
i.e., humans ability of perceiving motion. If the available resources are
not sufficient to process a full-size MPEG-2 video, then video stream
adaptation must take place. However, this should be done carefully,
since in high quality devices, drops in perceived video quality are not
tolerated by consumers.

We propose real-time methods for resource reservation of MPEG-2
video stream processing and introduce flexible scheduling mechanisms
for video decoding. Our method is a mixed offline and online approach
for scheduling of periodic, aperiodic and sporadic tasks, based on slot
shifting. We use the offline part of slot shifting to eliminate all types
of complex task constraints before the runtime of the system. Then,
we propose an online guarantee algorithm for dealing with dynamically
arriving tasks. Aperiodic and sporadic tasks are incorporated into the
offline schedule by making use of the unused resources and leeways in
the schedule. Sporadic tasks are guaranteed offline for the worst-case
arrival patterns and scheduled online, where an online algorithm keeps
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track of arrivals of instances of sporadic tasks to reduce pessimism about
future sporadic arrivals and improve response times and acceptance of
firm aperiodic tasks. At runtime, our mechanism ensures feasible exe-
cution of tasks with complex constraints in the presence of additional
tasks or overloads.

We use the scheduling and resource reservation mechanism above
to flexibly process MPEG-2 video streams. First, we present results
from a study of realistic MPEG-2 video streams to analyze the valid-
ity of common assumptions for software decoding and identify a num-
ber of misconceptions. Then, we identify constraints imposed by frame
buffer handling and discuss their implications on the decoding architec-
ture and timing. Furthermore, we propose realistic timing constraints
demanded by high quality MPEG-2 software video decoding. Based on
these, we present a MPEG-2 video frame selection algorithm with focus
on high video quality perceived by the users, which fully utilize limited
resources. Given that not all frames in a stream can be processed, it
selects those which will provide the best picture quality while matching
the available resources, starting only such decoding, which is guaran-
teed to be completed. As a final result, we provide a real-time method
for flexible scheduling of media processing in resource constrained sys-
tem. Results from study based on realistic MPEG-2 video underline the
effectiveness of our approach.
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Chapter 1

Introduction

In a near future, most of the existing analog home entertainment de-
vices, such as TVs and VCRs, will be replaced by corresponding digital
products. In 2008, all analog television broadcasting in Sweden will be
replaced by digital signals that better utilize the communication media
and provide for a greater variety of TV channels and interactive services
that are not possible in the analog domain. Examples of other sources
of digital video and audio include DVDs, Video CDs, and Internet.

Compared to the analog domain, digital media introduces additional
and different requirements on the environment. At the same time, there
are restrictions on the communication and storage media, display de-
vices and users. In their original form, digital multimedia streams are
very big in size, while the storage and the communication media have
limited resources. Thus, media files must be compressed before being
stored on e.g., a DVD, or transmitted through a network, e.g., the In-
ternet. MPEG – Moving Picture Expert Group – is the most popular
compression technique for digital video and audio today. It defines a
group of standards for digital storage and distribution of video and au-
dio. Currently, the most used standard of the MPEG group is MPEG-2,
used in e.g., DVDs or digital satellite broadcasting.

Display devices are also restricted, e.g., with respect to processing
power, memory, and battery life. For instance, the processing power of

1
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hand held devices, such as pocket PCs or video mobile phones, is not
sufficient to play out a full-size video stream without impairing video
quality.

Additional requirements are imposed by the user, e.g., human’s abil-
ity of perceiving motion. An MPEG-2 movie is a stream of still images
displayed after each other fast enough that the human eye cannot no-
tice the delay between consecutive pictures, i.e., the stream is perceived
as motion. For example, a DVD movie is displayed on a TV set with
a rate of approximately 25 frames per second. This implies there are
40 milliseconds per picture available to read the picture from the disc,
decode its contents and display it on the screen. Delays in this process
may result in severe video quality degradation of the played stream.

Matching video processing requirements to system limitations

One way of matching some of the requirements imposed by process-
ing of MPEG-2 streams with the limitations of the target systems is to
use dedicated hardware solutions. However, dedicated hardware cannot
compensate for the limitations in the network bandwidth: in the case of
video streaming, it does not matter if there is enough processing power
to decode a full-size MPEG-2 video stream if there is not enough net-
work bandwidth available for its transmission. Besides, within the next
few years, MPEG-2 decoding will move from dedicated hardware to
software, for reasons of cost, rapid upgradeability, and configurability.
While being more flexible, software solutions are more irregular, since
video processing will compete for the CPU with other applications in
the system. Besides, cost-effective software media processing requires
a high average resource utilization, leading to instability upon worst-
case resource demands. Consequently, we need methods for decreasing
the load required by media applications in resource constrained systems.

There are three ways for compensating for limited resources for me-
dia processing: decrease bit rate of the stream, use degraded decoding
algorithm and frame skipping, as depicted in figure 1.1. Which methods
should be used depends on the situation. If the network bandwidth is
limited, the streaming server can replace the current stream with a lower
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Figure 1.1: MPEG-2 video stream adaptation under limited resources

bit rate alternative. If the processing power on the display device is an
issue, then downgraded decoding algorithm that uses less CPU power
can be used.

The third apprach is frame skipping. It means if not all video frames
in a MPEG-2 stream cannot be decoded due to limited resources, some
frames are not decoded and displayed, i.e., they skipped. Frame skip-
ping can be used in both cases above: it can take place both before send-
ing the stream on the network, if the network bandwidth is restricted, or
on the display device, if the processing power is limited.

In our work, we use the frame skipping approach with focus on high
video quality perceived by the users.
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Our approach

In this thesis, we propose a method for flexible scheduling of MPEG-2
video stream processing in resource constrained systems. We use real-
time methods for scheduling and resource reservation to fulfill the re-
quirements of software MPEG-2 video decoding.

In the first part of this thesis we present scheduling mechanisms for
integrated offline and online scheduling, which we later apply to flexible
processing of MPEG-2 video decoding. The scheduling methods pre-
sented here provide for easy access of the amount and the distribution of
available resources, needed to optimize the adaptation of video streams
upon limited resources. We show how to flexibly schedule mixed sets
of tasks, i.e., periodic, aperiodic and sporadic, with simple and complex
constraints by using an integrated offline and online approach. Offline
scheduling methods can resolve many specific constraints but at the ex-
pense of runtime flexibility, in particular inability to handle dynamically
arriving tasks. Online scheduling provides for flexibility, but it might in-
troduce a high overhead for resolving complex constraints, if even possi-
ble. Our method is a combined offline and online approach. We use the
offline part of slot shifting, introduced by Fohler [30], to eliminate all
types of complex constraints before the runtime of the system. Then we
propose a an online guarantee algorithm for dealing with dynamic tasks.
Aperiodic and sporadic tasks, are incorporated into the offline schedule
by making use of the unused resources and leeways in the schedule. At
runtime, our mechanism ensures feasible execution of tasks with com-
plex constraints in the presence of additional tasks or overloads.

In the second part of the thesis, we use the scheduling and avail-
able resource reservation mechanisms from the first part of the thesis
to flexibly schedule MPEG-2 video streams. First, we present results
from a study of realistic MPEG-2 video streams to analyze the validity
of common assumptions for software decoding and identify a number of
misconceptions. Then, we identify constraints imposed by frame buffer
handling and discuss their implications on decoding architecture and
timing. Furthermore, we propose realistic timing constraints demanded
by high quality MPEG-2 software video decoding. Based on these, we
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present a quality aware frame selection algorithm, to fully utilize limited
resources. Given that not all frames can be processed, it selects those
which will provide the best picture quality while matching the avail-
able resources, starting only such decoding, which is guaranteed to be
completed.

As a final result, we provide a real-time method for flexible schedul-
ing of media processing in resource constrained system. Results from
a study based on realistic MPEG-2 video underline the effectiveness of
our approach.

We start by giving a general description of real-time systems and
MPEG standard, followed by introduction to the two research areas and
finally their interaction.

1.1 Real-Time Systems Background

Real-time systems are computing systems in which meeting timing con-
straints is essential to correctness. Usually, real-time systems are used to
control or interact with a physical system, where timing constraints are
imposed by the environment. As a consequence, the correct behaviour
of these systems depends not only on the result of the computation but
also at which time the results are produced [55]. If the system delivers
the correct answer after a certain deadline, it can be regarded as having
failed.

Many applications are inherently of real-time nature; examples in-
clude aircraft and car control systems, chemical plants, automated fac-
tories, medical intensive care devices and numerous others. Most of
these systems interact directly or indirectly with electronic and mechan-
ical devices. Sensors provide information to the system about the state
of its external environment. For example, medical monitoring devices,
such as ECG, use sensors to monitor patient status. Air speed, attitude
and altitude sensors provide aircraft information for proper execution of
flight control plans etc.

Design of real-time systems must make sure that the system reacts
on external events in a timely way. The reaction may be a simple state
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change, such as switching from red to green light, or a complicated
control loop controlling many actuators simultaneously.

Real-time systems can be constructed out of sequential programs,
but are typically built of concurrent programs, called tasks. A typical
timing constraint on a real-time task is the deadline, i.e., the maximum
time interval within which the task must complete its execution. De-
pending on the consequences that may occur due to a missed deadline,
real-time systems are distinguished into two classes, hard and soft.

In hard real-time systems all task deadlines must be met, while in
soft real-time systems the deadlines are desirable but not necessary. In
hard real-time systems, late data is bad data. Soft real-time systems are
constrained only by average time constraints, e.g., handling input data
from the keyboard. In these systems, late data is still good data. Many
systems consist of both hard and soft real-time subsystems, and from
now on we will refer to them as mixed real-time systems.

1.1.1 Real-time scheduling

When a processor has to execute a set of concurrent tasks, the CPU has
to be assigned to the various tasks according to a predefined criterion,
called a scheduling policy. There is a great variety of algorithms pro-
posed for scheduling of real-time systems today. Here we give a brief
introduction to some most common classifications, which have been
adopted in our research.

Offline vs online

Real-time scheduling algorithms fall into two categories [26]: offline
and online scheduling.

In offline scheduling, the scheduler has complete knowledge of the
task set and its constraints, such as deadlines, computation times, prece-
dence constraints, etc. Scheduling decisions are based on fixed param-
eters, assigned to tasks before their activation. The offline guaranteed
schedule is stored and dispatched later during runtime of the system. Of-
fline scheduling is also referred as static or pre-runtime or table-driven
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scheduling.
On the other hand, online scheduling algorithms make their schedul-

ing decisions at run-time. All active tasks are reordered every time a
new task enters the system or a new event occurs. Online schedulers are
flexible and adaptive, but they can incur significant overheads because
of run-time processing. Besides, online scheduling algorithms do not
need to have the complete knowledge of the task set or its timing con-
straints. For example, an external event that arrives at the runtime of
the system: we need to deal with it upon its arrival. Scheduling deci-
sions are based on dynamic parameters that may change during system
evolution. Online scheduling is often referred to as dynamic or runtime
scheduling.

Event-trigged vs time-trigged

There are two fundamentally different principles of how to control the
activity of a real-time system, event-trigged and time-trigged.

In event-trigged systems all activities are carried out in response to
relevant events external to the system. When a significant event in the
outside world happens, it is detected by some sensor, which then causes
the attached device (CPU) to get an interrupt. For soft real-time sys-
tems with lots of computing power to spare, this approach is simple,
and works well. A problem with event-trigged systems is that they can
fail under conditions of heavy load, i.e., when many events are happen-
ing at once. As an example of an event-trigged system we can mention
the SPRING system [52], which applies an online guarantee algorithm
with complex task models in distributed environments.

In a time-trigged system, all activities are carried out at certain points
in time known a priori. Accordingly, all nodes in time-trigged systems
have a common notion of time, based on approximately synchronized
clocks. One of the most important advantages of time-trigged control
are predictable temporal behaviour of the system, which eases system
validation and verification considerably. An example of a time-trigged
system is the MARS system [20].

In summary, event-triggered designs give faster response at low load
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but more overhead and chance of failure at high load. This approach is
most suitable for dynamic environments, where dynamic activities can
arrive at any time. Time triggered systems have the opposite properties
and are suitable in relatively static environment in which a great deal is
known about the system behaviour in advance.

We will show in this work how event-triggered methods can be com-
bined with time-triggered systems to provide for efficient inclusion of
dynamic activities, in particular sporadic ones.

Resource sufficient vs resource constrained

Scheduling can be further divided into scheduling algorithms that work
in resource sufficient and those that work into resource constrained en-
vironments [53], i.e., in overload situations.

A real-time system with enough resources is a system in which we
always can guarantee that all functions in the system will be able to per-
form in time, i.e., before their deadlines. In these systems, the CPU will
never get overloaded, since those systems are designed for the worst-
case scenario (peak load). In resource sufficient environments, even
though tasks arrive dynamically, at any given time all tasks are schedu-
lable. Examples include ABS brake systems, flight control systems, etc.,
i.e., safety-critical systems.

On the other hand, in resource constrained systems, there will be
occasions when we cannot guarantee that all functions will make it in
time. One example is a telephone switch system which is designed for
the average case load. In most of the cases the telephone switch system
works well: when we call somebody, we usually get the dial tone right
away, but when we try to dial on the New Year’s Eve, when all other
people try to call at the same time, the system might not be able to
connect our call (or we need to wait for some time).

Preemptive vs non-preemptive

Preemption is an operation of the kernel that interrupts the currently
executing task and assigns the processor to a more urgent task ready to
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execute. Both offline and online scheduling can be either preemptive or
non-preemptive. Preemption increases the schedulability of the system
while non-preemtion gives an automatic mutual exclusion for access of
shared resources. Most of the scheduling algorithms are preemptive.

Heuristic vs optimal

An scheduling algorithm is said to be optimal if it minimizes some given
cost function defined over the task set. On the other hand, if an algorithm
tends toward but does not guarantee to find the optimal schedule is said
to be heuristic.

1.1.2 System model

Real-time systems span a large part of computer industry. So far most of
the real-time systems research has been mostly confined to single node
systems and mainly for single-processor scheduling. This needs to be
extended for multiple resources and distributed nodes. In our work, we
consider a distributed system, i.e., one that consist of several processing
and communication nodes [54]. We assume a discrete time model [40].
Time ticks are counted globally, by a synchronized clock with granular-
ity of slot length. Slots have uniform length and start and end at the
same time for all nodes in the system. Task periods and deadlines must
be multiples of the slot length.

1.1.3 Task model

Real-time systems react on events that can be predictable (e.g., sampling
of pulses generated by a pulse generator) or unpredictable (e.g., inter-
rupts). Obviously, we need different task models for different types of
events. There are three major types for real-time tasks:

Periodic Tasks

There are several definitions of periodic tasks. The most common one,
that has also been adopted in our work, is that a periodic task consist of
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an infinite sequence of identical activities, called instances, that are in-
voked within regular time periods. Periodic tasks are commonly found
in applications such as avionics and process control where accurate con-
trol requires continual sampling and processing data. We also refer to
periodic tasks as static, which indicates their exclusive treatment by the
offline scheduler.

Aperiodic Tasks

A type of task that consist of a sequence of identical instances, activated
at irregular intervals. Events that triggers an aperiodic task may occur
at any time, e.g., a device generates interrupts, an operator presses the
emergency button, alarms, etc. In general, aperiodic tasks are viewed as
being activated randomly.

Furthermore, aperiodic tasks can be hard, soft and firm. Hard aperi-
odic tasks have stringent timing constraint that must be met, while soft
aperiodic do not have deadlines at all. A firm aperiodic task has a dead-
line that must be met once the task is guaranteed online. The difference
between firm and hard aperiodic tasks is that hard tasks are guaranteed
offline, while firm tasks are guaranteed online, upon their arrival. They
can also be rejected by the guarantee algorithm used.

Sporadic Tasks

Sporadic tasks [45] are introduced to model external events, such as a
emergency button being pushed or a train crossing a sensor. However,
the interval between successive events is imposed by the environment,
i.e., events arrive at the system at arbitrary points in time, but with de-
fined maximum frequency. They are invoked repeatedly with a (non-
zero) lower bound on the duration between consecutive occurrences of
the same event. Therefore, each sporadic task will be invoked repeat-
edly with a lower bound on the interval between consecutive invocations
i.e., minimum inter-arrival time between two consecutive invocations.

In other words, a sporadic task is a dynamic type of task charac-
terized by a minimum inter-arrival time (mint) between consecutive in-
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stances. After the minimum inter-arrival time has elapsed, the next in-
stance can get activated at any time – we do not know when.

In the study of mixed real-time systems, it is a common model that
periodic tasks are hard and therefore deterministic, while aperiodic tasks
are soft or firm. Sporadic tasks, on the other hand, provide enough
knowledge to assess their timing. They can therefore be required to
be hard.

1.1.4 Simple and complex constraints

We distinguish between simple constraints, i.e., period, start-time, and
deadline, for the earliest deadline first scheduling model [23], and com-
plex constraints. We refer to such relations or attributes of tasks as com-
plex constraints, which cannot be expressed directly in the earliest dead-
line first scheduling model using period, start-time, and deadline. In
most of the cases, offline transformations are needed to schedule these
at runtime (some can be resolved online at the cost of the higher over-
head). Here are some examples of complex constraints:

• Synchronization – Execution sequences, such as sampling - com-
puting - actuating require a precedence order of task execution.

• Jitter – The execution start or end of certain tasks, e.g., sampling
or actuating in control systems, is constrained by maximum vari-
ations.

• Non-periodic execution – Non-periodic constraints, such as some
forms of jitter, require instances of tasks to be separated by non
constant length intervals. Similar reasoning applies to constraints
over more than one instance of a task, e.g., for iterations, data
history or ages. A constraint can be of the type “separate the
execution of instance i and i + 4 by no more than max and no
less than min”.
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• Non-temporal constraints – Demands for reliability, performance,
or other system parameters impose demands on tasks from a sys-
tem perspective, e.g., to not allocate two tasks to the same node,
or, e.g., to have minimum separation times, etc.

• Application specific constraints – Applications may have demands
specific to their nature. Duplicated messages on a bus in an au-
tomotive environment, for example, may need to follow a cer-
tain pattern due to interferences such as EMI. Wiring can have
length limitations, imposing allocation of certain tasks to nodes
according to their geographical positions. An engineer may want
to improve schedules, creating constraints reflecting his practical
experience.

1.2 Overview of PART I: Efficient Scheduling of
Mixed Task Sets with Complex Constraints

The design of safety-critical real-time systems has to put focus on de-
mands for predictability, flexibility, and reliability. If we have an ap-
plication with completely known characteristics, we can achieve pre-
dictable behaviour of the system, e.g., linear and angular position sen-
sors that read a robot’s arm position every 20 ms and adjust it via stepper
motors. On the other hand, many external events are not predictable, for
example, an external stimulus such as pressing a button. Systems must
react to these sporadic events when they occur rather than when it might
be convenient. By taking care of them we introduce flexibility to the
systems.

As a first part of this thesis, we provide mechanisms to handle un-
predictable, dynamic events together with predictable ones. We present
a combined offline and online approach to deal with a combination of
mixed sets of tasks and constraints: periodic tasks with complex and
simple constraints, soft and firm aperiodic tasks, and in particular spo-
radic tasks.
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1.2.1 Related work

A variety of algorithms have been presented to handle periodic and dy-
namically arriving tasks. Here we restrict ourselves to work most sig-
nificant for our own work.

Aperiodic task handling

One common method to handle aperiodic task is the server-based ap-
proach. Dynamic arrivals are given access to the resources reserved for
a so called server task. If an aperiodic task arrives it executes with the
resources of the server task. If no dynamic task is demanding execution,
the server task will not execute.

Handling of firm aperiodic requests using a Total Bandwidth Server
has been presented in [51]. Online guarantees of aperiodic tasks in firm
periodic environments, where tasks can skip some instances, have been
described in [16].

The Deferrable Server [42] algorithm is a method to improve the
average response times of aperiodic tasks with respect to polling service.

Sporadic server [50] algorithm allows to enhance the average re-
sponse time of aperiodic tasks without degrading the utilization bound
of periodic tasks. It aims at the shortest response time in the presence of
hard real time periodic tasks executing on a fixed priority basis.

Example algorithms for the selection of tasks to reject in overload
situations have been discussed in [14], [41], [7], [3]. These algorithms
assume control over all tasks in the system and do not take into account
the impact of offline scheduled tasks.

Sporadic task handling

There are two major techniques to handle sporadic tasks. One is to
assume maximum arrival frequency and fit them in the periodic frame-
work. The other one is to always be prepared for their unknown arrival
times by performing an offline schedulability test for their worst-case
arrival scenario.
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In [45] sporadic tasks are fitted into the periodic framework by trans-
forming them into pseudo-periodic tasks. A set of rules are applied to
derive the deadline and period of a sporadic task to fulfill the required
timing.

An online algorithm for scheduling sporadic tasks with shared re-
sources in hard real-time systems has been presented in [38]. Schedul-
ing of sporadic requests with periodic tasks on an earliest-deadline-first
(EDF) basis has been presented in [59].

A schedulability test for sporadic tasks on single processors has been
presented in [8]. Necessary and sufficient conditions are derived for a
sporadic task set to be feasible.

An offline guarantee algorithm for sporadic tasks based on band-
width reservation has been presented in [15] for single processor sys-
tems.

Complex timing constraints handling

An algorithm for the transformation of precedence constraints on sin-
gle processor to suit the EDF scheduling model has been presented in
[19]. However, many industrial applications require allocation of tasks
with precedence constraints on different nodes, i.e., a distributed system
with internode communication. The transformation of precedence con-
straints with an end-to-end deadline in this case requires subtask dead-
line assignment to create execution windows on the individual nodes so
that precedence is fulfilled, e.g., [24].

A schedulability analysis for pairs of tasks communicating via a net-
work instead of decomposition has been presented in [60].

In [68] static scheduling is discussed as a general technique for solv-
ing the problem of satisfying complex timing constraints in hard real-
time systems. The conclusion is that pre-run-time scheduling is essen-
tial to meeting such constraints in large systems.

The application of standard timing constraints, such as deadlines
and periods, can sometimes overconstrain specifications. One way to
overcome this is to use dynamic timing constraints with a feasibility
function describing temporal requirements instead of providing concrete
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constraints such as periods and deadlines. A method that shows how dy-
namic timing constraints can be used instead with standard scheduling
algorithms has been presented in [30].

Combined offline and online scheduling

The slot shifting algorithm to combine offline and online scheduling
was presented in [28]. It focuses on inserting aperiodic tasks into of-
fline schedules by modifying the runtime representation of available re-
sources. The use of information about the amount and distribution of
unused resources for non-periodic activities is similar to the basic idea
of slack stealing [58], [21] which applies to fixed priority scheduling.
Slot shifting does not provide for easy removal of guaranteed tasks. Be-
sides, while appropriate for including sequences of aperiodic tasks, the
overhead for sporadic task handling becomes too high.

A similar approach for combined offline and online scheduling has
been recently proposed in [65, 64, 63]. It creates a generalized offline
pre-schedule for a set of time-trigged tasks, with some slack left for
eventual event-driven workload competing for resources. The differ-
ence between this method and the slot shifting is that slot shifting does
a reactive approach, i.e., taking an existing offline schedule and try-
ing to accommodate aperiodic and sporadic tasks, while pre-scheduling
approach is proactive, i.e., it makes a schedule that can fit the aperiod-
ics and sporadics later on. Besides, this approach is aimed for single
processor and independent tasks, whereas slot shifting can be used in
distributed real-time systems, with inter-node communication and not
independent tasks.

1.2.2 Motivation

The methods for handling dynamic tasks described above can generally
be classified as latest start time methods, since they all share the charac-
teristic of postponing the execution of hard tasks in order to give more
resources to the soft tasks. Normally, as long as all guaranteed tasks
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meet their deadlines, it does not matter if they complete their execution
in advance of their deadline or just before it.

However, these methods concentrate most on particular types of
constraints. As mentioned before, a real-time system might need to ful-
fill some complex constraints, in addition to basic temporal constraints
of tasks, such as periods, start-times and deadlines. Those complex con-
straints can not be expressed as generally as the simple ones. Adding
complex constraints to a chosen scheduling strategy increases schedul-
ing overhead [69] or requires new, specific schedulability tests which
may have to be developed.

Constraints such as some forms of jitter, e.g., for feedback loop de-
lay in control systems [61], require instances of tasks to be separated
by non-constant length intervals. In order to fit these constraints into
the periodic task model, it can easily happen that we end up with an
over-constrained specification. At the same time, algorithms are com-
putationally expensive [6].

Besides, most of the existing methods for handling sporadic tasks
perform only an online acceptance test, which introduces extra overhead
to the system. When a set of sporadic tasks arrives at runtime, a sched-
uler performs an acceptance test. The test succeeds if each sporadic task
in the set can be scheduled to meet its deadline, without causing any
previously guaranteed tasks to miss its deadline, else it is rejected. A
disadvantage with this approach is that if the set has been rejected, it is
too late for countermeasures.

1.2.3 Approach

Dynamically arriving tasks cannot be fitted into a fixed periodic frame-
work, i.e., their handling has to be prepared explicitly for unknown oc-
currence times. Offline schedules will generally not be tight, i.e., there
will be times where resources are unused. In this work we try to ef-
ficiently reclaim those resources, and use it for dynamic arrivals, i.e.,
aperiodic and sporadic tasks.

Our method provides an offline schedulability test for sporadic tasks,
based on slot shifting [28]. It constructs a worst case scenario for the ar-
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rival of the sporadic task set and tries to guarantee it on the top of the of-
fline schedule. The guarantee algorithm is applied at selected slots only.
At runtime, it uses the slot shifting mechanisms to feasibly schedule
sporadic tasks in union with the offline scheduled periodic tasks, while
allowing resources to be reclaimed for aperiodic tasks. Since the major
part of preparations is performed offline, the involved online mecha-
nisms are simple. Furthermore, the reuse of resources allows for high
resource utilization.

As a final result of this work, we provide algorithms to deal with
a combination of mixed sets of tasks and constraints: periodic tasks
with complex and simple constraints, soft and firm aperiodic, and in
particular sporadic tasks. Instead of providing algorithms tailored for a
specific set of constraints, we propose an EDF based runtime algorithm,
and the use of an offline scheduler for complexity reduction to transform
complex constraints into the EDF model. At runtime, an extension to
EDF, two level EDF, ensures feasible execution of tasks with complex
constraints in the presence of additional tasks or overloads.

Combined offline and online Scheduling

Offline scheduling methods can accommodate many specific constraints
but at the expense of runtime flexibility, in particular inability to handle
dynamic activities such as aperiodic and sporadic tasks. Consequently, a
designer given an application composed of mixed tasks and constraints
has to choose which constraints to focus on in the selection of schedul-
ing algorithm; others have to be accommodated as well as possible. If
we only use online scheduling, then we might introduce high overhead
for resolving complex constraints, or, in the worst case, we cannot re-
solve them at all.

Our method is a combined offline and online approach: it integrates
offline, time-trigged scheduling and dynamic, event-trigged scheduling.
We use slot shifting to eliminate all types of complex constraints be-
fore the runtime of the system. They are transformed into a simple
EDF model, i.e., periodic tasks with start times and deadlines. Dynamic
activities, i.e., aperiodic and sporadic tasks, are incorporated into of-
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fline schedule by making use of the unused resources and leeways in the
schedule.

We assume a resource restricted environment, where dynamic ac-
tivities have to be guaranteed to fit into the offline schedule, without
affecting any of previously scheduled or guaranteed activities. We pro-
vide both offline and online mechanisms for dealing with such a priori
unknown activities.

The method requires a small runtime data structure, simple run-
time mechanisms, going through a list with increments and decrements,
provides O(N) acceptance tests, N being the number of aperiodic in-
stances, and facilitates changes in the set of tasks, for example to handle
overloads. Furthermore, our method provides for handling of slack of
non-periodic tasks as well, e.g., instances of tasks can be separated by
intervals other than periods.

Handling aperiodic tasks

The methods presented in this thesis provide for inclusion of both firm
and soft aperiodic tasks. Firm tasks must be guaranteed while the soft
ones do not require any acceptance test.

Upon arrival of a firm aperiodic task, a test determines whether there
are enough resources available to include it feasibly in the set of previ-
ously guaranteed tasks and if the scheduling strategy will ensure timely
completion. If the task can be accepted, it is guaranteed by providing a
mechanism which ensures that the resources it requires will be available
for its execution.

Handling sporadic tasks

Offline scheduling is not suitable for handling sporadic tasks due to un-
known arrival times. One approach could be to transform sporadic tasks
into equivalent pseudo-periodic tasks [45] offline, which can be sched-
uled simply at runtime. However, this may lead to significant under-
utilization of the processor time, especially when the deadline of the
pseudo-periodic task is small compared to the minimum inter-arrival
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time of the sporadic task. That because a great amount of time has to
be reserved offline, before the runtime of the system, for servicing dy-
namic request from sporadic tasks. In extreme cases, a task handling an
event which is rare, but has a tight deadline, may require reservation of
all resources.

We present a combined offline and online approach for handling
sporadic tasks. The offline transformation determines resource usage
and distribution as well, which we use to handle sporadic tasks. Offline
we assume the worst case scenario for arrival patterns for sporadic tasks,
and online we try to reduce this pessimism by using the current infor-
mation about the system. Dynamic activities are accommodated without
affecting the feasible execution of statically scheduled tasks.

1.2.4 Contribution summary

We present methods to schedule sets of mixed types of tasks with com-
plex constraints, by using earliest deadline first scheduling and offline
complexity reduction. In particular, we proposed an algorithm to handle
sporadic tasks to improve response times and acceptance of firm aperi-
odic tasks.

Our methods use a general technique, capable of incorporating var-
ious types of constraints and their combinations. Those are resolved
in the offline part of the method, without degrading the system perfor-
mance at runtime. Table 1.2 gives an overview of when different types
of tasks are handled by our method (simple periodic and complex peri-
odic in the table refer to periodic tasks with simple respective complex
constraints).

Periodic tasks are completely handled offline. Complex constraints
are translated into simple ones, i.e., only start times and deadlines and
the tasks are scheduled to execute before their deadline. Originally, the
tasks are scheduled to execute as soon as possible, but they may also be
shifted online within their feasibility intervals in order to accept more
aperiodic or sporadic tasks.

Sporadic tasks are guaranteed offline for the worst-case arrival pat-
terns and scheduled online, where an online algorithm keeps track of
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Figure 1.2: Overview of handling various types of tasks and constraints

arrivals of instances of sporadic tasks to reduce pessimism about future
sporadic arrivals and improve response times and acceptance of firm
aperiodic tasks.

Aperiodic tasks are completely handled online. Firm aperiodics are
guaranteed while the soft ones are not. We perform an online guarantee
algorithm on arriving firm aperiodic tasks to see if we can accept them
without violating the deadlines of any other scheduled or guaranteed
task. Soft aperiodic tasks are not guaranteed: they are executed if no
other task in the system executes at the moment.

Chapters 2 and 3 give details about handling of the tasks above. The
final result is a method that is capable of dealing with all mentioned task
types and constraints and their interactions.

We use scheduling algorithms and resource reservation mechanism
from the mixed task scheduling part presented above to flexibly sched-
ule processing of MPEG-2 video streams. We start by giving a general
introduction to MPEG-2 standard for digital video coding, followed by
the description of our method.
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1.3 MPEG-2 Background

The Moving Picture Experts Group (MPEG) standard for coded repre-
sentation of digital audio and video [1] is used in a wide range of ap-
plications. MPEG is one of the most popular audio/video digital com-
pression technique because it is not just a single standard. Instead, it
is a range of standards suitable for different applications but based on
similar principles.

MPEG group defines several standards in digital video, among it the
MPEG-1 standard, used e.g., in Video CDs, the MPEG-2 standard, used
e.g., in DVDs, digital video broadcasting, high-definition TVs (HDTV),
and the MPEG-4 standard, used e.g., in picture phones, streaming me-
dia, Internet. It also defines several audio standards – among them MP3
and AAC.

MPEG-2 is currently the most used video standard of the MPEG
group. In particular, MPEG-2 has become the coding standard for digi-
tal video streams in consumer content and devices, such as DVD movies
and digital television set top boxes for Digital Video Broadcasting (DVB).

