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Abstract
Software performance assurance is of great importance for the success of software products, which are 
nowadays involved in many parts of our life. Performance evaluation approaches such as performance 
modeling, testing, as well as runtime performance control methods, all can contribute to the realization 
of software performance assurance. Many of the common approaches to tackle challenges in this 
area involve relying on performance models or using system models and source code. Although 
modeling provides a deep insight into the system behavior, developing a  detailed model is challenging. 
 Furthermore, software artifacts such as models and source code might not be readily available at all 
times in the development lifecycle. This thesis focuses on leveraging the potential of machine learning 
(ML) and evolutionary search-based techniques to provide viable solutions for addressing the challenges 
in different aspects of software performance assurance efficiently and effectively.

In this thesis, we first investigate the capabilities of model-free reinforcement learning to address the 
objectives in robustness testing problems. We develop two self-adaptive reinforcement learning-driven 
test agents called SaFReL and RELOAD. They generate effective platform-based test scenarios and test 
workloads, respectively. The output scenarios and workloads help testers and software engineers meet 
their objectives efficiently without relying on models or source code. SaFReL and RELOAD learn the 
optimal policies (ways) to meet the test objectives and can reuse the learned policies adaptively in other 
testing settings. Policy reuse can lead to higher test efficiency and cost savings, for example, when testing 
similar test objectives or software systems with comparable performance sensitivity.

Next, we leverage the potential of evolutionary computation algorithms, i.e., genetic algorithms, 
evolution strategies, and particle swarm optimization, to generate failure-revealing test scenarios for 
robustness testing of AI systems. In this part, we choose autonomous driving systems as a prevailing 
example of contemporary AI systems. We study the efficacy of the proposed evolutionary search-based 
test generation techniques and evaluate primarily to what extent they can trigger failures. Moreover, we 
investigate the diversity of those failures and compare them to existing baseline solutions.

Finally, we again use the potential of model-free reinforcement learning to develop adaptive ML-driven 
runtime performance control approaches. We present a response time preservation method for a sample 
type of industrial applications and a resource allocation technique for dynamic workloads in a data 
grid application. The proposed ML-driven techniques learn how to adjust the tunable parameters and 
resource configuration at runtime to keep the performance continually compliant with the requirements 
and to further optimize the runtime performance. We evaluate the efficacy of the approaches and show 
how effectively they can improve the performance and keep the performance requirements satisfied 
under varying conditions such as dynamic workloads and the occurrence of runtime events that lead 
to substantial response time deviations.
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Sammanfattning

Det moderna samhället är beroende av mjukvara, vilket innebär att tillförlitlig
mjukvaruprestanda i många fall är avgörande. Olika tillvägagångssätt för
prestandautvärdering såsom prestandamodellering, testning och
prestandaövervakning under körning kan alla bidra till att kvalitetssäkring av
prestanda. Många av de vedertagna tillvägagångssätten involverar att förlita
sig på prestandamodeller eller att använda systemmodeller och
källkodsanalys.

Avancerad modellering kan ge en djup insikt i mjukvarans beteende, men
kräver skapande och underhåll av detaljerade modeller. I många
utvecklingskontexter finns inte möjlighet att använda sig av sådana
modeller-—inte heller källkod är åtkomlig i samtliga fall. Den här
avhandlingen fokuserar på att utnyttja potentialen hos maskininlärning (ML)
och evolutionära sökbaserade tekniker för att tillhandahålla hållbara lösningar
för att hantera utmaningarna kopplade till kvalitetssäkring av
mjukvaruprestanda.

Avhandlingen undersöker först modellfri förstärkningsinlärning för
effektiv robusthetstestning. Vi utvecklar två självanpassande
förstärkningsinlärningsdrivna testagenter: SaFReL och RELOAD. Agenterna
genererar plattformsbaserade testscenarioner respektive belastningstester som
effektivt uppnår testmålen utan att förlita sig på modeller eller källkod. Dessa
smarta testagenter lär sig den optimala policyn (angreppssättet) för att
uppfylla specifika testmål och kan därefter återanvända den inlärda policyn
adaptivt i andra testsammanhang, till exempel för liknande testmål eller
testning av mjukvarusystem med liknande prestandakänslighet, vilket leder
till högre testeffektivitet och sparade testresurser.

Därefter utnyttjar vi potentialen hos evolutionära beräkningsalgoritmer,
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det vill säga genetiska algoritmer, evolutionsstrategier och
partikelsvärmoptimering, för att generera felavslöjande testscenarier för
robusthetstestning av AI-system. I denna del väljer vi system för autonoma
fordon som exempel på samtida AI-system. Vi studerar evolutionära
sökbaserade testgenereringsteknikers effektivitet och utvärderar i första hand i
vilken utsträckning de kan provocera systemfel och hur omfattande fel de kan
åstadkomma jämfört med befintliga testmetoder.

Slutligen använder vi återigen modellfri förstärkningsinlärning för att
utveckla adaptiva ML-drivna tillvägagångssätt för prestandastyrning, dvs. en
metod för att säkerställa svarstider. Vi utvärderar metoden för två
exempelapplikationer, nämligen ett industriell styrsystem och en
resursallokering i beräkningsnät. De presenterade ML-drivna teknikerna lär
sig hur man justerar parametrar och resurskonfigurationener under körning för
att kontinuerligt uppfylla prestandakraven med optimal marginal. Vi visar hur
effektivt metoderna kan förbättra systemprestanda när den operativa miljön
förändras, t.ex. varierande last och resursbegränsningar.



Abstract
Software performance assurance is of great importance for the success of
software products, which are nowadays involved in many parts of our life.
Performance evaluation approaches such as performance modeling, testing, as
well as runtime performance control methods, all can contribute to the
realization of software performance assurance. Many of the common
approaches to tackle challenges in this area involve relying on performance
models or using system models and source code. Although modeling provides
a deep insight into the system behavior, developing a detailed model is
challenging. Furthermore, software artifacts such as models and source code
might not be readily available at all times in the development lifecycle. This
thesis focuses on leveraging the potential of machine learning (ML) and
evolutionary search-based techniques to provide viable solutions for
addressing the challenges in different aspects of software performance
assurance efficiently and effectively.

In this thesis, we first investigate the capabilities of model-free
reinforcement learning to address the objectives in robustness testing
problems. We develop two self-adaptive reinforcement learning-driven test
agents called SaFReL and RELOAD. They generate effective platform-based
test scenarios and test workloads, respectively. The output scenarios and
workloads help testers and software engineers meet their objectives efficiently
without relying on models or source code. SaFReL and RELOAD learn the
optimal policies (ways) to meet the test objectives and can reuse the learned
policies adaptively in other testing settings. Policy reuse can lead to higher
test efficiency and cost savings, for example, when testing similar test
objectives or software systems with comparable performance sensitivity.

Next, we leverage the potential of evolutionary computation algorithms,
i.e., genetic algorithms, evolution strategies, and particle swarm optimization,
to generate failure-revealing test scenarios for robustness testing of AI
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systems. In this part, we choose autonomous driving systems as a prevailing
example of contemporary AI systems. We study the efficacy of the proposed
evolutionary search-based test generation techniques and evaluate primarily to
what extent they can trigger failures. Moreover, we investigate the diversity of
those failures and compare them to existing baseline solutions.

Finally, we again use the potential of model-free reinforcement learning to
develop adaptive ML-driven runtime performance control approaches. We
present a response time preservation method for a sample type of industrial
applications and a resource allocation technique for dynamic workloads in a
data grid application. The proposed ML-driven techniques learn how to adjust
the tunable parameters and resource configuration at runtime to keep the
performance continually compliant with the requirements and to further
optimize the runtime performance. We evaluate the efficacy of the approaches
and show how effectively they can improve the performance and keep the
performance requirements satisfied under varying conditions such as dynamic
workloads and the occurrence of runtime events that lead to substantial
response time deviations.
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Västerås, April 2022



List of publications

Papers included in the thesis1

Paper A Machine Learning to Guide Performance Testing: An Autonomous
Test Framework, Mahshid Helali Moghadam, Mehrdad Saadatmand,
Markus Borg, Markus Bohlin, and Björn Lisper. The 12th IEEE
International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), IEEE 2019.

Paper B An Autonomous Performance Testing Framework Using
Self-Adaptive Fuzzy Reinforcement Learning, Mahshid Helali
Moghadam, Mehrdad Saadatmand, Markus Borg, Markus Bohlin, and
Björn Lisper. Software Quality Journal, 1-33, Springer 2021.

Paper C Performance Testing Using a Smart Reinforcement
Learning-Driven Test Agent, Mahshid Helali Moghadam, Golrokh
Hamidi, Markus Borg, Mehrdad Saadatmand, Markus Bohlin, Björn
Lisper, and Pasqualina Potena. IEEE Congress on Evolutionary
Computation (CEC), IEEE 2021.

Paper D Machine Learning Testing in an ADAS Case Study Using
Simulation-Integrated Bio-Inspired Search-Based Testing, Mahshid
Helali Moghadam, Markus Borg, Mehrdad Saadatmand, Seyed
Jalaleddin Mousavirad, Markus Bohlin, and Björn Lisper. Technical
report, Mälardalen University, 2022 (submitted for journal publication).

1The included articles have been reformatted to comply with the thesis layout.

ix



x

Paper E Efficient and Effective Generation of Test Cases for Pedestrian
Detection – Search-based Software Testing of Baidu Apollo in SVL,
Hamid Ebadi, Mahshid Helali Moghadam, Markus Borg, Gregory Gay,
Afonso Fontes, and Kasper Socha. IEEE International Conference on
Artificial Intelligence Testing, IEEE 2021.

Paper F Adaptive Runtime Response Time Control in PLC-Based Real-Time
Systems Using Reinforcement Learning, Mahshid Helali Moghadam,
Mehrdad Saadatmand, Markus Borg, Markus Bohlin, and Björn Lisper.
The 13th IEEE/ACM International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS),
IEEE/ACM 2018.

Paper G Makespan Reduction for Dynamic Workloads in Cluster-Based
Data Grids Using Reinforcement Learning-Based Scheduling, Mahshid
Helali Moghadam and Seyed Morteza Babamir. Journal of
Computational Science, 24, 402-412, Elsevier 2018.

Additional papers, not included in the thesis

1. RWS-L-SHADE: An Effective L-SHADE Algorithm Incorporation
Roulette Wheel Selection Strategy for Numerical Optimisation, Seyed
Jalaleddin Mousavirad, Mahshid Helali Moghadam, Mehrdad
Saadatmand, Ripon Chakrabortty, Gerald Schaefer, and Diego Oliva.
The 25th International Conference on the Applications of Evolutionary
Computation (evoapplications), Springer 2022.

2. Deeper at the SBST 2021 Tool Competition: ADAS Testing Using Multi-
Objective Search, Mahshid Helali Moghadam, Markus Borg, and Seyed
Jalaleddin Mousavirad. The IEEE/ACM 14th International Workshop on
Search-Based Software Testing (SBST), IEEE/ACM 2021.

3. Automated Performance Testing Based on Active Deep Learning, Ali
Sedaghatbaf, Mahshid Helali Moghadam, and Mehrdad Saadatmand.
The 2nd ACM/IEEE International Conference on Automation of
Software Test, ACM/IEEE 2021.



xi

4. Towards a Verification-Driven Iterative Development of Software for
Safety-Critical Cyber-Physical Systems, Marjan Sirjani, Luciana
Provenzano, Sara Abbaspour Asadollah, Mahshid Helali Moghadam,
and Mehrdad Saadatmand. Journal of Internet Services and
Applications, 12(1), Springer 2021.

5. A Population-Based Automatic Clustering Algorithm for Image
Segmentation, Seyed Jalaleddin Mousavirad, Gerald Schaefer, Mahshid
Helali Moghadam, Mehrdad Saadatmand, and Mahdi Pedram. The
Genetic and Evolutionary Computation Conference (GECCO)
Companion, ACM 2021.

6. LSTM-AM-ABC: An LSTM-based Plagiarism Detection via Attention
Mechanism and a Population-based Approach for Pre-Training
Parameters with imbalanced Classes, Seyed Vahid Moravvej, Seyed
Jalaleddin Mousavirad, Mahshid Helali Moghadam, and Mehrdad
Saadatmand. The 28th International Conference on Neural Information
Processing (ICONIP), Springer 2021.

7. Poster: Performance Testing Driven by Reinforcement Learning,
Mahshid Helali Moghadam, Mehrdad Saadatmand, Markus Borg,
Markus Bohlin, and Björn Lisper. The 13th IEEE International
Conference on Software Testing, Verification and Validation, IEEE
2020.

8. From Requirements to Verifiable Executable Models using Rebeca,
Marjan Sirjani, Luciana Provenzano, Sara Abbaspour Asadollah, and
Mahshid Helali Moghadam. Software Engineering and Formal
Methods. SEFM 2020 Collocated Workshops. Springer 2020.

9. Machine Learning-Assisted Performance Testing, Mahshid Helali
Moghadam. The 27th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), ACM 2019. Winner of Silver Prize at
ACM Student Research Competition (SRC)

10. Learning-Based Self-Adaptive Assurance of Timing Properties in a
Real-Time Embedded System, Mahshid Helali Moghadam, Mehrdad
Saadatmand, Markus Borg, Markus Bohlin, and Björn Lisper. The 11th



xii

IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW 2018), IEEE 2018.

11. Learning-Based Response Time Analysis in Real-Time Embedded
Systems: A Simulation-Based Approach, Mahshid Helali Moghadam,
Mehrdad Saadatmand, Markus Borg, Markus Bohlin, and Björn Lisper.
The 1st IEEE/ACM International Workshop on Software Qualities and
Their Dependencies (SQUADE), ACM/IEEE 2018.

12. Adaptive Service Performance Control Using Cooperative Fuzzy
Reinforcement Learning in Virtualized Environments, Olumuyiwa
Ibidunmoye, Mahshid Helali Moghadam, Ewnetu Bayuh Lakew, and
Erik Elmroth. The 10th IEEE/ACM International Conference on Utility
and Cloud Computing (UCC), ACM/IEEE 2017.

13. A Multi-Objective Optimization Model for Data-Intensive Workflow
Scheduling in Data Grids, Mahshid Helali Moghadam, Seyyed Morteza
Babamir, and Meghdad Mirabi. The IEEE 41th Conference on Local
Computer Networks Workshops, IEEE 2016.



Contents

I Thesis 1

1 Introduction 3
1.1 Software Performance Assurance . . . . . . . . . . . . . . . . 3
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Research Overview 9
2.1 Research Challenges . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Research Process . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Research Contribution 17
3.1 RG1: Robustness Testing for Conventional Software Systems . 17

3.1.1 C1.1: SaFReL. . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 C1.2: RELOAD. . . . . . . . . . . . . . . . . . . . . 19

3.2 RG2: Robustness Testing of AI Systems . . . . . . . . . . . . 20
3.2.1 C2.1: Deeper . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 C2.2: GA-Driven ScenarioGenerator . . . . . . . . . 22

3.3 RG3: Runtime Performance Control . . . . . . . . . . . . . . 23
3.3.1 C3.1: An Adaptive Learning-Driven Runtime

Performance Preservation Technique . . . . . . . . . . 23
3.3.2 C3.2: An Adaptive Learning-Assisted Runtime

Performance Optimization Technique . . . . . . . . . 24
3.4 Overview of the Included Papers . . . . . . . . . . . . . . . . 25

xiii



xiv Contents

4 Background and Related Work 31
4.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 Model-Free RL Algorithms . . . . . . . . . . . . . . 34
4.1.3 Model-Free RL for Optimal Behavior . . . . . . . . . 38

4.2 Swarm and Evolutionary Computation . . . . . . . . . . . . . 43
4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Performance Testing: Conventional Software Systems 47
4.3.2 Robustness Testing: AI Systems . . . . . . . . . . . . 49
4.3.3 Runtime Performance Control . . . . . . . . . . . . . 51

5 Discussion, Conclusion and Future Work 55
5.1 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . 55

5.1.1 Threats to Validity . . . . . . . . . . . . . . . . . . . 62
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliography 67

II Included Papers 85

6 Paper A:
Machine Learning to Guide Performance Testing: An Autonomous
Test Framework 87
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Motivation and Background . . . . . . . . . . . . . . . . . . 90
6.3 Self-Adaptive Learning-Based Performance

Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Paper B:
An Autonomous Performance Testing Framework Using
Self-Adaptive Fuzzy Reinforcement Learning 103
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2 Motivation and Background . . . . . . . . . . . . . . . . . . 109



Contents xv

7.2.1 Reinforcement Learning . . . . . . . . . . . . . . . . 111
7.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.4 Fuzzy State Detection . . . . . . . . . . . . . . . . . . . . . . 115

7.4.1 State Modeling and Fuzzy Inference . . . . . . . . . . 116
7.5 Adaptive Action Selection and Reward Computation . . . . . 119
7.6 Performance Testing using Self-Adaptive Fuzzy

Reinforcement Learning . . . . . . . . . . . . . . . . . . . . 122
7.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.7.1 Experiments Setup . . . . . . . . . . . . . . . . . . . 125
7.7.2 Experiments and Results . . . . . . . . . . . . . . . . 127

Efficiency and Adaptivity Analysis . . . . . . . . . . 127
Sensitivity Analysis . . . . . . . . . . . . . . . . . . 136

7.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.8.1 Efficiency, Adaptivity and Sensitivity Analysis . . . . 138
7.8.2 Lessons Learned . . . . . . . . . . . . . . . . . . . . 140
7.8.3 Threats to Validity . . . . . . . . . . . . . . . . . . . 141

7.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8 Paper C:
Performance Testing Using a Smart Reinforcement
Learning-Driven Test Agent 155
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.2 Motivation and Background . . . . . . . . . . . . . . . . . . 159

8.2.1 Reinforcement Learning . . . . . . . . . . . . . . . . 160
8.3 RELOAD Test Agent for Optimal Test Workload Generation . 161
8.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
8.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 168

8.5.1 Experimental Results . . . . . . . . . . . . . . . . . . 169
8.5.2 Revisiting the Research Questions . . . . . . . . . . . 173
8.5.3 Threats to Validity . . . . . . . . . . . . . . . . . . . 174

8.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



xvi Contents

9 Paper D:
Machine Learning Testing in an ADAS Case Study Using
Simulation-Integrated Bio-Inspired Search-Based Testing 185
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
9.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
9.3 Deeper:

A Bio-Inspired Simulation-Integrated Testing Framework . . . 193
9.3.1 Test Scenario and Failure Specification . . . . . . . . 194
9.3.2 Fitness Function . . . . . . . . . . . . . . . . . . . . 196
9.3.3 Bio-Inspired Search Algorithms . . . . . . . . . . . . 197

Genetic Algorithm . . . . . . . . . . . . . . . . . . . 198
Evolution Strategies . . . . . . . . . . . . . . . . . . 200
Particle Swarm Optimization . . . . . . . . . . . . . . 201

9.4 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . 202
9.4.1 Research Method . . . . . . . . . . . . . . . . . . . . 203

9.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 206
9.5.1 Detected Failures (RQ1) . . . . . . . . . . . . . . . . 206
9.5.2 Diversity of Failures (RQ2) . . . . . . . . . . . . . . 208
9.5.3 Test Effectiveness and Efficiency (RQ3) . . . . . . . . 209
9.5.4 Threats to Validity . . . . . . . . . . . . . . . . . . . 211

9.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

10 Paper E:
Efficient and Effective Generation of Test Cases for Pedestrian
Detection – Search-based Software Testing of Baidu Apollo in SVL227
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
10.2 Search-based Test Case Generation . . . . . . . . . . . . . . . 231

10.2.1 Scenario Creation and Manipulation . . . . . . . . . . 232
10.2.2 Scenario Specification . . . . . . . . . . . . . . . . . 232
10.2.3 Noise Vector . . . . . . . . . . . . . . . . . . . . . . 233
10.2.4 Objective Function . . . . . . . . . . . . . . . . . . . 233
10.2.5 Search Algorithm . . . . . . . . . . . . . . . . . . . . 234

10.3 Implementation and Empirical Evaluation . . . . . . . . . . . 236
10.3.1 Test Scenario Execution . . . . . . . . . . . . . . . . 237



Contents xvii

10.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 240
10.4.1 Threats to Validity . . . . . . . . . . . . . . . . . . . 241

10.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 242
10.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 243
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

11 Paper F:
Adaptive Runtime Response Time Control in PLC-Based
Real-Time Systems Using Reinforcement Learning 249
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
11.2 Motivation and Background . . . . . . . . . . . . . . . . . . 252

11.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . 252
11.2.2 PLC-Based Industrial Control Programs . . . . . . . . 253

11.3 Adaptive Response Time Control Using
Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

11.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 257
11.4.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . 257
11.4.2 Experiments and Results . . . . . . . . . . . . . . . . 259

11.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 263
11.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

12 Paper G:
Makespan Reduction for Dynamic Workloads in Cluster-Based
Data Grids Using Reinforcement Learning-Based Scheduling 271
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
12.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 276
12.3 Adaptive Scheduling Based on Reinforcement Learning . . . . 277

12.3.1 Q-Learning: A Model-Free Reinforcement Learning . 278
12.3.2 A Two-Phase Adaptive Scheduling Based on Data

Awareness and Reinforcement Learning . . . . . . . . 280
12.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

12.4.1 Simulation Environment . . . . . . . . . . . . . . . . 284
12.4.2 Experimental Results . . . . . . . . . . . . . . . . . . 285
12.4.3 Performance Analysis . . . . . . . . . . . . . . . . . 286
12.4.4 Sensitivity Analysis . . . . . . . . . . . . . . . . . . 288



xviii Contents

12.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
12.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 294
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295



I

Thesis

1





Chapter 1

Introduction

1.1 Software Performance Assurance

With the growing trend of using computer systems in our daily life, various
parts of our life are dependent on the services provided by the software.
Quality assurance—with regard to different quality characteristics—is an
essential step of the software development life cycle [1, 2, 3], and is of great
importance, particularly in the domains where any types of failures might
cause major damages to businesses, vital infrastructures, or the environment.
The well-known ISO/IEC 25010 standard [4] provides a general model
defining various quality characteristics for software products. The quality of a
software product expresses to which degree the software meets the quality
requirements (needs) of the stakeholders.