It should be noted that MPEG is a standard for the format, a syntax,
not for the actual encoding. The specification only defines the bit stream
syntax and decoding process. Generally, this means that any decoders
which conform to the specification should produce near identical output
pictures. However, decoders may differ in how they respond to errors
introduced in the transmission channel. For example, an advanced de-
coder might attempt to conceal faults in the decoded picture if it detects
errors in the bit stream. As a consequence, the same content, e.g., a
movie, can be encoded in many ways while adhering to the same stan-
dard. In fact, MPEG encoding has to meet diverse demands, depending,
e.g., on the medium of distribution, such as overall size in the case of
DVD, maximum bit rate for DVB, or speed of encoding for live broad-
casts.

In this thesis we deal with MPEG-2, which is currently the most
used MPEG standard. It aims to be a generic video coding system sup-
porting a diverse range of applications. The standard covers four quality
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Level Max resolution Max bit rate Example application

low 352x288 4 Mbps VHS-quality video
normal 720x576 15 Mbps DVB, DVD
high 1440 1440x1152 80 Mbps HDTV
high 1920x1152 100 Mbps wide-screen HDTV

Table 1.1: MPEG-2 quality levels

levels of video resolution, each targeted at a particular application do-
main, see table 1.1. Note that the constraints are upper limits and that
the codecs may be operated below these limits. In broadcasting terms,
standard-definition TV requires main level and high-definition TV re-
quires high-1440 level. The bit rate required to achieve a particular level
of picture quality approximately scales with resolution.

1.3.1 MPEG-2 video compression

Motion video is a sequence of pictures, called frames in MPEG, each
picture consisting of an array of pixels. For uncompressed video, its
size is very large. To deal with this problem, video compression is used
in order to reduce the size. The basic idea is to transform a stream of
discrete samples into a bit stream of tokens, which takes less space.

The MPEG-2 video compression algorithm dramatically decreases
the amount of storage space required to record video sequences by elim-
inating redundant and non-essential image information from the stored
data.

Temporal redundancy takes advantage of similarity between succes-
sive pictures. It arises when successive pictures of video display im-
ages of the same scene. It is common for the content of the scene to
remain fixed or to change only slightly between adjacent pictures. Of-
ten the only difference is that some parts of the picture have shifted
slightly between the pictures. MPEG compression exploits this tempo-
ral redundancy by just sending the instructions for shifting pieces of the
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previous picture to their new positions in the current picture. The cod-
ing technique that exploit temporal redundancy is called Inter-coding
(inter=between).

Spatial redundancy takes advantage of similarity among most neigh-
boring pixels within the same picture. It occurs because parts of the pic-
ture are often replicated (with minor changes) within a single picture.
For example, regions of sky or walls are almost entirely the same color.
If several pixels point in the same area, MPEG compression exploits
this spatial redundancy by sending the color for whole region just once,
instead of sending it for each pixel. The coding technique that exploit
spatial redundancy is called Intra-coding (intra=within).

Another way to archive higher compression ratios is amplitude scal-
ing, i.e., the reduction of the color depth of each pixel in a picture and
color space scaling, i.e., the number of colors available for displaying
an image is reduced.

Furthermore, an MPEG-2 video stream can be coded with constant
or variable bit rate. Constant bit rate, CBR, means that the rate at which
the video data should be consumed is constant. It varies the quality level
of the video frames in order to ensure a consistent bit rate throughout an
encoded file. Variable bit rate, VBR, varies the amount of output data
in each time segment based on the complexity of the input data in that
segment. The goal is to maintain constant quality instead of maintaining
a constant data rate by making intelligent bit-allocation decisions during
the encoding process. CBR is useful for streaming multimedia content
on limited capacity channels since CBR would make usage all of the
available capacity. VBR is preferred for storage because it makes better
use of storage space: more space is allocated to more complex segments
while less space is allocated to less complex segments.

1.3.2 MPEG-2 stream organization

The output of a single video or audio encoder is known as elementary
stream. MPEG standard defines ways of multiplexing more than one
elementary stream (video, audio and data) into one single system stream.
In MPEG-2 there are two different types of system streams, transport
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stream and program stream.
The program stream is used for combining together elementary streams

that have a common time base and need to be displayed in a synchro-
nized way. Such streams are suited for transmission in a relatively error-
free environment and enable easy software processing of the received
data. Program Stream packets may be of variable and relatively great
length. This form of multiplexing is used for video playback and for
some network applications. DVD uses Program Streams.

The transport stream is used for multiplexing streams that do not use
a common time base. The transport streams packets have fixed length of
188 bytes. Transport streams are suited for transmission in which there
may be potential packet loss or corruption by noise, or/and where there
is a need to send more than one program at a time. Digital broadcasting
uses Transport Streams.

In this thesis we deal with MPEG-2 Elementary Video Streams. We
use real-time methods to adjust video streams in overload situations.

1.4 Overview of PART II: Real-Time Processing
of MPEG-2 Video in Resource Constrained Sys-
tems

The MPEG-2 standard is predominant in consumer electronics for DVD
players, digital satellite receivers, and TVs today. One common thing
for all devices is that the encoded content has to be decoded and played
out. Decoding can be performed in hardware or in software, or in a mix
of both. Both dedicated and programmable decoders can be based on
average-case requirements if they provide means to gracefully handle
overload situations. If not, both must support worst-case requirements.

Within the next few years, MPEG-2 decoding will move from ded-
icated hardware to software, for reasons of cost, rapid upgradeability,
and configurability. In a software implementation, it is possible to use
the slack on the processor for other applications in average case. With
dedicated hardware, there are no such possibilities. As a consequence,
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the behavior of a software decoder will be less regular than that of a
dedicated hardware decoder. Coping with these irregularities is one of
the objectives dealt with in this thesis.

Furthermore, video will not only be watched on classic TV sets, but
increasingly displayed on smaller devices ranging from mobile phones
to web pads, providing mobility. Consequently, MPEG-2 decoding will
be performed in software under limited resources.

Most current software decoders, however, operate under the assump-
tion of sufficient resources, using buffering and rate adjustment based on
average-case assumptions. These provide acceptable quality for appli-
cations such as video transmissions over the Internet, when decreases
in quality, delays, uneven motion or changes in speed are tolerable. In
high quality consumer terminals, however, quality losses of such meth-
ods are not acceptable. In fact, producers of such devices have argued
to mandate the use of hard real-time methods instead [10].

In this thesis, we present methods for quality aware MPEG-2 video
stream adaptation under limited resources, based on realistic timing con-
straints for MPEG-2 decoding.

1.4.1 Related work

Here is an overview of related work relevant to ours.

Real-time multimedia processing

The Constant Bandwidth Server (CBS) algorithm for integrating multi-
media and hard real-time tasks has been presented in [2]. It provides
real-time guarantees for hard real-time tasks and probabilistic guaran-
tees for soft multimedia tasks. Hard tasks are guaranteed based on
worst-case execution time and minimum interarrival times, while CBS
is used for soft multimedia tasks. Each multimedia task is assigned a
maximum bandwidth, calculated using the average execution time and
desired activation time. If a task needs more bandwidth, it may slow
down, but still not jeopardize hard tasks. Our work shows that the aver-
age assumptions will not hold for a significant number of cases.
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A method for real-time scheduling and admission control of MPEG-
2 video streams that fits the need for adaptive CPU scheduling has been
presented in [25]. The method qualifies for continuous re-processing
and guarantees quality of service. However, it requires separate decod-
ing tasks for different frame types. We found this to be an unnecessary
restriction: one decoding task can be used for all frame types. Besides,
frame skipping decisions are made based on frame type only. As a con-
sequence, stream quality might be degraded more than neccessary.

An approach that allows close-to-average-case resource allocation
to a single video processing task has been proposed in [67]. It is based
on asynchronous, scalable processing, and QoS adaptation. No frame
type distinction has been made and the method applies only on a special
case when the display rate of the display device is equal to the frame
rate of the movie. We solve this problem for the general case, where the
display rates are different from the frame rates.

A method to process multimedia in fixed-priority based systems has
been presented in [11]. Resource allocation for media processing is
achieved by using periodic budgets provided by a budget scheduler. The
method introduces notion of conditionaly guaranteed budgets as a way
to handle structural overloads. The idea is to assign budgets to multime-
dia applications and if an application is not using its budget, it is given to
another application. The method requires extensions to existing budget
scheduler and online budget management.

A frame skipping pattern based on QoS-human has been presented
in [46]. QoS-human is a measurement of video quality from a human
perception, i.e., a group of people watch movies with different number
of skipped frames and write down their perception of the video quality.
Then, the user perception is mapped to the number of skipped frames to
determine different values of QoS-human. However, only one skipping
criterion, QoS human, has been applied when selecting frames, taking
no consideration about frame sizes, buffer and latency requirements, or
compression methods used.

Quality reduction for MPEG decoding and other video algorithms
is discussed in [48], [70], [32], and [39]. The decoder reduces the load
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by using a downgraded decoding algorithm. This approach requires al-
gorithms that can be downgraded, with sufficient quality levels to allow
smooth degradation. Such algorithms are not yet widely available.

Worst-case execution times for multimedia tasks

It is difficult to predict WCET for decoding parts. MPEG-2 can use dif-
ferent bit rates which can result in large differences in decoding times
for different streams. This could lead to big overestimations of the
WCETs. Work on predicting MPEG execution times has been presented
in [9, 12]. It assumes a linear relationship between frame size and de-
coding, which we show not to be the case in general.

The design and implementation of a software decoder for MPEG
video bit streams is described in [44]. It shows how MPEG video could
be decoded in real-time using a software-only implementation on desk-
top computers. Worst-case execution times for the different parts of the
decoding process are reported. Frame prediction from reference frames
is found to be most computationally expensive. We relate to this find-
ings when making frame skipping decisions if the processing power is
limited.

1.4.2 Motivation

MPEG-2 encoding has to meet diverse demands, depending, e.g., on the
medium of distribution, such as overall size in the case of DVD, maxi-
mum bit rate for DVB, or encoding speed for live broadcasts. In the case
of DVD and DVB, sophisticated provisions to apply spatial and tempo-
ral compression are applied, while a very simple, but quickly coded
stream will be used for the live broadcast. Consequently, video streams,
and in particular their decoding demands will vary greatly between dif-
ferent media.

Most standard decoders fail to satisfy the demands of MPEG-2 in
overload situations as they do not consider the specifics of this com-
pression standard. In resource limited situations the processor cannot
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work fast enough to decode all the frames, the workload for the soft-
ware decoder has to be reduced. One way to achieve this is skip some
of the frames.

Naive best-effort decoders perform frame skipping by simply run-
ning out of time at frame display time, incurring either a sudden distur-
bance in smoothness, as pictures are missing, or a delay of subsequent
frames, disturbing motion speed. As frame decoding starts and pro-
ceeds without knowing about timely completion, it may happen that the
resources are fully used, but wasted, as partially decoded video frames
are generally not useful. In extreme cases, the decoding of a large and
important frame might just not make it, therefore being lost and imped-
ing quality, while simply skipping to decode a small preceding frame
might have freed the resources for completion, with only slight quality
reduction.

In addition, skipping a frame may affect also other frames due to
inter frame dependencies. In a typical movie, a single frame skip can
ruin around 0.5 seconds of motion video. Thus frame skipping needs
appropriate assumptions and constraints about streams to be effective.

1.4.3 Approach

In this thesis we present a method for quality aware MPEG-2 stream
adaptation in resource constrained systems. The method provides best
quality by selecting frames if not all can be decoded under limited re-
sources. It is based on a priority ordering for frame skipping taking
frame importance for the overall video quality into account. It cre-
ates ensembles of decoding tasks for the video frames, each with tim-
ing constraints suited specifically for the particular frame, transforming
the video stream into such tailored for actual demand and available re-
sources.

Using a real-time system for resource management, the frame selec-
tion algorithm takes into account the actual state of the system, by deter-
mining the best frames utilizing the available resources and considering
the priority ordering for skipping. Thus, our algorithm selects frames
based on concrete frame knowledge and ensures that only decoding of
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frames which can be completed in time is started.
Below is the overview of the steps used in our method. Each of them

will be described in details in separate chapters of this thesis.

MPEG-2 processing under limited resources

As a initial step in our work, we have studied MPEG-2 standard in de-
tails and looked into the requirements for timely processing of MPEG-
2 video streams. We identified the stream requirements, as well as the
buffer and latency requirements that need to be fulfilled for smooth play-
out. Furthermore, we outlined possible methods for stream adaptation
when the system resources are not enough to process entire stream.

Timing constrains for MPEG-2 decoding

Video stream processing has real-time deadlines in a sense missing a
decoding deadline of an important frame can result in significant visual
artifact. Based on the requirements above, we present actual demands
for MPEG-2 playout and derive timing constraints for frame decoding.
We show that standard, fixed timing constraints are restrictive and flexi-
ble ones are better suited for MPEG-2 software decoding.

Analysis of MPEG-2 streams

As the next step towards a method for flexible processing of media
stream, we have performed a proper analysis of diverse MPEG-2 video
streams to identify realistic assumptions about MPEG-2. We have matched
the results with common assumptions about MPEG, and found a number
of misconceptions present in the literature.

Criteria for frame skipping

Frame skipping needs appropriate assumptions to be effective. Drop-
ping the wrong frame at the wrong time can result in a noticeable distur-
bance in the played video stream. Here we use the realistic assumptions
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from our MPEG-2 analysis to propose a set of criteria for frame skip-
ping.

Frame selection algorithm

Based on identified frame skipping criteria, we present an algorithm for
quality aware frame selection when it is not possible to decode all frames
in time. We apply the proposed criteria on a set of frames and assign
different importance values to the frames. These will be used to make
decision which frames are to be skipped first in overload situations.

Online stream adaptation

Here we unite the frame selection algorithm, decoding timing constraints
and real-time resource management from our work on mixed task sets
handline to provide a method for for quality aware MPEG-2 stream
adaptation in resource constrained systems. The algorithm provides best
video quality by selecting frames if not all can be decoded under limited
resources.

While the frame selection algorithm is independent of the actual guar-
antee algorithm used, making it suitable to work with a variety of algo-
rithms and paradigms, we present its use with a concrete scheduler – the
one that we used to schedule mixed sets of task in the first part of the
thesis.

1.4.4 Contribution summary

Here is a summary of contributions from our work on MPEG-2 video
stream processing. We have:

• identified requirements for real-time MPEG-2 processing

• identified misconceptions about MPEG-2

• proposed realistic assumptions for MPEG-2
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• proposed criteria for frame skipping

• derived timing constraints for MPEG-2 decoding

• showed how MPEG-2 streams can flexibly be scheduled under
limited resources

We present a method for quality aware MPEG-2 stream adaptation
under limited resources, based on realistic timing constraints for MPEG
decoding. As an example, we show how we can adjust streams in the
context of our previous work, i.e., combined offline and online schedul-
ing. Simulation study underlines the effectiveness of our approach.

1.5 Relation between Contributions in PART I and
PART II

In the first part of the thesis we show how we can flexibly schedule
mixed sets of tasks, i.e., periodic, aperiodic and sporadic, with simple
and complex constraints by using integrated offline and online approach
based on the slot shifting method [28].

In the second part, we present a method for flexible processing of
media streams under limited resources. Here we need a mechanism to
access the available system resources in order to know how to adapt a
video stream, i.e., how many frames can be timely decoded. We also
need a real-time scheduler to schedule processing of the stream.

We use the scheduling mechanism and the resource reservation mech-
anism from the first part of the thesis to flexibly schedule MPEG-2 video
streams. As a final result of the thesis, we provide a real-time method for
flexible scheduling of media processing in resource constrained system.

1.6 Outline of the thesis

The rest of this thesis is organized as follows:
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Chapter 2 describes handling of soft and firm aperiodic task together
with offline scheduled tasks. It starts by giving an overview of the origi-
nal slot shifting method for joint online and offline scheduling, followed
by the new method for handling firm aperiodic tasks.

Chapter 3 presents a method to handle sporadic tasks by guarantee-
ing them offline for the worst-case, and reducing this pessimism online
by keeping track on sporadic arrivals. As a final result, we present a
method to schedule mixed sets of tasks with simple and complex con-
straints.

Chapter 4 gives an overview of MPEG-2 video streams and sets up
real-time model for their processing. Latency and buffer requirements
are discussed. This chapter gives a basis for the remaining work on
MPEG in this thesis.

Chapter 5 uses results and finding about MPEG-2 processing and
requirements from chapter 4 to derive realistic timing constraints for
MPEG-2 video decoding.

Chapter 6 presents an exhaustive analysis of MPEG-2 video streams,
identifies a number of misconceptions about MPEG-2 and proposes re-
alistic assumptions about MPEG-2 processing.

Chapter 7 identifies valid criteria for frame skipping, based on as-
sumptions from previous chapter, and proposes an algorithm for quality
aware frame selection when it is not possible to decode all frames in
time.

Chapter 8 presents a final method for quality aware MPEG-2 stream
adaptation. It combines the two research parts by using the schedul-
ing mechanisms from the first part to flexible schedule processing of
MPEG-2 video in resource limited systems.

Chapter 9 concludes the thesis and outlines possible application ar-
eas and future work.

A significant amount of our work and results has been moved to sev-
eral appendixes for readability reasons:

Appendix A presents all simulation results for scheduling of mixed
tasks sets. It gives details about the simulation setup, performed experi-
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ments and confidence intervals.
Appendix B contains analysis setup and results for diverse realistic

MPEG-2 video streams.
Appendix C gives an overview of all tools used for obtaining results

in this thesis. Both own implemented tools and tools done by other
people but used by us are described here.
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Efficient Scheduling of Mixed Task Sets with
Complex Contraints





Chapter 2

Aperiodic Task Handling

A number of industrial applications advocate the use of time-triggered
approaches for reasons of predictability, cost, product reuse, and mainte-
nance. The rigid offline scheduling schemes used for time-triggered sys-
tems, however, do not provide for flexibility. Offline scheduling meth-
ods can resolve many specific constraints but at the expense of runtime
flexibility, in particular inability to handle dynamically arriving tasks,
such as aperiodic and sporadic tasks. At runtime, aperiodic tasks that
handle asynchronous external events can only be included into the un-
used resources of the offline schedule, supporting neither guarantees nor
fast response times.

In this chapter we present an algorithm for flexible handling of firm
aperiodic tasks in offline scheduled systems. Aperiodic tasks that arrive
at runtime, are guaranteed and incorporated into the offline schedule by
making use of the unused resources and leeways in the schedule. We
use the offline part of slot shifting [30], to eliminate all types of com-
plex constraints before the runtime of the system. Then we propose a
new online guarantee algorithm for dealing with dynamic tasks. Our
algorithm provides an O(N) complexity acceptance test, where N is
the number of aperiodic tasks, to determine if a set of aperiodics can be
feasibly included into the offline scheduled tasks, and does not require
runtime handling of resource reservation for guaranteed tasks. Thus, it

37
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supports flexible schemes for rejection and removal of aperiodic tasks,
overload handling, and simple reclaiming of resources. As a result, our
algorithm [34] provides for a combination of offline scheduling and on-
line firm aperiodic task handling.

We start by presenting the basic idea for aperiodic task handling in
section 2.1, followed by the description of the original slot shifting ap-
proach, section 2.2. In section 2.3, we present our new online algorithm
for flexible aperiodic task handling. We compare the original slot shift-
ing approach for aperiodic handling with the new method in section 2.4
followed by the simulation results, section 2.5 and the chapter summary
in section 2.6.

2.1 Basic Idea for Aperiodic Task Guarantee

Guaranteeing and handling of firm aperiodic tasks involves three steps:

Acceptance test

Upon arrival of a firm aperiodic task, a test determines whether there
are enough resources available to include it feasibly in the set of previ-
ously guaranteed tasks and if the scheduling strategy will ensure timely
completion.

Reservation of resources

If the task can be accepted, it is guaranteed by providing a mechanism
which ensures that the resources it requires will be available for its ex-
ecution. This can be achieved, e.g., by removing these resources from
the available ones, or by ensuring that subsequent guarantees will not
remove them. Note that acceptance test and guarantee can be separated.

Rejection strategy

A failed acceptance test indicates an overload situation. The common
response, not to guarantee the task under consideration, assumes that



2.2 Slot Shifting - Original Approach 39

already guaranteed tasks are more important than newly arriving ones.
This is, however, not generally the case. Rather, the importance order of
the tasks is independent of their arrival time. Consequently, a rejection
strategy is required, which determines which task or tasks – out of all
guaranteed or newly arrived tasks – to reject or abort.

2.2 Slot Shifting - Original Approach

In this section, we briefly describe the slot shifting method [28] which
we use as a basis to combine offline and online scheduling. It provides
for the efficient handling of aperiodic tasks on top of a table-driven,
offline schedule with general task constraints. Slot shifting extracts in-
formation about unused resources and leeway in an offline schedule and
uses this information to add tasks feasibly, i.e., without violating re-
quirements on the already scheduled tasks.

2.2.1 Offline preparations

First, a standard offline scheduler, e.g., [49], or [29] creates scheduling
tables for the periodic tasks. The scheduling tables list fixed start-
and end times of task executions, eliminating all flexibility. The only
assignments fixed by the specification of the tasks’ feasibility, however,
are the initiating and concluding tasks in the precedence graph, all other
tasks may vary within the precedence order, i.e., they can be shifted.

After offline scheduling, and calculation of start-times and dead-
lines, the schedule is divided into a set of disjoint execution intervals
for each node. Spare capacities to represent the amount of available
resources are defined for these intervals.

Each deadline calculated for a task defines the end of an interval Ii.
Several tasks with the same deadline constitute one interval. Note that
these intervals differ from execution windows, i.e. start times and dead-
line: execution windows can overlap, intervals with spare capacities, as
defined here, are disjoint. The deadline of an interval is identical to the
deadline of the task. The start, however, is defined as the maximum of
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the end of the previous interval or the earliest start time of the task. The
end of the previous interval may be later than the earliest start time, or
earlier (empty interval). Thus it is possible that a task executes outside
its interval, i.e., earlier than the interval start, but not before its earliest
start time.

The spare capacities of an interval Ii are calculated as given in for-
mula 2.1:

sc(Ii) = |Ii| −
∑
T∈Ii

wcet(T ) + min(sc(Ii+1), 0) (2.1)

The length of Ii, minus the sum of the activities assigned to it, is the
amount of idle time in that interval. These have to be decreased by the
amount “lent” to subsequent intervals: Tasks may execute in intervals
prior to the one they are assigned to. Then they “borrow” spare capac-
ity from the “earlier” interval. See [28] for details on the borrowing
mechanism of slot shifting.

2.2.2 Online mechanism

After determination of intervals and spare capacities, the offline prepa-
rations are completed and the amount and location of unused resources
is available for online use, i.e., for guaranteeing firm aperiodic tasks.
The basic idea is to use two level EDF, i.e., to schedule tasks according
to - “normal level”, but give priority -“priority level” to an offline task
when it needs to start at latest, similar to the basic idea of slack stealing
[58] [21] for fixed priority scheduling. Thus, the CPU is not completely
available for runtime tasks, but reduced by the amount allocated for of-
fline tasks. So, we need to know the amount and location of resources
available after the offline tasks are guaranteed, which we calculate in the
offline part of slot shifting as described above.

During system operation, the on-line scheduler is invoked after each
slot. It checks whether aperiodic tasks have arrived, performs the guar-
antee algorithm, and selects a task for execution. This decision is then
used to update the intervals and spare capacities. Finally the scheduling
decision is executed in the next slot.
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Guarantee algorithm

Assume that an aperiodic task A with deadline dl(A) is tested for guar-
antee at current time t. We identify three parts of the total spare capaci-
ties available:

• sc(Ic)t, the remaining spare capacity of the current interval,

• ∑
sc(Ii), c < i ≤ l, end(Il) ≤ dl(A) ∧ end(Il+1) > dl(A),

sc(Ii) > 0, the positive spare capacities of all full intervals be-
tween t and dl(A), and

• min(sc(Il+1), dl(A)−start(Il+1)), the spare capacity of the last
interval, or the execution need of A before its deadline in this
interval, whichever is smaller.

If the sum of all three is larger than the worst-case execution time of A,
then A can be accommodated, and therefore guaranteed.

Upon guarantee of a task, the spare capacities are updated to reflect
the decrease in available resources. Also, if dl(A) is not equal to the end
of an interval, the interval in which dl(A) occurs must be split, resulting
in a creation of a new interval.

Scheduling

If the spare capacities of the current interval sc(Ic) > 0, EDF is applied
on the set of ready tasks - “normal level”. sc(Ic) = 0 indicates that a
guaranteed task has to be executed or else a deadline violation in the
task set will occur. It will execute immediately - “priority level”. Since
the amount of time spent at priority level is known and represented in
spare capacity, guarantee algorithms include this information.

In original slot shifting, after each scheduling decision, the spare
capacities of the affected intervals are updated. If, in the current in-
terval Ic, an aperiodic task executes, or the CPU remains idle for one
slot, current spare capacity in Ic is decreased. If an offline task assigned
to Ic executes spare capacity does not change. If an offline task T as-
signed to a later interval Ij , j > c executes, the spare capacity of Ij is
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increased - T was supposed to execute there but does not, and that of
Ic decreased. If Ij “borrowed” spare capacity, the “lending” interval(s)
will be updated. The reader is referred to [27, 28] for details on slot
shifting.

2.3 Slot Shifting - New approach

The runtime mechanisms of the original version of slot shifting added
tasks by modifying this data structure, creating new intervals, which is
not suitable for frequent changes as required by e.g., sporadic tasks. Our
new guarantee method separates acceptance and guarantee. It only mod-
ifies spare capacity, without creating new intervals, which eliminates the
online modifications of intervals and spare capacities as in original slot
shifting and, thus, allows rejection strategies over the entire aperiodic
task set.

2.3.1 Basic idea

The basic idea behind the method is based on standard earliest deadline
first guarantee, but sets it to work on top of the offline schedule: EDF
is based on having full availability of the CPU; we have to consider
interference from offline scheduled tasks and pertain their feasibility.

Assume, at time t1, we have a set of guaranteed aperiodic tasks Gt1

and an offline schedule represented by offline tasks, intervals, and spare
capacities. At time t2, t1 < t2 , a new aperiodic A arrives. Meanwhile,
a number of tasks of Gt1 may have executed; the remanining task set
at t2 is denoted Gt2 . We test if A ∪ Gt2 can be accepted, considering
offline tasks. If so, we add A to the set of guaranteed aperiodics. No
explicit reservation of resources is done, which would require changes
in the intervals and spare capacities. Rather, resources are guaranteed by
accepting the task only if it can be accepted together with the previous
guaranteed and offline scheduled ones. This enables the efficient use of
rejection strategies.
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2.3.2 Algorithm description

Let Gt1 denote a set of guaranteed, not yet finished firm aperiodic tasks
at time t1, ordered by increasing deadlines:

Gt1 = {Gi, Gi+1, ..., Gn}
{∀Gi ∈ Gt1 | ct1(Gi) > 0 ∧ t1 < dl(Gi) ≤ dl(Gi+1)}

where n is the number of tasks in Gt1 , ct1(Gi) denotes the remaining
execution time of task Gi at time t1, and dl(Gi) is its absolute dead-
line. We keep track of how much each task has executed, which means
we know the remaining execution times of each task at any time. If a
guaranteed task has not yet started to execute, the remaining execution
time is equal to its actual execution time, i.e., ct1(Gi) = c(Gi). Tasks in
Gt1 are ordered by increasing deadlines, meaning that task Gi has ear-
lier deadline than task Gi+1. We also know that each task in Gt1 has a
deadline later than t1.

Now assume a new firm aperiodic task A arrives at time t2, with the
execution time c(A) and absolute deadline dl(A). From time t1 to t2,
some tasks in Gt1 could have executed up to t2, which is reflected as
follows:

• {G1, ..., Gk−1} are the tasks completed by t2:

{∀Gi ∈ Gt1 | ct2(Gi) = 0, 1 ≤ i ≤ k − 1}

where ct2(Gi) denotes the remaining execution time of task Gi at
time t2.

• Gk is the current task, according to EDF. It may have executed
partially before t2, so we need only to consider its remaining ex-
ecution time, ct2(Gk) ≤ c(Gk).

• {Gk+1, ..., Gn} are not yet started tasks that need to execute fully:

{∀Gi ∈ Gt1 | ct2(Gi) = c(Gi), k + 1 ≤ i ≤ n}
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So, when guaranteeing a new aperiodic task A at time t2, we need not
consider already completed tasks, but only the remaining portion of the
current task and the tasks that have not started yet:

Gt2 ⊂ Gt1 , Gt2 = {Gk, Gk+1, ...Gn}

A new aperiodic task A is accepted if the set G′ = Gt2 ∪ A is feasible,
considering the offline scheduled and guaranteed tasks.

2.3.3 Acceptance test for aperiodic tasks

Spare capacities and intervals of slot shifting make sure that all of-
fline scheduled tasks are guaranteed to complete before their deadlines.
Those offline tasks are scheduled to execute as late as possible, but under
run-time they can be executed earlier, i.e., we can shift their execution
within their feasibility window.

Aperiodic tasks utilize unused resources in the offline schedule. The
amount and location of available resources are represented as intervals
and spare capacities. So, we want to insert aperiodic tasks without vio-
lating the feasibility of offline tasks.

Let A = {A1, A2, ..., An} be a set of firm aperiodic tasks that need
to be scheduled together with the offline tasks. We accept the aperiodic
set if each task in A is guaranteed to complete before its deadline, i.e.,
the following must hold:

∀i, 1 ≤ i ≤ n : c(Ai) ≤
{

sc[t, dl(A1)] , i = 1
sc[ft(Ai−1), dl(Ai)] , i > 1

where t is current time and notation sc[t1, t2] means the spare capacity
from time t1 to time t2. Otherwise, we need to reject some task(s).

Note that the spare capacities are not distributed in a uniform way
throughout the schedule. Rather, as described in 2.2, the schedule is
divided into intervals, each with an individual value of spare capacity.
Consequently, the amount of spare capacity in a window depends on the
position of that window in the schedule.
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The finishing time of a firm aperiodic task Ai is calculated with
respect to the finishing time of the previous task, Ai−1. Without any
offline tasks, it is calculated the same as in EDF algorithm:

ft(Ai) = ft(Ai−1) + c(Ai)

Since we guarantee firm aperiodic tasks on a top of an offline schedule,
we need to consider the feasibility of offline tasks. This extends the
formula above with a new term that reflects the amount of resources
reserved for offline tasks:

ft(Ai) = c(Ai) +

{
t + R[t, ft(A1)] , i = 1
ft(Ai−1) + R[ft(Ai−1), ft(Ai)] , i > 1

where R[t1, t2] stands for the amount of resources (in slots) reserved for
the execution of offline tasks from time t1 to time t2. We can access
R[t1, t2] via spare capacities and intervals at runtime:

R[t1, t2] = (t2 − t1) − max(sc[t1, t2], 0)

As ft(Ai) appears on both sides of the equation, a simple solution is not
possible. Rather, we present an algorithm for computation of finishing
times of firm aperiodic tasks with complexity of O(N), which is further
discussed in next subsection.

2.3.4 Algorithm description

We now present the acceptance test for a firm aperiodic tsk A and algo-
rithm for finishing time calculation in pseudo code.

Step 1: Let Gt denote the set of previously guaranteed aperiodic tasks
at time t, with sorted deadlines, as described in subsection 2.3.2 above.
Find the position of the last task, Gi, in the set Gt, that has deadline
before the currently guranteed task A, i.e., the place in Gt where A will
be inserted:

for(i = 1; dl(Gi) < dl(A); i + +);
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Step 2: Get the finishing time of A based on the finishing time of its
predecessor Gi, and A’s execution demand. The start point for calcu-
lation of the finishing time is either the current time t or the finishing
time of A’s predecessor, whichever is later (see below for details on
getFinishingTime(..) function).

ft = getF inishingT ime(max(ft(Gi), t), c(A));

Step 3: If A can be finished before its deadline, then go through all
the tasks in Gt with deadlines after dl(A) and for each task calculate its
new finishing time, with respect to the new task A (execution of all tasks
with the deadline later by A will be delayed by A). New finishing times
are then compared to the tasks’ deadlines. If any of the investigated
tasks fails to complete before its deadline, that means that adding A to
Gt would result in a set that is not feasible, i.e., not all tasks in Gt will
complete before their deadlines. We can either reject A or some other
task(s) in Gt. Otherwise, if all tasks can be finished by their deadlines
even if A added, then insert A into the set of previously guaranteed firm
aperiodic tasks Gt.

if(ft ≤ dl(A)){

/* check if accepting A will cause any of the previously
/* guaranteed firm aperiodic tasks to miss its deadline*/
for(j = i + 1; j < n; j + +){

ft = getFT (ft, ct(Gj));
if(ft> dl(Gj)){

/* not feasible! */
reject = true;
break;

}
}
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if(!reject)
insert(A,Gt);

else
/* apply some rejection startegy */

}
else reject A

Function: getFinishingTime() calculates the finishing time of a task
based on predecessor task’s finishing time, ftp, and the remaining ex-
ecution demand, cr, of the task to investigate. First, it calculates the
remaining spare capacity, scr, of the current interval, Ik, i.e., the inter-
val that contains the finishing time of the previous task, ftp, which is
the earliest possible start time for the current task. Without offline tasks,
finishing time is equal to the finishing time of the predecessor task in-
creased by the computation demand of the current task. In the presence
of offline tasks, however, we do not have all CPU time available, but
only the spare capacities in intervals. Hence, we need to go through all
the intervals between the starting point ftp until execution demand is
exhausted, i.e., we “simulate” the execution of the investigated task by
going through intervals and “filling up free slots”, until the remaining
execution time is exhausted. The function returns the calculated finish-
ing time of the current task.

getF inishingT ime(ftp, cr){

/* get current interval */
Ik = getInterval(ftp);

/* get remaining spare capacity of the current interval */
scr = start(Ik) + sc(Ik) − ftp;

/* go through the intervals and ”fill up” free slots
until the remaining execution demand is exhaused */
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while(cr > scr){
if(scr (Ik) > 0)

cr = cr − scr;
k + +;
ftp = start(Ik)
scr = sc(Ik);

}
return (ftp + cr);

}

2.3.5 Complexity

The complexity of our algorithm is O(N), N being the number of firm
aperiodic tasks to be guaranteed, because we go through all tasks only
once, and calculate their finishing times on the way, as depicted in figure
2.1. The for-loop picks a task and start the while-loop, which calculates
its finishing time by going through the intervals. Then we pick another
task, and continue traversing the intervals at the point where we got
interrupted by for-loop, and so on. We do not have any nested loops,
and we always continue forward.

fti fti+1 fti+2 fti+3

Ik Ik+1 Ik+2 Ik+3

while while while

Ai+1 Ai+2 Ai+3 Ai+4for

Figure 2.1: Online acceptance test for firm aperiodic tasks – algorithm
complexity
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2.3.6 Example

Assume an offline schedule with intervals and spare capacities as de-
picted in figure 2.2 (the shaded boxes represent offline tasks). Let G3 be

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

I1,sc=3 I2,sc=2 I3,sc=2 I4,sc=3

Figure 2.2: Example online firm aperiodic guarantee– static schedule

the set of previously guaranteed but not completed firm aperiodic tasks
at current time t = 3:

G3 = {G1(3, 10), G2(2, 18), G3(1, 19)}
where the first parameter is the remaining execution time, the second
absolute deadline. Tasks is G3 are ordered by increasing deadlines. At
time t = 3 we have the execution scenario of both offline scheduled
tasks and guaranteed aperiodic tasks from G3 as described in figure 2.3.
Guaranteed firm aperiodic tasks will execute in the first available slots,
in EDF order.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

I1 I2 I3 I4

G1 G1G2 G2G3

Figure 2.3: Example online firm aperiodic guarantee – execution with-
out new task.

Now assume a firm aperiodic task A(4, 16) arrives at run-time at
t = 3. We perform the online guarantee algorithm to investigate if we
can accept A:

1. Task G1 has earlier deadline than A, so G1’s position in the set G3

remains unchanged, i.e., before A. We do not need to guarantee it
again.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

I1 I2 I3 I4

G1 G1

2. Task G2 has a deadline after the deadline of A, which means
that the A should execute before G2. We must check if there are
enough resources available for A to complete before its deadline.
We calculate the finishing time of A which is slot 15:

ftA = getFT (ftG1 , c(A)) = 15 < 16

The finishing time is less than the deadline of A, which means
that A could complete in time.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

I1 I2 I3 I4

G1 G1 A A A

3. Now we must check if accepting task A will cause any of other
guaranteed firm aperiodic tasks (G2, G3) to miss their deadlines.
We calculate their finishing times:

ftG2 = getFT (ftA, c3(G2)) = 17 < 18
ftG3 = getFT (ftG2 , c3(G3)) = 19 ≤ 19

Both G2 and G3 can complete before their deadlines, which means
that the new task A can be guaranteed and therefore inserted in the
set of guaranteed firm aperiodic tasks G3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

I1 I2 I3 I4

G1 G1 A A A G2 G3
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2.4 Improvements over original slot shifting

Here are the improvements over the original slot shifting acceptance test
for a set of firm aperiodic tasks:

Implicit resource reservation

The method presented here reserves resources implicitly, by only ac-
cepting a new task if it can be guaranteed together with all previously
guaranteed ones, and does not require runtime handling of resource
reservation for guaranteed tasks, as the original slot shifting. Conse-
quently, removal of guaranteed tasks and changes in the set of tasks can
be handled efficiently.

Flexible rejection strategies

Our method allows for easy changes in the set of guaranteed tasks and
thus supports flexible rejection strategies. It allows a new set of candi-
dates to be submitted to the acceptance test and does not require modi-
fications to the reserved resources for guaranteed tasks. In original slot
shifting, if a firm aperiodic task cannot be feasibly included into the ex-
isting schedule, then the task is rejected. In our approach, we can chose
to reject any of the guaranteed but not yet finished firm aperiodic tasks,
and keep the currently guaranteed tasks instead.

Efficient resource reclaiming

Should aperiodic tasks use less resources than expressed in worst case
parameters, our method directly reclaims these without recalculation of
available resources. The next time the acceptance test is performed, the
fact that a task has an earlier finishing time is considered in the calcu-
lations by simply starting the calculation of the finishing point of the
currently guaranteed task earlier, i.e., we start to ”fill up” remaining ex-
ecution time for the currently guaranteed task at an earlier point in time.
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This also results in an earlier finishing time of the current task, leaving
more space for other executions.

Improved overload handling

Overload handling schemes can easily be applied, since our method pro-
vide a set of firm aperiodic tasks from which any of the tasks can be
rejected. One such overload handling method based on our algorithm
has been presented in [17]. Even other overload handling schemes, such
as presented in [14] and [3] can be used.

2.5 Simulation Analysis

We have implemented the algorithms for firm aperiodic tasks described
above and have run simulations for various scenarios. We have studied
the guarantee ratio for aperiodic tasks for different combinations of total
system loads and aperiodic deadlines.

For the purpose of simulations we have developed a simulator to
provide for detailed analysis of slot shifting. We also implemented a
debugger, which provides for visual monitoring of the data structures
during the simulations.

Here we present some key results, see appendix A for details about
the simulation setup, performed experiments and confidence intervals.
Also see appendix C for the information about the tools that we imple-
mented for the simulation purpose.

2.5.1 Simulation setup

We have randomly generated offline and aperiodic task loads, so that
the combined load of both periodic and aperiodic tasks was set between
10% and 100%. The deadlines for the aperiodic tasks were set to their
maximum execution time, MAXT, two times MAXT and three times
MAXT. We studied the guarantee ratio for the randomly arriving aperi-
odic tasks.
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Method: Background
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Figure 2.4: Guarantee ratio for aperiodic tasks – Background scheduling

The simplest method to handle aperiodic tasks in the presence of
periodic tasks is to offline schedule them in background i.e., when there
are no periodic instances ready to execute. The major problem with this
technique is that, for high periodic loads, the response time of aperiodic
requests can be too long. We compared our method to the background
scheduling. We refer to our method as Slot Shifting – Extended, or SSE.

2.5.2 Results

Figure 2.4 illustrates the performance of background scheduling for
three different deadline settings of aperiodic tasks, while figure 2.5 de-
picts the performance of the extended slot shifting approach. Each point
in the graphs represents a sample size of 800-3000 simulation runs, with
different combinations of periodic and aperiodic tasks. 0.95 confidence
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intervals were smaller than 5%.

Method: SSE

0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Combined offline and aperiodic load

G
ua

ra
nt

ee
 r

at
io

 (
%

)

deadline=3*MAXT
deadline=2*MAXT
deadline=1*MAXT

Figure 2.5: Guarantee ratio for aperiodic tasks – SSE (our approach)

As expected, background scheduling performed poorly in the high
load situations, especially with tight aperiodic deadlines. For this rea-
son, background scheduling can be adopted only when the aperiodic
activities do not have stringent timing constraints and the periodic load
is not high.

The graphs show the effectiveness of the SSE mechanisms, as guar-
antee ratios are very high. As expected, the guarantee ratio for aperiodic
tasks with larger deadlines is higher than for smaller deadlines. Even
under very high load, guarantee ratios stay high.
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2.6 Chapter summary

In this chapter we presented an algorithm for flexible handling of firm
aperiodic tasks in offline scheduled systems. It is based on slot shifting,
a method to combine offline and online scheduling methods.

First, a standard offline scheduler constructs a schedule, resolving
complex task constraints such as precedence, distribution, and end-to-
end deadlines. Then, the offline schedule is analyzed for unused re-
sources, i.e., intervals and spare capacities are calculated. Offline sched-
uled task can flexibly execute within their corresponding intervals. It is
also possible for an offline task to executes outside its interval, i.e., ear-
lier than the interval start, but not before its earliest start time.

The run-time scheduler uses this information to handle aperiodic
tasks, shifting the execution of offline scheduled tasks to reduce re-
sponse times without affecting feasibility. We provide an O(N) accep-
tance test for a set of aperiodic tasks on a top of the offline schedule and
guarantee tasks without explicit reservation of resources. Compared to
the original slot shifting approach, our method supports more flexible,
value based selections of tasks to reject or remove in overload situa-
tions, and simple resource reclaiming. Simulation results illustrate the
effectiveness of the algorithm.

In the next chapter, we will extend this approach to handle sporadic
tasks.





Chapter 3

Sporadic Task Handling

Sporadic tasks are suitable for handling events that arrive at the system
at arbitrary points in time, but with defined maximum frequency. We
showed in previous chapter how aperiodic tasks can be guaranteed and
scheduled together with offline, periodic tasks. Here we extend that
approach to handle sporadic tasks as well.

Offline scheduling is not suitable for handling sporadic tasks due
to the unknown arrival times. For the same reason, online handling
only can be computationally expensive. We use a combined offline and
online approach. Offline we assume the worst-case scenario for arrival
patterns for sporadic tasks, and online we try to reduce this pessimism
by using the current information about the system. Dynamic activates
are accommodated without affecting the feasible execution of offline
scheduled tasks. As a final result, we provide a combined offline and
online method to deal with mixed periodic, aperiodic and sporadic task
sets with simple and complex constraints.

We start by presenting the basic idea for sporadic task handling in
section 3.1. In section 3.2 we show how a set of sporadic tasks can be
guaranteed offline for the worst-case scenario, followed by an online
method to reduce this pessimism at runtime, presented in section 3.3.
Section 3.4 describes the simulation results for our method, followed by
the chapter conclusions in section 3.5.

57
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3.1 Basic Idea for Sporadic Task Handling

We present a combined offline and online approach for handling spo-
radic tasks. Offline we assume the worst-case arrival scenario for the
sporadic tasks and guarantee their feasible execution once they start in-
voking at runtime. Online, we reduce the pessimism assumed at design
time by taking advantage of the current information about the system.

Offline part

The offline transformation of slot shifting, described in previous chapter,
determines resource usage and distribution as well, which we use to
handle sporadic tasks. The sporadic tasks are guaranteed offline, during
design time, which allows rescheduling or redesign in the case of failure.

An offline test determines and allocates resources for sporadic tasks
such that worst-case arrivals can be accommodated at any time. Since
we do not know the arrival pattern of the sporadic set, we guarantee them
for the worst-case, i.e., we assume all sporadic are released at the same
time and with the maximum frequency between consecutive invocation.

Online part

Assuming the worst-case scenario for sporadic arrivals at design time
is a necessary, but too pessimistic assumption. At runtime, we try to
reduce this pessimism by using the current knowledge about the system,
e.g., when a sporadic task arrives, we know that the next invocation will
not occur at least for the period of its minimum inter-arrival time, which
we use for firm aperiodic tasks guarantee.

An online algorithm keeps track of arrivals of instances of sporadic
tasks to reduce pessimism about future sporadic arrivals and improve
response times and acceptance of firm aperiodic tasks. If a sporadic task
invokes its instances with less frequency than the worst-case one, then
we can easily reclaim its reserved resources for other dynamic activities,
i.e., firm and soft aperiodic tasks.



3.2 Offline Feasibility Test 59

3.2 Offline Feasibility Test

Here we introduce an offline guarantee algorithm for a set of sporadic
tasks. Firstly, the off-line periodic schedule is created and analyzed for
intervals and spare capacities of slot shifting, as described in chapter
2.2.1. Secondly, the set of sporadic tasks is tried to fit into the periodic
schedule. If the sporadic set is not accepted, it is up to designer to re-
design the system, i.e., reschedule periodic tasks or change the sporadic
set.

3.2.1 Sporadic task set

All tasks in the sporadic set are assumed to be invoked with their max-
imum frequency, creating the worst case scenario for the scheduler. If
the deadline of a sporadic task can be guaranteed for the release with
its maximum frequency, then all subsequent deadlines are guaranteed.
Examples of this approach are given in [4].

The minimum time difference between successive releases of a spo-
radic task is its minimum inter-arrival time. It has been shown in [13]
that a sporadic task which is released with its maximum frequency be-
haves exactly like a periodic task with period equal to its minimum inter-
arrival time.

Now that we know the deadline, the maximum execution time and
the ’period’ of each sporadic task in the set, we can use that information
to perform an offline guarantee test on the set for its worst load pattern.

3.2.2 Critical slots

One way of investigating if the sporadic set fits into the periodic sched-
ule is to investigate if it fits at each time slot of the periodic schedule,
but this is impractical. It is sufficient to investigate only some selected
points in time, called critical slots.

Definition 1. The critical slot, tc, of an interval I is the time slot in I
such that if a dynamic task arrives at tc, its execution will be maximally
delayed, compared to all other slots in I .
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Critical slot tc for an interval I is calculated as:

tc(I) = start(I) + max(sc(I), 0) (3.1)

Figure 3.1 gives an example of a critical slot.

start(I) end(I)tc

sc=5

Figure 3.1: Example of a critical slot.

Critical slot implies that the execution of sporadic tasks Si will be
maximally delayed by the execution of the offline scheduled tasks, if Si

starts to invoke its instances at a critical slot of a certain interval. We
prove that if the sporadic set can be guaranteed at the critical slot, it will
be guaranteed at every other slot within the same interval.

Theorem 1. Let Si denote a sporadic task and Sk
i the kth instance of

Si. If Sk
i can be guaranteed at the critical slot tc of an interval I , it will

also be guaranteed at any other slot t within the same interval:

∀t ∈ I, t �= tc : Sk
i guaranteed at tc ⇒ Sk

i guaranteed at t

Proof. Here is the proof by contradiction. Assume the following is cor-
rect:

Assumption 1: There is a time slot t in interval I , other than the critical
slot tc, such that Sk

i can be guaranteed at tc, but not at t:

∃t ∈ I, t �= tc : (Sk
i guaranteed at tc) ∧ (Sk

i ¬guaranteed at t)

When Sk
i arrives, there will be a certain amount of spare capacity avail-

able for it between its arrival time and its deadline. Let δ denote the
difference between spare capacities available for Sk

i if it arrives at t and
if it arrives at tc. Assumption 1 states that Si can be guaranteed at tc
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but not at t, which means that the amount of spare capacity available for
Sk

i if it arrives at tc must be larger than the amount of spare capacity
available if it arrives at t. This implies, if assumption 1 holds, δ must be
negative:

δ < 0 (3.2)

Assume Sk
i arrives at t, i.e., ar(Sk

i ) = t. There are two possibilities for
arrival of Sk

i : before or after the critical slot tc.

Case 1 : t > tc, Sk
i arrives after tc, as depicted in figure 3.2 (shaded

box in the figure represents scheduled or guaranteed tasks).

start(I) end(I)tc t

ar(Sk
i )

Figure 3.2: Sporadic arrival after critical slot.

The requirement for Sk
i to be accepted is that the spare capacity

available for it at its arrival time has to be greater or equal to the
maximum execution time of Si.

Let Iar be the interval in which Sk
i arrives and Idl the interval

in which Sk
i has its deadline. If Sk

i arrives at tc instead of t, the
amount of spare capacity available in Iar and Idl will change. Let
α and β denote this change:

• α - the difference in spare capacity of the arrival interval
caused by shifting the arrival time of Sk

i from tc to t.

• β - the difference in spare capacity of the deadline interval
caused by shifting the deadline of Sk

i .

This gives:
δ = α + β (3.3)
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Iar Idl

α β

tc t dltc dlt
shift ⇒

Figure 3.3: Sporadic arrival shifted to the right.

This is illustrated in figure 3.3.

Shifting the arrival time of Sk
i from tc to t means that the dead-

line of Sk
i is shifted to the right. In the arrival interval, Iar, slots

from tc to t are reserved for the execution of the scheduled peri-
odic tasks, giving α = 0. In the deadline interval, Idl, shifting the
deadline of Sk

i may only increase the portion of available spare
capacities in that interval. This gives that β has to be greater or
equal to zero (β ≥ 0).

The maximum value of δ occurs when the deadline of Sk
i does not

intersect with any other activity, that is, execution of some other
task. In other words, β = t − tc > 0. If so, then:

δ = α + β > 0, (α = 0, β > 0) (3.4)

Otherwise, if dl(Sk
i ) occurs during the execution of some other

task, the worst case scenario is that we do not get any new re-
sources for Sk

i , that is:

δ = α + β = 0, (α = 0, β = 0) (3.5)

(4) and (5) give:
δ ≥ 0

which is contradictory to (2), making assumption 1 false.
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Case 2 : t < tc, Sk
i arrives before tc, as depicted in figure 3.4.

Now we shift the arrival time of Sk
i to the left, that is before the

critical point tc. This is shown in figure 3.5.

start(I) end(I)tct

ar(Sk
i )

Figure 3.4: Sporadic arrival before critical slot.

Iar Idl

α β

tct dltcdlt
⇐ shift

Figure 3.5: Sporadic arrival shifted to the left.

Let α and β denote the same as in case 1. Shifting the arrival
time of Sk

i results in a positive α that is equal to the difference
between tc and t, i.e., α = tc− t > 0. In the deadline interval, the
amount of lost spare capacities caused by shifting can maximally
be the same as the amount of gained spare capacities in the arrival
interval, giving βworst = −α. This implies:

δ = α + β = α + (−α) = 0, (β = βworst) (3.6)

In a more optimistic scenario, we can even lose less spare capaci-
ties in the deadline interval than we get in the arrival interval, that
is β < α. In that case, we get:

δ = α + β > 0, (|β| < α) (3.7)



64 Chapter 3. Sporadic Task Handling

(6) and (7) implies:
δ ≥ 0

which is contradictory to (2). This implies the assumption 1 does
not hold for case 2. Assumption 1 doesn’t hold either for case 1
or case 2. Therefore theorem 1 is true. This concludes the proof.

Critical points are calculated offline for each interval, and only those
points are checked for the feasibility of the sporadic task set.

3.2.3 Offline feasibility test for sporadic tasks

The feasibility test for the set of sporadic tasks works by creating a worst
case load demand of the sporadic tasks as described in section 3.2.1. We
assume that all sporadic tasks arrive with their maximum frequency and
test if the demand created can be accommodated into the static schedule
at all critical slots.

Algorithm description

Here follows the pseudo-code for the guarantee algorithm for a set of
sporadic tasks S (read the comment below in parallel):

Let:
sca = available sc for Sk

i from ar(Sk
i ) to dl(Sk

i )
R = an array containing slots reserved for previously

guaranteed sporadic tasks
initR() = initiates R to empty set
countR(x, y) = number of reserved slots between slots x and y
reserve(x, y) = reserves x slots as close to y as possible

1. ∀tc
2. initR()
3. ∀Sk

i ∈ S
4. sca(Sk

i ) =
∑

Ij∈[end(Iar),start(Idl)]
max(sc(Ij), 0)
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5. +min(sc(Idl), dl(Sk
i ) − start(Idl))

6. −countR(ar(Sk
i ), dl(Sk

i ))
7. if (sca(Sk

i ) ≥ c(Si))
8. then reserve(c(Si), dl(Sk

i ))
9. else abort (set rejected)

Comments:

1. Investigate every critical slot.

2. No slots reserved yet.

3. Guarantee every invocation Sk
i in S.

4. Calculate spare capacity available for Sk
i from its arrival until its

deadline. It is equal to the sum of spare capacity for all full inter-
vals between the arrival interval and the deadline interval of Sk

i ,
increased by...

5. ...the remaining spare capacity of the Idl available until dl(Sk
i ),

decreased by

6. the amount of spare capacity reserved for previously guaranteed
sporadics that intersect with Sk

i .

7. If the available spare capacity is greater or equal to the maximum
execution time of Si, then...

8. ...reserve slots needed for Sk
i as close to its deadline as possible,

and continue.

9. If not enough spare capacity, abort the guarantee algorithm and
report that the guarantee failed.

Example

Assume the following periodic tasks with maximum execution times
(MAXT), deadline (dl) and precedence constraints as described in figure
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Node 0

Node 1

0 1 2 3 4 5 6 7 8 9

T1 T4 T5

0 1 2 3 4 5 6 7 8 9

T2T3

T1

T2 T3

PG0

dl(PG0) = 9

T4

T5

PG1

dl(PG1) = 9

Task MAXT dl
T1 2 5
T2 1 8
T3 1 9
T4 1 9
T5 2 9

Figure 3.6: Example offline sporadic guarantee – periodic tasks and
offline schedule.

3.6. We use a distributed real-time system with two computing nodes to
make the example more general.

We calculate intervals and spare capacities, as described in chapter
2.2, and critical slots as described in section 3.2.2:

Interval Node start end sc tc
I0 0 0 5 3 3
I1 0 5 9 1 6
I2 1 6 8 1 7
I3 1 8 9 0 8

Intervals with their assigned tasks and critical slots are depicted in
figure 3.7.

Assume a sporadic set S = {S1(1, 5), S2(3, 10)} where the first
parameter is maximum execution time and the other one the minimum
inter-arrival time at node 0. If we assume that sporadic tasks arrive
with their maximum frequencies, then the deadline of each invocation is
equal to the release of the next invocation.

Now we apply the off-line guarantee algorithm on each task in the
sporadic set S. First, we try to guarantee S1 and S2 at critical slot 3,
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Node 0

Node 1

0 1 2 3 4 5 6 7 8 9

T1 T4 T5

0 1 2 3 4 5 6 7 8 9

T2 T3

I0 I1

I2I3

Figure 3.7: Example offline sporadic guarantee – schedule with inter-
vals.

and if they can be guaranteed, we proceed with investigation of slot 6.
The LCM of S is 10, which means that S1 is invoked twice and S2 once
before the worst-case pattern is repeated.

We now illustrate the guarantee test for sporadic tasks S1 and S2 in
figure 3.8.

tc Task Invocation sca ≤ MAXT? R

3 S1 1 1 ≥ 1 ⇒ true {5}
2 3 ≥ 1 ⇒ true {5,11}

S2 1 2 ≥ 3 ⇒ false abort!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T1 T4 T5 T1 T4 T5S1
1

reserve

S2
1

reserve
I0 I1 I0 I1

Next sch. instance

..........︸ ︷︷ ︸
not enough sc for S2

Figure 3.8: Example failed offline sporadic guarantee.
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We start by checking the first instance of S1, i.e., S1
1 . The amount

of available spare capacities before the deadline of S1
1 is 1, which is

enough to execute it. Event second instance of S1 can be guaranteed
since the available spare capacity is greater than the execution demand
of S1. Hence, we reserve slots 5 and 11 for the instances of S1. How-
ever, the first instance of S2 cannot be guaranteed since the available
spare capacity is less than its maximum execution time, hence the spo-
radic set cannot be guaranteed at critical slot 3.

Node 0

Node 1

0 1 2 3 4 5 6 7 8 9

T1

T4

T5

0 1 2 3 4 5 6 7 8 9

T2 T3

I0 I1

I2 I3

Figure 3.9: Example offline sporadic guarantee – schedule redesign.

What we can do now is to redesign the system and try again. Since
we support distributed systems, we could reallocate some of the periodic
tasks from node 0 to node 1, or allocate some of sporadics on node 1.
In this example, we decide to schedule the periodic task T4 on node 1
instead of node 0. The new offline schedule is depicted in figure 3.9.

Intervals remain the same, spare capacities and critical slots have to
be recalculated for I1 and I2:

I1 : sc(I1) = 1+1=2 I2 : sc(I2) = 1-1=0
tc(I1) = 5+2=7 tc(I2) = 6+0=6

We try to guarantee S on node 0 again, in recalculated critical slots.
This time both S1 and S2 are guaranteed, see figure 3.10.
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tc Task Invocation sca ≥ MAXT? R

3 S1 1 2 ≥ 1 ⇒ true {6}
2 3 ≥ 1 ⇒ true {6,11}

S2 1 3 ≥ 3 ⇒ true {5,6,9,10,11}
7 S1 1 3 ≥ 1 ⇒ true {11}

2 2 ≥ 1 ⇒ true {11,15}
S2 1 3 ≥ 3 ⇒ true {9,10,11,14,15}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T1 T5 T1 T5S1
1 S2

1S1
2 S1

2

I0 I1 I0 I1

a) Critical slot 3

b) Critical slot 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T1 T5 T1 T5S1
1 S1

1S1
2 S1

2

I0 I1 I0 I1

Figure 3.10: Example successful offline sporadic guarantee.
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3.3 Online Handling

We showed above how a sporadic set can be guaranteed offline. In this
section we show how this set can be scheduled online together with
periodic and aperiodic tasks. The algorithm presented here keeps track
of sporadic arrivals and reduces pessimism introduces by the worst-case
assumption in the offline phase, something that improves guarantees and
response times of aperiodic tasks.

Our algorithm performs the offline test for sporadic tasks, but does
not change intervals and spare capacity for runtime efficiency. At run-
time, it keeps track of sporadic arrivals to reduce pessimism, by remov-
ing sporadic tasks from the worst case arrival which are known to not
arrive up to a certain point. An aperiodic task algorithm utilizes this
knowledge for short response times.

3.3.1 Acceptance test for aperiodic tasks in presence of spo-
radic tasks

In section 2.3.3 we provided a method to guarantee firm aperiodic tasks
on top of an offline schedule. Now we will see how to perform the same
guarantee for firm aperiodic tasks in the presence of offline guaranteed
sporadic tasks.

Interference window

When guaranteeing a firm aperiodic task Aj , we need to take into con-
sideration the preemptions from offline guaranteed sporadic tasks that
can execute their instances between the arrival time and the deadline
of Aj . The time interval in which a sporadic task Si can preempt and
hence interfere with the execution of an aperiodic task Aj is called the
interference window of Aj by Si and it is denoted as IW (Aj , Si). As
the first step of the aperiodic acceptance test we need to determine this
interval for each sporadic task in the offline guaranteed sporadic set S.

We do not know when a sporadic task Si ∈ S will start to invoke its
instances, but once it starts, we do know the minimum time between its
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invocations – the minimum inter-arrival time of Si. We also know the
worst case execution time of Si, c(Si). We use this information for the
acceptance test of Aj .

Assume Si invokes an instance at time t (see figure 3.11). Let Sk
i

denote current invocation of Si, and Sk+1
i the successive one. At time t

we know that Sk+1
i will arrive no sooner than t+λ, where λ is the mini-

mum inter-arrival time of Sj . So, when Sk
i has finished its execution, Si

will not interfere with any of the firm aperiodic tasks until Sk+1
i arrives,

which is at least λ time units. This means, when calculating the amount
of resources available for a firm aperiodic task Aj with an execution that
intersects with Si’s execution window, we do not need to take into ac-
count the interference from Si at least between the finishing time of its
current invocation, Sk

i , and the start time on the next invocation, Sk+1
i ,

as depicted in figure 3.11.

Sk
i Sk+1

i

t t + λ

no influence on firm aperiodic tasks︷ ︸︸ ︷

Figure 3.11: A sporadic task.

Let EW (Aj) denote the execution window of Aj , i.e., the interval
between Aj’s arrival and its deadline:

EW (Aj) = [ar(Aj), dl(Aj)], |EW | = dl(Aj) − ar(Aj)

Now we will see how the execution of a previously guaranteed sporadic
task Si ∈ S can influence Aj’s guarantee.

Assume Aj arrives at system at time t, i.e., ar(Aj) = t. Let Sk
i

the last invocation of Si before t. There are two cases to consider when
calculating the interference window IW (Aj , Si):

case 1: Sk
i is unknown, i.e., the sporadic task Si has not started yet to

invoke its instances. Si can arrive any time and we must assume
the worst case, that is Si will start to invoke its instances with
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maximum frequency at the same time as Aj arrives, i.e., at time
t. The interference window is the entire execution window of Aj ,
IW (Aj , Si) = EW (Aj).

case 2: Sk
i is known, i.e., Si has invoked an instance before t. The

following sub-cases can occur:

a) start(Sk
i ) + λ ≤ t, i.e., the last invocation completed before

Aj arrived, and the next invocation, Sk+1
i , could have ar-

rived but it has not yet. This means Sk+1
i can enter Aj’s

execution window at any time, thus the same as in case 1:
IW (Aj , Si) = EW (Aj).

b) end(Sk
i ) ≤ t < start(Sk

i ) + λ, i.e., the current invocation Sk
i

has completed before t, and the next one has not arrived yet.
But now we know that the next one, Sk+1

i will not arrive
until λ time slots, counted from the start time of Sk

i .

Sk
i Sk+1

i

ar(Aj) dl(Aj)

IW︷ ︸︸ ︷

This means the interference window can be decreased with
the amount of time slots in EW for which we know that
Sk+1

i cannot possibly arrive:

IW (Aj , Si) = [start(Sk
i ) + λ, dl(Aj)]

c) t < end(Sk
i ), i.e., the current invocation is still executing.

In the worst case, the interference window is entire EW ,
IW = EW .

Now we will see how the interference window can actually “shrunk”
when guaranteeing a firm aperiodic task A under runtime. It is usually
not the case that A will start to execute as soon it arrives. This because
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of the offline tasks and previously guaranteed firm aperiodic tasks. In
section 2.3.3, we presented a method for guaranteeing firm aperiodic
tasks on top of offline tasks. The start time of the firm aperiodic task Aj ,
which is currently tested for acceptance, is based on the finishing time
of its predecessor, Aj−1, i.e., another firm aperiodic task with earlier
deadline. Hence, in some cases the start of the interference window
IW (Aj , Si) is set to the finishing time of Aj−1.

Here is an example: assume a firm aperiodic task Aj to be quar-
anteed and a sporadic task Si as in case 2b above. The interference
window is defined as below:

Sk+1
i Sk+2

i Sk+3
i

ar(Aj) dl(Aj)

IW︷ ︸︸ ︷

Assume another previously accepted firm aperiodic task Aj−1 which
will delay the execution of Aj :

Sk+1
i Sk+2

i Sk+3
i

ar(Aj) dl(Aj)ft(Aj−1)

IW︷ ︸︸ ︷

We see that the earliest time Aj can start is set to the finishing time of
its predecessor, ft(Aj−1). So, all invocations of Si that occurred be-
fore earliest start time of Aj , est(Aj), have been taken care of when
calculating ft(Aj−1), and are not needed to be considered when calcu-
lating ft(Aj). The start of the interference window is now set to the
start time of the first possible instance of Si that can interfere with Aj ,
that is Sk+2

i .
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Now we calculate the finishing time of Aj using the algorithm de-
scribed in section 2.3.3. Without sporadic tasks, Aj would be guaran-
teed to finish at time ft(Aj). Since A is guaranteed to finish before its
deadline, we do not need to take into consideration the impact from Si

after the finishing time of Aj . Hence, the end of the interference window
IW (Aj , Si)) is set to ft(Aj).