Performance, which is one of the main characteristics in different
classifications of the quality attributes [4, 5, 6], is an important one which
needs to be tested and assured to guarantee the success of software products.
It generally describes how well the system accomplishes its functionality. In
conventional software systems, performance requirements mainly describe the
time- and resource-bound constraints on the behavior of the software system,
which are expressed using performance metrics such as response time,
throughput, and resource utilization. For example, from a user’s perspective,
performance could mean that in addition to the functional correctness, the
software should also have an adequate response time. Regardless of the
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domain, the software with poor performance can lead to huge financial loss.
For instance, enterprise applications (EAs) [7, 8] with internet-based user
interfaces (UIs) such as e-commerce websites, banking, retailing, and airline
reservation systems, are examples whose success is strictly subject to
performance assurance. For instance, studies show strong correlations
between the load time of a web page and user satisfaction as well as
conversion rate; slow loading can considerably lead to the loss of customers
and money [9]. Therefore, these systems are often highly required to be robust
enough against varying execution conditions [10].

Nowadays, in addition to conventional software systems, AI-enabled
systems—the systems incorporating machine learning (ML) components—are
starting to emerge in many domains and the trend of using ML is growing
very fast. The European Commission (EC) defines AI systems as ”software
(and possibly also hardware) systems designed by humans that, given a
complex goal, act in the physical or digital dimension by perceiving their
environment through data acquisition, interpreting the collected structured or
unstructured data, reasoning on the knowledge, or processing the information,
derived from this data and deciding the best action(s) to take to achieve the
given goal” [11]. According to the EC’s Ethics Guidelines for Trustworthy AI
[12], a trustworthy AI system must be lawful, ethical, and robust. ML
components are not explicitly programmed, they are intended to learn from
data and experience instead—called Software 2.0 [13]. Then, the quality
assurance methodology for AI systems [14] might have extra focuses and
require different approaches from the conventional software systems in some
aspects. For instance, in AI systems, a part of the requirements is seen as
implicitly encoded in the data and accordingly the challenge of
under-specificity might be common in requirements definitions of these
systems. Nonetheless, regarding AI-enabled systems, it is also highly
expected to assure the ability of the system in particular to control the risk of
hazardous events. Robustness is one of the main focuses of performance
requirements of the AI systems as well [14, 15]. The robustness of ML-driven
systems indicates how well the system can perform when it is exposed to the
inputs that are different but similar to those ones in the training data, and it
covers both environmental uncertainty, e.g., environmental conditions, and
system-level variability, e.g., sensor components failures [14].

Performance Assurance. System-level performance testing and runtime
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performance control are two essential directions of performance engineering
that contribute to the realization of system performance assurance. In this
thesis, runtime performance control refers to the approaches based on
adjusting the tunable parameters of the application or adjusting the resource
configuration in a way adaptive to varying runtime conditions, to keep the
performance requirements satisfied [16, 17] and in some cases towards one
step further, i.e., optimize the performance in the runtime [18]. Keeping the
performance requirements continually satisfied is a challenge for the systems
exposed to fluctuating runtime conditions and is of high interest for various
software systems running on different platforms. There are several works on
proposing adaptive runtime performance control techniques for cloud services
[19, 17, 20], load balancer and web applications [21], and also real-time
systems [22, 23] to optimize the performance and keep the performance
satisfying the requirements.

Performance testing is often considered a system testing type which is
done on the whole (fully integrated) product to make sure it satisfies the
desired requirements [24]. It is often accomplished to meet the primary
objectives as i) evaluating performance metrics of the system, ii) detecting
functional problems emerging under certain execution conditions, iii)
detecting violations of performance requirements [25]. Therefore, one
direction of performance testing is in the form of robustness (stress) testing
[26] to evaluate the performance of the system under critical test conditions
and find the performance breaking points under which the requirements get
violated. In this direction, in addition to the conventional software systems,
we also broaden the application domain of our case studies to ML-driven
systems. ML-based systems involve a big paradigm shift compared to
conventional software systems. Accordingly, the robustness testing of these
systems requires approaches different from the common methods for
conventional software systems and is considered an emerging challenge in the
domains using AI systems. Therefore, in this direction, we aim at generating
failure-revealing test scenarios leading to the emergence of the performance
requirements violations—e.g., violations of response time or resource
utilization requirements in conventional software systems or robustness
requirements in ML-driven systems.

Scope of the thesis. In this thesis, we focus on the directions of
performance testing and runtime performance control within the performance
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assurance. We mainly investigate the efficacy and efficiency of the
intelligence-driven approaches, based on RL and bio-inspired search-based
techniques, in these directions. In this regard, in the performance testing, we
leverage search-based and machine learning techniques to generate
failure-revealing test scenarios that lead to violations of the requirements in
both conventional and AI systems. For the robustness testing of AI systems,
we choose autonomous driving systems as one of the pioneering examples of
AI systems in the industry and focus on the simulation-based robustness
testing approaches for these systems. Regarding the runtime performance
control, we use model-free RL techniques to provide adaptive runtime
solutions to optimize the performance and keep the performance requirement
satisfied despite the varying conditions, for two case studies in different
application contexts.

1.2 Background
Performance models and common methods. Performance modeling is a
common approach and performance models are widely used tools in different
schools of performance assurance in particular for conventional software
systems. Various modeling notations such as queueing networks, Markov
processes, and Petri nets [27, 28, 29] together with different analytic
techniques are commonly used for performance modeling [30, 31, 32].
Although models provide helpful insight into the performance behavior of the
system, there are still many details of the implementation and the execution
environment that might be ignored in the modeling [33]. Furthermore,
building a detailed model might be difficult and costly, and in some cases, the
domain knowledge for deriving performance behavior models might be
limited. In addition to system models, user behavior models [34, 35],
declarative behavior specifications [36, 37, 38, 39], and also source code [40]
might be also used in performance assurance techniques, particularly in
performance testing of conventional software systems. However, in this
regard, one of the main concerns is that those artifacts might not be always
available or accessible.

Intelligence-driven Techniques. Machine learning and search-based
techniques have always attracted attention from both academia and industry to
be used for addressing the challenges in different aspects of software
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performance assurance, including performance testing and runtime
performance control. For instance, in performance testing, using ML
techniques like reinforcement learning (RL) and predictive models together
with symbolic execution to find the worst-case execution paths and test inputs
[41, 42], are some examples of the application of ML algorithms in the
generation of performance test scenarios. Moreover, ML techniques have
been frequently used for analyzing the test results from the performance
testing, e.g., to identify performance signature from performance metrics [43],
and generally detect performance anomalies [44, 45]. Additionally, ML
techniques in particular model-free RL has been widely used to address
adaptive runtime performance control of software systems in different
contexts. For instance, leveraging RL for adaptive service performance
control in cloud environments according to the quality of service (QoS)
requirements [46, 17] and using a long short-term memory (LSTM) neural
network to predict the future workload and adjust the configuration in advance
in container-based applications [47] are some examples of the application of
different ML techniques for adaptive performance control of software
systems.

Evolutionary search-based techniques have been also considered to
provide practical and feasible approaches, e.g., particularly in testing domains
like performance testing. In [48] a systematic review on the application of
search-based testing techniques for different software quality characteristics
including performance is presented. Using evolutionary search-based
techniques to perform stress testing [49] or generate test inputs leading to the
emergence of performance bottlenecks and violations of the performance
requirements [50] has been considered a quite common approach in this field.
Search-based techniques have been also used frequently together with system
models such as UML models [51, 52] and control flow of the software [53] to
generate performance test cases. Evolutionary search-based techniques have
also shown a great potential to generate failure-revealing test scenarios
leading to the violations of robustness (safety) requirements for testing of AI
systems [54, 55, 56]. One of the key approaches for generating test input data
is based on the manipulation and augmentation of the test scenarios. A big set
of works in this category use search-based techniques to go through the search
space of the scenarios to find the failure-revealing test scenarios. These
techniques mainly formulate test input selection as a search problem, where
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optimization algorithms attempt to systematically identify the test input that
meets goals of interest [57].

1.3 Thesis Outline
This thesis is divided into two parts. The first part is a summary of the thesis
and is organized into five chapters, which are as follows: Chapter 1 gives an
overview of the scope of the thesis and the background of the research topic.
Chapter 2 discusses the identified research challenges, the research goals
followed in the thesis together with the research questions answered within
each research goal, and the research process directing our research path. In
Chapter 3, we present the contributions of the thesis towards the realization of
the research goals. Chapter 4 presents an overview of the related work and
preliminary concepts in ML—mainly model-free RL—and computational
intelligence techniques, i.e., swarm and evolutionary algorithms, utilized in
the solutions. Finally, in Chapter 5, we conclude the first part of the thesis
with a discussion on the results, the quality of the research, and threats to
validity as well as possible directions for the future work. The second part of
the thesis is given as a collection of the included publications presenting the
technical contributions of the thesis in detail.



Chapter 2

Research Overview

2.1 Research Challenges
This thesis is motivated by the following existing research challenges within
the directions of performance assurance:

Performance Testing. Generating failure-revealing test scenarios with the
aim of testing the robustness of the system is a challenging task. The purpose
of the performance testing in this direction is to generate critical test scenarios
in which the required functionality fails or the requirements of the system are
violated.

In Conventional software systems performance anomalies or violations of
performance requirements are mainly consequences of the emergence of
performance bottlenecks in the system [58, 59]. A performance bottleneck is
a software, system, or resource component that limits the performance of the
system and causes the system to fail to act as well as required [60]. The
behavior of the bottleneck is due to some limitations associated with the
component such as saturation or contention. A system or resource component
saturation happens because of the full utilization of its capacity or when the
utilization exceeds a certain usage threshold [60]. The primary causes of
performance bottleneck emergence can be categorized into three groups,
application-based, platform-based, and workload-based ones.
Application-based causes are the issues such as faults in the source code or
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system architecture and the platform-based causes are mainly regarded as the
issues related to hardware resources, operating system, and execution
environment. Workload-based causes also represent the issues such as
deviations from the expected workload intensity. Therefore, one perspective
to address the challenge of robustness testing—to generate the critical test
scenarios—is to provide critical execution conditions which make the
performance bottlenecks emerge [61].

While, in AI Systems—ML-driven software systems—the research
problem might need a different perspective to be addressed. One big
differentiating aspect of these systems is that no longer the human engineer
explicitly expresses the logic of the system. Instead, these systems are trained
using data and experience. For example, in deep neural network (DNN)-based
systems, DNNs are trained based on a big amount of annotated data and make
the actions based on the learned patterns in the data. Moreover, due to the
stochastic nature of the learning techniques, which means different behaviors
might result from repeating the training phase, defining deterministic oracles
is challenging. Therefore, all in all, the generation of failure-revealing test
scenarios for robustness testing of AI systems is also a challenge;
furthermore, novel testing techniques are required [62, 63]. In this thesis, we
use DNN-based systems in the Automotive AI context as our case studies and
focus on the robustness system-level testing in the simulation environment.
Hardware-In-the-Loop (HIL), simulation-based, and field testing are common
approaches for system-level verification and testing of AI systems [14].
System-level testing mainly targets defining a set of operational scenarios that
could lead to failures. In this regard, in the ISO/PAS 21448 Safety of the
Intended Function (SOTIF) standard [64] simulation-based testing has been
considered a proficient approach and a proper complementary solution to the
field testing. The use of simulations, as virtual prototyping platforms, has
been growing fast in recent years [65]. It enables testing at the early stages of
the development, allows to create the critical test scenarios that are dangerous
to be run in the field, and offers the possibility of efficient, inexpensive, and
cost-effective testing [66, 55].

Runtime Performance Control. Tuning and optimizing the performance
adaptively in the runtime, i.e., through adjusting tunable parameters in the
application or execution environment, w.r.t varying conditions is considered a
challenging task. Changeable runtime conditions could be, for example,
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varying workloads for a software service or the occurrence of unexpected
runtime events that might cause deviations in the performance of the system
(e.g., response time and resource utilization). Adaptive runtime control
approaches to preserve and furthermore optimize the performance has been an
interesting challenge in various application domains. For example, effective
performance control of cloud-based web services, i.e., response time or
resource utilization, to meet the performance requirements with respect to
changing workload is a real challenge in cloud infrastructures [17]. Likewise,
for other types of applications such as non-cloud web applications and load
balancers [21] and real-time systems [22, 23] runtime performance adaptation
is a challenge and of interest for the systems in those domains as well. In this
thesis, in one part, we do a study on an industrial type of applications, i.e.,
PLC-based software programs to provide an adaptive performance
preservation approach to keep the performance requirement of the system
satisfied w.r.t various runtime conditions. Then, in another part, we conduct a
study on a data grid application to propose an adaptive runtime resource
allocation approach for executing heterogeneous tasks in dynamic workloads,
which leads to optimizing the performance of the system.

2.2 Research Goals
The main research goal in this thesis is accomplishing performance assurance
from the perspectives of performance testing, i.e., generation of
failure-revealing test scenarios and runtime performance control. We mainly
study the approaches that do not rely on performance/system models or source
code but treat the system as a black-box or work based on the data resulting
from running the test scenarios on the system. In this regard, we investigate
the use of bio-inspired search-based and model-free reinforcement learning
techniques. Model-free RL algorithms are intended to learn the optimal way
(policy) of meeting an objective without access to a model of the environment
and provide the opportunity to transfer the gained knowledge between similar
situations. Bio-inspired search-based techniques such as evolutionary
computation and swarm intelligence algorithms are mainly intended for
addressing optimization problems, i.e., finding optimal solutions among all
possible ones (See Chapter 4 for an overview of how RL algorithms—in
particular model-free RL—and also swarm and evolutionary computation



12 Chapter 2. Research Overview

algorithms work).
The general theme of the research goals in this thesis is solution-focused

[67], i.e., it focuses on creating better (more effective and efficient) solutions
to address the intended challenges. In order to clarify the involved details on
how we are going to address the aforementioned research challenges, we shape
the research direction of this thesis in the light of the following research goals
and answering the following research questions for each goal:

• RG1: Effective and efficient generation of failure-revealing test
scenarios—in which the performance breaking point emerges, i.e., the
performance requirements are violated—for conventional software
systems, without dependency on the models, source code and other
system artifacts.

– RQ1.1: How could the platform-based robustness test scenarios
resulting in the emergence of performance breaking points be
generated adaptively and efficiently for different software
programs? (Paper A and B)

– RQ1.2: How could the robustness test workload scenarios resulting
in the emergence of the performance breaking point be generated
efficiently for a system under test? (Paper C)

• RG2: Effective and efficient generation of failure-revealing test
scenarios—in which the safety requirements are violated—for
automotive AI systems.

– RQ2.1: How could diverse failure-revealing test scenarios
resulting in breaking safety requirements for an Automotive AI
system be efficiently generated? (Paper D and E)

• RG3: To develop adaptive runtime performance control to provide
runtime performance preservation and optimization w.r.t varying
execution conditions.

– RQ3.1: How could an adaptive response time control for
PLC-based industrial applications be developed to keep the
performance continually compliant with the requirements w.r.t
varying conditions? (Paper F)
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– RQ3.2: How could an adaptive resource allocation for dynamic
workloads in a data grid application be developed to optimize the
performance in the runtime? (Paper G)

During this research, we have used different application domains to
accomplish the research goals, since the research has been conducted over
different European research projects and in collaboration with the industrial
partners. Note that we have mostly used simulation-based methods to carry
out the experimental evaluations in our contributions. Our simulation-based
experimental evaluation allowed us to show the efficacy and applicability of
the proposed techniques in different aspects of performance assurance for
both conventional and AI software systems.

2.3 Research Process

Adopting a proper research methodology is an essential part of conducting
research on any topic. Dodig-Crnkovic [68] presents a scientific framework
widely used, as a logical scheme, by researchers and scientists to address
research questions in general sciences. She also discusses scientific
differentiating aspects of computer science from other sciences and describes
how the general scientific methodology can be customized for computer
science fields. Holz et al. [69] also provide an overview of different
computing research methods and a general framework for organizing the
computing research process. Their framework involves four main steps
driving the research process collectively. Identifying research challenges,
formulating research goals/questions, proposing solutions, and evaluating the
proposed solutions are those main steps.

Meanwhile, it is strongly encouraged to ground the software engineering
research on realistic application contexts to utilize its potential to contribute to
addressing real-world challenges. In practice, the solutions which do not
match the real needs and could not scale are the challenges that hinder the
accomplishment of this objective. [70]. In this regard, it is worth noting that,
for the most part, our research has been also carried out in collaboration with
different industrial partners mainly within two European ITEA research
projects. Therefore, in order to customize the original four-step research
framework w.r.t the industrial context of our research, we adopted the
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technology transfer model proposed by Gorscheck et al. [71]; we also
considered an industrial validation step, succeeding the evaluation step and
also a feedback from the industry’s point of view in each step of the research
process, as shown in Figure 2.1. Thus, the involved steps in our research
process are described as follows 1:

Figure 2.1: Research process

Research challenge: We identify the research challenges based on
reviewing both state of the art and practice, and considering the needs of the
industrial partners in our projects. We review the literature and collect the
related works, for example, through the search methods used in systematic
literature reviews (SLR) such as snowballing search [72, 73].

Research goal/question: Over the research journey the main research
goals are formulated based on the identified research challenges. As discussed
in Section 2.2, we define three research goals related to the performance
testing and runtime performance control to drive the research path in this
thesis. Meanwhile, in order to explicate the path to reaching the goals, the

1This section has been partially adapted from M. Helali Moghadam, Licentiate Thesis,
Mälardalen University, 2020 [61].
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corresponding research questions are formulated for each research goal.
Proposed solution: After identifying the research challenges, defining the

research goals, and formulating the corresponding research questions, we
consolidate our ideas for addressing the research questions and reaching the
goals in terms of the solutions presented in the included papers (See Chapter
3).

Evaluation: In the evaluation step, we conduct experimentation as an
empirical research method w.r.t the guidelines provided by Robson and
McCartan [74] for designing experiments in different research projects. We
evaluate the efficacy and efficiency of our solutions through conducting a set
of controlled experiments in accordance with the existing guidelines for
empirical software engineering research [75]. Depending on the evaluation
results, the research problems, the goals, and the proposed solutions could be
refined. This process is conducted iteratively until reaching the desired results
and intended goals. Moreover, an industrial validation of the developed
research prototype is conducted, in case the solution has been planned to be
evaluated on an industrial case study.





Chapter 3

Research Contribution

This thesis focuses on meeting the research goals discussed in Sec. 2.2
through answering the corresponding research questions for each goal. The
research goals in this thesis are to accomplish performance assurance from the
perspectives of robustness testing, i.e., generation of failure-revealing test
scenarios for both conventional and AI-enabled systems, and runtime
performance control. To support meeting the research goals, five RQs have
been posed that are targeted by seven studies. This chapter revisits the
research goals and summarizes the contributions answering the RQs along
with the mapping of the papers to the targeted questions 1:

.

3.1 RG1: Robustness Testing for Conventional
Software Systems

The contributions to meeting RG1 consist of two parts, C1.1 and C1.2, which
target RQ1.1 and RQ1.2 respectively. The details of these contributions are
discussed in the following sections.

1Some parts of this chapter have been partially adapted from M. Helali Moghadam, Licentiate
Thesis, Mälardalen University, 2020 [61]
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3.1.1 C1.1: SaFReL.

This contribution is a self-adaptive fuzzy reinforcement learning performance
test agent, called SaFReL 2. It generates the platform-based performance test
scenarios resulting in finding the intended performance breaking point, for
software programs with different performance sensitivity to resources (e.g.,
CPU-, memory-, and disk-intensive programs) without access to source code
or system models (paper B) [76]. The research resulting in this contribution
started by investigating the capabilities of RL algorithms to address the
challenge of robustness testing with the aim of generating failure-revealing
test scenarios resulting in the emergence of performance breaking points—the
violations of the performance requirements. We propose an initial architecture
for a learning-based performance test agent and present a general overview of
the main parts of the architecture and how each step of the learning is
formulated (paper A) [77]. Q-learning [78] is used as the core learning
mechanism for the proposed agent. The RL-driven smart test agent basically
learns the optimal policy for generating test scenarios to accomplish the
objective (i.e., finding the performance breaking point) through episodes of
interaction with the environment, i.e., SUT and the execution platform. This
interaction generally involves observing the state of the environment, taking
an action affecting the environment, and receiving a reward signal which
shows the effectiveness of the applied action. The smart test agent assumes
two phases of learning:

• Initial learning, during which the agent learns an optimal policy for the
first time.

• Transfer learning, during which the agent replays the learned policy in
similar cases while keeping the learning running and updating the policy
in the long term.

The initial idea (paper A) uses Q-learning together with multiple
experience (knowledge) bases. It stores the learned optimal policy—for
adjusting the platform-related parameters and generating the test
scenarios—to achieve the test objective for different types of SUT, i.e.,
CPU-intensive, memory-intensive, and disk-intensive programs, in separate
knowledge bases. Then, it reuses the learned policies accordingly in the
transfer learning. In SaFReL (paper B), We augment the learning by adopting
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fuzzy logic to model the state space of the environment (SUT and the
execution platform) and fuzzy classification for the state detection in the
learning process. It helps tackle the issue of uncertainty in defining discrete
classes and improves the accuracy of the learning. Meanwhile, we propose an
adaptive action selection strategy adjusting the parameters related to the
action selection based on the detected similarity between the performance
sensitivity of the SUTs.

We perform a two-fold experimental evaluation, i.e., performance
(efficiency and adaptivity) and sensitivity analysis of SaFReL. The evaluation
is carried out based on simulating the performance behavior of various SUTs.
According to the experimental results, SaFReL meets the test objective, i.e.,
finds the intended performance breaking point, more efficiently in comparison
to a typical performance testing technique which mainly generates the
performance test cases based on changing the parameters, by certain steps
randomly. SaFReL is able to adapt the action selection strategy of the learning
for various SUTs with different performance sensitivity. It leads to cost saving
in terms of computation time for performance test scenario generation by
reusing the learned policy upon the SUTs with similar performance sensitivity
[76].

3.1.2 C1.2: RELOAD.

This contribution introduces an intelligent RL-assisted load testing agent,
called RELOAD 2, which learns how to generate an effective test workload, to
meet a test objective—finding an intended performance breaking
point—efficiently, and is able to reuse the learned policy in further testing
objectives (paper C) [79]. The proposed RL-driven load testing agent
identifies the effects of different transactions involved in the workload and
learns how to adjust the transactions to meet the test objective. It also assumes
two learning phases: initial and transfer learning phases. It learns the optimal
policy to generate an effective workload for a certain objective in the initial
learning. Then, in the transfer learning it reuses adaptively the learned policy
for meeting further different test objectives. The test agent has been developed
and evaluated based on both Q-learning and Deep Q-learning (DQN), as the

2Available at https://github.com/mahshidhelali/
RL-Assisted-Performance-Testing.

https://github.com/mahshidhelali/RL-Assisted-Performance-Testing
https://github.com/mahshidhelali/RL-Assisted-Performance-Testing
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core learning procedures. It uses an adaptive action selection strategy to reuse
the learned policy in the transfer learning. RELOAD uses a well-known load
test actuator, namely Apache JMeter [80], to execute the designed workload
on the SUT.