Sk+1
i Sk+2

i Sk+3
i

ar(Aj) dl(Aj)ft(Aj−1) ft(Aj)

IW︷ ︸︸ ︷

So, what actually happens in this example is that only one instance of
Si is considered when calculating ft(Aj).

At this point, we can formalize the impact of a sporadic task Si on a
firm aperiodic task Aj :

If Si has not yet started to invoke its instances at the time we start
with the acceptance test for Aj , we must assume the worst case, that is
the first instance of Si will start at the same time as the earliest start time
of Ai:

est(S1
i ) = est(Aj) = max(t, ft(Aj−1))

We have max because Aj−1 could have completed before the current
time t, or Aj has no predecessor at all.

On the other hand, if Si has started to invoke its instances, we can
calculate when the next one after the earliest possible time of Aj can
occur (Sk+2

i in example above):

est(Sk+m
i ) = est(Sk

i ) +

⌈
ft(Aj−1) − est(Sk

i )
λ(Si)

⌉
λ(Si)

To conclude, the time interval IW (Aj , Si) in which a sporadic task
Si may preempt and interfere with the execution of a firm aperiodic task
Aj is obtained as:

IWi = [δ, ft(Aj)] (3.8)
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where δ is the earliest possible time Si could preempt Aj and is calcu-
lated as:

δ =

{
est(Sk+m

i ) if Si known
max(t, ft(Aj−1)) otherwise

(3.9)

The index k +m points out the first possible invocation of Si which has
earliest start time after the finishing time of Aj’s predecessor.

The processor demand approach, [8], can be used to determine the
total processing time, cT (S), needed for all sporadic tasks in S that will
interfere with Aj :

cT (S) =
n∑

i=1

⌊ |IW (Aj , Si)|
λ(Si)

⌋
c(Si) (3.10)

Algorithm description

Assume a firm aperiodic task Ai that is tested for acceptance upon its
arrival time, current time t. We want to make sure that Ai will complete
before its deadline, without causing any of the guaranteed tasks to miss
its deadline. A guaranteed task is either an offline task, a previously
guaranteed firm aperiodic task or a sporadic task. Offline and sporadic
tasks are guaranteed before the run-time of the system, see sections 2.2
and 3.2, while firm aperiodic tasks are guaranteed online, upon their
arrival. The guarantee algorithm is performed as follows:

step 1: Assume no sporadic tasks and calculate the finishing time of Ai

based only on offline tasks and previously guaranteed firm aperi-
odic tasks (as described in section 2.3.3).

step 2: Calculate the impact from all sporadic tasks that could preempt
Ai before its finishing time calculated in the previous step (equa-
tion 3.10).

step 3: If the impact is greater than zero, the finishing time of Ai will
be postponed (moved forward), because at run-time we need to
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execute all sporadic instances with deadlines1 less than dl(Ai).
The impact reflects the amount of Ai that is to be executed after
the finishing time calculated in step 1. Now we treat the remaining
part of Ai as a firm aperiodic task and repeat the procedure (go to
step 1). But this time we start calculating the sporadic impact at
the finishing time of the first part of Ai. The procedure is repeated
until there is no sporadic impact on Ai.

Example

Assume a firm aperiodic task A which arrives at current time t = 3, with
the execution demand c(A) = 5 and deadline dl = 12. Also assume a
sporadic task S that has started to invoke its instances before t, in slot
1, with a minimum inter-arrival time λ = 3 and worst case computation
time c(S) = 1. For simplicity reasons, assume no offline tasks and
no previously guaranteed hard aperiodic tasks. First we calculate the
finishing time of A, without considering the sporadic task S, i.e., ft1 =
8.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S1 S2 S3 S4

ar(A) dl(A)ft1 ft2

The interference window of A is IWi = [4, 8]. The impact of S in
IWi is equal to 2 (two instances). Now we take the impact (which
tells us how much A is delayed by S) and calculate its finishing time,
starting at time t1 = ft1, i.e., ft2 = 10. We must check if we have
any sporadic instances in the new interference interval IW

′
i = [10, 10]

(note that original IW
′
i would be [8, 10], but we always take the start

time of the next instance after the previous finishing time, in this case
est(S4) = 10). The new impact is zero, which means that we can stop
and the last calculated finishing time, ft2 = 10, is A’s finishing time.

1The deadline of a sporadic instance is set to the earliest start time of the next in-
stance
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Implementation

The first part of the algorithm is the same as described in 2.3.2: first we
locate the position of hard aperiodic task to be guaranteed, calculate its
finishing time and check if any of previously guaranteed hard aperiodic
tasks will miss its deadline. The second part, that calculates the finish-
ing time, is extended to handle the impact from the sporadic tasks as
follows:

getF inishingT ime(ftpred, c)
/*“fill up” free slots until the c is exhausted.*/
∀Si ∈ S

if Si started to invoke
δ = est(Sk+m

i ) /*eq (3.9)*/
else

δ = max(t, ftpred)
IWi = [δ, ft] /*eq (3.8)*/

sum = sum +
⌊
|IWi|
λ(Si)

⌋
c(Si) /*eq (3.10)*/

if sum �= 0
getF inishingT ime(ft, sum)

else
return ft

The recursive formulation was chosen for simplicity of explanation:
our implementation uses a loop. In the loop, time is increased from
current to finish time, without going back. Thus the complexity remains
linear, similar to the finishing time algorithm in 2.3.2.

3.4 Simulation Analysis

We have tested the acceptance ratio for firm aperiodic tasks with the
methods to handle sporadic tasks: worst case arrivals without knowl-
edge about sporadic invocations (refered as “no info”) and updated worst
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Figure 3.12: Guarantee ratio for aperiodic tasks in the presence of spo-
radics tasks: load variation

case with arrival info (“updated”), as described in section 3.3, case 1 and
case 2.

As in the previous chapter, here we present only some key results,
see appendix A and C for details about performed experiments and im-
plemented simulation tools.

3.4.1 Simulation setup

We studied the guarantee ratio of randomly arriving aperiodic tasks un-
der randomly generated arrival patterns for the sporadic tasks. First we
investigated the guarantee ratio for firm aperiodic tasks with combined
loads 10% - 100%. The deadlines for the aperiodic tasks were varyed
between their maximumum execution time and three times the maxi-
mum execution time, i.e., between MAXT and 3*MAXT. The combined
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Figure 3.13: Guarantee ratio for aperiodic tasks in the presence of spo-
radics tasks: variation of MINT

load was set to 100%.
In the second part of the experiment we varied the arrival frequen-

cies of sporadic tasks according to a factor, f , such that the separa-
tion between instances averageMINT is equal to averageMINT =
f ∗ MINT . This means that if f = 1 then the instances are invoked
with the maximum frequency, and if f = 2, the distance between two
consecutive invocations is 2 ∗ MINT on average.

3.4.2 Results

The results from the first part of the experiment are summarized in figure
3.12, while the results from the second one are presented in figures 3.13.
In both cases our method improves the acceptance ratio of firm aperiodic
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Figure 3.14: Guarantee ratio for aperiodic tasks with sporadics - Final
results

tasks. This results from the fact that our methods reduce pessimism
about sporadic arrivals by keeping track of them.

Figure 3.14 summarizes the simulation. We can see that guarantee
ratio for firm aperiodic tasks is very high, even when we have sporadic
tasks in the system. By keeping track off sporadic arrivals, we can accept
firm tasks that otherwise would be rejected.

3.5 Chapter summary

In this chapter we presented a method for integrated offline and online
scheduling of mixed sets of tasks and constraints. In particular, we pre-
sented an efficient method to handle sporadic tasks, providing for O(N)
complexity online acceptance test for firm aperiodic tasks.

During offline analysis we determine the amount and location of
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unused resources, which we use to include dynamic activities during
the runtime of the system. The sporadic tasks are guaranteed during
design time, allowing rescheduling or redesign in the case of failure.
At runtime, resources reserved for sporadic tasks can be reclaimed and
used for efficient aperiodic task handling.

Thus, our method combines handling of complex constraints, ef-
ficient and flexible runtime scheduling, as well as offline and online
scheduling, providing a basis for predictably flexible real-time systems.
Results of simulation study show the effectiveness of the algorithms.

In the second part of the thesis, we will use the scheduling and re-
source reservation mechanism presented here to flexibly schedule media
processing in resource constrained systems.





– PART II –

Real-Time Processing of MPEG-2 Video in Resource
Constrained Systems





Chapter 4

MPEG-2 Video Processing
under Limited Resources

Media files are very large in size in their original form, thus, they must
be compressed before being stored on e.g., a DVD, or transmitted through
a network, e.g., the Internet. MPEG-2 is the most popular compression
techniques for digital video and audio today, widely used in consumer
electronics for DVD players, digital satellite receivers, and TVs today.

In this chapter we give an overview of MPEG-2 and set up a pro-
cessing model for handling MPEG-2 video streams that is going to be
used in the rest of this thesis. In particular, we give a detailed description
of MPEG-2 video stream, and show how it is processed. Furthermore,
we extend the work by Liesbeth Steffens1 presented in [56] to identify
buffer and latency requirements for continuous MPEG-2 playout, the
work that has been published in our joint papers with her [36, 35, 37].

We start by a giving a description of MPEG-2 video stream in sec-
tion 4.1. Here we discuss different MPEG-2 video layers, coding tech-
niques for the frames and the stream organization. In section 4.2 we
present the task model needed for video processing, followed by the

1Liesbeth Steffens from Philips Research The Netherlands, Eindhoven, has co-
authored three of my MPEG publications. However, any figures on buffers and latency
done by Liesbeth are not included in this thesis. We refer to our joint papers.
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latency and buffer requirements in section 4.3. We discuss the differ-
ent techniques for video processing under limited system resources in
section 4.4. Section 4.5 summarizes the chapter.

4.1 MPEG-2 Video Stream

Here we present the main characteristics of MPEG-2 video stream. A
complete description of the MPEG-2 compression scheme is beyond the
scope of this thesis. For details on MPEG see e.g., [1, 66, 57].

4.1.1 MPEG-2 video layers

An MPEG-2 video stream is a sequence of compressed frame pictures.
Henceforth we will use the terms picture and frame interchangeably.

MPEG-2 video is broken up into a hierarchy of layers to help with
error handling, random search and editing, and synchronization. The
layers are depicted in figure 4.1. From the top, the first layer is known as
the video sequence layer, and it is any self-contained video bit-stream,
e.g., a part of a movie. A sequence layer begins with a sequence header,
which contains the information about the picture size (width and height),
overall display aspect ratio (for example, 4:3 for regular TV, or 16:9 for
widescreen), the intended display rate (e.g., 24 frames per second) and
the stream bit-rate.

Each sequence consists of one or more groups of pictures, which
consist of a header and a series of several pictures, and it is intended to
allow random access into the sequence.

A picture is the primary coding unit of a video sequence. It consist
of slices. Slices are important for error handling. If the bit stream con-
tains an error, the decoder can skip to the start of the next slice. Having
more slices in the bit stream allows better error handling, but use space
that could otherwise be used to improve picture quality.

Each slice consists of one or more adjacent macroblocks, which are
16x16 arrays of luminance pixels, or picture data elements, grouped in
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Sequence
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width
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bit rate
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8 pxl
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Figure 4.1: MPEG-2 video layers

four 8x8 blocks, for further processing such as transform coding.

4.1.2 Frame types

Some frames are encoded with pure intra-picture compression tech-
niques, i.e., the picture can be reconstructed from the frame itself only.
Other frames are encoded using motion compensation, which is an inter-
picture technique. Instead of the complete picture, only the differences
with one or two nearby pictures are encoded using the intra-picture
techniques. In other words, macroblocks in a frame can be coded as
intra and non-intra, i.e., there are intra, forward-predicted, backward-
predicted and forward-and-backward predicted macroblocks in a MPEG
bit stream.

To decode frames that are encoded with motion compensation, the
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nearby frames that were used in the encoding, have to be available for
reference. These frames are called reference frames. We distinguish
forward references and backward references, to past and future frames,
i.e., frames that are displayed earlier and later, respectively.

The MPEG-2 standard defines three types of frames, I , P and B
frames.

I frames

The I frames or intra frames are simply frames coded as still images.
They contain absolute picture data and are self-contained, meaning that
they require no additional information for decoding. I frames have only
spatial redundancy providing the least compression among all frame
types. Therefore they are not transmitted more frequently than neces-
sary.

P frames

The second kind of frames are P or predicted frames. They are forward
predicted from the most recently reconstructed I or P frame, i.e., they
contain a set of instructions to convert the previous picture into the cur-
rent one. P frames are not self-contained, i.e., if the previous reference
frame is lost, decoding is impossible. On average, P frames require
roughly half the data of an I frame, but our analysis in chapter 6 also
showed that this is not the case for a significant number of cases.

B frames

The third type is B or bi-directionally predicted frames. They use both
forward and backward prediction, i.e., decoding a B frame requires pre-
vious I or P frame, and next I or P frame, see figure 4.2. Forward
and backward references are always to the nearest I or P picture in
the intended direction. B frames contain vectors describing where in
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an earlier or a later picture data should be taken from. They also con-
tain transformation coefficients that provide the correction. B frames
are never predicted from each other, only from I or P frames. As a
consequence, no other frames depend on B frames.

B frames require resource-intensive compression techniques but they
also exhibit the highest compression ratio, on average typically requir-
ing one quarter of the data of an I picture. Once again, our analysis
showed that this does not hold for a significant number of cases.

I B B P

Figure 4.2: Forward (P ) and bidirectional (B) prediction

An encoded video stream can consist of I frames only, of I and P
frames, or of I , P , and B frames. In our work we focus on the last
category, streams consisting of I , P and B frames.

4.1.3 Group of Pictures

Predictive coding, i.e., the current frame is predicted from the previous
one, cannot be used indefinitely, as it is prone to error propagation. A
further problem is that it becomes impossible to decode the transmission
if reception begins part-way through. In real video signals, cuts or edits
can be present across which there is little redundancy. In the absence of
redundancy over a cut, there is nothing to be done but to send from time
to time a new reference picture information in absolute form, i.e., an I
frame. As I decoding needs no previous frame, decoding can begin at I
coded information, for example, allowing the viewer to switch channels.

An I frame, together with all of the frames before the next I frame,
form a Group of Pictures (GOP), as shown in figure 4.2. The GOP
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length is flexible, but 12 or 15 frames is a common value. Further-
more, it is common industrial practice to have a fixed pattern (e.g.,
I BB P BB P BB P BB). However, more advanced encoders will
attempt to optimize the placement of the three frame types according to
local sequence characteristics in the context of more global characteris-
tics.

I B B P B B P B B I B B

GOP n GOP n+1

. . .

Figure 4.3: Frame types and Group of Pictures

Note that the last B frame in a GOP requires the I frame in the next
GOP for decoding and so the GOPs are not truly independent. Such
GOPs are called open GOPs. Independence can be obtained by creating
a closed GOPs which may contain B frames but end with a P frame. In
a closed GOP, all references are within the GOP, because the GOP starts
and ends with a reference frame.

4.1.4 Decoding and display order

As mentioned above, B frames are predicted from two I or P frames,
one in the past and one in the future. Clearly, information in the future
has yet to be transmitted and so is not normally available to the decoder.
MPEG-2 gets around the problem by sending and decoding frames in
the “wrong” order. The frames are sent out of sequence and temporarily
stored. Figure 4.4 shows that although the original frame sequence is
I BB P ..., this is transmitted and decoded as I P BB ..., so that the
future frame is already in the decoder before bi-directional decoding
begins.

Here is an example that involves three consecutive (open) GOPs.
The second GOP is presented in bold face font for clarity reason:
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I B B P B B P B B I

I P B B P B B I B B

Encoding
and display

Transmission
and decoding

Figure 4.4: Changes in frame sequence

Display order:
IB1B2P1B3B4P2B5B6I B1B2 P1 B3B4 P2 B5B6IB1B2P1...

Decoding order:
IP1B1B2P2B3B4IB5B6P1 B1B2 P2 B3B4IB5B6P1B1B2...

In the decoding order, the two B frames after the second I frame are
part of the first GOP, and the last two B frames of the second GOP come
after the third I frame. Note that regularity is not intrinsic in the MPEG
standard. Generally, an encoder will follow a certain scheme, like this
one, but this is not required by the standard.

Picture reordering requires additional memory at the encoder and
decoder and delay in both of them to put the order right again. The
number of bi-directionally coded frames between I and P frames must
be restricted to reduce cost and minimize delay, if delay is an issue.

4.2 MPEG-2 Processing Model

In its simplest form, playing out an MPEG-2 video stream requires three
activities: input, decoding, and display. These activities are performed
by three tasks, which are separated by an input buffer and a set of frame
buffers, see figure 4.5.
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Decoding DisplayInput
Input

buffer

Frame

buffer

space

Figure 4.5: MPEG-2 processing model – tasks and buffers

4.2.1 Input task

The input task directly responds to the incoming stream. It places en
encoded video stream in the input buffer at a certain rate, expressed in
bits per second, the bit rate, BR. In the simple case, the input activity
is very regular, and only determined by the fixed, constant bit rate. In a
more general case, the input may be of a more bursty character due to
an irregular source (e.g., the Internet), or due to a varying multiplex in
the transport stream.

4.2.2 Decoding task

The decoding task extract the video data from the input buffer at a spe-
cific frame rate, FR, which is the number of frames per second, fps, and
it is specified in the MPEG stream. Some common frame rate values are
e.g., 24 fps, 25 fps and 30 fps (or to be more precise, 23.999.., 24.999...
and 29.999..fps). It decodes extracted frames and puts the result (de-
coded frames) in the frame buffers. The decoding times for frames can
vary, depending on the frame bit size and the used compression tech-
nique.

If sufficient buffer space is available, the decoders may work asyn-
chronously, spreading the load more evenly over time. Its deadline is de-
termined by the requirements of the display task. If B frames are present
in the stream, the decoder performs frame reordering, i.e., the display
order differs from the decoding order. This means that the frames are
offered to the display task at irregular intervals. Reference frames are
offered to the display task after the B frames they helped to decode.
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4.2.3 Display task

The display task is IO bounded, and often performed by a dedicated
co-processor. It is driven by the refresh rate of the screen, the display
rate, DR. The display task, once started, must always find a frame to be
displayed. In the simple case, the display rate equals the frame rate, but
we will also consider situations where the display rate is higher than the
frame rate.

4.3 Latency and Buffer Requirements for video
processing of MPEG-2

Once we start to play out a video stream, the end-to-end latency is fixed
and it is measured from the arrival of the first bit at the input task to the
display of the first pixel or line on the screen. If this latency is not fixed,
the system cannot work correctly over time [56].

The end-to-end latency is the sum of the decoding latency, and the
display latency, see figure 4.6. The decoding latency and the display
latency are not necessarily fixed.

Decoding

task reads

first bit 

First bit 

arrives at 

input task 

First pixel 

displayed on 

the screen

decoding latency

End-to-end latency

display latency
time

Figure 4.6: End-to-end latency for MPEG playout

The initial decoding latency is measured from the arrival of the first
bit at the input task to the reading of the first bit of the first frame, after
the header, by the decoder.
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The initial display latency is measured from the reading of the first
bit of the first frame, after the header, by the decoder, to the display of
the first pixel on the screen.

If the decoding task is strictly periodic, the decoding and display la-
tencies are constant. If the decoder is asynchronous, i.e., if its activity is
determined by the buffer fillings, both latencies can vary due to different
decoding times for frames.

4.3.1 Input buffer requirements

We have mentioned earlier that the input task reads the MPEG stream
and puts the video data in the input buffer. The buffer occupancy rises
linearly during the decoding of each frame, and drops vertically at the
start of a new frame, when the picture data are removed from the input
buffer.

The input buffer serves several purposes. First, it has to compen-
sate for the irregular data size for different frames. This irregularity is
bounded, and the bounding is encoded in the stream, in the form of a
parameter called VBV buffer size. VBV stands for Video Buffering Ver-
ifier, a hypothetical reference decoder that is conceptually connected to
the output of the encoder. It has an input buffer known as the VBV
buffer. VBV’s purpose is to provide a constraint on the variability of
the data rate that an encoder or editing process may produce. In VBV,
decoding starts when the first frame has completely arrived in its input
buffer, and retrieves a complete encoded frame out of the input buffer at
the start of a new frame period. The contents of the VBV input buffer
never exceeds VBV buffer size, thus, part of the definition of a compli-
ant video stream is that it does not cause underflow or overflow of this
model buffer, see MPEG video standard [1] for details.

Second, the input buffer has to compensate for varying decoding
times, which are not foreseen by the encoder. Therefore, this compen-
sation cannot be bounded a priori.

Third, a realistic decoder retrieves the data from the input buffer
according to its processing. The resulting non-zero retrieval time relaxes
the buffer requirement, but can also not be bounded a priori. Therefore,
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the input buffer size is essentially a design choice, closely related to the
initial decoding latency and the desired end-to-end latency.

Once the size of the input buffer is chosen, the maximum decoding
latency of the reference decoder, RDLmax, is fixed:

RDLmax =
IBS

BR

where IBS is the input buffer size, and BR the bit rate.

4.3.2 Frame buffers requirements

The frame buffers serve a dual purpose. They serve as reference buffers
for the decoder and as input buffers for the display task, or output buffer
for the decoding task. It is possible that a certain frame buffer is used
in both capacities at the same time. This makes frame buffer manage-
ment somewhat more complicated than input buffer management. The
display task cannot start until the first frame has been placed in the out-
put buffer, and does not release the current output buffer until a second
output buffer is available (double buffering scheme). In this way, the
display task always has a frame to display.

If the stream contains two or more B frames in sequence, the min-
imum number of frame buffers needed is four: two for the reference
frames, one for the B frame being displayed, one for the B frame be-
ing decoded. The use of four frame buffers allows a certain irregularity
in the delivery of output frames by the decoder. For example, if we
have a GOP structure with two B frames between each pair of reference
frames, i.e., IBBPBBP..., the second B frame can be decoded in the
same frame period as the first B frame is being displayed, since they are
using different frame buffers. In general, when the n-th frame is being
displayed, the (n+1)-th frame is decoded. Therefore, the minimum dis-
play latency equals two frame periods. If there are no B frames, there
is no frame reordering, and the minimum display latency will be one
frame period instead of two.

In the example above, the decoding cannot be done with less than
four frame buffers, but these four frame buffers do allow a larger dis-
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play latency. For example, we can maximize the display latency by not
displaying B frames when they are completely decoded, but when the
buffer is needed to decode the next frame. Now the n-th frame is being
displayed while the (n + 3)-th frame is being decoded, i.e., the display
latency equals three frame periods. Thus the display latency is bounded
between the minimum of two frame periods and a maximum of three
frame periods.

4.3.3 Buffer overflow and underflow

Since the decoder is asynchronous, there is a risk of buffer overflow and
underflow, which could result in severe visual artifacts.

Buffer underflow and overflow are illustrated in figure 4.7. Input
buffer underflow, and frame buffer overflow occur when the decoder is
too fast, i.e., when the decoding latency is too small and/or the display
latency too large. The decoder is blocked until the input and/or output
task catches up. This can be prevented by synchronization.

Too large
decoding
latency

Too slow
decoderunder

flow

Too fast
decoder

over
flow

under
flow
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display
latency

over
flow

Too small
decoding
latency

Too large
display
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Decoding
task

Display
task
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Figure 4.7: MPEG buffer overflow and underflow

Input overflow and output underflow occur when the decoder is too
slow, i.e., when the decoding latency is too large and/or the display la-
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tency is too small. In case of output underflow, the display does not
have a new frame to display, but this has been foreseen by retaining the
previous frame for display until a new one arrives. Input overflow can
be much more serious. In some cases, the input can be delayed, e.g., in
case of a DVD player. In other cases, the input task cannot be blocked,
especially in case of a broadcast input, where the input buffer must be
made large enough to accommodate at least the variation that is allowed
by the frame buffers.

The overflow is most likely to occur close to the end of a GOP. The
decoder reads from the head of the buffer queue, the input task writes to
the tail of the buffer queue. When the input buffer is full, two options are
open for the input task: overwrite data at the head of the queue, or drop
incoming data. In both cases, reference data will be destroyed, which
will lead to a very serious artifact, because the remainder of the GOP
cannot be decoded without these reference data. Therefore, preventing
overflow at the input is imperative.

There are three measures that contribute to preventing overflow: ju-
dicious choice of end-to-end latency and input buffer size, speeding up
the processing by allocating more processing resources, and preventive
load reduction, e.g., by skipping frames. This will be discussed in de-
tails in the next section.

4.4 Playout under Limited Resources

The latency variation allowed is a design decision, based on the maxi-
mum allowed end-to-end latency, and the available buffer space. If the
processor cannot work fast enough to meet the time constraints, the de-
coder has to speed up. There are two ways to do this: quality reduction,
and frame skipping.

Whichever strategy is chosen, we assume that the system organiza-
tion is such that the display task is never without data to display. This
is not difficult to achieve. If a decoded frame does not arrive on time,
and the display task has to redisplay the previous frame, this is a dead-
line miss for the decoder. With the given arrangement deadline misses
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have a penalty, in the form of a perceived quality reduction. Moreover,
since the frame count has to remain consistent, the decoder must skip
one frame.

4.4.1 Quality reduction

With the quality reduction strategy, the decoder reduces the load by us-
ing a downgraded decoding algorithm. This approach has two advan-
tages over frame skipping. In general the decoding load is higher when
there is more motion, but in that case, skipping frames may be more vis-
ible than reducing the quality of individual pictures. Moreover, quality
reduction can be more subtle, whereas skipping frames is rather coarse
grained.

The main disadvantage of the quality reduction approach is that it
requires algorithms that can be downgraded, with sufficient quality lev-
els to allow smooth degradation. Such algorithms are not yet widely
available.

4.4.2 Frame skipping

Frame skipping means not decoding and displaying some of the frames.
Frame skips speed up the decoder, and increase the display latency, i.e.,
the display latency is increased by a complete frame period when a
frame is skipped.

There are two forms of frame skips, reactive and preventive. A re-
active frame skip is a frame skip at or after a deadline miss to restore
the frame count consistency. In case of a deadline miss, there are two
options, aborting the late frame, which is probably almost completely
decoded, or completing the late frame, and skipping the decoding of a
later frame. In the former case, the display latency stays low, and a next
deadline miss is to be expected soon. In the latter case, the display la-
tency is drastically reduced, because the decoder will be blocked due
to output buffer overflow. An additional frame buffer would give more
freedom, and a more stable system, at the cost of using additional mem-
ory. In both cases, we have to make sure that the input buffer is large
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enough to allow the minimal display latency.
A preventive frame skip preventively increases the display latency.

Skipping a frame takes a certain time, but much less than decoding it.
Instead of rising, which is normal for B frames, the buffer occupancy
drops during the frame skipping. The decision to skip preventively is
taken at the start of a new frame, and is based on an measurement of the
lateness of the decoder.

4.5 Chapter summary

MPEG-2 video stream is a sequence of frame pictures. I frames are
self-contained, while P and B frames are predicted from other frames;
the first one from a previous reference frame and the second one both
from a previous and a next reference frame.

MPEG video processing consists of three tasks: input, decoding,
and display. Input and display are usually IO bound and are executed
on specialized co-processors. Decoding is computation-bound, and is
executed on the CPU. The three tasks are separated by buffers, one input
buffer, and a frame buffer space that contains at least two frame buffers.

The input task accepts the incoming stream at a certain bit rate,
which can be constant and variable. The display task operates at fixed
display rate. Both are hard timed. As a consequence, there is a fixed
end-to-end latency between input and display. The decoding task is
squeezed between the input task, which pushes the encoded data into
the input buffer, and the display task, which pulls the decoded data out
of the frame buffers. Hence, the decoding latency and the display la-
tency can vary.

Underflow and overflow can occur in each of the buffers, having
different consequences. For example, output underflow is less severe
and it can be compensated for by redisplaying the last decoded frame.
Input overflow can be much more serious: wrong data overwrite can
ruin an entire GOP resulting in a severe visible artifact. Thus, preventing
overflow at the input is imperative.

In this thesis, we use preventive frame skipping to speed up decod-
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ing and hence prevent this problem. In forthcoming chapters we will
present criteria for frame skipping and use those to propose a quality
aware MPEG-2 stream adaptation upon overload situations, but first will
look into requirements for decoding frames and propose in next chapter
realistic timing constraints for MPEG-2 video processing.



Chapter 5

Timing Constraints for
Real-Time MPEG-2 Video
Processing

Video and audio, as well as stream processing in general, have through-
put requirements and real-time deadlines. For example, decoding a 25
fps video stream requires periodically a newly decoded frame every 40
ms. These deadlines are hard in the sense that missing a deadline causes
an error, which can render a whole GOP unusable: if the decoding of an
I frame is aborted due to a deadline miss, then no other frames in the
same GOP can be reconstructed.

One way of meeting deadlines for MPEG-2 processing is to perform
a guarantee test for frame decoding, based on the amount of available
system resources. As a first step toward such a guarantee algorithm, we
need to know the timing constrains imposed by MPEG-2 processing,
i.e., we need start times and deadlines for frame decoding in order to be
able to guarantee its timely execution.

In this chapter we derive realistic timing constraints for MPEG-2
video decoding. We start by outlining the sources of the constraints in
section 5.1, followed by derivation of start time constraints and finishing
time constraints for the decoding of video frames, in sections 5.2 and

101
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5.3. We use these constraints in section 5.4 to propose earliest start times
and deadlines for frame decoding. Section 5.5 concludes the chapter.

5.1 Sources of constraints

Timing constraints for an MPEG video decoder stem from roughly three
sources:

• MPEG stream constraints – in particular frame ordering and their
dependencies, poses mostly relative constraints. For example, in
order to decode a B frame, its reference frames need to be de-
coded first. Besides, the backward reference frame must be trans-
mitted and decoded before the B frame, meaning that it will have
earlier decoding start-time but later display time than the B frame.

• Display rate constraints – related to the refresh rate of the screen,
defines mostly absolute constraints. It depends on hardware char-
acteristics, which in turn define when a picture should be ready
to be displayed. Consumer TV sets typically have refresh rates
of 50, 60, or 100Hz, computer screens may have more diverse
values.

• Resource and synchronization constraints – incurred by the frame
buffers. The number and handling of frame buffers depends on
hardware and architecture design, i.e., the constraints will be im-
plementation dependent. Therefore we do not include specific
constraints, which would change with design decisions.

5.2 Start time constraints

Let f j
i denote a frame with the decoding number i and the display num-

ber j. Note that, as outlined in chapter 4.1.4, the decoding order will
differ from the display order, i.e., i �= j, if the stream contains B frames.
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For B frames j = i−1, for I and P frames, the display number depends
on the MPEG stream and has to be determined via look-ahead.

The earliest time at which decoding a frame f j
i can begin is the

earliest point in time at which all of the following start time conditions,
STC, hold:

Start Time Constraint 1: Frame header parsed and analyzed:

STC1(f
j
i ) ≥ tH(f j

i ) (5.1)

where tH is the time it takes to parse the frame header and extract rel-
evant information needed for frame decoding. This time is platform
dependent.

Start Time Constraint 2: For B and P frames: the decoding finishing
time (ft) time of the forward/backward reference frame:

STC2(f
j
i ) ≥ ft(f l

k), l < j (5.2)

STC2(f
j
i ) ≥ ft(fn

m), n > j (5.3)

where f l
k is the backward reference frame and fn

m the forward reference
frame of f j

i . We will see in next section how latest finishing times for
frames can be calculated.

Start Time Constraint 3: Frame data available in input buffer:

STC3(f
j
i ) ≥ CIT (f j

i ) =
j∑

n=1

FS(fn
k )

BR(fn
k )

(5.4)

where CIT is the cumulative input time of a frame f j
i , and it depends

on the frame size, FS, and the bitrate, BR, of all previously decoded
frames (k is correspoding display index of a frame with the decoding
index n and it depends on the stream structure, i.e., the number of B
frames between two consecutive reference frames).

Start Time Constraint 4: Free frame buffer available.

STC4(f
j
i ) ≥ tB(f j

i ) (5.5)
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where tB is the earliest time when a frame buffer is available. This
is always naturally true for reference frames: they require at least two
buffers, one for the current frame and one for the previous reference
frame it references to, see section 4.3. When a new reference frame is
being decoded, at most one of them is needed for reference. As a con-
sequence, for reference frames, STC4 becomes true one frame period
earlier than it would for B frames.

The last two constraints are necessary for unblocked video stream pro-
cessing.

5.3 Finishing time constraints

The latest time at which decoding a frame has to be completed is the
earliest point in time at which any of the following finishing time con-
ditions, FTC, holds:

Finishing Time Constraint 1: Required display time of the frame.

FTC1(f
j
i ) ≤ RDT (f j

i ) (5.6)

where RDT denotes the required display time of the frame. We will see
now how it can be obtained.

If we have a TV set displaying a digital broadcast stream, DTV, the
input frame rate is equal to the display frame rate: 50 - 60 Hz, depending
on the region. Other input streams may have different frame rates, and
other displays may have different display rates, i.e., the display rate is a
multiple of the frame rate:

DR = ρ ∗ FR

The frame period, Tfr, is equal to 1/FR, while the display period, Tdis,
is equal to 1/DR. This means that ρ can be expressed as:

ρ =
DR

FR
=

Tfr

Tdis
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If the display rate is an integer multiple of the frame rate, i.e., ρ is
an integer, the solution is simple, since the frame period and the dis-
play period will be harmonic. If this is not the case, things are more
complicated. We will discuss both cases.

Case 1: Display rate is an integer multiple of the frame rate:

ρ ∈ Z+

where Z+ is a set of positive integers (i.e., ρ = 1, 2, 3, ...).

In this case, the required display time, RDT , of a frame with the
decoding number i and the display number j is given by:

RDT (f j
i ) = IDL + (j − 1)Tfr (5.7)

where IDL stands for initial display latency, i.e., the display time of the
first frame, as described in section 4.3. IDL includes ”catching in” on
the display period.

The length of the time interval in which a frame can be displayed is,
in this case, the same for each frame, i.e., the length of the frame display
interval, FDI , is equal to the frame period:

|FDI(f j
i )| = Tfr

This implies that each frame will be re-displayed the same number of
times, i.e., the repetition rate for the frames, R, is constant and it is
equal to:

R(f j
i ) =

|FDI(f j
i )|

Tdis
=

Tfr

Tdis
= ρ

Figure 5.1 depicts a simple example: assume an MPEG stream with
a GOP structure I BB P BB P . If the frame rate is 25 fps, and the
display rate is 50 fps, then we will have two invocations of the display
task per frame. The frame period, Tfr, is equal to 1/25 = 40ms, while
the display period, Tdis, is equal to 1/50 = 20ms, as shown in figure
5.1-a.
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IDL 40 80 120

IDL 20 40 60 80 100 120

Tfr

Tdis

FDI

a) Frame rate and display rate, DR = 2 ∗ FR

I P B B P B B

1 2 3 4 5 6 7i:

decoding

I B B P B B P

1 2 3 4 5 6 7j:

display

b) Decoding and display numbers of the frames

f i j RDT |FDI| R

I 1 1 IDL + 0 40 2
B 3 2 IDL + 40 40 2
B 4 3 IDL + 80 40 2
P 2 4 IDL + 120 40 2
B 6 5 IDL + 160 40 2
B 7 6 IDL + 200 40 2
P 5 7 IDL + 240 40 2
... ... ... ... ... ...

c) Required display times, frame rates and intervals

Figure 5.1: Case 1 - display rate is an integer multiple of the frame rate
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Decoding and display numbers are depicted in figure 5.1-b. For B
frames, j = i− 1, e.g., the first B frame will have the decoding number
3 and the display number 2. For reference frames in this example, j =
i+2 (except for the first I frame in the stream which will have the same
display and decoding number).

Finally, figure 5.1-c presents the corresponding frame intervals, rep-
etition rates and required display times for the frames. Note different
decoding and display numbers for the frames, e.g., the first P frame
will have the decoding number 2, but its display time is 4, since we
must display the two B frames first.

Case 2: Display rate is not an integer multiple of the frame rate:

ρ �∈ Z+

If the display rate is not an integer multiple of the frame rate, than
we can only find approximate solutions. Here is an example: assume
that we have an input frame rate of 24 Hz (original film material), and
a display rate of 80 Hz (computer display). The decoding period is pro-
portional to the frame rate, i.e., Tdec = 1/24 = 41.666... ms, whereas
the display period is Tdis = 1/80 = 12.5 ms, as illustrated in figure
5.2-a.

Since the decoder task is not in phase with the display task, the
required display times will not overlap with starts of new frame periods,
as in case 1. There are two ways to display frames:

Approach 1: Always postpone. The required display time for a frame is
always after start of the corresponding frame period.

For example, the required display time of the first B frame in the
example from figure 5.2 (the one with i = 3 and j = 2) is equal to the
start of the first display period that occurs after the start of B’s frame
period (IDL + 41.666...), which is IDL + 50. Similarly, RDT of
the second B frame is the start of the first display period after IDL +
83.333.., which is IDL + 87.5 and so on, as shown in figure 5.2-b.

In this case, the required display time of the frames is calculated as:

RDT (f j
i ) = IDL + �(j − 1)ρ�Tdis (5.8)
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Approach 2: Take the closest one. The required display time for a frame
can be before or after start of the frame period, whichever is closest.

Let ∆L(f j
i ) and ∆R(f j

i ) denote the time distance from the start
of f ’s frame period to the closest left respective right start of display
period, i.e.,:

∆L(f j
i ) = (j − 1)Tfr − �(j − 1)ρ�Tdis

∆R(f j
i ) = �(j − 1)ρ�Tdis − (j − 1)Tfr

The required display time for this approach is given by:

RDT (f j
i ) = IDL+

⎧⎪⎨
⎪⎩

�(j − 1)ρ�Tdis, if ∆L(f j
i ) < ∆R(f j

i )

�(j − 1)ρ�Tdis, otherwise
(5.9)

For example, for the first B frame, ∆L(f2
3 ) = 41.666 − 37.5 = 4.166

and ∆R(f2
3 ) = 50 − 41.666 = 8.333. Since ∆L is less than ∆R, the

required display time is equal to IDL + 37.5 and not IDL + 50, as we
would have in approach 1. Required display times for the other frames
is shown in figure 5.2-c.

The repetition rate for the frames (both in approach 1 and approach 2)
will not be constant for each frame, since the frame display intervals will
have different length. For example, if we use approach 1, FDI(f1

1 ) in
the example above will have length 50, while FDI(f2

3 ) will have length
87.5 − 50 = 37.5.

The length of the frame display interval for the both appraches in
this case is equal to the required display time of the frame that is to be
displayed next, i.e., the one with the display number j + 1 (and some
decoding number k):

|FDI(f j
i )| = RDT (f j+1

k ) − RDT (f j
i )

The repetition rates are calculated as:

R(f j
i ) =

|FDI(f j
i )|

Tdis
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IDL 41.666... 83.333... 124.999...

Tfr

IDL 12.5 25 37.5 50 62.5 75 87.5 100 112.5 125

Tdis

a) Frame rate and display rate, DR = 3.333.. ∗ FR

f i j RDT |FDI| R

I 1 1 IDL + 0 50 4
B 3 2 IDL + 50 37.5 3
B 4 3 IDL + 87.5 37.5 3
P 2 4 IDL + 125 50 4
B 6 5 IDL + 175 37.5 3
B 7 6 IDL + 212.5 37.5 3
P 5 7 IDL + 262.5 50 4
... ... ... ... ... ...

b) Approach 1: always pospone

f i j RDT |FDI| R

I 1 1 IDL + 0 37.5 3
B 3 2 IDL + 37.5 50 4
B 4 3 IDL + 87.5 37.5 3
P 2 4 IDL + 125 37.5 3
B 6 5 IDL + 162.5 50 4
B 7 6 IDL + 212.5 37.5 3
P 5 7 IDL + 250 37.5 3
... ... ... ... ... ...

c) Approach 2: closest instance

Figure 5.2: Case 2 - display rate is not an integer multiple of the frame
rate
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Approach 1 is a little more relaxed in terms of precise latencies,
and thus deadlines. Apparently, the choice between approach 1 and 2
does not really matter with respect to relative frame jitter. In both cases,
we get a cycle of three frame intervals: 50, 37.5, 37.5. However, the
relative frame jitter is important for perception. In high quality video
where the jitter is not accepted, this problem has been solved by using
interpolation, i.e., making new frames. This feature is known as natural
motion [22].

Finishing Time Constraint 2: Imminent overflow of input buffer.

FTC2(f
j
i ) ≤ tO(f j

i ) (5.10)

where tO is the time at which the input buffer overflow occurs. By a

judicious choice of input buffer size, as outlined in section 4.3, FTC2

will always be met. Should the completion constraint be missed, though,
data loss at the input buffer will occur, with the risk of having to recap-
ture the stream, which will take at least the complete GOP or until the
next sequence header.

5.4 Earliest start times and deadlines for frame
decoding

We use the timing constraints presented above to propose start times
and deadlines for frame decoding. Simply, we set the earliest start time
and the deadline for decoding a frame to be the most strict start time and
finishing time constraint for that frame. Thus, the earliest start time, est,
and the deadline, dl, for decoding the frame f j

i are equal to:

est(f j
i ) = max{STC1, STC2, STC3, STC4}

dl(f j
i ) = min{FTC1, FTC2}

We will use those start times and deadlines in chapter 8 to propose
a quality aware guarantee algorithm for frame decoding.
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5.5 Chapter summary

MPEG streams are played on different display devices with different
screen refresh rates. The challenge here is to match frame rates encoded
in the stream with display rates used by the display devices. While this
is quite straight forward for the case where the frame rate is an integer
multiple of the display rate, e.g., frame rate is 25fps and the display rate
is 50Hz, things gets more complicated when this is not the case, e.g.,
frame rate is 24 fps and display rate is 80Hz.

In this chapter we derived realistic timing constraints for MPEG-2
decoding. We proposed two ways of dealing with the later case; the first
one is to display the current frame in the first instance of the display
task that occurs after the frame deadline, i.e., always postpone, and the
second method is to use closest instance of the display task, either before
or after the frame deadline, whichever is closest.

As a final result, we proposed a set of start time and completion
time constraints for MPEG video decoding and used these to set the
earliest start times and the deadlines for frame decoding. These will be
used later to provide a real-time guarantee algorithm for frame decoding
upon limited resources.





Chapter 6

Misconceptions and Realistic
Assumptions about MPEG-2

Frame skipping needs appropriate assumptions to be effective. Skip-
ping the wrong - even small - frame at the wrong time can ruin a whole
GOP. As one of the initial steps towards a quality aware frame selec-
tion method upon resricted system resources, we have performed an ex-
hausted analysis of diverse realistic MPEG-2 video streams, both on the
frame and the sub-frame level.

In this chapter we report the results from our analysis and match
those with common assumptions about MPEG. The objective was to
check the validity of common assumptions for software MPEG-2 de-
coding and to propose realistic assumptions about MPEG-2 stream and
processing, needed for frame skipping with focus on high video quality.
We found a number of misconceptions present in the real-time commu-
nity.

We start by presenting the analysis results in section 6.1. In section
6.2 we discuss the validity of common assumptions about MPEG-2 by
comparing them to our results and findings. Furthermore, we present the
sub-frame level analysis results in section 6.3, followed by conclusions
in section 6.5.

113
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Genre Length Fps Resolution Mbit/s GOP Frames

Action 118 min 25 720x576 9800 (12,3) 179412
Drama 107 min 25 720x576 8700 (12,3) 173054
Cartoon 104 min 25 720x576 6000 (12,3) 121406

Table 6.1: Some representative MPEG streams

6.1 Analysis of Realistic MPEG-2 Video Streams

We have analyzed a number of diverse streams taken from original DVDs
and matched our results with the common MPEG assumptions. For the
readability sake, in this chapter we report only representative results for
selected MPEG-2 movies. The complete results for all analyzed movies
can be found in appendix B.

6.1.1 The objective

We have measured frame sizes, decoding execution times, and GOP
statistics such as total GOP sizes, the number of open and closed GOPs,
the number of GOPs where the I frame is not the largest one, I ,B,P
frame patterns etc. Then we matched the obtained results with some
common assumptions about MPEG video stream.

Since some video contents are more sensitive for quality reduction
than others [47], we have analyzed different types of movies; action
movies, dramas, and cartoons, see table B.1. Column GOP in the ta-
ble B.1 represents the GOP structure of the streams, i.e., it refer to the
length and distance between reference frames respectively, e.g., GOP
structure (12,3) means I-to-I distance is 12, while I-to-P and P -to-P
distance is 3.

6.1.2 Simulation environment

The MPEG video streams have been extracted from original DVD movies.
To extract the data out of an MPEG video stream, we have implemented
a C-program, see appendix C for details.
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Frame type Bytesize Action movie Drama Cartoon

min 11 17 7178
I max 247073 183721 140152

average 63263 58985 84318
min 2 4 159

P max 152000 126229 137167
average 29352 28893 31943

min 4 4 159
B max 96131 79552 111405

average 18525 19054 14398

Table 6.2: Frame size statistics

The decoding execution time measurements were performed on sev-
eral PC computers, with different CPU speed (in the range 0.5-2.0 GHz).
The time for measuring decoding execution times was equivalent to the
length of the movies.

6.1.3 Analysis results

GOP and frame size statistics of the selected movies are presented in
table 6.2. We have also analyzed the relations between frame sizes on
the individual GOP basis, see table 6.3. “GOPs with the Same length =
82%” in the table 6.3 means that in the analysed movie 82% of the GOP
had the same length, e.g. 12 frames per GOP, while 18% of the GOPs
did not follow that pattern i.e., contains less or more frames. “9%” in
the column “some P larger than I” of the table 6.3 means that in 9% of
the GOPs there are at least one P frame that is larger then the I frame.
The other columns in the tables are quite self-explanatory.

Furthermore, we have looked into size distribution for different frame
types. Figure 6.1 depicts the frame size distribution for the action movie.
The size range between the minimum frame size and the maximum
frame size for different frame types has been divided into ten size in-
tervals and the number of frames with sizes within respective interval is



116 Chapter 6. Misconceptions and Realistic Assumptions
about MPEG-2

Number of GOPs: Action Drama Cartoon

Closed GOPs 17% 2% 1%
Open GOPs 83% 98% 99%
GOP with the same length 82% 92% 98%
I largest in GOP 90% 94% 92%
P largest in GOP 9% 5% 7%
B largest in GOP 1% 1% 1%
some P larger than I 9% 6% 8%
some B larger than I 5% 3% 1%
some B larger than P 39% 37% 12%
some P larger than a previous P 81% 84% 81%
some B larger than a previous B 97% 100% 100%

Table 6.3: GOP statistics

shown. For example, we can see from the figure that 50.4% of P frames
have sizes between 37869 and 50492 bytes.

Finally, we have measured the decoding times for different frame
types, see figures 6.2,6.3 and 6.4 for an example.

6.2 Common Assumptions about MPEG - Revised

Here we present some common assumptions about MPEG and match
them with our analysis results. We have looked into stream assumptions,
frame size assumptions, and a decoding time assumption.

Stream assumptions

Assumption 1: The sequence structure of all GOPs in the same video
stream is fixed to a specific I ,P ,B frame pattern.

This is not true. For example, in 18% of the GOPs in the action movie
the GOP length was not 12 frames. Not all GOPs consist of the same
fixed number of P and B frames following the I frame in a fixed pat-
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Number of I frames per size interval

1.4%

7.9%

32.8%
38.5%

16.3%

2.5% 0.5% 0.1% 0.0% 0.0%

17 18373 36746 55119 73492 91865 110239 128611 146985 165358

Size interval as percentage of max bytesize for I frames 

 0%         10%        20%        30%        40%       50%         60%       70%        80%       90%       100%

Number of P frames per size interval

4.2%

30.3%

50.4%

13.4%

1.2% 0.5% 0.1% 0.0% 0.0% 0.0%

4 12623 37869 50492 63115 75738 88361 100984 113607 126229

Size interval as percentage of max bytesize for P frames

Number of B frames per size interval

1.6%

29.0%

50.4%

17.1%

1.7% 0.2% 0.1% 0.0% 0.0% 0.0%

4 7955 15910 23865 31821 39776 47731 55686 63642 71597

Size interval as percentage of max bytesize for B frames

4        7955     15910     23865    31821    39766     47731    55686    63642     71587     79552

 0%         10%        20%        30%        40%       50%         60%       70%        80%       90%       100%

 0%         10%        20%        30%        40%       50%         60%       70%        80%       90%       100%

Figure 6.1: Frame size distribution for the action movie
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Figure 6.2: I frames: decoding execution times as a function of frame
bitsize

tern. That is because more advanced encoders will attempt to optimize
the placement of the three picture types according to local sequence
characteristics in the context of more global characteristics.

Assumption 2: MPEG streams always contain B frames.

Not true. We have been able to identify MPEG streams that contain only
I and P frames (IPP ), or even only the I frames in some rare cases.
Video streams that use only I frames exploit an older MPEG-2 technol-
ogy that does not take advantage of MPEG-2 compression techniques.
The IPP technology provides high quality digital video and storage,
making it suitable for professional video editing. B frames provide the
highest compression ratio, making the MPEG file smaller and hence
more suitable for video streaming, but if the file size is not an issue,
they can be excluded from the stream.

Assumption 3: All B frames are coded as bi-directional.



6.2 Common Assumptions about MPEG - Revised 119

Figure 6.3: P frames: decoding execution times as a function of frame
bitsize

This is not true. There are B frames that do have bi-directional refer-
ences, but in which the majority of the macroblocks are I blocks. If the
encoder cannot find a sufficiently similar block in the reference frames,
it simply creates an I block.

Assumption 4: All P frames contribute equally to the GOP reconstruc-
tion.

Not true. The closer the P frame is to the start of the GOP, the more
other frames depend on it. For example, without the first P frame in
the GOP, P1, it would be impossible to decode the next P frame, P2,
as well as all the B frames that depends on both P1 and P2. In other
words, P2 depends on P1, while the opposite is not the case. Besides,
all B frames that depend on P2 will also (indirectly) depend on P1,
giving more frames that depend on P1 than P2.
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Figure 6.4: B frames: decoding execution times as a function of frame
bitsize

Frame size assumptions

Assumption 5: I frames are the largest and B frames are the smallest.

It holds on average. In all the movies that we analyzed, the average sizes
of the I frames were larger than the average sizes of the P frames, and
P frames were larger than B frames on average. However, our analy-
sis showed that this assumption is not valid for a significant number of
cases. For example, in the action movie we have a case with 9% GOPs
in which P have the largest size, and 1% of GOPs where a B frame is
the largest one (see table 6.3), which corresponds roughly to 8 and 1
minutes respectively in a 90 minute film. Such deviations from average
cannot be ignored.

Assumption 6: An I frame is always the largest one in a GOP.

This is not true. For example in the action movie the I frame was not
the largest in 12% of the cases (in 9% of the cases some P frame was
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larger than the I frame, and in 3% of the GOPs, a B frame was larger
than the I frame).

Assumption 7: B frames are always the smallest ones in a GOP.

Not true. For example, in the drama movie, a B frame was larger than
the I frame in 3% of the cases, and larger than a P frame in 37% of the
cases. As a consequence, even the assumption that P frames are always
larger than B frames is also not valid. As another example, we found
a GOP where the B frame is almost 100 times larger than the I frame
(B ≈ 1MB, I ≈ 12kB).

Assumption 8: I,P and B frame sizes vary with minor deviations from
the average value of I,P and B.

Not true. In the action movie, frame sizes vary greatly around an aver-
age, see frame size intervals in figure 6.1. For example, for B frames,
the interval between 0.5 and 1.5 of average holds only some 70% of
frames.

Decoding time assumptions

Assumption 9: Decoding time depends on the frame size and it is linear.

While some results on execution times for special kinds of frames have
been presented, e.g., [12], a (linear) relationship between frame size
and decoding time cannot be assumed in general. Our analysis shows,
that the relation between frame size and decoding follows roughly a
linear trend. The variations in decoding times for similar frame sizes,
however, are significant for the majority of cases, e.g., in the order of
50-100% of the minimum value for B frames. As expected, the frame
types exhibit varying decoding time behavior (see figures 6.2,6.3 and
6.4): I frames vary least, since the whole frame is decoded with few
options only. On the other hand, B frames, utilizing most compression
options, vary most.
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6.3 Sub-frame Analysis

We have looked into MPEG-2 video streams on the sub-frame level. We
investigated the type of macroblocks for each frame type. As explained
in chapter 4.1.2 there are intra, forward-predicted, backward-predicted
and forward-and-backward predicted macroblocks in a MPEG video
stream. We investigated the amount of different macroblocks for the
three frame types. The analysis result for an example movie is depicted
in figure 6.5.

Furthermore, we have looked into so called skipped macroblocks1,
i.e., macroblocks for which no data is encoded. Skipped macroblocks
are used to achive higher compression ratio. When a macroblock is
skipped, it is implicitly defined by the standard in the following way: in
a P frame, a skipped macroblock is a direct copy of the corresponding
macroblock from the previous I or P frame. In a B frame, a skipped
macroblock is reconstructed by assuming the motion vectors and motion
type (i.e., forward, backward, or bidirectional) are the same as the last
encoded macroblock. In this case, skipped macroblocks can not follow
intra-coded macroblocks because then there would be not motion type
or motion vectors defined.

The average numbers of skipped macroblocks per frame type for
some example streams are presented in table 6.4. Skipped macroblocks
per P and B frame for an example video stream are depicted in fig-
ure 6.6. We do not illustrate skipped macroblocks for I frames simply
because we could not identify any stream with skipped I macroblocks.

Based on the sub-frame analysis we could check the correctness of
some additional assumptions about MPEG-2:

Sub-frame asumptions

Assumption 10: Frame coding types (I,B,P) all consist of the same mac-
roblocks types.

1The term ”skipped” should not be confused with ”frame skipping”
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Figure 6.5: Macroblock types in an example MPEG stream

Not true. All macroblocks within an I frame are coded as intra. How-
ever, macroblocks within a P frame may either be coded as intra or in-
ter (temporally predicted from a previously reconstructed frame). Mac-
roblocks in a B frame can be independently selected as either intra,
forward-predicted, backward-predicted or both forward and backward
predicted. One example of this is given in figure 6.5.

Assumption 11: The presence of skipped macroblocks is content depen-
dent.

This seems to be true. Depending on the content and the specific en-
coder algorithms used, the ability to employ skipped macroblocks may
be highly variable from one stream to the next. So, different streams
have very different usage of skipped macroblocks. For example, we can
see from figure 6.4 that the number of skipped macroblocks for stream
3 is 25% while for stream 2 is only 1%.

Assumption 12: Skipped macroblocks are used in all three frame types.
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Video Streams I frames P frames B frames
stream 1 0% 19% 15%
stream 2 0% 1% 2%
stream 3 0% 25% 22%
stream 4 0% 12% 27%
stream 5 0% 3% 5%

Table 6.4: Skipped macroblocks per frame type

According to the MPEG standard [1], even I frames can have skipped
macroblocks (that use only spatial redundancy), but we could not find
any skipped I macroblocks in any of the analysed streams. The con-
clusion we make that skipped macroblocks are very seldomly used I
frames.

Furthermore, we can see from the figure 6.6 that the number of
skipped macroblocks within the same video stream vary between frames.

By performing the sub-frame analysis we could make an interesting ob-
servation: the total number of macroblocks for some P frame is not
equal to the sum of all intra macroblocks and forward-predicted mac-
roblocks for the frame. P frames do not exploit backward prediction,
i.e., they do not contain any backward-predicted macroblocks, hence
the total sum off all macroblocks per a P frame should be the sum of all
intra and forward-predicted macrolocks.

The explanation 2 is: in P frames (and only P frames), there are
some macroblocks which are not intra (i.e., motion compensation is in
use) but also do not define any forward motion vectors. By definition,
these macroblocks are interpreted as using motion compensation with
a motion vector defined as (0,0). It is a special case in the standard
because it happens so often.

That what makes it interesting is those macroblocks are very good
candidates for skipping on sub-frame level, since they other macroblocks

2Thanks goes to Ketan Patel from University of Nort Carolina for claryfing this
phenomenon.
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Figure 6.6: Skipped macroblocks variations
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depend on them.

6.4 Valid assumptions about MPEG-2

Previously, we presented a number of common assumptions about MPEG-
2 and then commented on their correctness. Here is a summary of iden-
tified valid assumptions that we are going to use in the reminder of this
thesis:

• GOP sequences are not fixed to a specific I , P , B pattern.

• Not all MPEG-2 video streams contain B frames.

• Not all B frames are coded as bi-directional.

• The closer P frame to the start of the GOP , the more other frames
depend on it.

• I frames are not necessarily the largest in a GOP.

• B frames are not necessarily the smallest in a GOP.

• Fame sizes can vary a lot from the average value (for a certain
frame type).

• Decoding times for frames do not necessarily follow a linear trend
with respect to the frame sizes.

• A frame can contain several macroblock types.

• The presence of skipped macroblocks is content dependent.

• Skipped macroblocks are used very rarely in I frames.
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6.5 Chapter summary

In this chapter, we presented a study of realistic MPEG-2 video streams
and showed a number of misconceptions for software decoding, in par-
ticular about the relation of frame structures and sizes.

For example, an intuitive conclusion is that I will be the largest
frames, followed by P and B frames, and frames have similar sizes
within their respective frame type. While true on average, such assump-
tions do not hold for a considerable number of cases. The analysis of
realistic streams, movie DVDs, shows a case with 9% GOPs in which
P frames have the largest size, and 1% GOPs where the largest frame is
a B frame. This corresponds to roughly 8 and 1 minutes in a 90 minute
movie. Clearly, such deviations from average cannot be ignored.

Algorithms based on average behavior, regarding the variations in
frame sizes as small deviations will not provide acceptable quality.





Chapter 7

Quality Aware Frame
Selection in MPEG-2

MPEG-2 video playout requires adequate system resources to be timely
processed. This is especially true in software decoding, where video
processing compete for the CPU with other tasks in the system. If we
cannot provide enough resources to process a full-size MPEG-2 video,
then video stream adaptation must take place. In the case of limited net-
work bandwidth, we need to decrease the amount of transmitted video
data but still ensure that enough relevant video data delivered in time to
provide continuous and synchronized playout. If the processing power
of the display device is restricted, we need to speed up decoding by, for
example, not processing all video frames.

Frame skipping is a way to adapt video streams to the available
system resources. Frames in a video stream can be skipped both be-
fore sending the stream on the network, if the network bandwidth is
restricted, and on the display device, if the processing power is lim-
ited. However, frame skipping needs appropriate assumptions about the
video stream to be effective. Skipping the wrong frame at the wrong
time can result in a noticeable disturbance in the played video stream.
On the other hand, if frames are skipped properly, we can provide high
video quality while achieving good resource utilization.
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In this chapter we provide a frame skipping approach for MPEG-2
with focus on high video quality perceived by users, that fully utilize
the available system resource. In section 7.1, we use the identified valid
assumptions about MPEG-2 processing from chapter 6 to propose a set
of criteria for frame skipping. Based on these criteria, we propose in
section 7.2 an algorithm for quality aware frame selection when it is
not possible to decode all frames in time. Section 7.4 summarizes the
chapter.

7.1 Criteria for Preventive Frame Skipping

Not all frames are equally important for the overall video quality. Skip-
ping some of them will result in more degradation than others. Based
on the analysis presented in the previous chapter, we here identify some
criteria to decide the relative importance of frames.

Criterion 1: Frame type

According to this criterion, the I frame is the most important one in a
GOP since all other frames depend on it, see chapter 4.1.2. If we lose
the I frame in a GOP, then the decoding of all consecutive frames in
the GOP will not be possible, since all other frames in the GOP depend
directly or indirectly on the I frame, see chapter 4.1.2. B frames are the
least important ones because they are not reference frames. Skipping
one B frame will not make any other frame undecodable, while skipping
one P frame will cause the loss of all its subsequent frames and the
two preceding B frames within the same GOP. If we would apply this
criterion only, then we would pull out all B frames first, then P frames
and finally the I frame.

Criterion 2: Frame position in the GOP

This is applied to P frames. Not all P frames are equally important, see
assumption 4 in the previous chapter, section 6.2. Skipping a P frame
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will cause the loss of all its subsequent frames, and the two preceding
B frames within the GOP. For instance, skipping the first P frame (P1)
would make it impossible to reconstruct the next P frame (P2), as well
as all B frames that depends on both P1 and P2. And if we skip P2 then
we cannot decode P3 and so on.

Criterion 3: Frame size

Applies to B frames. According to the previously presented analysis
results, see assumption 9 in 6.2, there is a relation between frame size
and decoding time, and thus between size and gain in display latency.
The purpose of skipping is to increase display latency. So, the bigger
the size of the frame we skip, the larger display latency obtained.

However, skipping large B frames might not always be the best op-
tion. Small B frames might exploit complex compression techniques
which minimize frame size, but are more expensive to decode, in terms
of needed processing power. Frame prediction from reference frames is
found to be most computationally expensive [44]. Hence, if the network
bandwidth is limited, then large B frames should be skipped first, and
if the objective is to decrease the CPU load, small, more compressed
frames should be skipped.

Criterion 4: Skipping distribution

With the same number of skipped B frames, a GOP with evenly skipped
B frames will be smoother than a GOP with uneven skipped B frames,
e.g if we have a GOP=IBBPBBPBBPBB then even skipping I −
BP − BP − BP − B will give smoother video than uneven skipping
I −−PBBPBB −−, since the picture information loss will be more
spread [47].

Criterion 5: Buffer size

Buffer requirements has to be taken into account when designing a frame
skipping algorithm. There is no point in having a nice skipping algo-
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rithm without having sufficient space to store input data and decoded
frames, see chapter 4.3.3.

Criterion 6: Latency

This is not really a criterion, but one must be aware of the fact that an
algorithm that takes entire GOP into account requires a large end-to-end
latency, and corresponding buffer size, see chapter 4.3.

When deciding the relative importance of a set of frames, e.g. a
GOP, for the overall video quality, we assign values to them according
to all criteria collectively applied, rather than applying a single criterion.
Since the criterion 1 is the strongest one, the I frame will always get the
highest priority, as well as the reference frames in the beginning of the
GOP, while in some cases we would prefer to skip a P frame towards
the end of the GOP than a big B frame close to the GOP start.

7.2 Frame Priority Assignment Algorithm

In this section we present our algorithm to select frames based on the
criteria above. We apply the skipping criteria on a set of frames to assign
different importance values to the frames. The lower the value for a
frame, the sooner the frame will be skipped. The number of importance
values is equal to the number of frames in the chosen set. That will
provide for unique priorities between frames.

We apply our algorithm on a per GOP basis. However, our method
can be applied even on larger frame sequences that consist of several
GOPs. We chose GOP length since MPEG-2 video stream are divided in
GOPs which provides for easier access of the relevant information. Be-
sides, running the algorithm on a smaller number of frames, decreases
the run-time overhead of the importance value assignment.

Note that, even if we need to check entire GOP to assign values to
the frames, we do not need to buffer the entire GOP, since we only do a
look-ahead in the stream where we check the GOP structure and count
frame sizes.
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7.2.1 Algorithm description

Here is the description and the pseudo-code for the assignment of the
importance values among frames in a GOP:

Let:
N = GOP length
M = distance between reference frames
P = a set containing all P frames in the GOP
B = a set containing all B frames in the GOP
v(f) = importance value of frame f
ESCi = ith even-skip chain of B frames

Step 1 Assign the highest value to the I frame (equal to the number of
frames in the GOP)

v(I) = N

Step 2 The set P contains all P frames, P = {P1, P2, ..., Pk}, sorted
according to their position in GOP (P1 is closest to the I frame, i.e, the
first P frame in the GOP, while Pk is the last frame in the GOP). The
longer the distance from the I frame, the lower the importance value (P1

will get the highest value and Pk the lowest one).