We perform an experimental evaluation—efficiency and sensitivity
analysis—of the proposed test agent on a functional e-commerce web
application as SUT. We compare the efficiency of RELOAD, in terms of test
cost saving, based on four configurations of the proposed learning with a
random (exploratory) and a standard baseline load testing approaches. The
results show that RELOAD learns how to meet the test objective with a more
accurate and fine-tuned workload and subsequently leads to test cost saving in
comparison to the random and baseline approaches, i.e., accomplishes the test
objective using fewer virtual users. The test agent after the initial learning is
able to reuse the learned policy for further test objectives on the SUT, fairly
keep its efficiency across them, and results in test cost saving in the transfer
learning as well.

The pay-as-you-go cost for many of the load generation tools on the
market is proportional to the number of generated virtual users. Therefore, the
efficient generation of an effective workload by the proposed test agent,
RELOAD, could lead to saving cost and time in the testing process. RELOAD
along with SaFReL, as two smart test agents forming an RL-driven
performance testing framework [81], which is well-suited to the testing
contexts where the source code, system models, and behavior specifications
are not available. These smart test agents have the capability of reusing the
learned policy, while keeping the learning running to adapt the learned policy
to changes in the environment. This feature is particularly beneficial to
DevOps continuous testing activities such as performance regression testing
where performance testing must be repeated for the SUT in a continuous
integration process.

3.2 RG2: Robustness Testing of AI Systems

This section of the contributions targets the system-level robustness testing of
AI systems (RG2). It involves two parts, C2.1 and C2.2, which target RQ2.1,
and present two test generation tools that generate failure-revealing test
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scenarios for two AI systems in the domain of autonomous driving. The
details of these contributions are discussed in the following sections.

3.2.1 C2.1: Deeper

Deeper (paper D) [82] is a simulation-integrated bio-inspired search-based
test generator that generates failure-revealing test scenarios to test a Deep
Neural Network (DNN)-based lane keeping system in the BeamNG driving
simulator. It uses different types of bio-inspired search algorithms such as
genetic algorithm (GA) [83], (µ + λ) and (µ, λ) evolution strategies (ES)
[84], and particle swarm optimization (PSO) [85] to search through the space
of possible test scenarios and find those leading to the emergence of failures.
The test subject for Deeper is BeamNG.AI, the built-in ML-driven driving
agent in the BeamNG simulator. In Deeper, a failure is defined in terms of
episodes in which the ego car—driven by the BeamNG.AI agent—drives
partially outside the lane w.r.t a certain tolerance threshold. The tolerance
threshold determines the percentage of the car’s bounding box needs to be
outside the lane to be regarded as a failure.

The first version of Deeper 3 [56] was our contribution to the
cyber-physical testing competition 2021 at the IEEE/ACM 14th International
Workshop on Search-Based Software Testing (SBST). It uses Non-dominated
Sorting Genetic Algorithm-II (NSGA-II) [86], a multi-objective optimization
algorithm, to search the input space and generate critical test scenarios leading
the car to get out of the lane. The extended version of Deeper (paper D)
benefits from four new GA-, (µ + λ) and (µ, λ) ES-, and PSO-driven test
generators to generate failure-revealing test scenarios. The problem is
basically regarded as an optimization problem, and in order to generate the
test scenarios that are of interest, we evaluate the quality of the test scenarios
using a fitness (objective) function that guides the search process to maximize
the detected distance of the car from the center of the lane during driving of
the car on the lane. We leverage an initial quality population seed to boost the
search process regarding the fact that the search is done at a fixed test budget.
The quality population seed used in the search algorithms is a mix of valid
random solutions and a set of solutions generated by the first version of

3Available at https://github.com/mahshidhelali/Deeper_ADAS_Test_
Generator.

https://github.com/mahshidhelali/Deeper_ADAS_Test_Generator
https://github.com/mahshidhelali/Deeper_ADAS_Test_Generator
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Deeper—based on NSGA-II. We develop a domain-specific one-point
crossover operation and a polynomial bounded mutation operation for the
presentation model used for modeling the test scenarios.

The target in Deeper is to generate the highest number of diverse test
scenarios leading to the failures, i.e., causing the car to get out of the lane. We
design two groups of experiments—with different experimental
configurations—as implemented in the SBST 2021 CPS testing competition.
In order to provide a comparative analysis, we compare the results of the
proposed test generators in Deeper with the test generators in the tool
competition, i.e., Frenetic [87], GABExploit and GABExplore [88], Swat
[89], and also the earlier version of Deeper [56]. The generated test scenarios
resulting from different test generators are evaluated w.r.t a couple of quality
criteria, i.e., number of detected failures, failure diversity, and test generation
effectiveness and efficiency. According to the experimental results, the new
bio-inspired search-based test generation techniques in Deeper prove to be
effective and efficient in provoking a considerable number of diverse
failure-revealing test scenarios w.r.t different target failure severity (i.e.,
tolerance threshold), test budget, and driving style constraints (e.g, speed
limits). For Example, in terms of the number of triggered failures within a
given test time budget and with less strict driving constraints, the (µ + λ)

ES-driven test generator in Deeper considerably outperforms other tools while
keeping the level of promoted failure diversity quite close to the counterpart
tool with the highest number of detected failures in the competition.
Moreover, as a distinctive feature, none of the newly proposed test generators
leaves the experiment without triggering any failures, and they act as more
reliable test generators than most of the other tools for provoking diverse
failures under a limited test budget and strict constraints. With respect to the
test effectiveness and efficiency, Deeper (µ + λ) ES-, PSO-, and GA-driven
result in high effectiveness in terms of the ratio of the number of detected
failures to the generated valid test scenarios.

3.2.2 C2.2: GA-Driven ScenarioGenerator

GA-Driven ScenarioGenerator (paper E) [57] is another evolutionary
automated test generator to generate failure-revealing test scenarios for testing
a pedestrian detection and emergency braking system in Baidu Apollo
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[90]—a state-of-the-art autonomous driving platform—in SVL simulation
environment [91]. GA-driven ScenarioGenerator uses a generalizable and
flexible data structure, called noise vector, to model the parameters involved
in creating a test scenario (test input space). Meanwhile, it benefits a
GA-based technique using a multi-criteria safety heuristic—measuring the
quality of the test scenarios in terms of their potential to cause safety
violations—for formulating the objective function targeted for the
optimization. The evolutionary test scenario generation technique searches
through the input space and optimizes the objective function. In this test
generator, the occurrence of any crashes between an ego car and pedestrians
are considered a failure. To evaluate the efficiency and effectiveness of the
approach, the results are compared to a random test scenario generation. Here
the target is also to generate the highest number of diverse test scenarios
leading to failures. According to the quality criteria considered—detected
failures and failure diversity— the proposed GA-driven ScenarioGenerator
results in twice as many failures as the random testing technique on the same
test configuration and budget. Moreover, it promotes considerably more
diversity between the failure-revealing test scenarios. This collaborative work
was ranked as one of the qualifying finalists in the 2021 IEEE Autonomous
Driving AI Test Challenge at IEEE International Conference on AI Testing
2021.

3.3 RG3: Runtime Performance Control
This section discusses the contributions towards the runtime performance
control (RG3) and includes two parts, C3.1 and C3.2, which describe two
research works targeting RQ3.1 and RQ3.2.

3.3.1 C3.1: An Adaptive Learning-Driven Runtime
Performance Preservation Technique

An RL-Driven Response Time Control for PLC-Based Industrial
Applications: The study in paper F proposes an RL-driven runtime
performance preservation approach for an industrial type of applications, i.e.,
PLC-based programs. It presents how the performance of the software system
can be controlled to keep it compliant with the requirements, through adaptive
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adjusting of tunable parameters in the runtime. In paper F [16], we formulate
an adaptive runtime response time control for PLC-based programs using
model-free reinforcement learning, and conduct an experimental evaluation
based on simulating the performance behavior of the programs. The proposed
approach, based on regarding the response time control problem as a Markov
decision process (MDP), uses Q-learning, to provide an adaptive control of
the response time w.r.t the timing requirements. We evaluate the efficacy of
the approach through multiple experiments. The experimental results show
that our approach effectively keeps the programs adhering to the response
time requirements despite the occurrence of runtime events resulting in
response time deviations.

3.3.2 C3.2: An Adaptive Learning-Assisted Runtime
Performance Optimization Technique

A RL-Assisted Resource Allocation for Dynamic Workloads in a Data
Grid Application: The research study in paper G proposes a runtime
learning-driven resource allocation for executing tasks submitted to a
cluster-based data grid application. The proposed approach consists of a
hierarchical multi-agent system that involves smart agents—inside the
clusters—that learn the optimal way to allocate processing resources to the
submitted tasks w.r.t the type of the tasks and the current status of the grid in
order to optimize the makespan (completion time) of the tasks. The proposed
multi-agent system consists of one central broker agent and several RL-driven
(based on Q-learning) local agents within the clusters. The local agents learn
how to decide about the resource allocation inside the clusters. Upon
receiving a task, the central broker agent selects the cluster with the minimum
data cost based on the data communication cost measurement, then the
RL-driven local agent of the selected cluster schedules the task to a proper
node in the cluster. The proposed approach has been developed and integrated
into an open source data grid simulator, and the efficacy of the approach has
been evaluated in comparison to four common runtime resource allocation
strategies under various workloads with different task patterns. The
experimental results show that the proposed learning-driven approach learns
how to decide about the resource allocation adaptively and leads to optimizing
the performance effectively, i.e., reduces the completion time of the tasks
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compared to other common techniques.

3.4 Overview of the Included Papers

The main contributions of the thesis are organized and presented as a set of
papers included in the thesis. Other non-included papers listed at the
beginning of the thesis also strengthen the contributions of the thesis. Every
RQ within the research goals has been targeted by at least one included paper.
A summary of the included papers and the mapping of the papers to the
research goals are as follows:

Table 3.1: Mapping of the papers to the research goals

RG1 RG2 RG3
RQ1.1 RQ1.2 RQ2.1 RQ3.1 RQ3.2

Paper A ✓
Paper B ✓
Paper C ✓
Paper D ✓
Paper E ✓
Paper F ✓
Paper G ✓

Paper A: Machine Learning to Guide Performance Testing: An Autonomous
Test Framework [77]
Authors: Mahshid Helali Moghadam, Mehrdad Saadatmand, Markus Borg,
Markus Bohlin, Björn Lisper
Abstract: Satisfying performance requirements is of great importance for
performance-critical software systems. Performance analysis to provide an
estimation of performance indices and ascertain whether the requirements are
met is essential for achieving this target. Model-based analysis as a common
approach might provide useful information but inferring a precise
performance model is challenging, especially for complex systems.
Performance testing is considered as a dynamic approach for doing
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performance analysis. In this work-in-progress paper, we propose a
self-adaptive learning-based test framework which learns how to apply stress
testing as one aspect of performance testing on various software systems to
find the performance breaking point. It learns the optimal policy of generating
stress test cases for different types of software systems, then replays the
learned policy to generate the test cases with less required effort. Our study
indicates that the proposed learning-based framework could be applied to
different types of software systems and guides towards autonomous
performance testing.

Paper B: An Autonomous Performance Testing Framework using
Self-Adaptive Fuzzy Reinforcement Learning [76]
Authors: Mahshid Helali Moghadam, Mehrdad Saadatmand, Markus Borg,
Markus Bohlin, Björn Lisper
Abstract: Test automation brings the potential to reduce costs and human
effort, but several aspects of software testing remain challenging to automate.
One such example is automated performance testing to find performance
breaking points. Current approaches to tackle automated generation of
performance test cases mainly involve using source code or system model
analysis or use-case based techniques. However, source code and system
models might not always be available at testing time. On the other hand, if the
optimal performance testing policy for the intended objective in a testing
process instead could be learned by the testing system, then test automation
without advanced performance models could be possible. Furthermore, the
learned policy could later be reused for similar software systems under test,
thus leading to higher test efficiency. We propose SaFReL, a self-adaptive
fuzzy reinforcement learning-based performance testing framework. SaFReL
learns the optimal policy to generate performance test cases through an initial
learning phase, then reuses it during a transfer learning phase, while keeping
the learning running and updating the policy in the long term. Through
multiple experiments on a simulated environment, we demonstrate that our
approach generates the target performance test cases for different programs
more efficiently than a typical testing process, and performs adaptively
without access to source code and performance models.
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Paper C: Performance Testing Using a Smart Reinforcement
Learning-Driven Test Agent [79]
Authors: Mahshid Helali Moghadam, Golrokh Hamidi, Markus Borg,
Mehrdad Saadatmand, Markus Bohlin, Björn Lisper, Pasqualina Potena
Abstract: Performance testing with the aim of generating an efficient and
effective workload to identify performance issues is challenging. Many of the
automated approaches mainly rely on analyzing system models, source code,
or extracting the usage pattern of the system during the execution. However,
such information and artifacts are not always available. Moreover, all the
transactions within a generated workload do not impact the performance of
the system the same way, a finely tuned workload could accomplish the test
objective in an efficient way. Model-free reinforcement learning is widely
used for finding the optimal behavior to accomplish an objective in many
decision-making problems without relying on a model of the system. This
paper proposes that if the optimal policy (way) for generating test workload to
meet a test objective can be learned by a test agent, then efficient test
automation would be possible without relying on system models or source
code. We present a self-adaptive reinforcement learning-driven load testing
agent, RELOAD, that learns the optimal policy for test workload generation
and generates an effective workload efficiently to meet the test objective.
Once the agent learns the optimal policy, it can reuse the learned policy in
subsequent testing activities. Our experiments show that the proposed
intelligent load test agent can accomplish the test objective with lower test
cost compared to common load testing procedures, and results in higher test
efficiency.

Paper D: Machine Learning Testing in an ADAS Case Study Using
Simulation-Integrated Bio-Inspired Search-Based Testing [82]
Authors: Mahshid Helali Moghadam, Markus Borg, Mehrdad Saadatmand,
Seyed Jalaleddin Mousavirad, Markus Bohlin, Björn Lisper
Abstract: This paper presents an extended version of Deeper, a search-based
simulation-integrated test solution that generates failure-revealing test
scenarios for testing a deep neural network-based lane-keeping system. In the
newly proposed version, we utilize a new set of bio-inspired search
algorithms, genetic algorithm (GA), (µ + λ) and (µ, λ) evolution strategies
(ES), and particle swarm optimization (PSO), that leverage a quality
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population seed and domain-specific crossover and mutation operations
tailored for the presentation model used for modeling the test scenarios. In
order to demonstrate the capabilities of the new test generators within Deeper,
we carry out an empirical evaluation and comparison with regard to the results
of five participating tools in the cyber-physical systems testing competition at
SBST 2021. Our evaluation shows the newly proposed test generators in
Deeper not only represent a considerable improvement on the previous
version but also prove to be effective and efficient in provoking a considerable
number of diverse failure-revealing test scenarios for testing an ML-driven
lane-keeping system. They can trigger several failures while promoting test
scenario diversity, under a limited test time budget, high target failure severity,
and strict speed limit constraints.

Paper E: Efficient and Effective Generation of Test Cases for Pedestrian
Detection – Search-based Software Testing of Baidu Apollo in SVL [57]
Authors: Hamid Ebadi, Mahshid Helali Moghadam, Markus Borg, Gregory
Gay, Afonso Fontes, Kasper Socha
Abstract: With the growing capabilities of autonomous vehicles, there is a
higher demand for sophisticated and pragmatic quality assurance approaches
for machine learning-enabled systems in the automotive AI context. The use
of simulation-based prototyping platforms provides the possibility for
early-stage testing, enabling inexpensive testing and the ability to capture
critical corner-case test scenarios. Simulation-based testing properly
complements conventional on-road testing. However, due to the large space of
test input parameters in these systems, the efficient generation of effective test
scenarios leading to the unveiling of failures is a challenge.

This paper presents a study on testing pedestrian detection and emergency
braking system of the Baidu Apollo autonomous driving platform within the
SVL simulator. We propose an evolutionary automated test generation
technique that generates failure-revealing scenarios for Apollo in the SVL
environment. Our approach models the input space using a generic and
flexible data structure and benefits a multi-criteria safety-based heuristic for
the objective function targeted for optimization. This paper presents the
results of our proposed test generation technique in the 2021 IEEE
Autonomous Driving AI Test Challenge. In order to demonstrate the
efficiency and effectiveness of our approach, we also report the results from a
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baseline random generation technique. Our evaluation shows that the
proposed evolutionary test case generator is more effective at generating
failure-revealing test cases and provides higher diversity between the
generated failures than the random baseline.

Paper F: Adaptive Runtime Response Time Control in PLC-based Real-Time
Systems using Reinforcement Learning [16]
Authors: Mahshid Helali Moghadam, Mehrdad Saadatmand, Markus Borg,
Markus Bohlin, Björn Lisper
Abstract: Timing requirements such as constraints on response time are key
characteristics of real-time systems and violations of these requirements
might cause a total failure, particularly in hard real-time systems. Runtime
monitoring of the system properties is of great importance to check the system
status and mitigate such failures. Thus, a runtime control to preserve the
system properties could improve the robustness of the system with respect to
timing violations. Common control approaches may require a precise
analytical model of the system which is difficult to be provided at design time.
Reinforcement learning is a promising technique to provide adaptive
model-free control when the environment is stochastic, and the control
problem could be formulated as a Markov Decision Process. In this paper, we
propose an adaptive runtime control using reinforcement learning for
real-time programs based on Programmable Logic Controllers (PLCs), to
meet the response time requirements. We demonstrate through multiple
experiments that our approach could control the response time efficiently to
satisfy the timing requirements.

Paper G: Makespan Reduction for Dynamic Workloads in Cluster-based
Data Grids Using Reinforcement Learning-Based Scheduling [18]
Authors: Mahshid Helali Moghadam, Seyed Morteza Babamir
Abstract: Scheduling is one of the important problems within the scope of
control and management in grid and cloud-based systems. Data grid still as a
primary solution to process data-intensive tasks, deals with managing large
amounts of distributed data in multiple nodes. In this paper, a two-phase
learning-based scheduling is proposed for data-intensive tasks scheduling in
cluster-based data grids. In the proposed approach, a hierarchical multi agent
system, consisting of one global broker agent and several local agents, is
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applied to scheduling procedure in the cluster-based data grids. At the first
step of the proposed approach, the global broker agent selects the cluster with
the minimum data cost based on the data communication cost measure, then
an adaptive policy based on Q-learning is used by the local agent of the
selected cluster to schedule the task to the proper node of the cluster. The
impacts of three action selection strategies have been investigated in the
proposed approach, and the performance of different versions of the approach
regarding different action selection strategies, has been evaluated under three
types of workloads with heterogeneous tasks. Experimental results show that
for dynamic workloads with varying task submission patterns, the proposed
learning-based scheduling gives better performance compared to four
common scheduling strategies, Queue Length (Shortest Queue), Access Cost,
Queue Access Cost (QAC) and HCS, which use regular combinations of
primary parameters such as, data communication cost and queue length.
Applying a learning-based strategy provides the scheduling with more
adaptability to the changing conditions in the environment.

Individual Contributions. I have been the principle driving researcher and
main author of papers A, B, C, D, F, and G. It is noted that in paper C, one
part of the experiments was carried out by the second author. In Paper E, I
have contributed with proposing and developing the GA-driven test case
generator, analyzing the test results, and compiling the sections of the paper.
The experimental environment was owned and set up by Infotiv AB and the
experiments were conducted by the first author. The rest of the co-authors
contributed with providing valuable feedback and reviewing the drafts of the
papers.



Chapter 4

Background and Related
Work

This chapter presents an overview of the primary concepts of reinforcement
learning, specifically model-free RL, and bio-inspired search-based algorithms
used in the proposed solutions in the thesis. A summary of the related work
relevant to the contributions to meeting each research goal is also presented in
later sections 1.

4.1 Reinforcement Learning

Machine learning techniques are often categorized into three parts:
supervised, unsupervised, and reinforcement learning. Building a model and
extracting useful patterns from a training data set with known input and output
is the main focus of the supervised learning. The extracted model is
commonly used to make predictions—either for classification or regression.
Regression models are used to produce/predict continuous output, while
classification models work based on discrete data. Support vector machine
(SVM), neural network, Naive Bayes, K-nearest neighbors (KNN), and
decision trees [92, 93] are some of the most common primary classification

1This chapter has been primarily organized based on the reworked chapter 3 from M. Helali
Moghadam, Licentiate Thesis, Mälardalen University, 2020 [61].
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algorithms. SVM regression, regression trees, Gaussian process regression
(GPR), and generalized linear models are also some of the common
regression techniques. Unsupervised learning combs through data to find
hidden patterns and structures. The most common algorithms in the class of
unsupervised learning are clustering techniques. Hierarchical clustering,
K-means, K-medois, Fuzzy C-means, Density-based spatial clustering of
applications with noise (DBSCAN), and Gaussian mixture models
[94, 95, 92] are some of the most common clustering algorithms.

Reinforcement learning (RL) [78] has been widely used for addressing
decision-making problems in various fields of science. In fact, RL is a
fundamental category of machine learning algorithms intended to find the
optimal way to make decisions. Reinforcement learning (RL) differs from the
previous learning paradigms in that it works based on interaction with the
environment (system2) of the problem. The agent observes (senses) the
environment at each step of the interaction, takes a possible action, and
receives a reward signal from the environment indicating the effectiveness of
the action in achieving the agent’s intended goal (See Figure 4.1). The
following are some of the major distinctions between RL and other learning
paradigms [78, 96]:

• In RL, there is no supervisor at work; instead, the agent receives a reward
signal.

• The sequential decision-making process is the base of RL. The learning
is not carried out based on a batch of training data. Instead, the agent
walks through the environment, makes decisions at each step, and learns
the optimal way to make decisions by optimizing the reward.

• The agent’s actions have an effect on the system, which in turn also
influences the data that the agent receives at each step.

4.1.1 Principles

The following are the underlying key concepts in RL [78, 96]:
State. In RL, the agent acts based on what it observes from the environment

(system). The agent decides what actions to take w.r.t the history at each step.
2System and environment are used interchangeably hereafter in the thesis.
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Figure 4.1: Interaction between agent and environment in RL

The sequence of observations, actions, and rewards that occurred during the
previous steps is referred to as the history. Because considering the entire
history is inefficient, state is used to determine what should be done next. It is
a concise summary of the history that includes all of the required information.