∀Pi ∈ P, 1 ≤ i ≤ |P|
v(Pi) = N − i

Step 3 Initially set all values for B frames to the lowest P value (e.g.
Pk above)

∀Bk ∈ B, 1 ≤ k ≤ |B|
v(Bk) = min[v(Pi) | 1 ≤ i ≤ |P|] − 1
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Step 4 Identify all “even-skip” chains for B frames and sort them ac-
cording to the total byte size. Decrease the importance values of the B
frames, depending on which chain they belong to. The less the total byte
of a chain, the less the values are assigned to belonging B frames.

4: ESC1 = {B1} ∪ {B1+j∗M | 1 ≤ j ≤ N
M−1}

∀i,2 ≤ i ≤ |B∗|
ESCi = {Bi} ∪ {Bi+j∗M | 1 ≤ j ≤ N

M−1}
if sum(ESCi) > sum(ESCi−1)

swap(ESCi, ESCi−1)
∀Bk ∈ ESCi

v(Bk) = v(Bk) − |ESi−1|

The presented algorithm skips small B frames first. If the objec-
tive is to utilize limited network bandwidth, then the ”even-skip” chains
above should be sorted in acceding order, i.e., large B frames should be
skipped first, see discussion for criterion 3 in section 7.1.

7.2.2 Example

Assume the following GOP with respective bit sizes (taken from the
action movie):

I BB P BB P BB P BB =
{734136, 89656, 96640, 119368, 89232, 74048,

100680, 32112, 87080, 92064, 18336, 142008}

We want to assign importance values to frames according to our method.
The number of frames in the GOP is 12, so the values will be between
1 and 12, 12 being the highest priority. The assigned values after each
step are depicted on top of the frames. The frames with values that differ
from the previous step will be highlighted by filled style. Also, P and
B frames are indexed in order to distinguish between different frames
of the same type.
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We start by applying criterion 1:

I B1 B2 P1 B3 B4 P2 B5 B6 P3 B7 B8

12 10 10 11 10 10 11 10 10 11 10 10

According to this criterion, the I frame got the highest value 12,
three P frames got the same value 11, and B frames are the least impor-
tant, with value 10.

We continue by applying the criterion 2 on the P frames:

I B1 B2 P1 B3 B4 P2 B5 B6 P3 B7 B8

12 10 10 11 10 10 10 10 10 9 10 10

P1 is closest to the I frame among all P frames. Hence P1 will keep
its assigned value (11), while the values of P2 and P3 will get decreased.
Since P2 is closer to the I frame than P3, it will get higher value than
P3. By this we ensure that in overload situations P3 will be dropped
first, P2 second and P1 will be the last one among P frames to drop.

Since the value of P3 is now the same as the values of B frames, we
even need to decrease the B values to make sure that all P frames will
be prioritized before any of the B frames:

I B1 B2 P1 B3 B4 P2 B5 B6 P3 B7 B8

12 8 8 11 8 8 10 8 8 9 8 8

We mentioned earlier that the criteria 3 and 4 should not be applied
separately. For the criterion 3 we need to compare sizes for B frames.
Let s(f) denote the size in bits for a frame f . For the chosen GOP the
following holds:

s(B8)>s(B2)>s(B1)>s(B3)>s(B6)>s(B4)>s(B5)>s(B7)

If we apply the frame size alone, then B1−8 frames would be assigned
values 6, 7, 5, 3, 2, 4, 1 and 8 respectively (B8 would get the high-
est value, 8, because it is largest). Assume now that we need to skip
4 frames. According to the assigned values, the skipping mechanism
would produce the pattern: I BB P B− P −− P −B, which is not
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the optimum for the video smoothness, as discussed before. Instead,
we need to apply criterion 3 together with criterion 4 to obtain the best
possible value assignment with respect to both frame sizes and even
distribution of skipped frames. We start by identifying all “even-skip”
chains (ESC) of B frames:

ESC1 : B1 → B3 → B5 → B7

ESC2 : B2 → B4 → B6 → B8

We compare the total byte size in both chains, and we assign greatest
values to the B frames in the chain with larger size:

size ESC1 : s(B1) + s(B3) + s(B5) + s(B7) = 229336
size ESC2 : s(B2) + s(B4) + s(B6) + s(B8) = 402238

Since the total size of ESC2 is larger than the size of ESC1, we first
decrease the values of ESC1 by the number of frames in ESC2, i.e., 4;
we need those four values for frames in ESC2. The new assignment is:

I B1 B2 P1 B3 B4 P2 B5 B6 P3 B7 B8

12 4 8 11 4 8 10 4 8 9 4 8

Next we do internal value distribution according to the frame sizes,
in both ESC1 and ESC2. The largest frame in the chain gets the highest
value. In ESC1, B1 will get value 4 because it is the largest in the
chain, and B7 gets the smallest value 1. Similarly, in ESC2, B8 keeps
the value 8 and B2 gets the lowest value in the chain, that is 4. The final
value assignment is:

I B1 B2 P1 B3 B4 P2 B5 B6 P3 B7 B8

12 4 7 11 3 5 10 2 6 9 1 8

So, the frame skipping according to the assigned values is performed
as showed below:
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I B B P B B P B B P B B 1677822
(GOP size)

1)

I B B P B B P B B P − B 16594862)

I B B P B B P − B P − B 16273743)

I B B P − B P − B P − B 15381424)

I − B P − B P − B P − B 14484865)

I − B P − − P − B P − B 13744386)

...and so on...

By doing this kind of value assignments for B frames we find the
compromise between even skipping and frame sizes, because we make
skipping decision based not only on the frame size but also on the rela-
tion to the other B frames in the GOP. i.e., the influence on the entire
GOP.

7.3 Offline and online usage

The frame selection algorithm presented here can be used both offline
and online:

Offline usage

We can apply our algorithm on a MPEG-2 stream to create several qual-
ity levels, i.e., several instances of the stream, each with different num-
ber of frames. An offline MPEG-2 transcoder transforms the stream
into different qualities suitable for different receivers, and store them on
a disc. When a user requests a video stream, the most suitable one, i.e.,
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the one with quality level that matches best the receives resources, is
sent back to the user.

If we transcode streams offline, we do not need to consider the com-
plexity of the frame selection algorithm. Thus, we can apply more ad-
vanced selections strategies that involve longer frame sequences than a
single GOP.

However, a problem with this approach is the granularity, i.e., how
many quality levels should be create. Clearly, it is not feasible to pre-
compute a stream for each possible combination of the available band-
width and processing power. Therefore, in practice, we can only create
streams for a small number of resource budgets, and use approximation
when choosing a stream for certain resource budget. An example of
such linear interpolation to approximate a policy for choosing quality
levels to cope with load fluctuations has been proposed in [62].

Onine usage

The algorithm can also be used online, either by tailoring a certain
stream before sending it on the network, or responding directly to an
incoming stream and adapting it on the display device. In both cases,
the stream is adapted according to the current system limitations, rather
than producing offline streams for some bandwidth values.

This way, we can get more accurate stream adaptation based on real
demands at a moment. At the same time, we do not need to store any
pre-computed streams, since we do stream adaptation on the fly, map-
ping the current load to the number of frames to be skipped. However,
runtime complexity must be kept low, which can be achieved by opera-
tion on per GOP basis, i.e., a small set of frames.

We also need mechanism to access the amount of available system
resources online. We propose in the next chapter a method for online
stream adaptation upon limited resources, that uses real-time methods
for scheduling and resource reservation.
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7.4 Chapter summary

When the system resources, such as available network bandwidth for
transmitting or the processing power of the display device, are not suf-
ficient to handle a full-size MPEG-2 stream, we decrease the load im-
posed by the stream by skipping frames. Based on valid assumptions
about MPEG-2 in chapter 6, we proposed a set of criteria to be applied
when determining the importance values of different frames for the over-
all video quality perceived by the user. We use those values to determine
in which order frames should be skipped. The algorithm operates on a
GOP basis, but it can easily be generalized for longer frame sequences.

While some other methods for quality-of-service in software MPEG-
2 decoding make skipping decision based only on the frame type, e.g.,
[25],[46], or make no distinction between frames at all [67], we look
into several important properties and relationships between frames. For
example, we distinguish between P frames in a GOP, and assign dif-
ferent importance values to different P frames. Furthermore, we make
difference between B frames, with respect to several criteria such as
frame size, buffer and latency requirements, and the type of resource
restriction, e.g., the processing power or the network bandwidth.

In the next chapter, we will use the real-time scheduling mecha-
nisms presented in chapters 2 and 3 together with the frame selection
algorithm presented here to flexibly schedule processing of MPEG-2
video in resource limited systems.





Chapter 8

Online Stream Adaptation

In the first part of the thesis we showed how to flexibly schedule mixed
sets of tasks, i.e., periodic, aperiodic and sporadic, by using integrated
offline and online approach. In the second part, we developed an al-
gorithm for quality aware frame skipping, based on valid assumptions
about MPEG-2 and realistic timing constraints for MPEG-2 video de-
coding.

In this chapter we combine both for a method for quality aware
MPEG-2 stream adaptation in resource constrained systems. It uses the
real-time scheduling mechanism presented in chapters 2 and 3 to flexi-
bly schedule online processing of MPEG-2 video streams under limited
resources. The frame selection algorithm takes into account the actual
state of the system and determines the best set of frames utilizing the
available resources and considering the quality based priority order for
skipping. Thus, our algorithm selects frames based on concrete frame
and system load knowledge and ensures that only decoding of frames
which can be completed in time is started. While the frame skipping
algorithm is independent of the actual guarantee algorithm used, mak-
ing it suitable to work with a variety of algorithms and paradigms, we
present its use with a concrete scheduler.

We start by giving an overview of our method in section 8.1. In sec-
tion 8.2 we present the task model for the decoding tasks, based on the
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timing constraints from chapter 5. Section 8.3 describes the guarantee
mechanism for frame decoding. Finally, we present results from a study
underlining the effectiveness in section 8.4

8.1 Method Overview

Figure 8.1 gives an overview and the system architecture of our ap-
proach. We deal with systems with limited resources where frame skip-
ping has to take place. Our method takes a MPEG-2 stream, the amount
of available system resources and frame importance values as input, and
produces a tailored MPEG-2 stream that can be timely processed with
respect to available resources.

In chapter 7.1 we proposed a number of criteria to be applied when
selecting the frames to be decoded. The frame priority assignment al-
gorithm, proposed in the same chapter, uses those criteria to assign im-
portance values to frames. The lower the value for a frame, the sooner
the frame will be skipped (compared to the other frames). We also men-
tioned that the algorithm can be used for an arbitrary set of frames, but
we chose here to perform frame selection on per GOP basis, for in-
creased runtime efficiency, see chapter 7 for details.

The frame set with assigned importance values is then examined for
feasibility by our guarantee algorithm. If not all frames in the current set
can be decoded in time with respect to available resources, the guarantee
algorithm uses the frame priorities to select which frames to skip first.
It receives feedback from the system and decides how many and which
frames can be decoded in time, depending on the current system load. If
the guarantee algorithm fails to ensure decoding of all the frames in the
set, it will start skipping some of them, starting with the frames that have
the least impact on the high overall video quality. The output from the
algorithm is the information about which frames can be successfully de-
coded in time, without causing any of other guaranteed tasks in system
to miss its deadline.

The method above needs a mechanism to access the system load
online. Video streams may vary significantly in their request for sys-
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Figure 8.1: Method overview and system architecture

tem resources which causes the workload on display devices to change
dramatically. General purpose operating systems are not capable of cop-
ing with these irregularities [5]. We use real-time methods presented in
chapters 2 and 3 for scheduling and resource reservation. The amount
and the distribution of available resources is calculated offline, and can
easily be accessed at runtime through the slot shifting mechanism. How-
ever, other mechanisms for scheduling and resource reservation can be
used as well. For example, we believe that any type of server-based
algorithms, e.g., Total Bandwidth Server [51], Deferrable Server [42],
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Sporadic Server [50], candidate well as real-time scheduling methods to
be applied with our frame selection algorithm.

8.2 Decoding Task Model

The decoding task reads the video data from the input buffer, decodes it
and puts it into the frame buffers. It executes asynchronously, since the
decoding latency and the display latency can vary, as discussed in chap-
ter 4.3. In order to perform guarantee algorithm for timely decoding of
frames, we need to know the timing constraints for the decoding tasks.

8.2.1 Start times and deadlines

Decoding task start time and deadline are determined by the require-
ments of the display task, and the buffer fillings. We use earliest start
time and deadlines presented in chapter 5.4, which we calculated based
on proposed start time and finishing time constraints, see chapter 5 on
timing constraints for decoding task.

8.2.2 Execution times

It is difficult to predict worst-case execution times (WCET) for frame
decoding. MPEG-2 can use different bit rates which can result in large
differences in decoding times for different streams. This could lead to
big overestimations of the WCETs. Our analysis shows that the rela-
tion between frame size and decoding follows roughly a linear trend.
The variations in decoding times for similar frame sizes, however, are
significant for the majority of cases, e.g., in the order of 50-100% of
the minimum value for B frames. As expected, the frame types exhibit
varying decoding time behavior: I frames vary least, since the whole
frame is decoded with few options only. On the other hand, B frames,
utilizing most compression options, vary most.

The guarantee algorithm for frame decoding that we present in next
section requires known decoding times for optimal resource usage. There
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are two ways to make this information available at the guarantee time:
offline analysis of the stream which gives exact decoding times, or, in
more realistic scenario, prediction at runtime. The focus of this thesis
is not to predict frame decoding times. Instead, we refer to some pre-
vious work. Predicting MPEG execution times has been presented in
[9, 12], where the frame decoding time is predicted by frame type and
size, and the corresponding predictor is shown to have less than 25% of
prediction error.

However, it should be noted that our algorithm performs well even
when the decoding times for frame are not accurate, or event based on
the average decoding time for different frame types, as the evaluation in
section 8.4 shows.

8.3 Guarantee Algorithm for Frame Decoding

Best-effort software decoders usually perform badly in the case of a
deadline miss; they simply skip the current frame, without taking any
consideration about the frame importance. In the worst case, the cur-
rent frame could be an I frame, which would ruin the entire GOP. We
base our skipping decision on the assigned importance values between
frames. If the current frame is an important one, we do not skip it, in-
stead we skip a less important frame.

8.3.1 Basic idea

For each frame in a set of frames, we check how much available re-
sources there are between the earliest start time and the deadline for the
frame decoding. If the amount of available resources is less than the
decoding execution demand of the frame, we must skip frames. When
a frame is skipped, timing constraints for other frames in the set can be
relaxed.

Assume, for example, the following earliest start times and decoding
deadlines:



146 Chapter 8. Online Stream Adaptation

est(f1) est(f2)

dl(f1)

est(f3)

dl(f2)

est(f4)

dl(f3)

est(f5)

dl(f4)

est(f6)

dl(f5)

est(f7)

dl(f6)

If we skip frame f3, then the required display times (and hence the
decoding deadlines) of all preceding frames can be relaxed, since we
are neither decoding nor displaying f3. We shift deadlines of all preced-
ing frames to the right, i.e., dl(f2) becomes equal to dl(f3) and dl(f1)
becomes dl(f2), as illustrated below:

est(f1) est(f2)

dl(f1)

est(f3)

dl(f2)
dl(f1)

est(f4)
est(f4)

dl(f3)
dl(f2)

est(f5)
est(f5)

dl(f4)

est(f6)
est(f6)

dl(f5)

est(f7)
est(76)

dl(f6)

est(f8)

Similarly, the earliest start times of the successor frames are shifted
to the left, since the frames will become available in the input buffer
earlier if we skip the current frame.

8.3.2 Algorithm description

Let F denote the currently guaranteed set of frames, and let fs be the
frame that is to be skipped, i.e., the one with currently lowest importance
value among remaining frames in F . Also let P and S denote subsets
of F , containing predecessor and successor frames of fs respectively:

F = {
P︷ ︸︸ ︷

f1, f2, ..., fs,

S︷ ︸︸ ︷
fs+1, fs+2, ..., fn}

P = {P ⊆ F | ∀fj ∈ P, 1 < j < s}
S = {S ⊆ F | ∀fk ∈ S, s < k < n}

Here follows a description:

1. Go through the current set frame by frame.

2. Compare the execution demand of the current frame with the
available resources between the earliest start time and the dead-
line of the frame.
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3. Get the frame with the currently minimum importance value.

4. Remove skipped frame from the current set of frames.

5. Relax deadlines for the predecessor frames and start times of the
successor frames. The current frame fi belongs either to P or S,
i.e., either its deadline or start time constraint is relaxed, which
means in the next step of the while loop the amount of available
resources for fj will be bigger compared to the previous step (be-
fore skipping fs).

Formalized:

1: ∀fi ∈ F
2: while availableResources[est(fi), dl(fi)] ≤ c(fi)
3: fs = minImportanceV alue(F)
4: F = F − fs

5: ∀fj ∈ P
dl(fj) = dl(fj+1)

∀fk ∈ S
est(fk) = est(fk−1)

8.3.3 Alternative solutions for increased runtime efficiency

The complexity of the presented guarantee algorithm is polynomial with
respect to number of frames in the guaranteed set: for each frame we
skip (in the while-loop), the amount of frames in F will decrease (the
for-loop), giving the worst-case complexity O(N2), where N is the
number of frames in the set. As motivated in 7.2 we operate on per
GOP basis, i.e., we chose F to be the current GOP. Considering very
small values for N (in most cases 12-15 frames per GOP, see analysis
in chapter 6), the algorithm is cost-efficient to run online.

If the computation cost is an issue, despite the simplicity of the guar-
antee algorithm above, less accurate, but faster solutions can be used
instead. Assume the following GOP, with assigned importance values:
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I B1 B2 P1 B3 B4 P2 B5 B6

9 8 76 543 21

We check frame by frame and find that P2 will not make it, unless we
skip a frame.

Solution 1 - Relax timing constraints only where needed. When we
discover that there are not enough resources for the decoding of the
current frame fi, we will skip the lowest priority frame fs among all
remaining frames. When we skip fs, we know that all frames that pre-
cede fi have already been confirmed to have enough resources, and we
do not need to update their start times or deadlines. We only need to go
through the frames between fs and fi and adjust their timing constraints.
If s < i, we update start times, if s > i we update deadlines, and if s = i
we skip the current frame fi and continue with the other frames. In the
example above, the skipping candidates are all frames in the GOP, and
we choose to skip B3, since it has the lowest priority. Then we update
the earliest start times of B4 and P2, which will increase their execution
windows.

This solution is sub-optimal in a sense that we do not relax timing
constraints for frames that actually could be relaxed, i.e., already guar-
anteed frames I , B1, B2 and P1. This will reflect on the flexibility of
the scheduling of other tasks, since the decoding task will be more re-
stricted than necessary, i.e., it will have a shorter execution window than
needed. Still, this approach is better that just skipping the current frame,
as naive decoders would do.

Solution 2 - Skip only successor frames. The second sub-optimal
solution is to always skip either fi or some of its successor frames,
whichever has the lowest value. The gain here is that we do not need
to go back, since all frames prior to fi have already been checked. In
the example above, the skipping candidates are frames P2, B5 and B6,
and we chose to skip B5. Then we relax deadlines for P2 and B6. This
solution is sub-optimal in a sense that we can skip a frame that has not
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the lowest importance value, e.g., B3 has lower priority than skipped
B5, but this solution is faster than the one above.

8.4 Evaluation

Our frame decoding algorithm is applicable on a variety of methods
which provide mechanisms for online access of the available resources.
As an example, we show how we can adapt streams in the context of our
previous work, i.e., combined offline and online scheduling.

8.4.1 Available system resources

We get the amount of available CPU resources by using the slot shifting
mechanism, see chapter 2, and apply our guarantee algorithm to create
a feasible stream.

First, an offline scheduler [27] creates scheduling tables for the se-
lected periodic tasks with complex constraints. It allocates tasks to
nodes and resolves complex constraints by constructing sequences of
task executions. The resulting offline schedule consist of independent
tasks with start times and deadlines, which can be re-scheduled by EDF
at runtime, preserving original constraints.

Second, the offline schedule is divided into a set of disjoint execu-
tion intervals. Offline scheduled tasks can be executed flexibly within
their intervals, i.e., they can be “shifted” in order to accommodate for
tasks that arrive at runtime, e.g., aperiodic and sporadic tasks.

Third, we need to know amount and location of resources available
after offline tasks are guaranteed. Spare capacities to represent available
resources are then calculated for each interval.

8.4.2 Online access of available system resources

At runtime, we can access the amount and the distribution of available
resources via intervals and spare capacities. For example, at any point
in time at runtime we can easily calculate the amount of spare capacity
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between two time slots, t1 and t2, by simply summing up the spare
capacities of the intervals between them.

Let Istart denote the interval that contains t1 and Iend the one con-
taining t2. Then, the total amount of spare capacities between t1 and t2
it is equal to the remaining spare capacity Istart, plus the sum of spare
capacities of all full intervals between Istart and Iend, plus the remain-
ing spare capacity of Iend:

sc[t1, t2] = max(scr(Istart) +
∑

Ii∈(t1,t2)

sc(Ii) + scr(Iend), 0) (8.1)

This mechanism suits very well for online stream adaptation, pro-
viding a simple and efficient way to access the amount of available CPU
time at runtime, but as mentioned before, other mechanisms can be used
as well.

8.4.3 Simulation setup

We have implemented and analyzed the quality aware frame selection
algorithm (referred as QAFS from now on) and compared our algorithm
with a naive, best-effort approach (BE), i.e., the one that has no guaran-
tee mechanism for frame decoding. We have compared QAFS and BE
with respect to the useful resource consumption per GOP and the total
number of decoded frames.

By useful resource consumption we mean the time per GOP spent on
useful decoding, i.e., fully decoded frames that contribute to the overall
picture quality (as picture data and/or reference data). Wasted decoding
time is the one spent on partial decoding frames that must be aborted
due to decoding deadline misses.

We have also looked into the total number of decoded frames and
compared it to the total number of frames successfully decoded by re-
spective algorithm. Partialy decoded frames are not counted.

We have run the simulations on about 15000 GOPs. The system
load per GOP was randomly distributed between the frames.
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8.4.4 Simulation results

Figure 8.2 summarizes the comparison of QAFS and BE with respect
to useful resource consumption. The x-axis in the figure represents
the GOP satisfaction degree, which is the ratio between the resources
needed for timely decoding of a GOP and the available system resource
given to the GOP by the stream. E.g., if GOP satisfaction is 30%, then
the GOP is given 30% resources of what it needs for decoding of all its
frames. The y-axis shows how much of the granted time is spent on the
useful decoding.
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Figure 8.2: Simulation results - Useful resource consumption

We have simulated the case with known exact execution times for
the decoding of frames, measured offline, and with the average decoding
times for the respective frame types. As expected, the analysis shows
that QAFS will not waste any resources at all if the exact execution times
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are known upon guaranteeing. Although there are not yet completely
accurate method to predict decoding times online, we have shown the
efficiency of our algorithm (once when such method is available).
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Figure 8.3: Simulation results - Successfully decoded frames

In a more realistic case with the average decoding times, QAFS will
waste some resources due to the fact that it will guarantee decoding for
some frames that cannot be decoded in time, since it performs frame
guarantee based on the average decoding times and not the exact decod-
ing times. So, whenever it accepts a frame that has the exact execution
time that is larger than the average execution time, some resources will
be wasted. Still, it performs much better than the naive, best-effort al-
gorithm, as can be seen in the figure.

Since the GOP load is distributed between all the frames, the best
effort algorithm will miss decoding deadlines whenever the total load in
the execution window of the currently decoded frame is larger than the
execution demand of the frame. This means that all decoding spent on
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the frame upon the deadline miss is wasted. On the other hand, when
frames are skipped by QAFS, it will adjust the start times and the dead-
lines of the remaining frames in the GOP, giving them higher probability
to meet their deadlines.

Figure 8.3 depicts the results from the second part of the experiment,
the amount of successfully decoded frames.

As expected, the best-effort approach performs worse because it
makes no distinction between frames: when a P frame is skipped, all
its referring frames will also be skipped, and if the I frame is skipped,
then no other frame in the GOP can be decoded. Our algorithm will
never skip any reference frames unless it is absolutely necessary since it
skips frames based on assigned importance values. If a frame need to be
skipped skipped, we skip the one with the lowest importance value first,
and since the lowest priority frames are not reference frame, no other
frames will be influenced.

8.5 Chapter summary

In this chapter we presented a method for quality aware MPEG-2 stream
adaptation under limited resources. We use a real-time method to access
the amount of available system resources and, based on that information,
tailor the video stream by decoding only those frame that are guaranteed
to be decoded on time. We use our frame selection algorithm to deter-
mine which frames should be skipped if not all can be decoded in time.

We have compared our guarantee algorithm with a naive, best-effort
approach that does not provide any guarantee for frame decoding. Our
algorithm selects frames based on concrete frame knowledge and en-
sures that only decoding of frames which can be completed in time is
started. It will not start decoding a frame unless we can ensure the that
frame will be completely decoded and displayed in time. A naive al-
gorithm will try to decode even those frames that cannot be decoded
in time. It will start to decode a frame, and when the decoding dead-
line miss occurs, it will simply abort it, unnecessarily wasting the CPU
time. Furthermore, if no frame distinction between frame types is done,
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a best-effort algorithm could, in the worst case, ruin an entire GOP by
skipping the I frame.

We showed how our stream adaptation algorithm can be used to-
gether with the slot shifting method, but since there is a clear separa-
tion between the guarantee algorithm and the online resource reserva-
tion mechanism, even other real-time methods can easily be used.



Chapter 9

Conclusions

MPEG-2 is widely used as digital video coding standard, used in con-
sumer electronics for DVD players, digital satellite receivers, and TVs
today. In order to achieve high video and audio quality, digital media
processing is required to provide continuous and synchronized playout
without interrupts. At the same time, there are restrictions on the stor-
age media, e.g., limited size of a DVD disc, communication media, e.g.,
limited bandwidth of the Internet, display devices, e.g., the processing
power, memory and battery life of pocket PCs or video mobile phones,
and finally the users, i.e., human’s ability of perceiving motion. The
challenge here is to to keep up the display speed even when resources,
such as processing power and network bandwidth, are limited.

Most current software decoders, however, operate under the assump-
tion of sufficient resources, using solutions based on average-case as-
sumptions. The performance of such systems highly relies on the avail-
able bandwidth, processing power and the utilization of a large amount
of buffers. Furthermore, they do not provide quality of service guar-
antees on the video. These provide acceptable quality for applications
such as video transmissions over the Internet, when decreases in quality,
delays, uneven motion or changes in speed are tolerable. In high qual-
ity consumer terminals, however, quality losses of such methods are not
acceptable.
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In this thesis we presented a method to flexibly schedule media pro-
cessing in resource constrained systems. We proposed real-time meth-
ods for resource reservation of MPEG-2 video stream processing and
introduced flexible scheduling mechanisms for video decoding. Our
scheduling method is a mixed offline and online approach for scheduling
of periodic, aperiodic and sporadic tasks, based on slot shifting, where
a complete offline schedule can be constructed, transformed into EDF
tasks, and scheduled at runtime together with other EDF tasks. The
transformation is performed to maximize flexibility of task executions.
First, we use the offline part of slot shifting to eliminate all types of
complex task constraints before the runtime of the system. During of-
fline analysis our algorithm determines the amount and location of un-
used resources, which we use to include dynamic activities during the
runtime of the system. Then, we propose a new online guarantee algo-
rithm for dealing with dynamically arriving tasks. Aperiodic and spo-
radic tasks are incorporated into offline schedule by making use of the
unused resources and leeways in the schedule. In particular, we pre-
sented an efficient method to handle sporadic tasks, providing for O(N)
online acceptance test for firm aperiodic tasks. The sporadic tasks are
guaranteed during design time, allowing rescheduling or redesign in the
case of failure. At runtime, resources reserved for sporadic tasks can
be reclaimed and used for efficient aperiodic task handling. Thus, our
method combines handling of complex constraints, efficient and flexible
runtime scheduling, as well as offline and online scheduling, providing
a basis for predictably flexible real-time systems.

We used the scheduling mechanism and resource reservation mech-
anism from the mixed task scheduling part above to flexibly schedule
processing of MPEG-2 video streams. First, we presented results from
a study of realistic MPEG-2 video streams and showed a number of mis-
conceptions for software decoding, in particular about relation of frame
structures and sizes. We also identified constraints imposed by frame
buffer handling and discussed their implications on timing constraints.
Using the analysis, we determined realistic flexible timing constraints
for MPEG decoding that call for novel scheduling algorithms, as stan-
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dard ones that assume average values and limited variations, will fail
to provide for good video quality. Based on the MPEG-2 analysis and
proposed timing constraints, we presented a MPEG-2 video frame selec-
tion algorithm, to fully utilize limited resources and, at the same time,
with focus on high video quality perceived by the users. The algorithm
selects frames providing high video quality if not all frames can be com-
pleted in time due to limited resources, such as processing power of the
display device or the network bandwidth, if the stream is transmitted. It
is based on a priority ordering for frame skipping taking frame impor-
tance into account. The algorithm creates ensembles of decoding tasks
for the frames in the Groups of Pictures in the stream, each with parame-
ters suited specifically for the particular frame, instead of working with
fixed, constant task parameters for periodic tasks. Applying real-time
guarantee tests, the algorithm determines the best set of frames while
matching the available resources.

The final result of the stream adaptation process is a tailored MPEG
stream that is guaranteed to be decoded and displayed in time. The dif-
ference between our method and best-effort based algorithms that ran-
domly skip frames if they run out of time, is that we:

• consider useful only what is finished. Partially decoded frames do
not contribute to the overall video quality.

• decode only what is guaranteed to finish in time. We will not
start decoding a frame unless we can ensure the frame will be
completely decoded and displayed in time.

• select the frames that will give best possible video quality. We use
a heuristic to determine which frames in a GOP are more impor-
tant than the others.

While the frame selection algorithm is independent of the actual
scheduling algorithm used, we presented an examplatory scheduler for
our frame selection method.

Simulation results underline the effectiveness of our approach, even
with imprecise execution times for frame decoding. The analysis showed
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that our method maximally utilize available resources if the exact exe-
cution times are known upon guaranteeing. Although there are not yet
completely accurate method to predict decoding times online, we have
shown the efficiency of our algorithm once a such method is available.
In a more realistic case with the average decoding times, our method
still performs much better than naive, best-effort algorithms.

It should be noted that media handling presented in this thesis is in-
dependent of the scheduling and resource reservation mechanism, i.e.,
other schedulers and resource management mechanisms can be used.
Our approach is applicable on variety of other methods which provide
mechanisms for online access of the available system resources. The
system resources does not necessarily need to be the available CPU
time, it can also be e.g., available network bandwidth: we could apply
our method for video streaming through a network, i.e., we take avail-
able network bandwidth as input, and create feasible streams which are
guaranteed to be transmitted in time. For example, we believe that any
type of server-based algorithms that provide bandwidth reservation can-
didate well as real-time scheduling methods to be applied with our frame
selection algorithm.



Appendix A

Simulation Results: Mixed
Task Set Handling

We have implemented the algorithms described in chapters 2 and 3 and
have run simulations for various scenarios.

In the first set of experiments we simulated the online guarantee al-
gorithm for firm aperiodic tasks, described in chapter 2. We have studied
the guarantee ratio for aperiodic tasks for different combinations of total
system loads and aperiodic deadlines.

In the second set of experiments we have introduced sporadic tasks,
as suggested in chapter 3, and have repeated the simulations for dif-
ferent combinations of periodic, sporadic and aperiodic tasks. We have
measured the guarantee ratio of firm aperiodic tasks, depending on dif-
ferent scenarios for sporadic tasks. We also investigated how the vari-
ations in minimum inter-arrival times for sporadics influence aperiodic
guarantee.