In this regard, Markov state is a concept related to the (summary) function
of the history. A state St is Markov if and only if

P [St+1 | St] = P [St+1 | St, St−1, ..., S1] (4.1)

By definition, the states of the environment are Markov. If the environment is
fully observable to the agent, the states for the agent, which are used to make
decisions, are also Markov. This representation depicts the Markov Decision
Process (MDP), which is the main formalism for RL. The agent’s states are
not equivalent to the environment’s states, in case the environment is partially
observable to the agent—which means the agent does not observe the entire
environment. In this case, a different formalism, such as partially observable
Markov Decision Process, is required, and certain heuristics such as keeping
the entire history or using a recurrent neural network, could be used to
construct the agent’s states. The environments (systems) are assumed to be
fully observable by the agent in this thesis.

Action and Reward. The agent chooses actions with the aim of maximizing
the cumulative long-term reward. The reward is often a scalar feedback signal
that indicates how well the agent performs at each step.

Agent’s Properties. An RL-based agent may have one or more of the
following learning elements:
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• Policy: It is a function that describes the agent’s behavior, i.e., the actions
that the agent chooses given a particular state.

• Value function: It describes the quality of each state and/or action, i.e,
how much reward we anticipate from performing a specific action in
a specific situation (See Figure 4.2 , which depicts the state value and
policy for an RL agent in a Maze).

• Model: It is the agent’s view of the environment. The agent may have
(or build) a model of the environment. To demonstrate the behavior of
the environment, two types of models are mainly used: transition-based
and reward-based models. A transition-based model predicts the next
state given a certain state and executing a specific action, whereas a
reward-based model provides the next instant reward upon taking a
specific action in a certain state.

In this regard, model-free and model-based RL is a fundamental
categorization of RL algorithms. Model-free RL is referred to the RL
algorithms that are not intended to build or learn a model of the environment
in order to understand how it works. The goal of these algorithms is to learn
the optimal behavior, i.e., how to behave in order to get as much reward as
possible from a series of interaction experiences with the environment. Monte
Carlo learning and Temporal-Difference (TD) learning, which include
Q-learning algorithms, are common general types of model-free RL.
Model-based RL algorithms often begin by creating a model of the
environment, which the agent then uses to plan and look ahead to choose the
best course of actions, i.e., to find the optimal behavior.

Value-based, policy-based, and actor-critic algorithms are other
categorizations of RL algorithms depending on the key parts of the learning.
A value-based algorithm mainly employs the value function, while the policy
can be read and extracted implicitly. Instead of using value functions, a
policy-based algorithm directly saves and utilizes the policy. In an actor-critic
algorithm, the value-function and policy are both stored and used jointly.

4.1.2 Model-Free RL Algorithms

For many real-world complex systems, having access to a model of the
environment may be an impractical assumption. There is no assumption of
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Figure 4.2: State value and policy map for an RL agent in a Maze

access to a model in model-free RL algorithms, i.e., no known MDP of the
environment. Instead, the agent utilizes its experience of interactions with the
system to estimate the value function and accordingly identify the optimal
policy to achieve the goal. Model-free RL algorithms are used in two ways:
estimating the value function of a given policy and optimizing the value
function—which leads to the optimal policy [78].

Monte-Carlo (MC). This class of model-free RL algorithms, while not
the most efficient, is quite successful and widely used in practice. To estimate
the value function of states given a certain policy, MC methods employ the
entire (terminated) episodes of the interaction with the environment. The value
function of state s under policy π, Vπ(s), is basically the expected return (Gt)
from state s under policy π, which is indicated as follows:

Gt = rt+1 + γrt+2 + ...+ γT−1rT (4.2)

Vπ(s) = Eπ[Gt|st = s] (4.3)

where rt+1 is the reward received after the first transition from state s, γ is
the discount factor, and Gt, as return, is the discounted reward till the end of
the episode. MC takes the mean of the returns of the experienced episodes
originating from state s to estimate its value function. The mean value of
returns is computed incrementally episode by episode, without the need to
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keep the sum of the episodes. The incremental updates of V (s)—as the mean
of the returns—in the Monte-Carlo technique is as follows:

N(s) = N(s) + 1

V (s) = V (s) +
1

N(s)
(Gs − V (s))

(4.4)

where N(s) denotes the number of visits to state s, Gs indicates the current
episode’s return from state s, and V (s) represents the previous estimate of
V (s). The First time or Every time that state s is visited in the episode are
two ways to count the number of visits to state s in an episode and update the
value. In the end, to avoid saving all of the episode information, the number
of state visits might be substituted with a fixed step size, called alpha (α), and
the incremental updating could be formulated as follows:

V (s) = V (s) + α(Gs − V (s)) (4.5)

Temporal-Difference (TD) learning. In a similar way, this group of
algorithms learns from the experienced episodes of the interaction. The main
distinction between MC and TD techniques is that TD learns from incomplete
episodes (trajectories) by conducting bootstrapping, or incremental updating
using an estimate instead of the actual reward. It is an online learning
approach because it learns the state value under policy π online, i.e., at every
step of the interaction with the environment. The following are some of the
primary advantages of TD over MC:

• TD can learn online after every step without having to wait until the end
of the episodes and can learn from incomplete episodes, whereas MC
must wait until the episodes are completed.

• TD can work in continuing environments additionally, whereas MC can
only work in terminating episodic environments. This characteristic
qualifies TD for non-terminating, changing situations. In this regard,
because of the bootstrapping, TD is more efficient than MC.

One of the primary characteristics of TD is that it converges to a solution
that is associated with an MDP with maximum likelihood. It utilizes the
Markov property, identifies an MDP fitting the observations, and attempts to
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solve it. As a result of this feature, TD can even converge on a number of
repeated sample episodes, but MC can not. MC does not take use of the
Markov property, therefore it may be more effective for non-Markov
environments.

The basic type of TD learning, TD(0), utilizes a one-step ahead estimate of
the return and performs the incremental updating of the state value as follows:

V (st) = V (st) + α(rt+1 + γV (st+1)− V (st)) (4.6)

where rt+1 is the reward received upon the transition to st+1,
rt+1 + γV (st+1) represents the estimated target return, TD target, and
accordingly rt+1 + γV (st+1) − V (st) is called TD error. TD(0) estimates
the state value based on one step of reality, but it is feasible to have TD look
into additional steps of reality and then make a better estimate. For
incremental updates, TD(n) is intended to use an n-step return (See Equation
4.7), which is as follows:

G(n)
st = rt+1 + γrt+2 + ...+ γn−1rt+n + γnV (st+n) (4.7)

V (st) = V (st) + α(G(n)
st − V (st)) (4.8)

Then, TD(λ) is a technique for effectively using returns from all time-steps. It
utilizes a geometrically weighted average of all n-step returns using a constant
weight, λ, 0 ≤ λ ≤ 1 (See Equation 4.9). In this regard, the updating equation
presents a Forward-view TD(λ), which is as follows:

G(λ)
st = (1− λ)

∞∑
n=1

λn−1G(n)
st (4.9)

V (st) = V (st) + α(G(λ)
st − V (st)) (4.10)

Nonetheless, forward-view TD(λ) still suffers from the same drawbacks
as MC, since it needs to be computed from completed episodes. In this regard,
there is another option called Backward-view TD(λ), which offers a method
for online, step-by-step updates from incomplete episodes to TD(λ). It uses a
one-step estimate, meanwhile keeps an eligibility trail for each state visited
using a simple function called Et(s)). To credit the states, it uses both
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frequency and recency heuristics (See Equation 4.11).

E0(s) = 0

Et(s) = γλEt−1(s) + 1
(4.11)

Thus, backward-view TD(λ) updates the state value based on a one-step
TD-error and eligibility trace, which is as follows:

δt = rt+1 + γV (st+1)− V (st)

V (st) = V (st) + αδtEt(s)
(4.12)

4.1.3 Model-Free RL for Optimal Behavior

The key motivations for utilizing model-free RL to determine the optimal
policy to behave could be generally discussed as follows [78, 96]:
First, the environment’s MDP model may be unknown, though experience
sampling is conceivable. Second, while the MDP model might be known, it is
too difficult and computationally demanding to utilize, so it is more efficient
to use samples of the environment.

In Section 4.1.2, we discussed how the main types of model-free RL
algorithms, Monte Carlo and TD learning, evaluate a given policy, i.e.,
estimate the value function in an unknown MDP. Then, in this section, We
will look at how the aforementioned estimating approaches, together with an
improvement strategy, could be utilized to optimize the value function in an
unknown MDP, and accordingly to find out the optimal policy for reaching a
target without a priori knowledge about the environment.

There are generally two models for learning the optimal behavior to
achieve a target: off-policy and on-policy learning. On-policy learning finds
the optimal policy by optimizing the policy from which the experience
samples are derived, whereas off-policy learning learns the optimal policy
from the experience samples produced based on other policies, such as the
behavior of others. These learning paradigms are based on the use of a policy
iteration process that includes policy evaluation and policy improvement. The
agent alternates between policy evaluation and improvement at each step, as it
evaluates the policy first (e.g., estimates the value function) and then attempts
to improve the policy using a greedy method. This procedure leads to
convergence on the optimal policy (See Figure 4.3).
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Figure 4.3: Iterative policy evaluation and improvement towards optimal policy

Nonetheless, in policy iteration in order to apply a greedy method to
improve the state value function, we require an MDP model, which we do not
have access to in model-free RL. Hence, instead of using V (s), an
action-value function, Q(s, a), could be used to solve the issue and enable
greedy policy improvement (See Equation 4.13).

π′(s) = argmax
a

Q(s, a) (4.13)

Furthermore, to ensure the possibility of exploration, ε-greedy, 0 < ε < 1,
is used as a policy improvement technique in which a greedy action,
argmax

a∈A
Q(s, a), is selected with probability 1− ε, otherwise a random action

is chosen.
Both Monte-Carlo and TD algorithms can be used in the policy iteration.

However, the strengths of TD such as the capability of online updating,
working in continual environments, and learning from incomplete episodes,
make it a more common and efficient alternative for the policy iteration
process. Then, the main idea is to use TD to evaluate Q(s, a), utilize ε-greedy
policy improvement and update at each time-step.

On-policy learning. In this paradigm of model-free RL for learning the
optimal behavior, updating at each step is performed based on Sarsa rule. It
considers an estimate of the policy in one step ahead and updates the Q-value
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of the current state in the direction of that estimate, which is as follows:

Q(s, a) = Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)] (4.14)

where s′ is the next state and a′ is the action taken at the next state. Sarsa
(See Algorithm 1) is the principle on-policy model-free RL based on the use of
TD to find the optimal policy to achieve a goal.

Algorithm 1 Sarsa Algorithm
Initialize Q-values, ∀s ∈ S, ∀a ∈ A;
while Not (end of learning) do

Initialize s;
Choose action a based on the policy derived from Q (e.g., using ε-greedy);
repeat

Take action a;
Observe s′, r;
Choose action a′ based on the policy derived from Q (e.g., using
ε-greedy);
Q(s, a) = Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)];
s← s′ a← a′;

until meeting the terminal (target) state;
end

In addition, Sarsa can also benefit from the concept of TD(n), which
considers n-step returns and updates Q(s, a) in the direction of n-step
Q-returns. Thus, similar to TD(λ), backward-view Sarsa(λ) can use an
eligibility trace for each pair of state and action, which is as follows:

E0(s, a) = 0

Et(s, a) = γλEt−1(s, a) + 1(st = s, at = a)
(4.15)

After visiting a state-action pair, its eligibility increases by one and the
eligibility of others decays. Furthermore, in addition to the Q(s, a) of the
state-action pair that has been visited, Sarsa (λ) updates all the Q-values of
all other state-action pairs in proportion to TD-error and eligibility trace (See
Algorithm 2).
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Algorithm 2 Sarsa(λ) Algorithm
Initialize Q-values, ∀s ∈ S, ∀a ∈ A;
while Not (end of learning) do

Initialize S , A
Choose action A based on the policy derived from Q-values (e.g., using
ε-greedy)
repeat

Take action A
Observe S′, r
Choose action A′ based on the derived policy (e.g., using ε-greedy)
δ = r + γQ(S′, A′)−Q(S,A)

E(S,A) = E(S,A) + 1

For all s ∈ S, a ∈ A
{ Q(s, a) = Q(s, a) + αδE(s, a)

E(s, a) = γλE(s, a) }
S ← S′; A← A′

until meeting the terminal (target) state;
end

Off-policy learning. Aside from the on-policy learning, off-policy
learning is a similar learning paradigm that provides the capability of learning
from observing others’ behavior, which is a significant benefit over the
on-policy learning. It can reuse the previous experiences guided by old
policies or even follow an exploratory policy to learn the optimal policy.

Off-policy learning utilizes the concept of importance sampling to learn
the optimal policy while following other policies. It evaluates the target
policy, π—to compute Qπ(s, a)—while following a behavior policy, µ. It
means that off-policy TD uses the TD targets derived from µ to evaluate the
other policy, π. Thus, the primary updating is re-formulated based on using
one-step importance sampling correction, which is as follows:

V (st) = V (st) + α[
π(at|st)
µ(at|st)

(rt+1 + γV (st+1)− V (st))] (4.16)

Q-learning, which applies off-policy learning to Q-values, is one of the
primary, though quite successful off-policy learning algorithms. It is built on
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TD(0) and works in a specific way without the need for doing explicitly
importance sampling. In Q-learning, the next action, At+1, is chosen based on
the behavior policy, µ, while an alternative successor action based on π, A′, is
also considered. It means that although the next action is chosen based on the
behavior policy, the bootstrapping is done towards the Q-value of the
alternative successor action. Thus, updating the Q-value is done as follows:

Q(St, At) = Q(St, At) + α[rt+1 + γQ(St+1, A
′)−Q(St, At)] (4.17)

The behavior policy in the most common form of Q-learning (See
Algorithm 3) is ε-greedy with regard to Q-values, and the target policy that
we want to improve is greedy with regard to Q-values. Q-learning, in fact, lets
both behavior and target policies improve at the same time. The target and the
Q-value updates in the well-known type of Q-learning are simplified as
follows:

rt+1 + γQ(St+1, A
′) = rt+1 + γQ(St+1, argmax

a′
Q(St+1, a

′))

= rt+1 + γmax
a′

Q(St+1, a
′)

(4.18)

Q(St, At) = Q(St, At) + α[rt+1 + γmax
a′

Q(St+1, a
′)−Q(St, At)] (4.19)

Algorithm 3 Q-Learning Algorithm
Initialize Q-values, ∀s ∈ S, ∀a ∈ A;
while Not (end of learning) do

Initialize S;
repeat

Choose action A based on the behavior policy (e.g., using ε-greedy);
Take action A;
Observe S′, r;
Q(S,A) = Q(S,A) + α[r + γmax

a′
Q(S′, a′)−Q(S,A)]

S ← S′

until meeting the terminal (target) state;
end
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4.2 Swarm and Evolutionary Computation
Evolutionary computing methods and swarm intelligence algorithms are two
classes of bio-inspired algorithms mainly intended for solving optimization
problems—finding optimal (best) solutions among all feasible ones. Genetic
algorithms (GA) and evolution strategies (ES) are among the primary
categories within the family of evolutionary algorithms (EAs). Particle swarm
optimization (PSO) is one of the key representatives of swarm intelligence
algorithms [97].

Genetic algorithm is one of the most common nature-inspired
optimization techniques. It begins with a random population of individuals
each of which is referred to as a chromosome, representing a potential
solution for the problem. The problem’s objectives are defined in an objective
(fitness) function and the quality of the solutions is assessed using this
function. It basically demonstrates how effectively (well) each solution
”satisfies” the objective of the problem. Each generation produces a new
population depending on the individuals chosen in the previous generation.
The following are the three main operations involved in forming the new
generation:

1. Selection: It identifies highly-valued individuals from the preceding
generation.

2. Crossover: It breeds “child” individuals by swapping parts of the
“parent” individuals.

3. Mutation: By applying mutation, individuals are subjected to minor
random changes (adjustments).

Crossover and mutation operations are applied with respect to user-set
probabilities, and they can be utilized alone or together to generate new
individuals. The resulting individuals are added to the new population and the
fitness values—based on the objective function—are calculated and stored for
each individual in the new population. This process iterates through each
generation until meeting stopping requirements, such as a user-specified
number of generations or an allotted time limit, are fulfilled (See Algorithm 4)
[57, 97].

Evolution strategy, as a common class of EAs, is also widely used in
most of the optimization problems including those with discrete and
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Algorithm 4 GA Algorithm
1. Initialize a population with random individuals
2. Evaluate the individuals in the population
repeat

3. Select highly-valued individuals using selection operation
4. Create offspring by applying crossover and mutation operation
5. Evaluate the offspring based on the objective function

until meeting the termination criteria;
6. Return the best individuals in the population

continuous input spaces. ES mainly entails applying recombination, mutation,
and selection to a population of individuals across several generations. In ES,
individuals, in addition to the set of parameters related to the problem, can
also encompass a set of evolvable strategy parameters, which are used for
tuning and controlling the statistical properties of the evolution operations
(e.g., mutation). The (µ/ρ + λ) and (µ/ρ, λ) evolution strategies are two
canonical forms of ES. If ρ = 1 the recombination is simply creating a replica
of the parent. λ and µ represent the size of the offspring and population
respectively. One of the key distinctions between GA and ES is connected to
the selection process. In GA, a new generation is produced at each iteration
by choosing highly-valued individuals while keeping the population size
constant [97]. In ES, a temporary population of size λ is created and the
individuals of this temporary population experience mutation at user-specified
probabilities irrespective of their fitness values. In (µ + λ) ES, both parents
and the resulting offspring from the temporary population are copied to a
selection pool of size (µ+ λ), then a new population with size µ is created by
selecting the best individuals from the pool. On the contrary, in (µ, λ) ES, the
individuals of the new generation—with size µ—are chosen only from the
offspring (with size λ). Thus, a convergence condition as µ < λ is needed to
ensure an optimal solution (See Algorithm 5, which presents a simple (µ+ λ)

ES) [84].
Particle swarm optimization is one of the primary representatives of the

swarm intelligence (SI) algorithms, which comprise a large class of
nature-inspired optimization techniques. The SI algorithms present the notion
of collective intelligence, which is primarily defined as collective behavior
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Algorithm 5 (µ+ λ) ES
1. Initialize a population P with µ random individuals
2. Evaluate the individuals in the population P

repeat
3. Create a temporary population PT with size λ by reproduction of
individuals from the population P

4. Mutate the strategy parameters
5. Apply mutation to the individuals in the population PT

6. Evaluate the offspring based on the objective function
7. Select µ highly-valued individuals using selection operation from the
original population P and the offspring

until meeting the termination criteria;
8. Return the best individuals in the population

among a group of individuals. SI algorithms were inspired by collective
behavior and self-organizing interactions between living agents in the nature,
such as honey bees and ant colonies [98].

cooperation is a crucial component of PSO since each individual alters
their searching pattern depending on their own and others’ experiences. PSO
begins with a swarm of randomly generated particles. Each particle has
position and velocity vectors that are updated at each iteration based on the
local and global best values. In PSO, each particle (individual) represents a
potential solution and is often modeled as a vector containing n elements each
of which represents a variable of the problem. PSO seeks the optimal solution
through updating solutions and creating subsequent generations, but without
utilizing evolution operators [99]. The position (elements) and velocity of
each particle are updated as follows:

P t+1 = P t + V t+1 (4.20)

V t+1 = wV t + c1r1(P
t
best − P t) + c2r2(G

t
best − P t) (4.21)

where P t and V t are the position and velocity of the particle at iteration t.
P t
best and Gt

best are the local best position of the particle and the global best
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one up to the iteration t, respectively. The first part of Equation 9.2 is regarded
as inertia, which denotes the tendency of the particle to continue moving in the
same direction, while the second part reflects a cognitive behavior and presents
the tendency towards the local best position found by the particle. The last part
is the social knowledge and reflects the tendency to follow the best position
discovered so far by other particles.

At each iteration, the position of each particle is updated based on its
velocity, and the velocity is governed by inertia and accelerated stochastically
towards the local and global best values by r1 and r2,
0 < r1, r2 ≤ 2—random weights used to adjust the cognitive and social
acceleration (See Algorithm 6). In Equation 9.2, w is inertia weight, which
adjusts the ability of the swarm to change the direction and provides a balance
between the level of exploration and exploitation in the search process. A
lower w encourages more exploitation of the best solutions discovered,
whereas a higher w promotes more exploration around the found solutions.
The acceleration hyperparameters, c1 and c2, specify how much the solutions
are influenced by the local best and global best solutions. These
hyperparameters and the inertia weight could be set as static parameters or
dynamically adjusted over iterations [100].
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Algorithm 6 PSO Algorithm
1. Initialize a swarm with random particles
2. Evaluate the particles of the swarm based on the fitness function
3. Select the global best particle w.r.t the fitness value (Gbest)

repeat
for each particle P in the swarm do

4. Calculate particle’s velocity according to Eq. 9.2
5. Update particle’s position according to Eq. 9.1
6. Evaluate particle based on the fitness function
if fitness value of P is better than the local best of P, (Pbest) then

7. Update Pbest with P

end
if fitness value of P is better than the global best, (Gbest) then

8. Update Gbest with P

end
end

until meeting the termination criteria;
9. Return the best particles in the swarm

4.3 Related Work

4.3.1 Performance Testing: Conventional Software Systems

Measuring performance metrics under various execution conditions, such as
different workload and platform configurations [101, 102], and detecting
various performance-related issues, such as functional problems or violations
of performance requirements [103, 104] are common goals of various types of
performance testing. Although there are some definitions/interpretations that
distinguish between performance, load, and stress (robustness) testing, they
are used interchangeably in many cases [25]. Stress testing is a sort of
performance testing used to determine the robustness of a system under stress
conditions such as high workload and/or restricted resource availability.
Performance testing goals are often linked to the verification of performance
requirements, and where performance criteria are unavailable, the notion of
”no worse than before” is frequently applied [105, 106].
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The following is a summarized overview of the approaches used to generate
workload-based and platform-based performance test scenarios:

Analyzing system models. Using evolutionary search-based algorithms
such as GA to generate test workload from the control flow graph of SUT
[53], analyzing a performance model of SUT in Petri nets using constraint
solving techniques [107], applying genetic algorithms to other types of system
models such as UML to generate stress test workload [52, 108, 109, 110] are
samples of the techniques used for generating performance test scenarios
based on analyzing different types of system models of SUT.

Analyzing source code. In [111, 103], an analysis of SUT’s data-flow
together with symbolic execution is used to generate test load scenarios and
find performance-related issues.

Modeling real usage. In [34, 35], form-oriented models are used to present
users’ behavior and identify the usage pattern of real users, which are then used
to generate realistic test workload scenarios. In this regard, finding workload
characteristics and modeling the user behavior based on Extended Finite State
Machines [112] and Markov chains [113] via monitoring requests submitted to
SUT are also other examples of modeling real usage and using usage patterns
to generate test workload scenarios. In [114] workload characterization is done
through clustering users based on the business-level attributes extracted from
usage data, which is also another example of this class of techniques.

Declarative specification-based techniques. In [37, 39], a declarative
Domain Specific Language (DSL) is used together with a model-driven test
execution framework to specify and execute the performance testing
scenarios. Using a specific behavior-driven language, to specify the load
testing process in combination with a declarative performance testing
framework like BenchFlow [36] is another example of using declarative
techniques for generating and executing performance test scenarios.

Machine learning-enabled techniques. Machine learning techniques such
as supervised and unsupervised algorithms are mainly used to create models
and extract knowledge patterns from data, whereas reinforcement learning
algorithms are used to train an intelligent agent how to accomplish a goal
through interaction with the environment. Machine learning techniques have
been widely used for analyzing the performance test results for different
purposes, e.g., performance anomaly detection based on performance metrics
data—resource usage—using clustering algorithms [44], reliability prediction



4.3 Related Work 49

based on load testing data using Bayesian Network [115], performance
signature identification based on performance metrics data [43, 116], and
performance anomaly detection of microservices through analysis of latency
distribution data [117].

Machine learning techniques were also used to generate performance test
scenarios. For instance, in [41], RL together with symbolic execution is used
to find the worst-case execution path within a SUT and in [118] RL is utilized
to find a sequence of input values resulting in performance degradation. A
feedback-driven learning technique [119] that extracts some rules from the
execution traces to find the performance bottlenecks, i.e., the method calls
which their execution highly affects the performance, and using Generative
Adversarial Networks (GANs) for automated efficient performance test
generations [120, 121] are also some other examples in this regard.

Additionally, some other adaptive techniques, search-based performance
profilers, and fuzzers have been also used to generate performance test
scenarios in some studies; for instance, a feedback-based approach based on
search algorithms to benchmark an NFS server w.r.t changing the test
workload is presented in [122] and an adaptive generation of test workload
based on using some pre-defined tuning policies is proposed in [104]. Finally,
a performance fuzzing tool for C programs to generate test inputs leading to
the worst-case performance behavior in [123], and a GA-driven performance
profiler that uses a GA search together with an execution trace analyzer to
explore the SUT input parameter space for detecting performance bottlenecks
in [124] are some other related examples.

4.3.2 Robustness Testing: AI Systems

Robustness is also one of the main focuses of performance requirements of
AI systems [14, 15]. The robustness of ML-driven systems mainly indicates
how well the system can perform when it is exposed to the inputs different but
similar to those ones in the training data, and it can cover both environmental
and system uncertainty [14].

Different test levels for ML systems mainly involve input data assurance,
ML model, and integration testing [14, 63]. In a sense, ML model testing could
be considered unit testing, whereas integration testing might be regarded as
system testing since it focuses on issues arising after the integration of the ML
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model into the system. Similar to traditional conventional software systems,
black-box and white-box testing practices could be also valid for testing AI
systems. Then, from a similar perspective, only the ML inputs and outputs are
accessible for a black-box testing approach, whereas white-box testing includes
access to the architecture, code, hyperparameters, and training/test data of the
ML test subject. In this regard, Riccio et al. [63] introduced an extra type
of ML testing approach, called data-box, that involves access to data as well
as what has been required by black-box testing. Depending on the test level
and the test subject, the test inputs could be, for instance, images as used in
DeepTest [125], or test scenario configurations as used in [57]. The following
is a quick summary of the most prevalent approaches for generating failure-
revealing test data for testing AI systems:

Input data mutation is a term used to describe the process of changing
data. This sort of mutation entails creating new inputs based on existing input
data using various transformations. The input data mutation is basically done
to find the inputs triggering failures or behaviors different from what is
expected. For example, in DeepXplore [126], input transformation is used to
identify inputs that cause distinct behaviors in comparable autonomous
driving DNN models. Those transformations are often done to support
metamorphic testing on the ML test subject. DeepTest [125] applies different
metamorphic transformations to a set of seed images to reveal the erroneous
behaviors of different Udacity DNN models for self-driving cars, while also
striving to increase the level of neuron coverage. For the same purpose,
DeepRoad [127] uses a GAN-based metamorphic testing approach to generate
failure-revealing input images to test autonomous driving Udacity DNN
models.

Manipulation of test scenarios is another significant category of
approaches for generating test input data. The majority of the works in this
category employ search-based strategies to explore the scenarios’ search
space for failure-revealing or collision-provoking test scenarios. In this
respect, simulators and accordingly simulation-based testing have played a
crucial role in generating and capturing critical failure-revealing test
scenarios. Regarding the impacts of the simulators, Haq et al. [128] compare
the outcomes of testing DNN-based ADAS using online and offline testing.
Their findings clearly support a strong emphasis on online testing, as it can
discover failures that could otherwise stay undetected in offline testing.
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Various simulation-based testing approaches utilizing search-based
techniques to address the generation of failure-revealing test scenarios have
been presented in the literature. For example, Abdessalem et al. [129] use
NSGA-II—as a multi-objective search algorithm—together with surrogate
models to find critical test scenarios for a pedestrian detection system with
fewer simulations and less computing time. Then, in another study, they use
MOSA [130] (a many-objective optimization search algorithm) with
objectives based on the branch coverage and some failure-based heuristics to
identify failure-revealing feature interaction scenarios for integration testing
of an autonomous car [131].

For a face key-points detection system in the automotive domain, Haq et
al. [132] also utilize many-objective search algorithms to generate test data
resulting in significant mispredictions. In order to test the pedestrian detection
and emergency braking system of the Baidu Apollo—an autonomous driving
platform—within the SVL simulator, Ebadi et al. [57] use GA along with
a specific data structure to model the test scenario space and a safety-based
heuristic to define the objective function.

4.3.3 Runtime Performance Control

In this thesis, runtime performance control refers to methods for keeping
performance requirements satisfied and/or optimizing performance in the
runtime, by modifying the application’s tunable parameters or resource
configuration in a way adaptive to changing runtime conditions.

Performance Preservation. Keeping performance continually compliant
with the requirements for the systems subject to changing runtime conditions
is a challenging task, and meanwhile an objective of interest for a variety of
software systems running on various platforms. In this regard, ML techniques
such as model-free RL have been frequently applied to runtime performance
control of software systems running on different platforms. For example, in
several studies RL-driven techniques have been used for adaptive service
performance control in cloud environments according to quality of service
(QoS) requirements [17, 20, 133, 46]. Imdoukh et al. [47], for
container-based applications, utilize a long short-term memory (LSTM)
neural network model to predict the future workload and adjust the
configuration (e.g., number of needed containers) proactively to handle the
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submitted workload ahead of time. Incerto et al. [21] use a model predictive
control technique in combination with queuing networks (QN) to provide a
performance adaptation mechanism for a load balancer system. This
performance adaptation is to continually tune and configure QN’s properties
such as service rates, routing probabilities, and concurrency level, w.r.t the
desired performance requirements.

The related performance preservation techniques, particularly applied to
the context of real-time systems, are mainly connected to the timing
properties of these systems and performed based on runtime monitoring of the
properties. In this regard, Mezzetti et al. [134] present a timing properties
preservation strategy using the Ada Ravenscar Profile. It does the timing
properties preservation in three steps: enforcing the timing properties that
must remain constant, monitoring the fundamentally variable timing
properties, and handling the occurred violations. In [135, 136], on top of a
real-time operating system, an auxiliary scheduler is presented that considers
the timing properties of the tasks such as period, execution time, and deadline,
creates real-time tasks with well-defined specifications and schedules them
using the operating system’s underlying scheduler. The goal of this auxiliary
scheduler is to as far as possible keep the timing requirements of the tasks
satisfied.

Givel et al. [22] present a runtime enforcement policy that pushes the
system to attain an expected specific state—by adding delay—to control the
behavior of the system as desired. The enforcement approach works based on
an offline model-based analysis and is primarily meant for evaluating the
embedded fault tolerance-related mechanisms. Damschen et al. [23] also
introduce a command-based reconfiguration queue (CoRQ) as a runtime
reconfiguration controller for real-time systems. It supports worst-case
execution time (WCET) guarantee and can provide guaranteed latencies for
the operations. Tracealyzer [137] is also another prevalent industrial tool for
tracing, visualizing, and measuring different performance properties of
real-time embedded systems.

Performance Optimization. Regarding runtime performance
optimization—in our application context, i.e., data-intensive tasks in data
grid—machine learning techniques, in particular RL-based approaches, have
been widely used for resource allocation and task scheduling. A quick
overview of a number of relevant studies in this regard is as follows:
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Galstyan et. al [138] present a multi-agent RL approach for resource
allocation in a gird environment. In the proposed solution, the agents do not
communicate with each other and each agent assigns scores to the resources
based on the resource efficiency in executing the tasks. To execute a new task,
the agent chooses the resource with the highest score, gets a reward signal,
and updates the selected resource’s score. Weighted policy learner (WPL)
[139] is also a gradient ascent multi-agent learning technique for distributed
task allocation problem in domains like grids. Vengerov [140] introduces an
RL-driven dynamic resource allocation solution augmented with a fuzzy rule
base, called DRA-FRL. The proposed solution utilizes RL to maximize the
utility function for resource allocation decisions in large-scale computing
facilities with a big pool of shared resources.

Fair Action Learning (FAL) [141] is a multi-agent learning solution for
distributed sequential resource allocation in a cluster-based network, in which
each agent refers to a cluster and has a limited view of the whole system. The
decisions of each agent are associated with two learning problems: local
resource allocation problem, i.e., what resources tasks are to be allocated, and
task routing, i.e., where the task should be forwarded to. FAL is mainly a
direct policy search algorithm that uses Q-value to approximate the policy
gradients. In [142], Wu et al. present a multi-agent RL-based solution, called
Ordinal Sharing Learning (OSL), for large-scale grids that mainly focuses on
balancing the load between the nodes. In OSL, the agents share the utility
tables for decision making and make their decisions in an ordinal way.

In [143], Qureshi et al. in an extensive study survey various resource
allocation approaches for different grid architectures w.r.t computing- and
data-intensive tasks. Orhean et al. [144] use BURLAP library [145] to
implement an RL-based task scheduler—based on Q-learning and
SARSA—integrated into WorkflowSim toolkit. In [146], Cui et al. implement
and evaluate a multi-agent Q-learning task scheduler for grid and IaaS
cloud—integrated into both CloudSim toolkit and a private real computing
platform. They consider a hierarchical cluster-based architecture and the
Q-learning agents are augmented with a rule bank containing user data,
Q-table and also knowledge transferred from other agents.

Dakkak et al. [147] present a resource allocation approach, called Swift
Gap (SG), which focuses on improving slowdown, waiting time, and response
time of the tasks. SG employs the backfilling technique and comprises two
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steps as first, placing the job in the earliest available gap in the resources’
schedules, and second, optimizing the job placement using Tabu search. In a
further step, they improve SG with a new heuristic, called completion time
scheme, that additionally reduces the start time, minimizes the processing
time by choosing the fastest available resource, and outperforms SG w.r.t the
intended performance metrics.



Chapter 5

Discussion, Conclusion and
Future Work

In this chapter, we conclude with presenting a summary of our results,
discussing the threats to validity, as well as outlining some potential directions
for future research.

5.1 Discussion and Conclusion

Performance quality assurance is an important and challenging aspect of
software quality assurance. In this thesis, we investigated the directions of
robustness testing and runtime performance control within the body of
performance quality assurance, and tried to consider both domains of
conventional and ML-driven software systems. We identified some challenges
and formulated three main research goals based on them. The research goals
are effective and efficient generation of robustness test scenarios leading to the
emergence of performance breaking points and requirements violations; and
the development of runtime performance preservation and optimization
techniques. We focused on five research questions shaping our path towards
reaching those research goals; they were answered by seven studies included
in this thesis.

In this thesis, we identified room for intelligence-driven techniques, i.e.,

55



56 Chapter 5. Discussion, Conclusion and Future Work

model-free RL and bio-inspired search-based optimization algorithms to help
tackle the targeted challenges and meet the research goals. In this regard, a
summary of the achievements with respect to the research goals is given as
follows:

RG1: Effective and efficient generation of failure-revealing test
scenarios—in which the performance breaking point emerges, i.e., the
performance requirements are violated— for conventional software systems,
without dependency on the models and source code artifacts.

In this part of the thesis, we proposed and developed two smart
performance test agents, SaFReL and RELOAD, that were able to effectively
and efficiently generate critical performance test scenarios leading to the
emergence of performance breaking points. These smart agents are intended
to learn the optimal policy to meet the test objective. Therefore, via these test
agents, first, test automation would be realized without the need for models or
source code. Second, the learned policy could be reused in potential further
situations, e.g., for testing other similar test subjects (SUTs) or to meet further
test objectives on the SUT. The capability of knowledge formation and
reusing knowledge leads to test efficiency improvement. The proposed test
agents benefit from model-free RL—Q-learning and DQN—to learn the
optimal policy and experience two phases of learning in the operation: initial
and transfer learning.

SaFReL is a self-adaptive fuzzy RL-driven agent that generates the
platform-based performance test scenarios efficiently. In other words, it learns
the optimal policy to tune the resource availability in the test setup to find the
performance breaking point for different types of SUT (in terms of their
resource sensitivity) and replays the learned policy on similar test subjects
(SUTs). To assess the idea of SaFReL, we conducted an empirical evaluation
consisting of 50 software programs with different resource sensitivity
(CPU-intensive, memory-intensive and disk-intensive types) and different
response time requirements. Our results show that after the initial learning,
due to the embedded adaptation mechanism—adaptive action selection
strategy—SaFReL is able to adapt to different test subjects, i.e, strive for more
policy reusing for test subjects with similar resource sensitivity and
retune/update the learned policy once observing test subjects with different
resource sensitivity. So, it can meet the test objective—find the performance
breaking point—more efficiently than random testing, which is a common
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Table 5.1: Average test cost saving of RELOAD in the initial learning

RELOAD Learning Configurations

Test Cost Saving ε = 0.5 ε = 0.2
decaying
ε

DQN
setup

w.r.t Standard Baseline 30% 30% 34% 34%
w.r.t Random Testing 17% 17% 20% 20%

technique for this mission. It results in 42% and 31% test efficiency
improvement when it does testing for a homogeneous and heterogeneous set
of SUTs, respectively. A homogeneous set of SUTs refers to a set of software
programs which are similar in terms of resource sensitivity.

RELOAD is the other smart test agent that generates a cost-efficient test
workload to meet the test objective—find the performance breaking point. It
identifies the effects of different constituent transactions of the workload and
learns how to tune the workload optimally to meet the test objective. It is also
able to reuse the learned policy for further similar test objectives on the SUT
that has been trained on. RELOAD has been developed and evaluated based
on both Q-learning and DQN, and uses Apache JMeter as the load test actuator
to execute the designed test workload on the SUT. We evaluated RELOAD in
terms of resulting test cost saving—w.r.t to four learning configurations—in
comparison to random and a baseline load testing techniques. The results of
the empirical evaluation show that RELOAD learns how to meet the objective
with a more accurate and fine-tuned workload and subsequently leads to test
cost saving with regard to the random and baseline approaches (See Table 5.1).
Furthermore, after the initial learning, it is able to reuse the learned policy for
testing w.r.t other objectives on the SUT and fairly still keep its efficiency. It
can lead to considerable test cost saving in the transfer learning as well. Table
5.2 shows the resulting test cost reduction of RELOAD in the transfer learning
for 10 testing episodes with new test objectives after the initial learning.

Overall, the capabilities of these smart test agents such as learning, policy
reusing, and ”adaptiveness” (i.e., continual learning to adapt the learned
policy to changes in the environment) make them well-suited for particularly
continuous testing activities in CI/CD practices in software development life
cycle. For instance, RELOAD could be beneficial for continual performance
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Table 5.2: Efficiency and average test cost saving in the transfer learning

RELOAD
(Q-learning)

Standard
Testing

Random
Testing

Range of the number of
generated virtual users

48-62 55-99 55-68

RELOAD test cost saving 25% 13%

testing where performance tests must be repeated for the SUT w.r.t various
performance requirements or SaFReL could be used for continuous
performance testing and quality assurance of product deltas (incremented
software products) in an incremental software development process.

RG2: Effective and efficient generation of failure-revealing test
scenarios—in which the safety requirements are violated—for automotive AI
systems.

With regard to RG2, we proposed and developed two
simulation-integrated bio-inspired search-based test solutions, Deeper and
GA-driven ScenarioGenerator, to generate failure-revealing test scenarios
leading to the violations of safety requirements in two AI systems.

Deeper is a test generator for effective and efficient generation of
failure-revealing test scenarios to test a DNN-based lane-keeping system in
the BeamNG driving simulator. The test subject is an ML-driven driving
agent in the simulator—which utilizes a DNN-based steering angle predictor
model for keeping the car inside the lane. To generate failure-revealing test
scenarios, Deeper benefits from genetic algorithm (GA), (µ + λ) and (µ, λ)

evolution strategies (ES), and particle swarm optimization (PSO) together
with the heuristics of using an initial quality population seed and
domain-specific crossover and mutation operations developed for the
presentation model used for modeling the test scenarios. The comparative
analysis on the performance of the proposed bio-inspired test generators in
Deeper and five counterpart tools, shows that Deeper techniques perform as
effective and efficient test generators that can provoke a considerable number
of diverse failure-revealing test scenarios w.r.t different target failure severity
(i.e., tolerance threshold), available test budget, and driving style constraints



5.1 Discussion and Conclusion 59

Figure 5.1: Test generation effectiveness

(e.g, speed limits). As some distinctive features, none of the test generators
leaves the test without triggering any failures, and in particular, they prove to
be more reliable test generators than most of the other tools for provoking
diverse failures under a limited test budget and strict constraints. In this
regard, Deeper (µ+ λ) ES-, PSO-, and GA-driven result in high effectiveness
in terms of the ratio of the number of detected failures to the generated valid
test scenarios (See Figure 5.1—the effectiveness of Deeper test generators
compared to counterpart tools in one of the experimental configurations in the
empirical evaluation).

GA-Driven ScenarioGenerator is the other evolutionary search-based
test generator that generates failure-revealing test scenarios, which lead to the
safety requirements violations, for pedestrian detection and emergency
braking system in Baidu Apollo within SVL simulator. GA-Driven
ScenarioGenerator utilizes a generic data structure to model the parameters
involved in creating test scenarios along with a GA-based technique to
generate the test scenarios. It uses a safety heuristic to measure the quality of
the test scenarios in terms of their potential to cause safety violations. The
empirical evaluation of the approach shows that within a certain given budget,
it triggers twice as many failures as a random testing technique (See Figure
5.2); meanwhile, it promotes a higher level of diversity between the triggered
failures, as shown in Table 5.3.
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Figure 5.2: Test generation effectiveness

Table 5.3: Failure diversity, shown as the range of the average pairwise Euclidean
distance between failure-revealing test scenarios

Genetic Algorithm Random
Range of Euclidean Distances 4.1− 4.7 3.2− 4.2

RG3: To develop adaptive runtime performance control to provide
runtime performance preservation and optimization w.r.t varying execution
conditions.

In order to meet RG3, we developed an adaptive learning-driven runtime
performance preservation technique, which is an RL-based response time
control approach for PLC-based industrial applications. The proposed
approach aims to keep the performance of the system, i.e., response time,
compliant with the timing requirements, through adaptive adjusting of tunable
parameters in the runtime. The simulation-based empirical evaluation shows
that the proposed approach—with different learning configurations—can
effectively lead the program to stay compliant with the response time
requirements despite the occurrence of runtime events resulting in response
time deviations. For instance, in one of the learning configurations (i.e.,
ε-greedy, ε= 0.5), the proposed adaptive response time control can provide a
high adaptation to the varying conditions and keep the response time very
close to the requirement threshold (See Figure 5.3). It can be quite desired in
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Figure 5.3: Response time control in the RL-driven performance preservation approach
for PLC-based industrial applications

the cases where a sharp satisfaction of the requirements is needed, e.g., airbag
control systems in the automotive domain. While, using another learning
configuration, i.e., ε-greedy with decaying ε, the control approach can even
keep the response time below the requirement threshold.

Regarding RG3, in the last study of the thesis, we also developed an
adaptive learning-assisted runtime performance optimization technique,
which was an RL-driven resource allocation approach for dynamic workloads
in a data grid application. It involves smart RL-driven agents that learn the
optimal way to allocate resources to the submitted tasks with respect to the
type of the tasks and the current status of the grid in order to optimize the
makespan (completion time) of the tasks. The empirical evaluation of the
approach in a simulation environment shows that it can lead to optimizing the
performance effectively, i.e., reduces the completion time of the tasks,
compared to four common techniques used for resource allocation in this
application. As shown in Figure 5.4—which presents the resulting
performance from different techniques given using a Gaussian distribution
pattern for task submission—the proposed learning-assisted approach adapts
to the workload pattern and status of the environment, and accordingly assigns
the tasks to the proper processing nodes. It keeps the makespan below a
certain low threshold over the experiments compared to other algorithms. In
this regard, the proposed approach with the learning configuration based on
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ε-greedy, ε = 0.2 leads to the highest performance improvement in the
experimental evaluation. The amount of performance improvement is also
more considerable for bigger task sets, since in those experiments the learned
policy results from more observations and then gets closer to the optimal one.

5.1.1 Threats to Validity

A number of sources of threat to the validity of the experimental results are as
follows:

Construct validity. Regarding the proposed RL-driven approaches in the
thesis, a main source of threat is the formulation of the reinforcement learning
to address the problem. Modeling of the state space and formulations of
actions and reward functions are primary factors to create a smart agent able
to learn how to meet an intended objective in the problem. Regarding the
bio-inspired search-based solutions in the thesis, the choices of the fitness
functions, the proposed domain-specific evolutionary operations, i.e.,
crossover and mutation, and also the metrics used for calculating the diversity
of the failure-revealing test scenarios—weighted Levenshtein and Euclidean
distance—are domain-specific and sources of threat to construct validity.