The simulation study underlines the effectiveness of the proposed
approach.
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A.1 Simulation environment

For the purpose of simulations we have developed a simulator to provide
for detailed analysis of slot shifting. We also implemented a debugger,
which provides for visual monitoring of the data structures during the
simulations. See appendix C for the details on implemented tools.

Simulations were performed in parallel on 5 different PCs with the
processor speed between 333 and 1500 MHz. Some 800 000 different
interactions of sporadic, periodic and aperiodic tasks were simulated.
The total length of simulation for both experiments was about 200 hours.

A.2 Experiment 1: Firm aperiodic guarantee

A.2.1 Experimental setup

For the first experiment series, we have randomly generated offline and
aperiodic task loads, so that the combined load of both periodic and ape-
riodic tasks was set to 10% - 100%. The deadlines for the aperiodic tasks
were set to their maximum execution time, MAXT, two times MAXT
and three times MAXT. We studied the guarantee ratio for the randomly
arriving aperiodic tasks.

The simplest method to handle aperiodic tasks in the presence of
periodic tasks is to offline schedule them in background i.e., when there
are no periodic instances ready to execute. The major problem with this
technique is that, for high periodic loads, the response time of aperiodic
requests can be too long. We compared our method to the background
scheduling. We refer to our method as Slot Shifting – Extended, or SSE.

A.2.2 Results

In this subsection we present obtained results. Each point represents a
sample size of 800-3000 simulation runs, with different combinations
of periodic and aperiodic tasks. 0.95 confidence intervals were smaller
than 5%.
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Figure A.4 illustrates the performance of background scheduling
for three different deadline settings of aperiodic tasks. Figure A.5 de-
picts the performance of SSE. In figures A.1,A.2 and A.3 we put both
methods together, for aperiodic deadlines equal to MAXT,2*MAXT and
3*MAXT, to see the difference in performance for different deadline
settings.

As expected, background scheduling performed poorly in the high
load situations, specially with tight aperiodic deadlines. For this reason,
background scheduling can be adopted only when the aperiodic activi-
ties do not have stringent timing constraints and the periodic load is not
high. The graphs show the efficiency of the SSE mechanisms, as guar-
antee ratios are very high. As expected, the guarantee ratio for aperiodic
tasks with larger deadlines is higher than for smaller deadlines. Even
under very high load, guarantee ratios stay high.
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Method: Background
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A.3 Experiment 2: Firm aperiodic guarantee with
sporadics

In the second experiment, we have tested the acceptance ratio for firm
aperiodic tasks with the methods to handle sporadic tasks: worst case
arrivals without knowledge about sporadic invocations (referred as “no
info”) and updated worst case with arrival info (“updated”). See chapter
3, section 3.3, case 1 and 2 for details about the different cases.

A.3.1 Experimental setup

We studied the guarantee ratio of randomly arriving aperiodic tasks un-
der randomly generated arrival patterns for the sporadic tasks. First
we investigated the guarantee ratio for firm aperiodic tasks with com-
bined loads 10% - 100%. The deadline for the aperiodic tasks was set
to MAXT and 2*MAXT. The combined load was set to 100%.

In the second part of the experiment we varied the arrival frequen-
cies of sporadic tasks according to a factor, f , such that the separa-
tion between instances averageMINT is equal to averageMINT =
f ∗ MINT . This means that if f = 1 then the instances are invoked
with the maximum frequency, and if f = 2, the distance between two
consecutive invocations is 2 ∗ MINT on average.

A.3.2 Results

The results from the first part of the experiment are summarized in fig-
ures A.6 and A.7, while the results from the second one are presented in
figures A.8 and A.9.

We can see that our method improves the acceptance ratio of firm
aperiodic tasks. This results from the fact that our methods reduce pes-
simism about sporadic arrivals by keeping track of them.

Figure A.10 summarizes the simulation. We can see that guarantee
ratio for firm aperiodic tasks is very high, even when we have sporadic
tasks in the system. By keeping track off sporadic arrivals, we can accept
firm tasks that otherwise would be rejected.
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Deadline=2*MAXT

0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Combined periodic, sporadic and aperiodic load

G
ua

ra
nt

ee
 r

at
io

 (
%

)

updated

no info

Figure A.7: Guarantee ratio for aperiodic tasks in the presence of spo-
radics tasks, dl=2*MAXT: load variation



166 Chapter A. Simulation Results: Mixed Task Set Handling

Combined load >  1
Deadline=MAXT

0

10

20

30

40

50

60

70

80

90

100

1 2 4 6 8

Minimum inter-arrival factor, f

G
ua

ra
nt

ee
 r

at
io

 (
%

)

no info
updated

Figure A.8: Guarantee ratio for aperiodic tasks in the presence of spo-
radics tasks, dl=MAXT: variation of MINT

Combined load >  1
Deadline=2*MAXT

0

10

20

30

40

50

60

70

80

90

100

1 2 4 6 8

Minimum inter-arrival factor, f

G
ua

ra
nt

ee
 r

at
io

 (
%

)

no info
updated

Figure A.9: Guarantee ratio for aperiodic tasks in the presence of spo-
radics tasks, dl=2*MAXT: variation of MINT



A.3 Experiment 2: Firm aperiodic guarantee with sporadics
167

Deadline=2*MAXT

0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Combined periodic, sporadic and aperiodic load

G
ua

ra
nt

ee
 r

at
io

 fo
r 

ap
er

io
di

c 
ta

sk
s 

(%
)

updated

no info

no sporadics

Figure A.10: Guarantee ratio for aperiodic tasks in the presence of spo-
radics tasks - Final results





Appendix B

Simulation results: Analysis
of MPEG-2 Video Streams

We have analyzed a number of realistic MPEG streams to get a clear
picture about MPEG video stream structure and processing. We used the
analysis result to point out some common misconceptions about MPEG,
and identify valid assumptions needed to propose a quality aware frame
skipping algorithm based on realistic timing constraints for MPEG-2
processing. Here we present the analysis results.

B.1 Analysis setup

We have analysed the contents of original DVD movies. The movies
were not encrypted or copy protected in any sense, which means that
we managed to rip their context without breaking the CSS protection
code on a DVD. Anyway, we chose not to publish any particular movie
titles; instead we refer to them as action movie, drama movie, cartoon,
etc.

Ripped MPEG streams were analysed by an in-house written piece
of software, see appendix C for details. It took approximately 10 min-
utes to analyse a 100 minutes long MPEG stream on a PC computer with
the processor speed of 1,5 GHz.
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B.1.1 Analyzed video streams

An overview of the movies we have analyzed is summarized in ta-
ble B.1. N and M refer to the GOP length and distance between ref-
erence frames respective, e.g. GOP(12,3) means I-to-I distance is 12,
while I-to-P and P -to-P distance is 3.

Genre Length Fps Resolution Mbit/s GOP

Action 118 min 25 720x576 9800 (12,3)
30 352x240 1411 (18,3)

Drama 115 min 25 720x576 8700 (12,3)
30 352x240 1411 (18,3)

Cartoon 104 min 25 720x576 6000 (12,3)
Thriller 106 min 30 720x480 9800 (12,3)
Sci-Fi 122 min 30 720x480 7500 (12,3)

Philharmonic 120 min 25 720x576 7000 (12,3)
Documentary 55 min 30 720x480 6500 (12,3)

Table B.1: Analyzed MPEG streams

The contents of the analysing movies is varying, i.e., we have anal-
ysed action movies with a lot of rapid motion, drama movies with slowly
changing scenes, cartoons with less complex picture composition, doc-
umentaries, music videos, etc. That because some types of videos are
more sensitive for frames skipping. For example, skipping 4 frames in
an action video reduces half of the original video quality, 50%, while
only 10% in a cartoon video [47].

Furthermore, we have looked into statistics for different resolutions
for some of the analysed movies, 720x576 and 352x240.

B.1.2 Analyzed properties

In our analysis, we have looked into stream properties, frame sizes, GOP
structure and decoding times for the frames. We have also analysed the
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distribution of the frame sizes. We have divided the range between min-
imum and maximum frame size for respective frame type into size inter-
vals, and identified the number of frames in respective interval. In that
way we can e.g., say that the majority of frames have bit size between
some X and Y.

B.2 Analysis results

Action movie – Tables B.2 and B.10 summarize GOP and frame size
properties for the movie. Minimum, maximum and average size is given
in bits. Size distribution intervals are depicted in figure B.1. We have
performed the same analysis for the same movie but with different res-
olution and frame rate, see tables B.3, B.11 and figure B.2.

Drama – The GOP and frame sizes for the drama movie are presented
in table B.4. The GOP properties are described in table B.12 and the size
distribution is shown in figure B.3.

Cartoon – The size data and GOP properties for the cartoon are pre-
sented in tables B.5 and B.13. The size distribution is shown in figure
B.4.

Thriller – The size data and GOP properties for the thriller movie can
be found in in tables B.6 and B.14. The size distribution is depicted in
figure B.5.

Science Fiction – The GOP and frame sizes for the sci-fi movie are
presented in table B.7. The GOP properties are described in table B.15
and the size distribution is shown in figure B.6.

Philharmonic Concert – The size data and GOP properties for the
concert are presented in tables B.8 and B.16. The size distribution is
shown in figure B.7.
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Documentary – The GOP and frame sizes for the documentary movie
are summarized in table B.9. The GOP properties are described in table
B.17 and the size distribution is shown in figure B.8.

An summary of the analysis on the frame level for all the movies is
presented in tables B.18 and B.19.

Sub-frame level We have also looked into stream properties at the
sub-frame (macroblock) level for the action and the drama movie. The
results are presented in figures B.9, B.10, B.11, B.12 and B.13.

B.3 Comments on analysis results

There is a significant variation in frame sizes arroung the average.

For each of the analysed movies we found that there is a significant
variation in frame sizes arround the average value. For example, in the
action movie, the size ratio between average values for respective frame
type is I:P :B = 4:2:1, which means that on average I frames are twice
as big as P frames, and 4 times bigger than B frames. However, this
does not hold for a significant number of cases, which is depicted in
table B.10. Also, from figure B.1 we can see that 88% of the I frames
has bit size between 197737 and 790684 bits (≈ 200 - 800 kB), which is
a quite large interval. The assumptions about MPEG based on average
frame size will not hold, since the significant number of frames will
have twice as large respective twice as small bit size, compared to the
average frame size (which is ≈ 500 kB).

The average frame ratio also depends on the movie content.

The average size ratio for the action movie is I:P :B = 4:2:1, while
the ratio for the concert movie is 6:2:1. This because of a quite static
background in the philharmonic concert movie which is not changed
often, so the difference between current frame and the next one gets
smaller. In other words, we need less bits for predicted frames.

The I frame is not necessarily the largest one in a GOP.



B.3 Comments on analysis results 173

For example, in the thriller movie we have a case with 11% GOPs in
which P have the largest size, and 1% of B frames, which corresponds
roughly to 14 and 1.5 minutes, resp, in a 90 minute feature film. Further-
more we can see from table B.10 that frames in a GOP are not sorted
according to their bit size, e.g., in 81% of the cases, the P frame that
is closest to the I frame was not the largest among all P frames in the
GOP.

The sequence structure in a GOP is not fixed to a specific I,P,B frame
pattern.

In 28% of the GOPs in the drama movie the GOP length was not 12
frames. Not all GOPs consist of the same fixed number of P and B
frames following the I frame in a fixed pattern. That is because more ad-
vanced encoders will attempt to optimize the placement of the three pic-
ture types according to local sequence characteristics in the context of
more global characteristics. For instance scene changes or large changes
in video content do not occur regularly, and hence the need for I frames
in most video sequences is not at regular intervals.

All frames can be coded with different macroblock types.

All macroblocks within an I frame are coded as intra. However, mac-
roblocks within a P frame may either be coded as intra or inter (tem-
porally predicted from a previously reconstructed frame). Macroblocks
in a B frame can be independently selected as either intra, forward-
predicted, backward-predicted or both forward and backward predicted,
see figures B.9 and B.10. We can also se from the figures that in the ac-
tion movie, there are more intra macroblocks in P and B frames than for
the drama movie. The reason is more motion and more frequent scene
changes in the action movie; if the encoder cannot find a sufficiently
similar block in the reference frames, it simply creates an I block.

We have used the findings above to identify a number of misconcep-
tions about MPEG-2 and propose realistic assumptions, see chapter 6.2.
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Item Count Minimum Maximum Average Std deviation
I 16873 88 1976584 506114 187598
P 49679 16 1216000 234824 109888
B 112860 32 769048 148200 57616

GOP 16873 88 7541496 2222248 746768

Table B.2: Action movie, 720x576 - Bitsizes for frames and GOPs

Item Count Minimum Maximum Average Std deviation
I 12645 24 366544 132232 48055
P 59933 24 261528 61880 22330
B 140041 24 168480 24416 12673

GOP 12645 192 1502856 696056 155401

Table B.3: Action movie, 354x240 - Bitsizes for frames and GOPs

Item Count Minimum Maximum Average Std deviation
I 13716 136 1469848 471880 140329
P 52860 32 1009832 231144 76835
B 106478 32 636416 152432 45746

GOP 13716 136 7185768 2543520 627856

Table B.4: Drama movie, 720x576 - Bitsizes for frames and GOPs

Frame type Nr of frames Min Max Avg Std dev
I 10139 57424 1121216 674544 216068
P 30406 1272 1097336 255552 133372
B 80861 1264 891240 115184 53982

GOP 10139 69712 4680200 2360792 622665

Table B.5: Cartoon - Bitsizes for frames and GOPs
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Item Count Minimum Maximum Average Std deviation
I 13404 2856 1282720 514744 174307
P 40088 32 1204808 281864 92779
B 98868 32 762048 129536 48890

GOP 13404 13312 5896728 2324672 583043

Table B.6: Thriller movie - Bitsizes for frames and GOPs

Item Count Minimum Maximum Average Std deviation
I 14663 41104 760000 430088 70920
P 43920 1272 809016 249576 65226
B 117090 3184 664968 136720 41336

GOP 14667 76088 4322648 2269352 408220

Table B.7: Sci-Fi - Bitsizes for frames and GOPs

Item Count Minimum Maximum Average Std deviation
I 14541 3432 1895088 1019896 363352
P 55248 32 1459952 396576 98782
B 110396 24 1565960 184912 51664

GOP 14541 8912 10635840 4000408 806103

Table B.8: Philharmonic Concert - Bitsizes for frames and GOPs

Item Count Minimum Maximum Average Std deviation
I 8036 14392 819736 568824 116259
P 23929 32 764696 414144 48855
B 63747 32 423880 199928 26295

GOP 8036 80672 6412158 3396568 291106

Table B.9: Documentary movie - Bitsizes for frames and GOPs
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GOP property Number of GOPs Percent
Open GOPs 12900 76%
Closed GOPs 3973 24%
GOPs with normal length (12) 12991 77%

Largest frame I 15061 89%
Largest frame P 1658 10%
Largest frame B 154 1%

GOPs where P > I 5256 31%
GOPs where B > I 4442 26%
GOPs where B > P 6545 39%

P > some previous P in the GOP 13609 81%
B > some previous B in the GOP 16326 97%

Table B.10: Action movie, 720x576 - GOP properties

GOP property Number of GOPs Percent
Open GOPs 12093 96%
Closed GOPs 552 4%
GOPs with normal length (18) 9074 72%

Largest frame I 11706 92%
Largest frame P 868 7%
Largest frame B 72 1%

GOPs where P > I 905 7%
GOPs where B > I 248 2%
GOPs where B > P 6029 48%

P > some previous P in the GOP 11775 93%
B > some previous B in the GOP 12464 98%

Table B.11: Action movie, 354x240 - GOP properties
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GOP property Number of GOPs Percent
Open GOPs 13381 98%
Closed GOPs 335 2%
GOPs with normal length (12) 12573 92%

Largest frame I 12904 94%
Largest frame P 758 6%
Largest frame B 54 0,4%

GOPs where P > I 786 6%
GOPs where B > I 230 2%
GOPs where B > P 5072 37%

P > some previous P in the GOP 11481 84%
B > some previous B in the GOP 13715 100%

Table B.12: Drama movie, 720x576 - GOP properties

GOP property Number of GOPs Percent
Open GOPs 10123 100%
Closed GOPs 16 0,2%
GOPs with normal length (12) 10056 99%

Largest frame I 9291 92%
Largest frame P 842 8%
Largest frame B 14 0,1%

GOPs where P > I 841 8%
GOPs where B > I 79 1%
GOPs where B > P 1180 12%

P > some previous P in the GOP 8260 81%
B > some previous B in the GOP 10138 100%

Table B.13: Cartoon - GOP properties
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GOP property Number of GOPs Percent
Open GOPs 11443 85%
Closed GOPs 1961 15%
GOPs with normal length (12) 11005 82%

Largest frame I 11874 89%
Largest frame P 1477 11%
Largest frame B 53 0%

GOPs where P > I 4253 32%
GOPs where B > I 2035 15%
GOPs where B > P 1112 8%

P > some previous P in the GOP 9587 72%
B > some previous B in the GOP 13264 99%

Table B.14: Thriller - GOP properties

GOP property Number of GOPs Percent
Open GOPs 14664 100%
Closed GOPs 23 0%
GOPs with normal length (12) 14595 100%

Largest frame I 13665 93%
Largest frame P 954 7%
Largest frame B 48 0%

GOPs where P > I 2453 17%
GOPs where B > I 449 3%
GOPs where B > P 1491 10%

P > some previous P in the GOP 7424 51%
B > some previous B in the GOP 14662 100%

Table B.15: Sci-Fi - GOP properties
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GOP property Number of GOPs Percent
Open GOPs 14322 98%
Closed GOPs 219 2%
GOPs with normal length (12) 12292 85%

Largest frame I 13402 92%
Largest frame P 1079 7%
Largest frame B 60 0%

GOPs where P > I 3897 27%
GOPs where B > I 2999 21%
GOPs where B > P 2206 15%

P > some previous P in the GOP 13566 93%
B > some previous B in the GOP 13996 96%

Table B.16: Philharmonic concert - GOP properties

GOP property Number of GOPs Percent
Open GOPs 8020 100%
Closed GOPs 16 0%
GOPs with normal length (12) 7674 95%

Largest frame I 7672 95%
Largest frame P 357 4%
Largest frame B 7 0%

GOPs where P > I 1317 16%
GOPs where B > I 1532 19%
GOPs where B > P 333 4%

P > some previous P in the GOP 5872 73%
B > some previous B in the GOP 7997 100%

Table B.17: Documentary - GOP properties
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Interval From To Nr of I Percent

1 88 197737 876 5,2%

2 197737 395386 2190 13,0%

3 395386 593035 9410 55,8%

4 593035 790684 3137 18,6%

5 790684 988333 426 2,5%

6 988333 1185982 129 0,8%

7 1185982 1383631 79 0,5%

8 1383631 1581280 51 0,3%

9 1581280 1778929 23 0,1%

10 1778929 1976584 6 0,0%

Interval From To Nr of P Percent

1 16 121614 6377 12,8%

2 121614 243212 22355 45,0%

3 243212 364810 14460 29,1%

4 364810 486408 5496 11,1%

5 486408 608006 857 1,7%

6 608006 729604 102 0,2%

7 729604 851202 17 0,0%

8 851202 972800 11 0,0%

9 972800 1094398 3 0,0%

10 1094398 1216000 1 0,0%

Interval From To Nr of B Percent

1 32 76933 7365 6,5%

2 76933 153834 59938 53,1%

3 153834 230735 35827 31,7%

4 230735 307636 8370 7,4%

5 307636 384537 1195 1,1%

6 384537 461438 113 0,1%

7 461438 538339 32 0,0%

8 538339 615240 13 0,0%

9 615240 692141 3 0,0%

10 692141 769048 2 0,0%

Number of I frames in interval

5%
13%

56%

19%

3% 1% 0% 0% 0% 0%

1 2 3 4 5 6 7 8 9 10

Size lnterval

Number of P frames in interval

13%
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Number of B frames in interval
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Figure B.1: Action movie, 720x576 - Size distribution for I, P and B
frames
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Max 366544 Count 12645
Median 130840
Avg 132238
Bound 366544
Interval From To Nr of I %

1 0 91636 2692 21%
2 91636 183272 8098 64%
3 183272 274908 1812 14%
4 274908 366544 42 0%

P-frames
Max 261528 Count 59933
Median 63040
Avg 61882
Bound 261528
Interval From To Nr of P %

1 0 65382 31998 53%
2 65382 130764 27689 46%
3 130764 196146 224 0%
4 196146 261528 22 0%

B-frames
Max 168480 Count 140041
Median 21536
Avg 24423
Bound 168480
Interval From To Nrof B %

1 0 42120 125669 90%
2 42120 84240 14314 10%
3 84240 126360 54 0%
4 126360 168480 4 0%

Number of I frames in interval

21%

64%

14%

0%

1 2 3 4

Size interval

Number of P frames in interval

53%
46%

0% 0%

1 2 3 4

Size interval

Number of B frames per interval

90%

10%
0% 0%

1 2 3 4

Size interval

Figure B.2: Action movie, 354x240 - Size distribution for I, P and B
frames
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Interval From To Nr of I Percent
1 136 146985 188 1.4%
2 146985 293970 1089 7.9%
3 293970 440955 4503 32.8%
4 440955 587940 5281 38.5%
5 587940 734925 2231 16.3%
6 734925 881910 344 2.5%
7 881910 1028895 63 0.5%
8 1028895 1175880 14 0.1%
9 1175880 1322865 1 0.0%
10 1322865 1469850 2 0.0%

Interval From To Nr of P Percent
1 32 100984 2206 4.2%
2 100984 201968 15999 30.3%
3 201968 302952 26630 50.4%
4 302952 403936 7098 13.4%
5 403936 504920 618 1.2%
6 504920 605904 252 0.5%
7 605904 706888 35 0.1%
8 706888 807872 3 0.0%
9 807872 908856 0 0.0%
10 908856 1009840 2 0.0%

Interval From To Nr of B Percent
1 32 63642 1735 1.6%
2 63642 127284 30893 29.0%
3 127284 190926 53692 50.4%
4 190926 254568 18191 17.1%
5 254568 318210 1827 1.7%
6 318210 381852 219 0.2%
7 381852 445494 64 0.1%
8 445494 509136 31 0.0%
9 509136 572778 15 0.0%

10 572778 636420 14 0.0%

Number of I  frames per interval

1%
8%

33%
39%

16%

3% 0% 0% 0% 0%
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Figure B.3: Drama movie, 720x576 - Size distribution for I, P and B
frames
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Interval From To Nr of I Percent

1 57424 163803 207 2,0%

2 163803 270182 165 1,6%

3 270182 376561 643 6,3%

4 376561 482940 948 9,4%

5 482940 589319 1140 11,2%

6 589319 695698 2056 20,3%

7 695698 802077 2098 20,7%

8 802077 908456 1494 14,7%

9 908456 1014835 878 8,7%

10 1014835 1121216 510 5,0%

Interval From To Nr of P Percent

1 1272 110878 2616 8,6%

2 110878 220484 11245 37,0%

3 220484 330090 9768 32,1%

4 330090 439696 4473 14,7%

5 439696 549302 1298 4,3%

6 549302 658908 478 1,6%

7 658908 768514 279 0,9%

8 768514 878120 141 0,5%

9 878120 987726 63 0,2%

10 987726 1097336 45 0,1%

Interval From To Nr of B Percent

1 1264 90261 29767 36,8%

2 90261 179258 41449 51,3%

3 179258 268255 8605 10,6%

4 268255 357252 941 1,2%

5 357252 446249 83 0,1%

6 446249 535246 9 0,0%

7 535246 624243 5 0,0%

8 624243 713240 0 0,0%

9 713240 802237 1 0,0%

10 802237 891240 1 0,0%
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Figure B.4: Cartoon - Size distribution for I, P and B frames
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Interval From To Nr of I Percent

1 2856 130842 198 1,5%

2 130842 258828 356 2,7%

3 258828 386814 2238 16,7%

4 386814 514800 4408 32,9%

5 514800 642786 3422 25,5%

6 642786 770772 1579 11,8%

7 770772 898758 675 5,0%

8 898758 1026744 289 2,2%

9 1026744 1154730 88 0,7%

10 1154730 1282720 12 0,1%

Interval From To Nr of P Percent

1 32 120509 752 1,9%

2 120509 240986 12809 32,0%

3 240986 361463 20900 52,1%

4 361463 481940 4428 11,0%

5 481940 602417 793 2,0%

6 602417 722894 253 0,6%

7 722894 843371 103 0,3%

8 843371 963848 33 0,1%

9 963848 1084325 13 0,0%

10 1084325 1204808 4 0,0%

Interval From To Nr of B Percent

1 32 76233 8255 8,3%

2 76233 152434 66744 67,5%

3 152434 228635 21015 21,3%

4 228635 304836 2016 2,0%

5 304836 381037 439 0,4%

6 381037 457238 161 0,2%

7 457238 533439 202 0,2%

8 533439 609640 25 0,0%

9 609640 685841 7 0,0%

10 685841 762048 3 0,0%
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Figure B.5: Thriller movie - Size distribution for I, P and B frames
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Interval From To Nr of I Percent

1 41104 112993 53 0,4%

2 112993 184882 42 0,3%

3 184882 256771 156 1,1%

4 256771 328660 653 4,5%

5 328660 400549 3471 23,7%

6 400549 472438 6529 44,5%

7 472438 544327 3197 21,8%

8 544327 616216 474 3,2%

9 616216 688105 80 0,5%

10 688105 760000 8 0,1%

Interval From To Nr of P Percent

1 1272 82046 159 0,4%

2 82046 162820 2618 6,0%

3 162820 243594 20183 46,0%

4 243594 324368 15747 35,9%

5 324368 405142 4294 9,8%

6 405142 485916 707 1,6%

7 485916 566690 150 0,3%

8 566690 647464 43 0,1%

9 647464 728238 14 0,0%

10 728238 809016 5 0,0%

Interval From To Nr of B Percent

1 3184 69362 2967 2,5%

2 69362 135540 65311 55,8%

3 135540 201718 39890 34,1%

4 201718 267896 7782 6,6%

5 267896 334074 966 0,8%

6 334074 400252 127 0,1%

7 400252 466430 28 0,0%

8 466430 532608 9 0,0%

9 532608 598786 5 0,0%

10 598786 664968 3 0,0%
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Figure B.6: Sci-Fi movie - Size distribution for I, P and B frames
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Interval From To Nr of I Percent

1 3432 192597 474 3,3%

2 192597 381762 358 2,5%

3 381762 570927 550 3,8%

4 570927 760092 1073 7,4%

5 760092 949257 3036 20,9%

6 949257 1138422 3978 27,4%

7 1138422 1327587 1945 13,4%

8 1327587 1516752 1200 8,3%

9 1516752 1705917 802 5,5%

10 1705917 1895088 551 3,8%

Interval From To Nr of P Percent

1 32 146024 1866 3,4%

2 146024 292016 2059 3,7%

3 292016 438008 36194 65,5%

4 438008 584000 13921 25,2%

5 584000 729992 762 1,4%

6 729992 875984 415 0,8%

7 875984 1021976 27 0,0%

8 1021976 1167968 2 0,0%

9 1167968 1313960 0 0,0%

10 1313960 1459952 2 0,0%

Interval From To Nr of B Percent

1 24 156617 24255 22,0%

2 156617 313210 85485 77,4%

3 313210 469803 561 0,5%

4 469803 626396 73 0,1%

5 626396 782989 5 0,0%

6 782989 939582 4 0,0%

7 939582 1096175 3 0,0%

8 1096175 1252768 6 0,0%

9 1252768 1409361 0 0,0%

10 1409361 1565960 3 0,0%
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Figure B.7: Philharmonic - Size distribution for I, P and B frames
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Interval From To Nr of I Percent

1 14392 94926 134 1,7%

2 94926 175460 36 0,4%

3 175460 255994 51 0,6%

4 255994 336528 71 0,9%

5 336528 417062 102 1,3%

6 417062 497596 1165 14,5%

7 497596 578130 2480 30,9%

8 578130 658664 2403 29,9%

9 658664 739198 1267 15,8%

10 739198 819736 289 3,6%

Interval From To Nr of P Percent

1 32 76498 104 0,4%

2 76498 152964 127 0,5%

3 152964 229430 180 0,8%

4 229430 305896 446 1,9%

5 305896 382362 759 3,2%

6 382362 458828 21526 90,0%

7 458828 535294 781 3,3%

8 535294 611760 1 0,0%

9 611760 688226 3 0,0%

10 688226 764696 2 0,0%

Interval From To Nr of B Percent

1 32 42416 345 0,5%

2 42416 84800 262 0,4%

3 84800 127184 707 1,1%

4 127184 169568 1924 3,0%

5 169568 211952 42148 66,1%

6 211952 254336 18096 28,4%

7 254336 296720 200 0,3%

8 296720 339104 57 0,1%

9 339104 381488 4 0,0%

10 381488 423880 3 0,0%
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Figure B.8: Documentary - Size distribution for I, P and B frames



188 Chapter B. Simulation results: Analysis of MPEG-2 Video
Streams

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

I P B
Frame type

M
ac

ro
bl

oc
ks

Forward and backward
predicted
Backward predicted

Forward predicted

Intra macroblocks

Figure B.9: Action movie - Macroblock types
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Figure B.10: Drama movie - Macroblock types
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Figure B.11: Action movie - Skipped macroblocks variations
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Figure B.12: Drama movie - Skipped macroblocks variations
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Figure B.13: Sci-Fi movie - Skipped macroblocks variations
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Movie avg I frames P frames B frames
I:P :B avg std dev avg std dev avg std dev

Action 4:2:1 506114 187598 234824 109888 148200 57616
Drama 6:3:2 471880 140329 231144 76835 152432 45746
Cartoon 6:2:1 674544 216068 255552 133372 115184 53982
Thriller 4:2:1 514744 174307 281864 92779 129536 48890
Sci-Fi 3:2:1 430088 70920 249576 65226 136720 41336
Philharm. 6:2:1 1019896 363358 396576 98782 184912 51664
Docum. 3:2:1 568824 116259 414144 48855 199928 26295

Table B.18: Comparrison of bitsize properties for the analysed movies

Movie title Number of GOPs where
I largest P largest B largest P > I B > I B > P

Action 89% 10% 1% 31% 26% 39%
Drama 94% 5% 1% 6% 2% 37%
Cartoon 91% 8% 1% 8% 1% 12%
Thriller 88% 11% 1% 32% 15% 8%
Sci-Fi 93% 7% 0% 17% 3% 10%
Philharmonic 92% 7% 0% 27% 21% 15%
Documentary 95% 4% 0% 16% 19% 4%

Table B.19: Comparisson of GOP properties for the analysed movies



Appendix C

Implemented Tools

Here we describe all the tools that we have implemented and used for
the simulation purposes of the algorithms presented in this thesis. We
present both a set of real-time schedule design tools, which we used
for the verification and simulation of the algorithm presented in chap-
ters 2 and 3, and a set of MPEG analysis tools, needed for simulations
performed in chapter 6.

Some of the tools have been implemented by myself while the others
by other members of our research group (SALSART). The tools imple-
mented by other people will be briefly described and properly referred,
and all the tools implemented by myself will be described in detail.

C.1 Real-time Schedule Design Tools

SALSART toolset is a web-based cooperative environment for the de-
sign of real-time schedules, designed and implemented by our research
group. It comprises a set of stand alone tools interacting via an inter-
net based central supervisor. It envisions a set of experts working as a
geographically separated team on application specification, scheduling,
editing, simulation and analysis of real-time schedules.

The SALSART interactive tools are implemented in JAVA for plat-
form independence and using XML for interfacing. Thus, it is able to
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be applied on a variety of systems and provides for configurable appli-
cation demands.

The toolset consists of a precedence graph editor, a scheduler, a
schedule editor, a simulator with random sporadic and aperiodic task
generators, and a supervisor, a central server that connects all the tools.
More detailed description of all SALSART tools can be found in [31].