Internal validity. The randomized nature of the action selection strategy in
RL algorithms could be a source of threat to internal validity of the results in
RL-driven solutions. Then, in order to mitigate the effects of this threat, we
report the average values for the measured related metrics. Meanwhile,
similar to other ML algorithms, RL techniques are also affected by the
hyperparameters such as learning rate and discount factor. In this regard, we
kept the hyperparameters fixed during the experiments conducted for the
efficiency analysis of the RL-driven approaches, and also conducted a
separate set of controlled experiments to examine the effects of the learning
hyperparameters on the efficiency of the approaches.

Regarding the search-based solutions, the randomness involved in the
bio-inspired search algorithms could be similarly a source of threat to the
internal validity of the results of this category of solutions. Therefore, for the
empirical evaluation of these solutions we follow the guidelines given by
Arcuri and Briand [148] and alleviate the effects of this threat by running the
experiments multiple times, reporting the distribution of the results, and using
the same settings, i.e., population size, crossover and mutation probabilities,
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for the algorithms over the experiments.
External validity. The choice of the SUT, e.g., an e-commerce web

application in RELOAD study, a lane-keeping and a pedestrian detection and
emergency braking systems as AI-enabled test subjects in other studies; and
considering SUTs with certain performance sensitivity, i.e., CPU-intensive,
memory-intensive and disk-intensive software programs in SaFReL study, are
samples of potential threats to external validity of the results. However, for
example, regarding AI-enabled test subjects, self-driving cars are one of the
prevailing examples of safety-critical AI systems and the test subjects selected
in the studies are among the commonly used ML-driven systems in
automotive AI. Additionally, in those studies different ML models with
various quality levels (i.e., different accuracy levels) could be deployed within
the simulation environments that were used. Nonetheless, those studies still
offer solutions for certain types of ML-driven systems in self-driving cars, and
further studies are required to address the testing of other ML-driven systems.

Concerning RELOAD study, the proposed approach has been formulated
based on a common e-commerce web application as SUT. However, in order to
apply the approach to other web-based systems, the set of transactions for load
testing of the new system should be extracted and included in the set of actions
in the body of RELOAD agent. Regarding SaFReL study, in order to consider
SUTs with other types of performance sensitivity such as network-intensive
programs, then the approach needs to be slightly reformulated to support new
types of performance sensitivities.

Similarly, the proposed runtime performance control
approaches—learning-driven performance preservation and optimization
techniques—have been formulated based on certain types of applications, and
further studies are required to use the proposed approaches for other types of
software systems.
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5.2 Future Work

Regarding robustness testing, as one of the directions of software performance
assurance, we mostly focused on tackling the challenge of effective and
efficient generation of critical test scenarios leading to performance
failures—violation of performance or safety requirements—using different
computational intelligence-driven techniques. We tried to answer the question
”How could these test scenarios be generated more effectively and
efficiently?”. However, in the context of performance testing, generation and
selection of test scenarios is one step of the testing process and after executing
the test scenarios, analyzing the test results is another essential step, in
particular to augment the testing processes in CI/CD practices within DevOps
context. In the real-life software development cycle, executing various types
of performance testing might be planned upon changes (or increments)
committed to the code repository, so regression performance testing could be
a fundamental running flow in continuous testing. In this regard, addressing
the research question ”What useful information could be discovered from the
analysis of performance test results?” could be an interesting direction for
future work. Analyzing the test results could lead to detection of some certain
issues that might not be readily detectable during the test, e.g., potential
performance bottlenecks that could lead to performance degradation further in
certain conditions. In this regard, for instance, different statistical and ML
techniques—such as clustering, Isolation forest, and correlation detection
methods—could help with performance anomaly detection. Moreover, this
analysis could be further used by possible adaptive performance control
approaches included in the performance assurance activity later.

Within the scope of robustness testing, in one part of the thesis, we
investigated effective and efficient generation of failure-revealing test
scenarios in automotive AI systems through using bio-inspired search-based
optimization algorithms. In this regard, there will be also interesting room to
extend the proposed approaches by applying ML techniques such as RL or
Generative Adversarial Networks (GANs) for empowering the discovery of
failure-revealing test scenarios. Meanwhile, exploring evolutionary
search-based or ML-based testing approaches for generating failure-revealing
test scenarios for other types of ML-driven systems—within the domain of
self-driving cars or other domains—would be also another potential direction
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for future studies.
One more detailed view on the directions of future work would be related

to improving or scaling up the proposed approaches to facilitate their use in
real-world more complex problems. In some studies of the thesis,
simulation-based empirical evaluations have been used to show the
applicability of the proposed approaches and how the involved principles of
the approaches work. In this regard, for example, there are some heuristics
and customized techniques to facilitate the use of RL techniques in scaled-up
environments with more complexity. Therefore, using scaling up techniques
such as function approximations in place of Q-tables to deal with the
problems with large MDPs or using multi-agent learning techniques to speed
up the exploration of state space could be some future extensions with respect
to the learning techniques.
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Abstract

Satisfying performance requirements is of great importance for
performance-critical software systems. Performance analysis to provide an
estimation of performance indices and ascertain whether the requirements are
met is essential for achieving this target. Model-based analysis as a common
approach might provide useful information but inferring a precise
performance model is challenging, especially for complex systems.
Performance testing is considered as a dynamic approach for doing
performance analysis. In this work-in-progress paper, we propose a
self-adaptive learning-based test framework which learns how to apply stress
testing as one aspect of performance testing on various software systems to
find the performance breaking point. It learns the optimal policy of generating
stress test cases for different types of software systems, then replays the
learned policy to generate the test cases with less required effort. Our study
indicates that the proposed learning-based framework could be applied to
different types of software systems and guides towards autonomous
performance testing.
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6.1 Introduction

Nowadays, on one hand we face the increasing number of software-based
services, on the other hand, the expectations on the quality of these services
are considerably rising. In general, the properties of a software system could
be described in terms of functional and non-functional aspects.
Non-functional properties describe the quality of functional aspects of the
system and represent quality attributes like performance [1]. Requirements
are the main means against which the functional and non-functional aspects of
a system are assessed. The non-functional requirements are often described
based on the software metrics quantifying the non-functional properties of the
system. Assessing the satisfaction of non-functional requirements plays a
crucial role in assuring the user’s expected quality and even the behavioral
correctness in many systems, particularly resource-constrained, and safety
critical systems.

Performance is a non-functional property indicating the operational
efficiency of a software system with respect to different execution conditions
like various types of workload and allocation of available resources [2]. It is
measured and quantified using multiple indices such as response time,
throughput, and resource utilization. Performance analysis could be done
through both performance modeling and performance testing. Performance
modeling generally involves identifying the proper performance indices,
building a performance model expressing the relevant indices. Consequently,
different model-driven engineering techniques like model verification, model
refactoring, and performance tuning could be performed based on the
performance model.

Performance testing is intended to ascertain whether the software system
performs well under the actual execution conditions (i.e., internal and external
factors affecting the performance) and meets the performance requirements.
Various methods have been proposed for building software performance
models [3, 4, 5, 6]. Performance models might provide helpful hints of the
performance of the system and even probable bottlenecks in the architecture;
however, they cannot represent the whole details of the system. For example,
many of the details of the deployment environment may be ignored in the
models [7], although they might still have significant effects on the
performance of the system. Testing the software system under stress, which is
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called stress testing, is one of directions involved in performance testing. The
main objective is to find the performance breaking point, at which the systems
breaks, or performance requirements are not met anymore. Two general views
as internal and external could be assigned to performance analysis. Analysis
with internal view considers internal conditions causing a performance
bottleneck and consequently affecting the performance of the system.
Performance testing with external view is evaluating/examining how the
system will perform under different external conditions like heavier workload
and limited resource availability.

In this paper, we present a learning-based self-adaptive framework for
providing autonomous performance testing. The proposed smart framework is
able to learn how to apply stress testing efficiently to different types of
software systems, including CPU-intensive, memory-intensive and
disk-intensive programs, to find the performance breaking point. It basically
uses model-free reinforcement learning (RL), i.e., Q-learning with multiple
experience (knowledge) bases to learn the policy for finding performance
breaking point of different types of software under test (SUT) without having
performance models.

The rest of this paper is organized as follows; Section 6.2 discusses the
background concepts of RL and the motivation for proposing learning-based
testing, Section 6.3 presents the details of the proposed smart performance
testing framework, with a short discussion on its applicability and operational
performance. Section 6.4 provides a review on the background relevant
approaches. The paper concludes with a conclusion and future directions of
this work-in-progress research in Section 6.5.

6.2 Motivation and Background
Performance analysis is an essential step towards performance assurance to
keep the performance requirements satisfied. Performance testing and
performance modeling are dynamic and static approaches for realizing
performance analysis. Regarding complex systems, providing a precise model
of the system and execution environment is challenging. In the context of
performance testing, the complexity of SUTs and the dynamism of the
performance affecting factors in execution environments are the major
barriers motivating application of learning-based performance testing.
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Reinforcement learning [8] has been frequently used as one of the key
approaches for building self-adaptive smart systems. RL is a semi-supervised
learning involving interaction with the environment. In RL, an agent (the
learner) continuously detects the status (state) of the environment (the system
under control). Then, it selects an action to be applied on the environment and
in return it receives a reinforcement signal (reward signal) showing the
effectiveness of the action. The final objective during the learning, is to find a
policy maximizing the total long-term received reward. The agent mainly uses
a strategy based on a combination of trying out actions (exploration) and
selecting highly valued actions (exploitation). Q-learning [8] is a well-known
model-free algorithm in the context of RL, in which the agent learns the utility
value of the long-term reward associated to pairs of states and actions.
Q-learning is off-policy, since the agent learns the optimal policy
independently of the selected strategy for the action selection step.

6.3 Self-Adaptive Learning-Based Performance
Testing

This section presents the architecture and operating procedure of a smart
framework providing autonomous performance testing. It focuses on stress
testing as one of the main target fields in the scope of performance testing. It
supports automated performance test case generation for different software
systems without having performance models. The proposed framework as a
smart agent uses reinforcement learning as its core learning mechanism. It
aims at learning how to find the performance breaking point of various
software systems depending on their performance sensitivity nature. The
learning mechanism includes initial convergence and transfer learning
phases.

Initial convergence. An initial experience (knowledge) convergence is
achieved upon the first learning episodes in interaction with the first SUT
instance of each type. The smart agent stores the achieved experience under
three experience (knowledge) bases, i.e., experience for CPU-intensive,
memory-intensive and disk-intensive SUTs. Therefore, the experience bases
initially converge upon interaction with the first CPU-intensive,
memory-intensive and disk-intensive SUT respectively.
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Transfer learning. After the initial convergence of experience bases, the
smart agent keeps the learning running to update the knowledge bases upon
observing new SUTs. It is supposed that during the transfer learning, the smart
agent mostly relies on the achieved experience, while also partly explores the
environment to keep the gained knowledge updated. Using the learnt policy
during the interaction with SUT instances, causes the agent to generate the
stress test cases/test conditions to find the performance breaking point with less
effort (in terms of learning trials) and leads to a better efficiency. Experience
exploitation is the key concept of this phase which results in more efficiency in
test case generation. The policies learnt for CPU-, memory- and disk-intensive
programs are quite different. Then, this is where separating the experience
bases of the agent is beneficial. Upon observing a CPU-, memory- or disk-
intensive SUT, the agent activates the corresponding experience base for taking
actions on the observed SUT instance. Figure 6.1 depicts an overview of the
architecture of our smart tester agent. The details including the components,
and main steps of the learning part is as follows:

I. State Detection. Detecting the current state of the system is one of the
main steps of an RL-based algorithm. In our smart framework, four
measurements of the SUT and execution environment including CPU,
memory and disk utilization, and also SUT response time are used to specify
the state of the system. The state detector component receives a tuple
consisting of (CPU U , Mem U , Disk U , Rt) as input to specify the state of
the system, where CPU U , Mem U , Desk U , Rt present the CPU,
memory, disk utilization and response time respectively. These continuous
parameters form the state space of the system, then the next step is dividing
the state space into multiple discrete states. The values of these parameters are
classified into multiple classes to specify the discrete states of the system, as
shown in Figure 6.2.

II. Apply Action. After state detection, the agent applies one possible
action to the system. Actions are operations which change (reduce) the
available resources including CPU cores, memory and disk, and also change
the factors affecting the performance like increasing the workload. In the first
prototype of our smart framework, actions include the operations modifying
the available resources by a decreasing factor:

DecFac CPU =
{

1
4 ,

2
4 ,

3
4 , 1

}
(6.1)
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Figure 6.1: Architecture of the smart framework

DecFac MemDisk =
{
d.memory(disk)

4 | d ∈
{

1
4 ,

2
4 ,

3
4 , 1

}}
(6.2)

where memory (disk) represent the current amount of available memory
(disk). Then, the set of actions have been specified as shown in Table 6.1.

III. Compute Reward. After applying each action, the agent computes a
reward signal showing the effectiveness of the applied action. The reward is
calculated using the following utility function:

U(n) = kUr(n) + (1− k)UE (6.3)

where Ur(n) indicates to what extent the response time of the system deviates
from the acceptable region, UE represents the efficiency of the resource
usage, and k, 0 ≤ k ≤ 1 is a weighting parameter to allow the agent to
prioritize different aspects of the stress conditions.

IV. Experience Adaptation. This component receives a performance
sensitivity indication expressing the type of sensitivity of SUT, i.e., being
CPU-, memory- or disk-intensive. Then, it selects the corresponding
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experience (knowledge) base for the stress test case generation on the
observed SUT.

Response Time

HighLow Acceptable

Resources (CPU, Memory, Disk) 
Utilization

Low High

requirement

States

L-L-L-L
L-L-L-A
L-L-L-H.

.

.

H-H-H-H

CPU, Memory, Disk, Response time

Figure 6.2: States of the system

Table 6.1: set of actions

Actions
Reducing the available CPU cores by a factor in DecFac CPU

Reducing the available memory by a factor in
DecFac MemDiskReducing the available disk

No action

How the learning works. The concept of the achieved experience in RL is
defined in terms of policy. A policy is defined as a mapping between the states
and actions and specifies the action which should be taken in each state. A
utility value, Qπ(s, a), is assigned to taking action, a, in given state s,
according to the policy π. Qπ(s, a) as the expected long-term reward of the
pair (s, a) is defined as follows [8]:

Qπ(s, a) = Eπ[Rn|Sn = s,An = a] (6.4)

Rn =
∞∑
k=0

γkrn+k+1 (6.5)

Where Sn ,An and r(n+k+1) are current state, action and future rewards
respectively. γ ∈ [0, 1] is a discount factor specifying to what extent the agent
gives more weight to the future reward compared to the immediately achieved
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reward. Q-values are stored in a look-up table (Q-table) and considered as the
experience of the agent. The Q-values are used for deciding between actions
when the agent relies on using its experience (exploitation). The Q-values are
also updated incrementally (via temporal differencing) during the learning
using Eq. 6.6. The final objective of Q-learning is finding a policy
maximizing the expected long-term reward of pairs of states and actions.

Q(sn, an) = Q(sn, an) + α[rn+1 + γmax
a′

Q(sn+1, a
′)−Q(sn, an)] (6.6)

Learning performance. Different methods like ε-greedy with various ε-
values and Softmax can be used for action selection. They provide different
trade-offs between exploration and exploitation of the state-action space which
could impact the efficiency of the learning e.g., in terms of convergence speed.
Setting different values for learning parameters such as discount factor γ, and
learning rate α could also affect the learning performance.

How the performance test is done. In our smart framework, the agent
learns how to provide efficiently stress conditions for different types of SUTs
to find the performance breaking point, from which the performance
requirement of the SUT is not met anymore. The agent stops applying actions
upon reaching the breaking point. Algorithm 7 presents the operating
procedure of our learning-based performance testing framework.

Applicability. Performance-critical programs are sensitive parts in many
software-intensive systems like industrial control systems. The proposed
framework provides a model-free autonomous performance testing which
could be easily applied to different types of software-intensive systems.
Virtualized test environments would be a perfect infrastructure for executing
this approach. Moreover, the proposed framework would be also integrated
into the simulation environments which could be highly useful for testing
purposes on industrial software systems.

6.4 Related Work

Model-based software performance engineering is mainly based on building a
performance model of the system. Some of the specific modeling notations
used for performance modeling are Queueing Networks, Markov Process,
Petri Nets, Process Algebras and also simulation models [3, 4, 5, 6]. Pushing
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towards automation in generating the performance model is essential to
eliminate the manual model generation and bring the performance analysis to
early stages in the software life cycle. There has been a substantial literature
published in the area of software performance modeling [2, 9, 10]. In the
context of testing, although performance testing tightly overlaps with
performance modeling in some cases, it is intended to satisfy some partially
different objectives. Performance testing, load testing and stress testing are
three terms which are used in many cases interchangeably [11].

Algorithm 7 Learning-based Performance Testing
Initialize Q-values, Q(s, a) = 0 ∀ s ∈ S,∀ a ∈ A;
Observe and identify the type of the SUT instance;
if SUT is the first instance of CPU-intensive, memory-intensive or disk-
intensive instances {
repeat

1. Detect the state of the SUT;
2. Select an action based on the action selection strategy;
3. Apply the selected action, re-execute the SUT;
4. Detect the new state of the system regarding the selected action;
5. Receive the reward signal, rn+1;
6. Update the Q-value in the corresponding experience base (Q-table);

until the initial convergence /* Initial Convergence */;
} Else {
7. Select the proper experience (knowledge) base;
repeat

8. Detect the state of the SUT;
9. Select an action,
an = argmaxa∈AQ(sn, a) from the experience base with probability
(1- ε) or a random action with probability ε, ε ≤ 0.2);
10. Apply the selected action, re-execute the SUT;
11. Detect the new state of the system;
12. Receive the reward signal, rn+1;
13. Update the Q-value;

until finding performance breaking point /* Transfer learning */;
}



6.5 Conclusion 97

In general, load testing has been considered as behavior assessment of a
SUT under load expected in a real-world execution context, from two
perspectives of functional problems and violation of non-functional
requirements caused under load. Stress testing has been defined as the
behavioral assessment of a SUT under extreme conditions including heavy
load and limited available resources [11]. Performance testing is often
considered as a more general term which often includes both load testing and
stress testing. There are many commonalities between these types of testing.
Regarding common and different performance test scenarios, the behavioral
assessment of a SUT from the perspective of performance-related issues and
aspects generally aim at the following objectives:
I. Measurement of performance under load and/or different resource
configuration. This process might overlap with performance modeling in
many cases. It can be done under expected load or stress
conditions [12, 13, 14, 15].
II. Detection of functional problems under load and/or different resource
configuration. It can be also done under expected load or stress
conditions [16, 17].
III. Detection of performance requirements violation such as violating
reliability, and robustness requirements. This process can also be done under
typical expected load or stress conditions [18].

This work-in-progress paper proposes a learning-based framework for
performance testing, in particular stress testing.

6.5 Conclusion
Performance analysis to provide an estimation of performance indices in
different execution conditions is a challenge for complex software systems. In
addition to static model-driven techniques, performance testing is considered
as a dynamic approach for performance analysis. Efficient automated test
case/test condition generation is a challenging activity in software testing. In
this paper, we present a self-adaptive learning-based framework to conduct
stress testing on various software systems without having the performance
models of the systems. We used Q-learning as a model-free RL algorithm in
our smart test framework. It learns the optimal policy of generating stress test
cases for various software systems. After the initial learning convergence, it
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uses the learnt policy for further SUT instances and generates test cases
efficiently with less required effort. Detailed efficacy analysis of the proposed
framework on different software systems and deploying it on a virtualized
infrastructure will be our next steps in this research.
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Abstract

Test automation brings the potential to reduce costs and human effort, but
several aspects of software testing remain challenging to automate. One such
example is automated performance testing to find performance breaking
points. Current approaches to tackle automated generation of performance
test cases mainly involve using source code or system model analysis or
use-case based techniques. However, source code and system models might
not always be available at testing time. On the other hand, if the optimal
performance testing policy for the intended objective in a testing process
instead could be learned by the testing system, then test automation without
advanced performance models could be possible. Furthermore, the learned
policy could later be reused for similar software systems under test, thus
leading to higher test efficiency. We propose SaFReL, a self-adaptive fuzzy
reinforcement learning-based performance testing framework. SaFReL learns
the optimal policy to generate performance test cases through an initial
learning phase, then reuses it during a transfer learning phase, while keeping
the learning running and updating the policy in the long term. Through
multiple experiments in a simulated performance testing setup, we
demonstrate that our approach generates the target performance test cases for
different programs more efficiently than a typical testing process, and
performs adaptively without access to source code and performance models.
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7.1 Introduction

Quality assurance with respect to both functional and non-functional quality
characteristics of software becomes crucial to the success of software
products. For example, an extra one-second delay in load time of a storefront
page can cause 11% reduction in page views, and 16% less customer
satisfaction [1]. Moreover, banking, retailing, and airline reservation systems
as samples of mission-critical systems are all required to be resilient against
varying conditions affecting their functional performance [2, 3, 4].

Performance, which has been also called “efficiency” in the classification
schemes of quality characteristics [5, 6, 7], is generally referred to as how
well a software system (service) accomplishes the expected functionalities.
Performance requirements mainly describe time and resource bound
constraints on the behavior of software, which are often expressed in terms of
performance metrics such as response time, throughput, and resource
utilization.

Performance evaluation. Performance modeling and testing are common
evaluation approaches to accomplish the associated objectives such as
measurement of performance metrics, detection of functional problems
emerging under certain performance conditions, and also violations of
performance requirements [8]. Performance modeling mainly involves
building a model of the software system’s behavior using modeling notations
such as queueing networks, Markov processes, Petri nets, and simulation
models [9, 10, 11]. Although models provide helpful insights into the
performance behavior of the system, there are also many details of
implementation and execution platform that might be ignored in the modeling
[12]. Moreover, drawing a precise model expressing the performance
behavior of the software under different conditions is often difficult.
Performance testing as another family of techniques is intended to achieve the
aforementioned objectives by executing the software under the actual
conditions.

Verifying robustness of the system in terms of finding performance
breaking point is one of the primary purposes of performance testing. A
performance breaking point refers to the status of software at which the
system becomes unresponsive or certain performance requirements get
violated.
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Research challenge. Performance testing to find performance breaking
points remains a challenge for complex software and execution platforms.
Testing approaches mainly raise issues of automated and efficient generation
of test cases (test conditions) resulting in accomplishing the intended
objective. Common approaches for generating the performance test cases
such as using source code analysis [13], linear programs and evolutionary
algorithms on performance models [14, 15, 16] and UML models
[17, 18, 19, 20, 21], using use case-based [22, 23], and behavior-driven
techniques [24, 25, 26, 27] mainly rely on source code or other artifacts,
which might not always be available during the testing.

Regarding the aforementioned issues, we propose that machine learning
techniques could tackle them. One category of machine learning algorithms is
reinforcement learning (RL), which is mainly intended to train an agent
(learner) on how to solve a problem in an environment through being
rewarded or punished in a trial and error interaction with the environment.
Model-free RL is a subset of RL enabling the learner to explore the
environment (the behavior of the software under test (SUT) in an execution
environment in our case) and learn the optimal policy, to accomplish the
objective (generating performance test cases resulting in an intended
performance breaking point in our case) without access to source code and a
model of the system. The learner can store the learned policy and is able to
replay the learned policy in future situations, which can lead to efficiency
improvements.

Goal of the paper. Our research goal is represented by the following
question:

How can we adaptively and efficiently generate the performance test cases
resulting in the performance breaking points for different software programs
without access to the underlying source code and performance models?

Finding performance breaking point is a key purpose in robustness analysis,
which is of great importance for many types of software systems, particularly
in mission- and safety-critical domains [28]. Moreover, the question above is
worth exploring also in applications specifically, such as resource management
(scaling, provisioning and scheduling) for cloud services [29], performance
prediction [30, 31], and performance analysis of software services in other
areas [32, 33].

Contribution. In this paper, we present the design and experimental
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evaluation of a self-adaptive fuzzy reinforcement learning-based (SaFReL)
performance testing framework. It is intended to efficiently and adaptively
generate the (platform-based) performance test conditions leading to the
performance breaking point for different software programs with different
performance sensitivity to resources (e.g., CPU-, memory-, and disk-intensive
programs) without access to source code and performance models. An
early-stage general formulation of the idea of using RL particularly in
performance testing was introduced in our prior work [34]. The initial
formulation introduces a single smart tester agent that uses RL (simple
Q-learning) in a two-phase learning together with an initial architecture in the
abstract. This paper extends the initial abstract formulation of the RL-assisted
performance testing [34]. It uses an elaborate learning technique originally
inspired by the conference paper by [35], which presents an adaptive
performance (response time) control approach for cloud services using
cooperative fuzzy multi-agent reinforcement learning. However, regarding the
distinguishing learning details, the proposed RL-assisted performance testing
framework is based on a single smart agent, involves two distinct phases of
learning, and benefits a particular adaptive learning strategy which plays an
important role in the functionality of the agent. The proposed smart
performance testing framework is intended to conduct performance testing to
meet a testing objective that is finding an intended performance breaking
point. The proposed framework, SaFReL, is a two-phase RL-assisted
performance testing agent that is able to learn the efficient generation of
performance test cases to meet the testing objective and more importantly
replay the learned policy in further similar testing situations.

SaFReL assumes two phases of learning: initial and transfer learning. In
the initial learning phase, it learns the optimal policy to generate the target
performance test cases initially upon observing the behavior of the first SUT.
Afterward in the transfer learning, it reuses the learned policy for the SUTs
with a performance sensitivity analogous to already observed ones while still
keeping the learning running in the long term. The learning mechanism uses
Q-learning augmented by fuzzy logic in one part of the learning to deal with
the issue of uncertainty in defining discrete categories over continuous values
as used by [35]. The single light-weight RL tester agent has the capability
of transfer learning and reusing knowledge in similar situations. It benefits
an adaptive action selection strategy that adapts the learning to various testing
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situations and subsequently makes the agent able to act efficiently on various
SUTs.

We demonstrate that SaFReL works adaptively and efficiently on different
sets of SUTs, which are either homogeneous or heterogeneous in terms of
their performance sensitivity. Our experiments are based on simulating the
performance behavior of 50 instances of 12 well-known programs as the
SUTs. Those instances are characterized by various initial amounts of granted
resources and different values of response time requirements. We use two
evaluation criteria, namely efficiency and adaptivity, to evaluate our approach.
We investigate the efficiency of the approach in generating the test cases that
result in reaching the intended performance breaking point and also the
behavioral sensitivity of the approach to the learning parameters. In particular,
SaFReL reaches the intended objective more efficiently compared to a typical
stress testing technique, which generates the performance test cases based on
changing the conditions, e.g., decreasing the availability of resources, by
certain steps in an exploratory way. SaFReL leads to reduced cost (in terms of
computation time) for performance test case generation by reusing the learned
policy upon the SUTs with similar performance sensitivity. Moreover, it
adapts its operational strategy to various SUTs with different performance
sensitivity effectively while preserving efficiency. To summarize, our
contributions in this paper are:

• A smart performance testing framework (agent) that learns the optimal
policy (way) to generate the performance test cases meeting the testing
objective without access to source code and models, and reuses the
learned policy in further testing cases. It uses fuzzy RL and an adaptive
action selection strategy for the generation of test cases, and
implements two phases of learning:

– Initial learning during which the agent learns the optimal policy for
the first time,

– Transfer learning during which the agent replays the learned
policy in similar cases while keeping the learning running in the
long term.

• A two-fold experimental evaluation involving performance (efficiency
and adaptivity) and sensitivity analysis of the approach.
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The evaluation is carried out based on simulating the performance
behavior of various SUTs. We use a performance simulation module
instead of actually executing SUTs. The main function of the
performance simulation module is estimating the performance behavior
of SUTs in terms of their response time.

Structure of the paper. The rest of the paper is organized as follows:
Section 7.2 discusses the background concepts and motivations for the
proposed self-adaptive learning-based approach. Section 7.3 presents an
overview of the architecture of the proposed testing framework, while the
technical details of the constituent parts are described in Sections 7.4 and 7.5.
In Section 7.6, we explain the functions of the learning phases. Section 7.7
reports on the experimental evaluation involving the experiments setup, and
the results of the experimentation. Section 7.8 discusses the results, the
lessons learned during the experimentation, and also the threats to the validity
of the results. Section 7.9 provides a review on the related work, and finally
Section 7.10 concludes the paper and discusses some future directions.

7.2 Motivation and Background

Performance analysis, realized through modeling or testing, is important for
performance-critical software systems in various domains. Anomalies in
performance behavior of a software system or violations of performance
requirements are generally consequences of the emergence of performance
bottlenecks at the system or platform levels [36, 37]. A performance
bottleneck is a system or resource component limiting the performance of the
system and hinders the system from acting as required [38]. The behavior of a
bottleneck component is due to some limitations associated with the
component such as saturation and contention. A system or resource
component saturation happens upon full utilization of its capacity or when the
utilization exceeds a usage threshold [38]. Capacity expresses the maximum
available processing power, service (giving) rate, or storage size. Contention
occurs when multiple processes contend for accessing a limited number of
shared components including resource components like CPU cycles, memory,
and disk or software (application) components.

There are various application-, platform- and workload-based causes for
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the emergence of performance bottlenecks [36]. Application-based causes
represent issues such as defects in the source code or system architecture
faults. Platform-based causes characterize the issues related to hardware
resources, operating system, and execution platform. High deviations from
the expected workload intensity and similar issues such as workload
burstiness are denoted by workload-based causes.

On the other hand, detecting violations of performance requirements and
finding performance breaking points are challenging, particularly for complex
software systems. To address these challenges, we need to find how to provide
critical execution conditions that make the performance bottlenecks emerge.
The focus of performance testing in our case is to assess the robustness of the
system and find the performance breaking point.

The effects of the internal causes (application/architecture-based ones)
could vary, e.g., due to continuous changes and updates of the software during
Continuous Integration/Continuous Delivery (CI/CD), and even vary upon
different execution platforms and under different workload conditions.
Therefore, the complexity of SUT and a variety of affecting factors make it
hard to build a precise performance model expressing the effects of all types
of factors at play. This is a major barrier motivating the use of model-free
learning-based approaches like model-free RL in which the optimal policy for
accomplishing the objective could be learned indirectly through interaction
with the environment (SUT and the execution platform). In this problem
statement, the testing system learns the optimal policy to achieve the target
that is finding an intended performance breaking point, for different types of
software without access to a model of the environment. The testing system
explores the behavior of the SUT through varying the platform-based (and
workload-based in future work) test conditions, stores the learned policy and
is able to later reuse the learned policy in similar situations, i.e., other SUTs
with similar performance sensitivity to resource restriction. This is the feature
of the proposed learning approach that is supposed to lead to a considerable
reduction in the testing system’s effort, and subsequently saving computation
time.

Regarding the aforementioned challenges and strong points of the model-
free learning-based approach, we hypothesize that in a CI/CD process based
on agile software development, performance engineers and testers can save
time and resources by using SaFReL for performance (stress) testing of various
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releases or variants. SaFReL provides an agile efficient performance test case
generation technique (See Section 7.7 and Section 7.8 for efficiency evaluation)
while eliminating the need for source code or system model analysis.

7.2.1 Reinforcement Learning

Reinforcement learning (RL) [39] is a fundamental category of machine
learning algorithms generally intended to find the optimal behavior (way) in
decision-making problems. RL is an interactive learning paradigm that is
different from the common supervised and unsupervised machine learning
algorithms and has been frequently applied to building many self-adaptive
smart systems. It involves continuous interaction between the agent (learner)
and the environment that is controlled. At each step of the interaction, the
agent observes (senses) the state of the environment, takes a possible action
and receives a reinforcement signal as a scalar reward from the environment
that shows the effectiveness of the applied action to guide the agent towards
accomplishing the intended objective. There is no supervisor in RL, and the
agent just receives a reward signal. RL basically involves a sequential
decision-making process. The RL agent goes through the environment,
decides how to behave at each step, and based on optimizing the long-term
received reward, learns the optimal way of decision making.

The agent actually decides between actions based on the history of its
observations. However, considering the whole history of observations is not
efficient, therefore, state should be formulated as a concise summary of the
history including all the required information. Keeping in mind this issue, a
related helpful concept to formulate the state as a summary function is the
Markov state. The states of the environment are Markov by definition. Then,
when the environment is fully observable to the agent, the states that the agent
observes and uses for making decisions, are Markov too. The environment in
our case is the SUT and the execution platform. The state is modeled in terms
of response time and resource utilization improvement. The actions are some
operations for modifying/adjusting the available capacity of resources and the
objective of the agent is finding an intended performance breaking point.
Figure 7.1 shows the interaction between the agent and the environment that is
the composition of SUT and execution platform in our case.

There are three main elements in an RL agent: policy, value function, and
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model. The Policy is the behavior function describing what actions the agent
takes in a certain state. Value function indicates how good each state and/or
action is, in terms of the amount of reward expected upon taking a particular
action given a particular state. Finally, the model is the agent’s view of the
environment and describes what the environment does next, e.g., shows the
state transitions of the environment.

Model-free RL algorithms are special types of RL that are not intended to
build or learn a model of the environment. Instead, they learn the optimal
behavior to achieve the intended objective through multiple experiences of
interaction with the environment. Temporal Difference (TD) [39] is one of the
main types of model-free RL, which is able to learn from the incomplete
episodes of the interaction with the environment. Q-learning as a model-free
TD learns the optimal policy through learning the optimal value function, i.e.,
Q-values. It uses an action selection strategy based on a combination of trying
out the available actions, namely exploration, and relying on the previously
achieved experience to select the highly-valued actions, namely exploitation.
It is off-policy, which means that the agent learns the optimal policy
regardless of how the agent explores the environment. After learning the
optimal policy, in the transfer learning phase, the agent is able to replay the
learned policy while keeping the learning running, which implies occasionally
exploring the action space and trying out different actions.

Tester 
Agent

action an

reward rn

state snsn+1

rn+1

Software
Under Test

Execution
platform

Figure 7.1: Interaction between agent and SUT in RL
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7.3 Architecture

This section provides an overview of the architecture of the proposed smart
performance testing framework, SaFReL (see Figure 7.2). The entire
interaction of the smart framework with each SUT, as a learning episode,
consists of a number of learning trials. The steps of learning in each trial and
the components involved in each step are described as follows:

1. Fuzzy State Detection. The fuzzification, fuzzy inference, and rule base
components in Figure 7.2 are involved in the state detection. The agent uses
the values of four quality metrics, 1) response time, and utilization
improvements of 2) CPU, 3) memory, and 4) disk, to identify the state of the
environment. In other words, the state expresses the status of the environment
relative to the testing target. In our case, these quality metrics are used to
model (represent) the state space of the environment. An ordinary approach
for state modeling in RL problems is dividing the state space into multiple
mutually exclusive discrete sets. Each set represents a discrete state. At each
time, the environment must be at one distinct state. The relevant challenges of
such crisp categorization or defining discrete states, include knowing how
much a value is suitable to be a threshold for categories of a metric, and how
we can treat the boundary values between categories. Instead of crisp discrete
states, using fuzzy logic and defining fuzzy states can help address these
challenges. We use fuzzy classification as a soft labeling technique for
presenting the values of the metrics used for modeling the state of the
environment. Then, using a fuzzy inference engine and fuzzy rule base, the
agent detects the fuzzy state of the environment. More details about the fuzzy
state detection of the agent are presented in Section 7.4.

2. Action Selection and Strategy Adaptation. After detecting the fuzzy state
of the SUT, the agent takes an action. The actions are operations modifying the
factors affecting the performance, i.e., the available resource capacity, in the
current prototype. The agent selects the action according to an action selection
strategy that it follows. The action selection strategy determines to what extent
the agent should explore and try out the available actions, and to what extent
it should rely on the learned policy and select a high-value action that has
been tried and assessed before. The role of this strategy is guiding the action



114 Paper B

selection of the agent throughout the learning and is of importance for the
efficiency of the learning. In order to obtain the desired efficiency, a proper
trade-off between the exploration of the state action space and exploitation of
the previously learned policy is critical.

In our proposed framework, the smart agent is augmented by a strategy
adaptation characteristic, as a meta-learning feature responsible for
dynamically adapting the degree of exploration and exploitation in various
situations. This feature makes SaFReL able to detect where it should rely on
the previously learned policy and where it should make a change in the
strategy to update its policy and adapt to new situations. New situations mean
acting on new SUTs that are different from the previously observed ones in
terms of performance sensitivity to resources.

Software programs have different levels of sensitivity to resources. SUTs
with different performance sensitivity to resources, e.g., CPU-intensive,
memory-intensive, or disk-intensive SUTs, will react to changes in resource
availability differently. Therefore, when the agent observes a SUT that is
different from the previously observed ones in terms of performance
sensitivity, the strategy adaptation tries to guide the agent towards doing more
exploration than exploitation. A performance sensitivity indicator showing the
sensitivity of SUT to the resources (i.e., being CPU-intensive,
memory-intensive or disk-intensive) is an input to the strategy adaptation
mechanism (see Figure 7.2).

The components corresponding to the action selection, the stored
experience (learned policy), and the strategy adaptation are shown as yellow
components in Figure 7.2. More details about the set of actions and the
mechanism of strategy adaptation are described in Section 7.5.

3. Reward Computation. After taking the selected action, the agent receives
a reward signal indicating the effectiveness of the applied action to approach
the intended performance breaking point. The reward computation component
(red block) in Figure 7.2 calculates the received reward (see Section 7.5) for
the taken actions.
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Figure 7.2: SaFReL architecture

7.4 Fuzzy State Detection

The state space of the environment in our learning problem is modeled by the
quality measurements, CPU, memory, and disk resource utilization
improvement and response time of the SUT, which is shown in Figure 7.3.
The learning approach works based on detecting (discrete) states of the
system. These states could be typically defined based on classifying the
continuous values of the quality measurements that were mentioned above.
On the other hand, defining such crisp boundaries on a number of continuous
domains is an issue that might involve many uncertainties. In order to address
this issue and preserve the desired precision of the model, fuzzy classification
and reasoning is used to specify the states of the system. Therefore, the states
of the environment are defined in terms of some fuzzy states and the
environment can be in one or more fuzzy states at the same time with different
degrees of certainty. The agent detects the state of the system using a fuzzy
inference engine and a rule base [40, 41] (Figure 7.2). In summary, the step of
state detection is done based on making fuzzy inference about the state of the
system. The fuzzy state detection consists of three main parts: normalization
of the input values (quality measurements), fuzzification of the measurements,
and the fuzzy inference to identify the state of the environment. The details of
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these parts together with the fuzzy rules, fuzzy operators, and the implication
method that are used, are described in Section 7.4.1.

7.4.1 State Modeling and Fuzzy Inference

Normalization. As described in the previous section, a set of quality
measurements, CPU, memory, and disk utilization improvements and
response time of the SUT, represent the state of the environment. The values
of these measurements are not bounded, then for simplifying the inference
and also the exploration of the state space, we normalize the values of these
parameters to the interval [0, 1] using the following functions:

RTn =
2

π
tan−1(

RT ′
n

RT q
) (7.1)

CUIn =
1

CUI ′n
MUIn =

1

MUI ′n
DUIn =

1

DUI ′n
(7.2)

where RT ′
n, CUI ′n, MUI ′n, and DUI ′n are the measured values of the

response time, CPU, memory and disk utilization improvements at time step n

respectively and RT q is the response time requirement. CUI ′n as the CPU
utilization improvement is the ratio between the CPU utilization at time step n

and its initial value (at the start of learning), that is, CUI ′n = CUn

CUi . Likewise,
those are, MUI ′n = MUn

MUi and DUI ′n = DUn

DUi . Using the normalization
function in Eq. 7.1, when RT ′

n = RT q the normalized value of the response
time, RTn is 0.5, and for RT ′

n > RT q the normalized values will be toward 1
and for RT ′

n < RT q the normalized values will be toward 0. A tuple as
(CUIn,MUIn, DUIn, RTn) consisting of the normalized values of quality
measurements is the input to the fuzzy state detection.

Fuzzification. Input fuzzification involves defining fuzzy sets and
corresponding membership functions over the values of the quality
measurements. A membership function is characterized by a linguistic term.
A fuzzy set L is defined as L = {(x, µL(x))| 0 < x, x ∈ R} where a
membership function µL(x) defines membership degrees of the values as
µL : x → [0, 1]. Figure 7.3 shows the membership functions defined over the
value domains of quality measurements. As shown in Figure 7.3, trapezoidal
membership functions are used for High and Low fuzzy sets and a triangular
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counterpart for the Normal fuzzy set on the response time. In Figure 7.3,
where RT q is the requirement, a normal (medium) fuzzy set over the values
of response time implies a small range around the requirement value as
normal response time values. Moreover, in this case the ranges of membership
functions were selected empirically and could be updated based on the
requirements.

DUI 

CUI

MU
I  

Low
High

Hig
h
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w

Low

High

RT

HighLow
Normal

RTq

Figure 7.3: Fuzzy representation of quality measurements

Fuzzy Inference. After input fuzzification, inferring the possible states that
the environment assumes is directed by the fuzzy rules that have formed based
on the domain knowledge.

Fuzzy Rules. A fuzzy rule, as shown in Eq. 7.3, consists of two parts:
antecedent and consequent. The former is a combination of linguistic terms of
the input normalized quality measurements and the consequent is a fuzzy set
with a membership function showing to what extent the environment is in the
associated state.

Rule 1: If CUI is High AND MUI is High AND DUI is Low AND

RT is Normal, then State is HHLN.
(7.3)

Rule 1 is a sample of the fuzzy rules in the rule base. The rest of the rules
are defined similarly based on the fuzzy sets defined over the values of the
quality measurements and the combinations of them. Based on the number of
fuzzy sets, namely two fuzzy sets, High and Low, over the value range of each
resource utilization improvement and three sets, High, Normal, and Low, over
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the value range of the response time, we define 24 rules in our rule base to
define the fuzzy states of the environment.

Fuzzy Operators. When the antecedents of the rules are made of multiple
linguistic terms, which are associated to fuzzy sets, e.g., ”High, High, Low
and Normal”, then fuzzy operators are applied to the antecedent to obtain one
number showing the support or activation degree of the rule. Two well-known
methods for the fuzzy AND operator are minimum(min) and
product(prod). In our case, we use method min for the fuzzy AND

operation. It shows that given a set of input parameters A, the degree of
support for rule Ri is given as τRi = min

j
µL(aj) where aj is an input

parameter in A and L is its associated fuzzy set in the rule Ri.
Implication Method. After obtaining the membership degree for the

antecedent, the membership function of the consequent is reshaped using an
implication method. There are also two well-known methods for implication
process, minimum(min) and product(prod), which truncate and scale the
membership function of the output fuzzy set respectively. The membership
degree of the antecedent is given as input to the implication method. We use
method min as the implication method in our case.

Finally, the most effective rule, the one with the maximum support degree,
is selected to determine the final fuzzy state of the environment (Sn, µn). In
summary, the fuzzy state with the highest likelihood is considered as the state
of the system. Figure 7.4 shows a representation of the fuzzy states. Each of
them represents one state based on the fuzzy values (linguistic terms) assigned
to quality measurements (CPU, memory and disk utilization improvement, and
response time). Regarding the presentation of fuzzy states, L, H, and N stand
for Low, High, and Normal terms respectively.
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Figure 7.4: Fuzzy states of the environment

7.5 Adaptive Action Selection and Reward
Computation

Actions. In SaFReL, the actions are the operations changing the platform-
based factors affecting the performance, i.e., the available resources such as
computation (CPU), memory and disk capacity. In the current prototype, the
set of actions contains operations reducing the available resource capacity with
finely tuned steps, which are as follows:

ACn ={no action} ∪ {(CPUn − y) | y ∈ CDF} ∪ {(Memn − k) | k ∈MDFn}
∪ {(Diskn − k) | k ∈MDFn}

(7.4)

CDF = {1
4
,
2

4
,
3

4
, 1} (7.5)

MDFn = {(x× Mem(Disk)n
4

) | x ∈ {1
4
,
2

4
,
3

4
, 1}} (7.6)

where ACn, CPUn, Memn and Diskn represent the set of actions, the
current available computation (CPU), memory and disk capacity at time step n
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respectively. The list of actions is as shown in Table 7.1.