C.1.1 Precedence Graph Editor

Implemented by: Roger Vuolle1

The Precedence Graph Editor (PG editor) is an application used to pro-
duce and edit precedence graphs to be scheduled with some offline
scheduler. It provides for intuitive creation, modification and mainte-
nance of precedence graphs, see figure C.1.

Precedence graphs are created from scratch in a graphical drag-and-
drop environment. The output is saved in XML format, providing for
easy distribution between different applications.

We have used Precedence Graph Editor to create specification files
for the offline slot shifting scheduler that produces static schedules.

C.1.2 Scheduler

Implemented by: Roger Vuolle and Tomas Lennvall2

The offline scheduler reads the precedence graphs created by the PG
editor and creates static schedules with intervals and spare capacities, as
described in chapter 2.2. It allocates tasks to nodes and constructs tables
outlining the temporal execution of tasks in a feasible way (see figure
C.2). All complex constraints are resolved offline, providing for very
simple runtime mechanisms.

1Roger Vuolle is a former student of MdH. PG editor is a part of his MSc thesis
which he did under supervison of our research group

2Tomas Lennvall is a Ph D student at MdH, a member of our research group
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Figure C.1: Precedence Graph Editor screenshot

The scheduling algorithm is based on the simulated annealing tech-
nique. The simulated annealing algorithm is a global optimization tech-
nique, which attempts to find the lowest energy point in a world or land-
scape of energy points. When the algorithm is used to find allocation
and execution schedules, every point in the world represents an energy
level, an allocation and a schedule for all the instances of tasks in the
system, at the same time. This energy level is calculated for every new
state the process stops at and the energy level is the sum of all alloca-
tion and scheduling constraint violations in the system. The neighbor
space of a point is the set of all points that are reachable by moving a
single task to another processor node or by moving the task in the time
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Figure C.2: Scheduler screenshot

space available on some allocated processor. This means that the en-
ergy calculated for some point in the world represents the suitability of
the allocation and the schedule for the task instances involved at all the
processors in the system.

Since the result of the scheduler are scheduling tables or an indica-
tion that no schedule was found, it does not provide visualization itself.

C.1.3 Schedule Editor

Implemented by: Damir Isovic

Sometimes we do not want the scheduler to make all allocation deci-
sions. Instead we would like to view the schedule and optimize it by
hand, e.g. we want a task to be scheduled on node 2 instead of node 1.
The schedule editor (see figure C.3) is an application used for viewing
and editing of real-time schedules. The basic editing features, such as
moving, deleting, copying and pasting new objects, are extended with
additional functionality and constraints that allow advanced but con-
trolled verification and modification of RT schedules. The schedule
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editor can be executed as a stand-alone application, but it is also able
to establish an online cooperation with the other parts of the SALSART
tool, making the editing highly distributed.

Interfacing

Input to the Schedule Editor are offline schedule files in XML format,
created by some offline scheduler. The editor can easily be configured
to get input from any static scheduler, assuming that the attributes to the
schedule components are separated from the schedule file. Therefore
this additional information, i.e., which tasks belong to which precedence
graph, deadlines, colors, descriptions, resources etc. , is kept in separate
files rather than in the schedule file. The more information provided the
more editor features become available. This way, the schedule editor can
utilize the additional information when it is supplied, which eliminates
all dependencies upon the file output formats of static schedulers.

The following file formats are recognized by the schedule editor:

• Basic schedule file – contains the minimum amount of informa-
tion needed for graphical display of a schedule. The outputs from
some standard schedulers are supported without any modification.
The unsupported ones can easily be converted into this format -
the only information needed is start and completion times of the
tasks as well as their allocation nodes. This file is necessary for
schedule visualization.

• Attribute file – contains the additional information about a sched-
ule, such as intervals, spare capacities, deadlines, WCET, descrip-
tions of the tasks. This file is optional.

• Network file - contains the information about the inter-node mes-
sages between tasks. This file is also optional.

The Editor can read three different files describing the same sched-
ule, though it’s enough to have only one of them to display the schedule.
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However, the more information available, the better the visualization of
the system.

Separating the actual schedule file from additional information about
the schedule components makes the application configurable for adding
new task models and outputs from various schedulers. Modified sched-
ules are saved in the same format they had before editing.

Figure C.3: Schedule Editor screenshot

Visualization

The least amount of information needed for the Editor to work properly
is a schedule file. If no additional information is provided, the schedule
file is read and displayed both graphically and as a tree structure. Several
different views of the schedule are available.

• Tree view – schedule components are viewed as a tree, allowing
easy searches.



C.1 Real-time Schedule Design Tools 199

• Node view – graphical display with nodes and belonging tasks.

• 3D view – sometimes it is difficult to distinguish between many
inter-node messages in 2D view, due to the overlaps when draw-
ing those. In 3D views it’s much easier to follow a certain mes-
sage. In this mode schedules can be rotated as well.

Functionality

Schedule editing can be performed with and without constraints on tasks.
Editing with constraints supports the slot-shifting algorithm, enabling
the warning messages for violated constraints. The schedule can also
be edited freely, without any constraints and warning messages, which
gives the user total control over the construction. On the other hand, this
approach can result in unrealistic schedules due to lack of restrictions in
allocation of the resources.

The Schedule Editor can be connected to a real application in or-
der to monitor the run-time behavior of the systems running created
schedules, i.e., we can get a signal back to the editor when a task has
completed, or a new aperiodic task has arrived. The connection is done
via a server, supervisor that could be running anywhere in the world.
The Schedule Editor is already prepared for the connection to the su-
pervisor, and the monitored application can connect by using a simple
monitor client, also available as a part of the SALSART tools. The only
restriction on the application is that it has to have support for socket
communication.

C.1.4 Schedule Simulator

Implemented by: Damir Isovic

The Simulator (figure C.4) is used for simulation of various guarantee
algorithms for firm aperiodic tasks. It can be used to graphically display
what happens during the execution of a schedule using a chosen method,
displaying the run-time activities and events that occur during execution.
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It also logs these events and generates statistics that, for instance, can be
used for various kinds of performance analyses. Being part of the SAL-
SART suite the simulator supports distributed cooperative team-work,
enabling a group of people to work together on a project.

Figure C.4: Simulator - debug mode

Methods

Several guarantee algorithms for firm aperiodic tasks based on slot shift-
ing are currently supported, including the algorithms in chapters 2 and 3,
see figure C.5.
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Figure C.5: Simulator - config mode, supported algorithms

Figure C.6: Simulator - random task generator
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Visualization

The simulator supports a number of different views; each view showing
distinct kinds of information and data to graphically display the inner
workings and stages of a simulated algorithm. These views display the
following:

• The actual schedule with tasks, inter-node messages, intervals,
spare capacities, etc.

• The set of tasks that are ready to execute.

• Aperiodic task queues; both soft and firm.

• Sporadic tasks queues

Statistics and information

As well as performing the actual simulation the simulator also logs the
simulation, gathering event data and generating statistics. This infor-
mation can be used to analyse different aspects of a schedule. Some
examples of such data are the aperiodic task load, aperiodic response
times, guarantee ratios, and deadline violations.

Random task generators

The simulator includes random task generators for aperiodic and spo-
radic task arrivals, see figure C.6. The generated task sets can be tuned
by specifying attributes for the tasks, such as earliest start time, deadline
and WCET intervals.

C.1.5 Example: operational scenario

We envision the following setup for the use of presented scheduling de-
sign tools. A schedule could be designed as follows:
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• PG Editor: application designer specifies the relations between
tasks and their temporal constraints, including precedence, mu-
tual exclusion, end-to-end deadlines in distributed systems, pre-
allocation of some tasks to node in the systems.

• Scheduler: takes the application specification and applies a schedul-
ing tool to construct an offline schedule. In the failure case new
attempts with different settings, e.g., more comprehensive search,
different heuristics are initiated. If these fail, the application de-
signer is asked to change the designer.

• Scheduling Editor: product engineer takes the constructed sched-
ule and is responsible for installing it on the system infield. The
schedule will be analyzed and tested for engineering constraints,
e.g., separation of activities, and potentially edited and modified
to meet these demands, while pertaining feasibility.

• Simulator: analysts perform extra analysis on the constructed sched-
ule, e.g., simulation of run-time activities by “stress testing” via
overload scenarios, reliability analysis, etc. The analysts may not
be tightly involved, but provide analysis results only.

C.2 MPEG Analysis Tools

We presented in chapter 6 the analysis results for a number of realistic
MPEG-2 video stream. In order to perform the analysis we have both
implemented and used/modified existing MPEG tools. Here we describe
both categories.

C.2.1 MPEG Stream Analyzer

Implemented by: Damir Isovic

This is a command line based tool implemented in C. It parses a MPEG-
2 video stream and collects relevant information. It reads the input
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stream byte by byte and as soon a relevant header is found, correspond-
ing function is called to extract desired information from it.

Here is an implementation example of a function that extracts some
stream info from the sequence header, depicted in figure C.7.

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
1

byte 4 byte 5 byte 6 byte 7

horizontal size vertical size aspect frame

byte 8 byte 9 byte 10 byte 11

bit rate VBV buffer size

Figure C.7: MPEG-2 Sequence Header

As we can see from the figure e.g., horizontal size information is
contained in two bytes: all bits in byte 43 plus the first four bytes of byte
5. This requires some bit-shifting to extract relevant information.

/***************************************************
NAME: getStreamInfo
IN : MPEG-2 video stream pointer
OUT : -

DESC: Get stream info from sequence header (SH)

width = byte4 and the first half of byte5
height = the second half of byte5 and byte6
aspect = the first half of byte7
fps = the second half of byte7
bitrate = bytes8,9 and two first bits of byte10

3Bytes 0-3 in the each header are reserved for start code prefix (byte 0-2) and header
start code or stream ID (byte 3)
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The extracted information is copied into the
global variables:

width, height, fps, aspect_ratio_str

***************************************************/

void getStreamInfo(FILE *MPEG_video_stream){

long SH_byte4, SH_byte5, SH_byte6, SH_byte7;
long SH_byte8, SH_byte9, SH_byte10;

int aspect_ratio_code, frame_rate_code;

// get relevant bytes from the sequence header
SH_byte4 = getc(MPEG_video_stream);
SH_byte5 = getc(MPEG_video_stream);
SH_byte6 = getc(MPEG_video_stream);
SH_byte7 = getc(MPEG_video_stream);
SH_byte8 = getc(MPEG_video_stream);
SH_byte9 = getc(MPEG_video_stream);
SH_byte10 = getc(MPEG_video_stream);

// extract width and height from first 3 bytes
width = (SH_byte4 << 4) | (SH_byte5 >> 4);
height = ((SH_byte5 & 0x0f) << 8) | SH_byte6;

// extract aspect ratio anf fps codes from byte 7
aspect_ratio_code = (SH_byte7 >> 4) & 0x0f;
frame_rate_code = SH_byte7 & 0x0f;

// translate the codes for aspect ratio
switch(aspect_ratio_code){

case 0x01: aspect_ratio_str = "1:1"; break;
case 0x02: aspect_ratio_str = "3:4"; break;
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case 0x03: aspect_ratio_str = "9:16"; break;
case 0x04: aspect_ratio_str = "1:2.21"; break;
default: aspect_ratio_str = "unknown"; break;

}

// translate the codes for fps value
switch(frame_rate_code){

case 0x01: fps = 23.976; break;
case 0x02: fps = 24; break;
case 0x03: fps = 25; break;
case 0x04: fps = 29.970; break;
case 0x05: fps = 30; break;
case 0x06: fps = 50; break;
case 0x07: fps = 59.940; break;
case 0x08: fps = 60; break;
default: fps = 0; break;

}

// extract bitrate
bitrate = (((SH_byte8 << 8) | SH_byte9) << 2 )

| (SH_byte10 >> 6);

// bitrate is measured in units of 400bits/sec
bitrate *=400;

}

The extracted information is collected in a text file, on per GOP ba-
sis. For each GOP, frame information (type and size) is printed followed
by some GOP statistics such as GOP size, GOP length, GOP type (open
or closed), the smallest and the largest frame in GOP, and some unusual
cases, e.g., some P or B frame is larger than the I frame.

Here is an example of an output file:

Stream : action_movie.m2v
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aspect ratio: 9:16
fps : 29.970000
resolution : 720 x 480
bitrate : 7500000 bits/sec
=====================================================
GOP 1 Type Size GOP summary
=====================================================
f [1] I 429568 sum = 3300816 bits
f [2] B 214752 len = 13 frames
f [3] B 206208 type = open GOP
f [4] P 355176 min = 214752 (B)
f [5] B 240512 max = 429568 (I)
f [6] B 243600
f [7] P 335096 P>some_previous_P=true
f [8] B 238144 B>some_previous_B=true
f [9] B 233128
f [10] P 336168
f [11] B 233968
f [12] B 234496
=====================================================
GOP 2

f [13] I 414336 sum = 1995408 bits
f [14] B 534944 len = 12 frames
f [15] B 83856 type = open GOP
f [16] P 214568 min = 56328 (B)
f [17] B 66240 max = 534944 (B)
f [18] B 61712
f [19] P 187696 # B>I = 1
f [20] B 59928 # B>P = 3
f [21] B 56328 P>some_previous_P=true
f [22] P 188888 B>some_previous_B=true
f [23] B 62112
f [24] B 64800
=====================================================
GOP 3

...
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C.2.2 MPEG Transcoder

Implemented by: Damir Isovic

MPEG Transcoder is a command line based tool written in C that ap-
plies our frame selection selection algorithm presented in chapter 7. It
takes a MPEG-2 video stream and the amount of available resources as
input and produces a tailored video stream, i.e., the one that is guaran-
teed to be timely processed with respect to the available bandwidth. The
produced MPEG-2 video streams are fully compatible with the standard
and can be played out in third-party decoders, e.g., Windows Media
Player by Microsoft.

MPEG Transcoder also works as a simulator for different frame se-
lection algorithms. Due to the modular architecture of the transcoder,
other frame selection algorithms can easily be added. Current imple-
mentation includes a naive, best-effort frame selection algorithm, needed
for the comparison to our method, see chapter 8.4 for comparison de-
tails.

Furthermore, the tool provides a random system load generator for
simulation purposes, but the load can also be specified by the user and
given as input to the tool.

This tools can be used both offline, transcoding a stored MPEG
stream, and online, responding to an incoming MPEG stream, e.g., via
the network.

Here is an example of an output file with statistics on useful resource
consumption i.e, fully decoded frames that contribute to the overall pic-
ture quality, wasted resources and the number of decoded frames per
GOP:

----------------------------------------------------

SIMULATION : QAFS (uneven load, avg dec times)
GOP Satisfaction : 0.7
INPUT stream : test_movie.m2v
OUTPUT stream : test_movie_[GOP_sat=0.7].m2v



C.2 MPEG Analysis Tools 209

====================================================
Useful (%) Wasted (%) Decoded/GOP (%)
====================================================
85 15 83
81 19 63
62 28 50
...
====================================================
Total frames : 156322
Decoded frames : 118804 (76%)
Skipped frames : 37518 (24%)
----------------------------------------------------

C.2.3 Peggy Tracer

Implemented by: Christian Hultman and Patrik Samuelsson4

Peggy Tracer (see figure C.8) is an application for stepping through an
arbitrary MPEG video stream frame by frame. It is written in C and it is
based on the libmpeg2 library [33].

The tool displays general stream information, e.g., bit rate, frame
rate, compression type, resolution etc and frame specific information,
e.g., frame type, frame number in GOP etc.

The user may step through the stream frame-by-frame, forward or
backward , or make fast jumps to an arbitrary point in the stream. At
any step, the tools shows the current frame, the previous frame and the
next frame allowing easy comparison between them. We have used this
feature to study differences between frames.

C.2.4 Other MPEG tools

Here is the list of MPEG tools written by people other than myself, my
co-researchers or master students within our research group, which we
used or modified to fit our needs:

4Christian and Patrik are former master students supervised by our research group
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Figure C.8: Peggy Tracer screenshot

mpeg2dec/libmpeg2

Authors: Aaron Holtzman, Michel Lespinasse et al

libmpeg2 [33] is a free library written in C for decoding MPEG-2 and
MPEG-1 video streams. It is released under the terms of the GPL li-
cense. mpeg2dec is a test program for libmpeg2. It decodes MPEG-
1 and MPEG-2 video streams, and also includes a demultiplexer for
MPEG program streams. We have modified this software to measure
decoding times for frames.
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Berkeley MPEG player

Author: Berkeley Multimedia Research Center

The Berkeley MPEG player [18] is an open source MPEG player written
in C. We have extended it to support different frame selection strategies
and to measure decoding times for the frames.

MPEG2event

Author: Ketan Mayer-Patel5

MPEG2Event [43] is a library written in C# (.NET) intended to facil-
itate rapid prototyping of MPEG-2 analysis tools. It provides an event-
based architecture: as the video stream is parsed, the library constructs
and publishes an event for each coding element encounter. We have im-
plemented C# programs that use MPEG2event library to analyze frames
on sub-frame level, i.e., slices, macroblocks and blocks.

5Ketan is an Assistant Professor at the University of North Carolina at Chapel Hill,
USA. I have interacted with Ketan and used his library MPEG2event during my visit of
UNC in Spring 2004.
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Glossary

AAC
Advanced Audio Coding. An audio compression format defined
by the MPEG standard. The audio part of MPEG-2 audio/video
standard that has been further improved in MPEG-4 , 21

Aperiodic task
A type of dynamically arriving task that consist of a sequence
of identical instances activated at irregular intervals. Events that
triggers an aperiodic task may occur at any time, e.g., a device
generates interrupts, an operator presses the emergency button,
alarms, etc, 10

Bit rate, BR
The rate at which the coded bit stream is delivered from the stor-
age medium to the input of a decoder, 91

CBR
Constant bit rate means that the rate at which the video data in
a stream should be consumed is constant. It varies the quality
level of the video frames in order to ensure a consistent bit rate
throughout an encoded file, 23

Codec
Short for compressor/decompressor, a codec is any technology for
compressing and decompressing data, 22

225
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DTV
Digital Television refers to the standard of transmitting and re-
ceiving television signals using purely digital transmission. See
High Definition Television for more info , 104

DVB
Digital Video Bradcasting is a set of standards that define digital
broadcasting using existing satellite, cable, and terrestrial infras-
tructures, 20

DVD
Digital Versatile Disc is an optical disc storage media format that
is used for playback of movies with high video and sound quality
and for storing data, 20

Deadline
A task deadline is the time within which a real-time task should
complete its execution. A task deadline can be hard, soft and firm.
A hard task deadline must never be missed. Missing a hard dead-
line may cause catastrophic consequences on the environment be-
ing controlled. A soft task deadline can be missed. Meeting soft
deadline is desirable for performance reasons. A firm deadline
must be met once the task is guaranteed to complete in time, 6

Decoding order
The order in which frames are transmitted and decoded. This
order is not necessarily the same as the display order, 90

Display order
The order in which the decoded frames are displayed. Normally
this is the same order in which they were presented at the input of
the encoder, 90

Elementary Stream
A general term for a coded bit stream such as audio or video. An
elementary stream contain a single type of (usually compressed)
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signal, e.g., digital control data, digital audio or digital video. El-
ementary streams are made up of packs of packets, 23

Event-triggered approach
In event-trigged systems all activities are carried out in response
to relevant events external to the system, e.g., a sensor generates
an interrupt which triggers a certain task. Temporal control is en-
forced from the environment onto the system in an unpredictable
manner (interrupts)., 7

Frame rate, FR
The number of frame frames processed by the decoder per unit
of time. E.g., a frame rate of 30 fps means: thirty frames are
displayed per second, 92

HDTV
High Definition Television means broadcast of television signals
with a higher resolution than traditional formats (NTSC, SECAM,
PAL) allow. The high resolution images (1920 pixels 1080 lines
or 1280 pixels 720 lines) allow much more detail to be shown
compared to analog television or regular DVDs. MPEG-2 is used
as the compression codec, 21

Inter-coding
A coding technique for motion video that expolits spatial redun-
dancy within a single picture, 23

Intra-coding
A coding technique for motion video that exploits temporal redun-
dancy between successive frames, i.e., instead of sending entire
picture information, only the difference from the previous picture
is sent, 22

MP3
MPEG-1 Layer 3. A compression standard for audio. The audio
part of the MPEG-1 audio/video compression standard, 21
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MPEG-1
An MPEG video/audio standard optimized for CD-ROM. Used
mostly in VCDs , 20

MPEG-2
An MPEG video/audio standard optimized for broadcast quality
video. In particular, MPEG-2 has become the coding standard
for digital video streams in consumer content and devices, such
as DVD movies and digital television set top boxes for Digital
Video Broadcasting (DVB) , 20

MPEG-3
A proposed standard of the MPEG group that never has been im-
plemented. MPEG-3 was intended as an extension of MPEG-2
for HDTV but was eventually merged into MPEG-2 , 20

MPEG-4
An MPEG video/audio standard primarily designed to handle low
bit rate content. MPEG-4 contains many of the features of MPEG-
1 and MPEG-2, adding new features such as object-oriented com-
posite files and various types of interactivity. Application areas
include picture phones, streaming media, Internet, etc , 20

MPEG
Moving Picture Experts Group (MPEG), standard for coded rep-
resentation of digital audio and video, 20

Offline (pre-run-time) scheduling
A scheduling method in which all scheduling decisions are pre-
computed offline, before we start the system. Task are executed
in predetermined fashion, according to a time-triggered approach,
6

Online (run-time) scheduling
A scheduling method in which all active tasks are reordered every
time a new task enters the system or a new event occurs. Online
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scheduling algorithms make their scheduling decisions at runtime,
7

Periodic task
A type of task that consist of a sequence of identical instances,
activated at regular intervals. Examples include audio and video
sampling, speed regulation, monitoring of temperature, etc., 9

Precedence order
A partial ordering between individual task executions. If task A
precedes B then both tasks runs with the same period, but A must
complete before B starts to execute, 11

Preemption
An operation of the kernel that interrupts the currently executing
task and assigns the processor to a more urgent task ready to exe-
cute., 8

Program Stream
MPEG system stream that consists of one or several Elementary
Streams with the same time basis. This form of multiplexing is
used transmission in a relatively error-free environment, 24

Scheduling
Real-time scheduling is an activity that determines the order in
which concurrent tasks are executed on a processor. If several
processors are used in the system, then a scheduling policy deter-
mines both when (the order in time) and where (which processor)
tasks are executed on, 6

Skipped macroblock
A macroblock for which no data is encoded. , 122

Slot Shifting
A metod to combine offline and online scheduling. Dynamic ac-
tivities are incorporated into static schedules by making use of the
unused resources and leeways in the schedule, 39
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Spatial redundancy
Redundant (nearly identical) information within the same picture.
It occurs because pats withing a single picture are often replicated
(with minor changes), 23

Sporadic task
A type of dynamically arriving task that consist of a sequence of
identical instances activated at irregular intervals, but with known
minimum interarrival time between consecutive instances. After
the minimum interarrival time has elapsed, the next instance can
arrive at any time, 10

Task constraints
Task constraints can be simple and complex. Simple task con-
straints are task attributes such as period, start-time and the dead-
line. Complex task constraints are such relations or attributes
which cannot be expressed directly using simple task constraints,
e.g., synchronization, precedence, end-to-end deadlines etc. In
the most cases, offline transformations are needed to schedule
these at run-time, 11

Task
A sequential program that performs a specific activity and that
possibly communicates with other tasks in the system. A task
often has a priority relative to other tasks in the system, 6, 9

Temporal redundancy
Redundant (nearly identical) information between adjacent video
frames. It arises when successive pictures of video display images
of the same scene, 22

Time-triggered approach
Time-triggered systems are those that react to passage of time,
i.e., all activities are initiated at predetermined points in time.
Real-time systems of this kind are time triggered in the sense that
their overall behaviour is globally controlled by a recurring clock
tick, 7
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Transport Stream
MPEG system stream that consists of one or several Elementary
Streams with the different time basis. The transport stream is in-
tended for broadcast systems where error resilience is one of the
most important properties , 24

VBR
Variable bit rate, varies the amount of output data in each time
segment based on the complexity of the input data in that segment.
The goal is to maintain constant quality instead of maintaining a
constant data rate by making intelligent bit-allocation decisions
during the encoding process, 23

VBV
Video Buffering Verifier, a hypothetical decoder that is concep-
tually connected to the output of the encoder. Its purpose is to
provide a constraint on the variability of the data rate that an en-
coder or editing process may produce. , 94

VCD
Video CD is the technology that allows around 70 minutes of
compressed MPEG-1 video/audio to be stored on a CD, 21
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AAC, 21
aperiodic task, 10

acceptance test, 38, 44
guarantee, 44, 70
rejection strategy, 38

bit rate, 22
bit rate, BR, 86
buffer

frame buffers, 91, 95
input buffer, 94
overflow, 96
underflow, 96

CBR, 23
codec, 22
coding

bi-directional, 88
predicted, 88

coding, intra, 88
Constant bit rate, see CBR
constraints

complex, 11
simple, 11

deadline, 5, 6
hard, 6

soft, 6
decoding latency, 93
decoding order, 90
display latency, 93
display order, 90
DVB, Digital Video Broadcasting,

20
DVD, Digital Versatile (or Video)

Disc, 20

Elementary Stream, 23
end-to-end latency, 93
event-trigged systems, 17
event-triggered approach, 7

frame, 22, 87
B, bi-directional, 88
coding, see coding, see coding
I, intra, 88
inter-coding, see coding, inter,

see coding, inter
intra-coding, see coding, intra,

see coding, intra
P, predicted, 88
reference frame, 88
reordering, 87
skipping, see frame skipping
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types, 87
frame rate, FR, 86
frame skipping, 98

preventive, 98
reactive, 98

GOP, 86, 89
closed, 90
open GOP, 90
satisfaction degree, 151

Group of Pictures, see GOP), see
GOP

HDTV, High Definition Television,
21

inter-coding, 22, 87
interference window, 70
intra-coding, 23, 87

latest start-time methods, 15

macroblock, 86
backward-predicted, 87, 122
forward-and-backward predicted,

87, 122
forward-predicted, 87, 122
intra, 87, 122
skipped macroblocks, 122

minimum inter-arrival time, 10
MP3, 21
MPEG, 85

AAC, see AAC
bit rate, see bit rate
completion time constraints, 104
decoding, 92

display, 93
DR, display rate, 93
Elementary Stream, see Elemen-

tary Stream
fps, 92
frame, see frame
frame per second, see fps
frame rate, see frame rate
Group of Pictures, see GOP
input buffer, see buffer
MP3, see MP3
MPEG-1, see MPEG-1
MPEG-2, see MPEG-2
MPEG-3, see MPEG-3
MPEG-4, see MPEG-4
picture, see frame
processing model, 91
Program Stream, see Program

Stream
quality reduction, 98
reference decoder, see VBV
standard, 21
start time constraints, 102
timing constraints, 101
Transport Stream, see Trans-

port Stream
Video Buffer Verifier, see VBV
video stream, see video stream

MPEG-1, 20
MPEG-2, 20
MPEG-3, 20
MPEG-4, 20

periodic task, 9
deadlines, 39
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start times, 39
picture, see frame
precedence order, 11
preeemption, see Scheduling, pre-

emption
Program Stream, 24

real-time systems
distributed, 9
event-trigged, see event-trigged

approach
hard, 6
mixed, 6
soft, 6
time-trigged, see time-trigged

approach
reference decoder, see VBV

scheduling, 6
event-trigged, see event-trigged

approach
offline, 6
online, 7
pre-run-time, see scheduling,

offline
preemtion, 8
resource constrained, 8
resource sufficient, 8
run-time, see scheduling, on-

line
time-trigged, see time-trigged

approach
slot shifting, 15, 39

aperiodic guarantee algorithm,
41

intervals, 39
new approach, 42
offline preparations, 39
online mechanism, 40
online scheduling, 41
original approach, 39
spare capacity, 39

spatial redundancy, 23, 87
sporadic

event, 12
sporadic task, 10, 57

interference window, 70
minimum inter-arrival time, 10
offline test, 64
online scheduling, 70

task, 6, 9
aperiodic, see aperiodic task,

37
constraints, see constraints
deadline, see deadline
instance, 10
periodic, see periodic task
precedence, see precedence or-

der
pseudo-periodic, 18
sporadic, see sporadic task, 57

offline test, 64
temporal redundancy, 22, 87
time-trigged systems, 17
time-triggered approach, 7
tools, 193

Berkeley MPEG player, 210
libmpeg2, 209
MPEG Analysis Tools, 203
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MPEG Stream Analyzer, 203
MPEG Transcoder, 208
mpeg2dec, see libmpeg2
MPEG2event, 211
Peggy Tracer, 209
Precedence Graph Editor, 194
Schedule Design Tools, 193
Schedule Editor, 196
Scheduler, 194
Simulator, 199

Transport Stream, 24

Variable bit rate, 23, see VBR
VBV, 94

buffer, 94
VCD, 21
video stream, 86

aspect ratio, 86
bit rate, see bit rate
block, 86
decoding order, see decoding

order
display order, see display or-

der
frame rate, see frame rate
GOP, see GOP
macroblock, see macroblock
picture, see frame
sequence, 86
sequence header, 86
slice, see slice



Populärvetenskaplig svensk
sammanfattning

”Flexibelt multimedia för resursbegränsade system”

Inom nȧgra ȧr kommer de flesta underhȧllningsprodukter i hemmet,
som till exempel TV och videobandspelare, att ersättas av motsvarande
digitala produkter. Digitala sändningar lämnar utrymme ȧt ett bredare
utbud av kanaler och helt nya tjänster med hög ljud- och bildkvalitet.
Dessa sändningar ställer andra krav än nuvarande analoga tekniker, sam-
tidigt som det finns begränsningar i bȧde uppspelningsenheterna i sig,
men även hos omgivningen och användaren. En begränsning är t ex att
det mänskliga ögat inte kan arbeta hur fort som helst samtidigt som det
ställs höga krav pȧ att ljud och bild upplevs som avbrottsfritt och synkro-
niserat. Ett annat krav är att uppspelningsenheterna - videomobiltelefo-
nen, handdatorn - skall vara lättare, mindre och energisnȧlare än idag,
och i detta ligger en teknisk begränsning avseende beräkningskapacitet,
minne och batteritid. Ett krav är att överföringen mȧste ske snabbt och
med hög och bibehȧllen kvalitet, samtidigt som nätverken – som t ex
Internet – har en begränsad kapacitet.

Vȧr forskning gȧr ut pȧ att uppfylla krav som ställs av multimedia
med tanke pȧ de begränsningar som finns, pȧ ett högkvalitativt sätt. Om
det visar sig att uppspelningsenheten inte klarar av att visa en fullständig
videofilm, anpassar vȧr metod filmen till enheten genom att identifiera
och spela upp de delar av filmen som ger den bästa möjliga kvaliteten pȧ
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resulterande bild och ljud. Den digitala filmen anpassas antingen innan
man skickar iväg den över nätverket, t ex det mobila nätet, eller när man
har tagit emot den i sin enhet, t ex videomobiltelefonen. Sättet filmen
anpassas pȧ är beroende av vilka begränsningar och krav som ställs i det
specifika tillfället.

Vi använder realtidssystem för att matcha krav som ställs av multi-
media med begränsningarna hos uppspelningsenheter och nätverket för
videoöverföring. Realtidssystem är en typ av datorsystem som garan-
terar att resultat av en viss beräkning levereras vid rätt tidpunkt. Tack
vare realtid kan de olika medierna för ljud och bild synkroniseras med
varandra, sȧ att ljudet följer noggrant video som visas.

Användningsomrȧdena för vȧr forskning är stora inom multimedia
branschen. Om det skall vara möjligt att titta pȧ filmtrailers pȧ en mo-
biltelefon mȧste man anpassa filmen till den kapacitet som mobiltele-
fonen klarar av att spela upp. Andra omrȧden som kan behöva anpas-
sade videoströmmar är handhȧllna datorer, kameraövervakningssystem,
videokonferenssystem, distansundervisning och sȧ vidare. I alla dessa
tillämpningsomrȧden möjliggör vȧr metod en kvalitetsmedveten anpass-
ning av den digitala filmen som resulterar i den bästa möjliga bilden med
avseende pȧ tillgängliga resurser för dataöverföring och uppspelning.