Strategy Adaptation. The agent can use different strategies for selecting
the actions. ε-greedy with different ε-values and Softmax are well-known
methods for action selection in RL algorithms. They are intended to provide a
right trade-off between exploration of the state action space and exploitation
of the learned policy. In SaFReL, we use ε-greedy as the action selection
strategy and the proposed strategy adaptation feature acts as a simple
meta-learning algorithm intended to make changes to the ε value dynamically
to make the action selection strategy well-adapted to new situations (new
SUTs). Upon observing a SUT instance with a performance sensitivity
different from the already observed ones, it adjusts the value of the parameter
ε to direct the agent toward more exploration (setting ε to higher values). On
the other hand, upon interaction with SUT instances that are similar to the
previous ones, the parameter ε is adjusted to increase exploitation (setting ε to
lower values). SaFReL detects the similarity between SUT instances by
calculating cosine similarity between the performance sensitivity vectors of
SUT instances, as shown in Eq. 7.7.

similarity(k, k − 1) =
SV k SV k−1

∥SV k∥∥SV k−1∥

=

∑3
i=1 SV

k
i SV k−1

i√∑3
i=1 (SV

k
i )

2
√∑3

i=1 (SV
k−1
i )

2

(7.7)

where SV k represents the sensitivity vector of the kth SUT instance and SV k
i

represents the ith element of vector SV k. The sensitivity vector contains the
values of the sensitivity indicators of the SUT instance, SenC , SenM and

Table 7.1: Actions in SaFReL

Actions
Operation Decrease
Reducing memory / disk capacity by a factor in MDFn

Reducing computation (CPU) capacity by a factor in CDF
No action -
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SenD. The performance sensitivity indicators assume values in the range
[0, 1] and represent the sensitivity degree of the SUT to CPU, memory and
disk respectively. Their values could be set empirically or even intuitively, and
SaFReL uses the approximate estimated similarity to tune the ε value
adaptively (See Section 7.7.2).

Reward Signal. The agent receives a reward signal indicating the
effectiveness of the applied action in each learning step to guide the agent
toward reaching the intended performance breaking point. We derive a utility
function as a weighted linear combination of two functions indicating the
response time deviation and resource usage, which is as follows:

Rn = βUr
n + (1− β)UE

n (7.8)

where Ur
n represents the deviation of response time from the response time

requirement, UE
n indicates the resource usage, and β, 0 ≤ β ≤ 1 is a parameter

intended to prioritize different aspects of stress conditions, i.e., response time
deviation or limited resource availability. Ur

n is defined as follows:

Ur
n =

{
0, RT ′

n ≤ RT q

(RT ′
n−RT q)

(RT b−RT q)
, RT ′

n > RT q
(7.9)

where RT ′
n is the measured response time, RT q is the response time

requirement and RT b is the threshold defining the performance breaking
point. UE

n represents the resource utilization in the reward signal, and is a
weighted combination of the resource utilization values. It is defined using the
following equation:

UE
n = SenCCUI ′n + SenMMUI ′n + SenDDUI ′n (7.10)

where CUI ′n, MUI ′n, and DUI ′n represent CPU, memory and disk utilization
improvements respectively, and SenC , SenM and SenD are the performance
sensitivity indicators of the SUT, and assume values in the range [0, 1].
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7.6 Performance Testing using Self-Adaptive
Fuzzy Reinforcement Learning

In this section, we describe details of the procedure of SaFReL to generate the
performance test cases resulting in reaching the performance breaking points
for various types of SUTs. The tester agent learns how to generate the target
test cases for different types of software without access to source code or
system models. The procedure of SaFReL, which includes initial and transfer
learning phases, is as follows:

The agent measures the quality parameters and identifies the state-
membership degree pair (Sn, µn) through the fuzzy state detection, where Sn

is the fuzzy state of the environment and µn indicates the membership degree,
which means to what extent the environment has assumed that state. Then,
according to the action selection strategy, the agent selects one action,
an ∈ An based on the previously learned policy or through exploring the state
action space. The agent takes the selected action and executes the SUT. In the
next step the agent detects the new state of the SUT, (Sn+1, µn+1) and
receives a reward signal, rn+1 ∈ R, indicating effectiveness of the applied
action. After detecting the new state and receiving the reward, it updates the
stored experience (learned policy). The whole procedure is repeated until
meeting the stopping criterion that is reaching the performance breaking
point, (RT b). The experience of the agent is defined in terms of the policy
that the agent learns. A policy is a mapping between each state and action and
specifies the probability of taking action a in a given state s. The purpose of
the agent in the learning is to find a policy that maximizes the expected
long-term reward achieved over the further learning trials, which is
formulated as follows: [39]:

Rn = rn+1 + γrn+2 + ...+ γkrn+k+1 =
∞∑
k=0

γkrn+k+1 (7.11)

where γ is a discount factor specifying to what extent the agent prioritize
future rewards compared to the immediate one. We use Q-learning as a model-
free RL algorithm in our framework. In Q-Learning, a utility value Qπ(s, a) is
assigned to each pair of state and action, which is defined as follows: [39]:

Qπ(s, a) = Eπ[Rn|sn = s, an = a] (7.12)
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The q-values, Qπ(s, a), form the experience base of the agent, on which
the agent relies for the action selection. The q-values are updated incrementally
during the learning. According to using fuzzy state modeling, we include the
membership degree of the detected state of the environment, µs

n, in the typical
updating equation of q-values to take into account the impact of the uncertainty
associated with the fuzzy state, which is as follows:

Q(sn, an) = µs
n[(1− α)Q(sn, an) + α(rn+1 + γmax

a′
Q(sn+1, a

′))] (7.13)

where α, 0 ≤ α ≤ 1 is the learning rate, which adjusts to what extent the new
utility values affect (overwrite) the previous q-values. Finally, the agent finds
the optimal policy to reach the target, which suggests the action maximizing
the utility value for a given state s:

a(s) = argmax
a′

Q(s, a′) (7.14)

The agent selects the action based on Eq. 7.14 when it is supposed to exploit the
learned policy. SaFReL implements two learning phases: initial and transfer
learning.

Initial learning. Initial learning occurs during the interaction with the first
SUT instance. The initial convergence of the policy takes place upon the initial
learning. The agent stores the learned policy (in terms of a table containing
q-values, Q-table). It repeats the learning episode multiple times on the first
SUT instance to achieve the initial convergence of the policy.

Transfer learning. SaFReL goes through the transfer learning phase, after
the initial convergence. During this phase, the agent uses the learned policy
upon observing SUT instances with similar performance sensitivity to the
previously observed ones, while keeping the learning running, i.e., updating
the policy upon detecting new SUT instances with different performance
sensitivity. Strategy adaptation is used in the transfer learning phase and
makes the agent adapt to various SUT instances. Algorithms 8 and 9 present
the procedure of SaFReL in both initial learning and transfer learning phases.
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Algorithm 8 SaFReL: Self-adaptive Fuzzy Reinforcement Learning-based
Performance Testing
Required: S,A, α, γ;
Initialize q-values, Q(s, a) = 0 ∀s ∈ S, ∀a ∈ A and ϵ = υ , 0 < υ < 1;
Observe the first SUT instance;
repeat

Fuzzy Q-Learning (with initial action selection strategy, e.g. ϵ-greedy,
initialized ϵ);

until initial convergence;
Store the learnt policy;
Start the transfer learning phase;
while true do

Observe a new SUT instance;
Measure the similarity;
Apply strategy adaptation to adjust the degree of exploration and
exploitation (e.g. tuning parameter ϵ in ϵ-greedy);
Fuzzy Q-Learning with adapted strategy (e.g. new value of ϵ);

end

7.7 Evaluation

In this section, we present the experimental evaluation of the proposed
self-adaptive fuzzy RL-based performance testing framework, SaFReL. We
assess the performance of SaFReL, in terms of efficiency in generating the
performance test cases and adaptivity to various types of SUT programs, i.e.,
how well it can adapt its functionality to new cases while preserving its
efficiency. Therefore, we examine the efficiency of SaFReL (in the transfer
learning phase) compared to a typical testing process for this target, which
involves generating the performance test cases through changing the
availability of the resources based on the defined actions in an exploratory
(random) way, which is called typical stress testing hereafter. We also
evaluate the sensitivity of SaFReL to the learning parameters. The goal of the
experimental evaluation is to answer the following research questions:



7.7 Evaluation 125

Algorithm 9 Fuzzy Q-Learning

repeat
1. Detect the fuzzy state-degree pair (Sn, µn) of the SUT;
2. Select an action using the action selection strategy (e.g. ϵ-greedy: select
an = argmaxa∈A Q(sn, a) with probability (1-ϵ) or a random ak, ak ∈ A
with probability ϵ);
3. Take the selected action, execute the SUT;
4. Detect the new fuzzy state-degree (Sn+1, µn+1) of the environment;
5. Receive the reward signal, Rn+1;
6. Update the q-value of the pair of previous state and applied action
Q(sn, an) = µs

n[(1− α)Q(sn, an) + α(rn+1 + γmax
a′

Q(sn+1, a
′))]

until meeting the stopping criteria (reaching performance breaking point);

• RQ1. How efficiently can SaFReL generate the test cases leading to the
performance breaking points for different software programs compared
to a typical testing procedure?

• RQ2. How adaptively can SaFReL act on various software programs
with different performance sensitivity?

• RQ3. How is the efficiency of SaFReL affected by changing the learning
parameters?

The following sub-sections describe the proposed setup for conducting the
experiments, the evaluation metrics, and the analysis scenarios designed for
answering the above research questions.

7.7.1 Experiments Setup

In this study, we implement the proposed smart testing framework (agent)
along with a performance simulation module simulating the performance
behavior of SUT programs under different execution conditions. The
simulation module receives the resource sensitivity values and based on the
amounts of resources demanded initially and the amounts of them granted
after taking each action, estimates the program throughput using the following
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equation proposed by [42]:

Thrj =

CPUg
j

CPUi
j
SenC

j +
Memg

j

Memi
j
SenM

j +
Diskg

j

Diski
j
SenD

j

SenC
j + SenM

j + SenD
j

× ThrNj (7.15)

where CPU i
j , Memi

j and Diskij the amounts of CPU, memory and disk
resources demanded by program j at the initial state and CPUg

j , Memg
j and

Diskgj are the amounts of resources granted to program j after taking an
action, which modifies the resource availability. SenC

j , SenM
j and SenD

j

represent the CPU, memory and disk sensitivity values of program j, and
ThrNj represents the nominal throughput of program j in an isolated,
contention free environment. The response time of the program is calculated
as RTj = 1

Thrj
in the simulation module. Figure 7.5 presents the

implementation structure including SaFReL along with the implemented
performance simulation module. In our implementation, the performance
simulation module simulates the performance behavior of the SUT program
and the testing agent interacts with the simulation module to capture the
quality measures used for state detection.

Table 7.2 shows the list of programs and the corresponding resource
sensitivity values used in the experimentation, the table data obtained from
[42]. The collection listed in Table 7.2 includes various CPU-intensive,
memory-intensive and disk-intensive types of programs and also the programs
with combined types of resource sensitivity. The SUTs are instances of the
programs listed in Table 7.2 and are characterized with various initial amounts
of resources and also different values of response time requirements. Two
analysis scenarios are designed to answer the evaluation research questions.
The first one focuses on efficiency and adaptivity evaluation of the framework
on various SUTs. In the second analysis scenario, the sensitivity of the
approach to changes of the learning parameters are studied. The efficiency
and adaptivity are measured (evaluated) according to following specification:

• Efficiency is measured in terms of number of learning trials required by
the tester agent to achieve the testing target, which is reaching the
intended performance breaking point. Number of learning trials is an
indicator of the required computation time to generate the proper test
case leading to the performance breaking point.
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Figure 7.5: Implementation structure

• Adaptivity is evaluated in terms of number of additional learning trials
(computation time) required to re-adapt the learned policy to new
observations for achieving the target.

7.7.2 Experiments and Results

Efficiency and Adaptivity Analysis

To answer RQ1 and RQ2, the performance of SaFReL is evaluated based on
its efficiency in generating the performance test cases leading to the
performance breaking points of different SUTs and its adaptation capability to
new SUTs with performance sensitivity different from previously observed
ones. We select two sets of SUT instances: i) one including SUTs similar in
the aspect of performance sensitivity to resources, i.e., similar with regard to
the primarily demanded resource (homogenous SUTs); and ii) the other set
contains SUT instances different in performance sensitivity (heterogeneous
SUTs). The SUT instances assume different initial amounts of CPU, memory
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Table 7.2: Programs and the corresponding sensitivity values used for experimental
evaluation [42]

Programs Resource Sensitivity Values
(SenC , SenM and SenD)

Build-apache (0.96, 0.04, 0.00)
n-queens (0.97, 0.00, 0.00)
John-the-ripper (0.96, 0.00, 0.00)
Apache (0.97, 0.03, 0.00)
Dcraw (0.48, 0.04, 0.00)
X264 (0.41, 0.02, 0.00)
Unpack-linux (0.18, 0.09, 0.35)
Build-php (0.97, 0.07, 0.00)
Blogbench (0.11, 0.81, 0.18)
Bork (0.00, 0.53, 0.20)
Compress-gzip (0.00, 0.00, 0.47)
Aio-stress (0.00, 0.30, 0.80)

and disk resources, and response time requirements. The amounts of
resources, CPU, memory and disk capacity, were initialized with different
values in the range [1, 10] cores, [1, 50] GB, [100, 1000] GB respectively.
The response time requirements range from 500 to 3000 ms. The intended
performance breaking point for the SUT instances is defined as the point in
which the response time exceeds 1.5 times the response time requirement.

In the efficiency analysis, we set the learning parameters, learning rate and
discount factor, to 0.1 and 0.5, respectively. We study the impacts of different
variants of ε-greedy algorithm as the action selection strategy on the
efficiency and adaptivity of the approach during the analysis. We investigate
three variants of ε-greedy with ε = 0.2, ε = 0.5, and decaying ε, and also the
proposed adaptive ε selection method.

Learning setup. First, we need to set up the initial learning. For choosing
a proper configuration for the action selection strategy in the initial learning,
we evaluate the performance of different variants of ε-greedy algorithm, in
terms of the number of required learning trials for initial convergence (Figure
7.6). For the initial convergence, we run the initial learning on the first SUT
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100 times, namely 100 learning episodes. Table 7.3 presents a quick
summarized view of the average learning trials during the last 10 episodes that
are considered as the achieved values upon the convergence of the initial
learning. As shown in Figure 7.6 and Table 7.3, using ε-greedy with ε = 0.2

results in the fastest initial convergence, which has also led to the lowest
number of trials compared to the other variants of ε-greedy. The number of
learning trials after about 10 episodes starts converging and during the last 10
episodes it converges to approximately 7 trials.

Figure 7.6: Initial convergence of SaFReL in 100 learning episodes during the initial
learning

Once the initial convergence occurs, SaFReL is ready to act on various
SUTs and is expected to be able to reuse the learned policy to meet the
intended performance breaking points on further SUT instances, while still
keeping the learning running. The optimal policy learned in the initial
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Table 7.3: Initial convergence of SaFReL in the initial learning regarding using different
variants of action selection strategy

SaFReL - Initial Learning
Action Selection Strategy:
ϵ-greedy

ϵ = 0.85 ϵ = 0.5 ϵ = 0.2 decaying ϵ

Number of learning trials
(after convergence)

22 21 7 9

learning is not influenced by the used action selection strategy, since
Q-learning is an off-policy learning algorithm [39]. It implies that the learner
finds the optimal policy independently of how the actions have been selected
(action selection strategy). For the sake of efficiency, we choose the one that
resulted in the fastest convergence.

In the following sections, first, we investigate the efficiency of SaFReL
compared to a typical stress testing procedure, when acting on homogeneous
and heterogeneous sets of SUTs, then its capability to adapt to new SUTs with
different performance sensitivity.

I. Homogeneous set of SUTs. We select CPU-intensive programs and make
a homogeneous set of SUT instances during our analysis in this step. We
simulate the performance behavior of 50 instances of the CPU-intensive
programs, Build-apache, n-queens, John-the-ripper, Apache, Dcraw,
Build-php, X264, and vary both the initial amounts of resources granted and
the response time requirements. Figure 7.7 shows the efficiency of SaFReL on
a homogeneous set of CPU-intensive SUTs compared to a typical stress
testing procedure regarding using ε-greedy with different values of ε. Table
7.4 presents the average number of trials/steps for generating the target
performance test case in the proposed approach and the typical testing
procedure. As shown in Figure 7.7, it keeps the number of required trials for
≈ 94% of the SUTs below the average number of required steps in the typical
stress testing. Table 7.5 shows the resulting improvement in the average
number of required trials/steps for meeting the target, which implies reduction
in the required computation time, compared to the typical stress testing
process.
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In the transfer learning, the agent reuses the learned policy based on the
allowed degree of policy reusing according to its action selection strategy in
the transfer learning. As shown in Table 7.4, it implies that in the transfer
learning the agent does fewer trials (based on the degree of allowed policy
reusing) to meet the target on new cases, which leads to a higher efficiency.
According to Table 7.5, on a homogeneous set of SUTs, more policy reusing
leads to higher efficiency (more computation time improvement).

Figure 7.7: Efficiency of SaFReL on a homogeneous set of SUTs in the transfer learning

II. Heterogeneous set of SUTs. In this part of the analysis, to complete the
answer to RQ1 and and also answer RQ2, we examine the efficiency and
adaptivity of SaFReL during the transfer learning on a heterogeneous set of
SUTs including various CPU-intensive, memory-intensive and disk-intensive
ones. We simulate the performance behavior of 50 SUT instances from the list
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Table 7.4: Average number of trials/steps for generating the target performance test case
on the homogeneous set of SUTs

SaFReL with ϵ-greedy

Approach ϵ = 0.5 decaying ϵ ϵ = 0.2
Typical stress
testing

Average number
of trials/steps

10 10 7 12

Table 7.5: Computation time improvement on the homogeneous set of SUTs

SaFReL
Action Selection Strategy: ϵ-greedy ϵ = 0.5 decaying ϵ ϵ = 0.2

Improvement in the number of trials 16% 16% 42%

of the programs in Table 7.2. We evaluate the efficiency of SaFReL on the
heterogeneous set of SUTs compared to the typical stress testing procedure
regarding using ε-greedy with ε = 0.2, 0.5, and decaying ε (Figure 7.8). As
shown in Figure 7.8 the transfer learning algorithm with a typical
configuration of the action selection strategy, such as ε = 0.2, 0.5 and
decaying ε, which imposes a certain degree of policy reusing based on the
value of ε does not work well. It does not outperform the typical stress testing,
but also slightly degrades in some cases of ε. When the smart agent acts on a
heterogeneous set of SUTs, blind replaying of the learned policy (i.e., just
based on the value of ε) is not effective, and the tester agent needs to know
where it should do policy reusing and where it requires more exploration to
update the policy.

As described in Section 7.5, to solve this issue and improve the
performance of SaFReL when it acts on a heterogeneous set of SUTs, it is
augmented with a simple meta-learning feature enabling it to detect the
heterogeneity of the SUT instances and adjust the value of parameter ε,
adaptively. In general, it implies that when the smart tester agent observes a
SUT instance different from the previously observed ones wrt the
performance sensitivity, it changes the action selection strategy to doing more
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Figure 7.8: Efficiency of SaFReL on a heterogeneous set of SUTs regarding the use of
typical configurations of ϵ-greedy

exploration and upon detecting a SUT instance with the same performance
sensitivity as the previous ones, it makes the action selection strategy strive
for more exploitation. As illustrated in Section 7.5, the strategy adaptation
module, which fulfills this function, measures the similarity between SUTs at
two levels of observations, then based on the measured values, adjusts the
value of parameter ε. The threshold values of similarity measures and the
adjustments for parameter ε in the experimental analysis are described in
Algorithm 10.

Figure 7.9 shows the efficiency of SaFReL regarding the use of similarity
detection and the adaptive ε-greedy action selection strategy on a
heterogeneous set of SUTs. Regarding the use of adaptive ε selection,
SaFReL makes a considerable improvement and is able to keep the number of
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Algorithm 10 Adaptive ϵ selection

if similarityk,k−1 ≥ 0.8 then
if similarityk,k−2 ≥ 0.8 then
ϵ← 0.2

else
ϵ← 0.5

end if
else if similarityk,k−1 < 0.8 then

ϵ← 0.5

end if

required trials for reaching the target on approximately ≈ 82% of SUTs below
the corresponding average value in the typical stress testing. Meanwhile, the
average number of learning trials is totally lower than the typical stress testing
procedure. Table 7.6 presents the average number of trials/steps for generating
the target performance test case in SaFReL and the typical stress testing when
they act on a heterogeneous set of SUTs. Table 7.7 shows the corresponding
resulting improvement in the computation time respectively.

Table 7.6: Average number of trials/steps for generating the target performance test case
on the heterogeneous set of SUTs

SaFReL with ϵ-greedy

Approach ϵ = 0.5 decaying ϵ ϵ = 0.2 adaptive ϵ
Typical
stress
testing

Average
number of
trials/steps

18 17 18 11 16

To answer RQ2, we investigate the adaptivity of SaFReL on the
heterogeneous set of SUTs regarding the use of different variants of action
selection strategy including adaptive ε selection (Figure 7.10). As shown in
Figure 7.10, the number of required learning trials versus detected similarity
is used to depict how adaptive SaFReL can act on a heterogeneous set of
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Table 7.7: Computation time improvement on the heterogeneous set of SUTs

SaFReL
Action Selection
Strategy: ϵ-greedy

ϵ = 0.5 decaying ϵ ϵ = 0.2 adaptive ϵ

Improvement in the
number of trials

No No No 31%

SUTs regarding the use of different configurations of ε. It shows that SaFReL
with adaptive ε is able to adapt to changing situations, e.g., a mixed
heterogeneous set of SUTs. In other words, on around ≈ 75% of SUTs that
are completely different from the previous ones (i.e., with
similarityk,k−1 < 0.8) it still keeps the number of required trials to meet the
target below the average value of the typical stress testing. It implies that it
can act adaptively, which means it reuses the policy wherever it is useful and
does more exploration wherever required.

Figure 7.9: Efficiency of SaFReL on a heterogeneous set of SUTs regarding the use of
adaptive ϵ-greedy action selection strategy
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Figure 7.10: Adaptivity of SaFReL on a heterogeneous set of SUTs regarding the use
of different variants of action selection strategy

Sensitivity Analysis

To answer RQ3, we study the impacts of the learning parameters including
learning rate (α) and discount factor (γ), on the efficiency of SaFReL on both
homogeneous and heterogeneous sets of SUTs. For conducting sensitivity
analysis, we implement two sets of experiments that involve changing one
learning parameter while keeping the other one constant. For the experiments
running on a homogeneous set of SUTs, we use ε-greedy with ε = 0.2 as the
well-suited variant of action selection strategy with respect to the results of
efficiency analysis (See Figure 7.7) and on the heterogeneous set of SUTs, we
use adaptive ε selection (See Figure 7.9). During the sensitivity analysis
experiments, to study the impact of the learning rate changes, we set the
discount factor to 0.5. While examining the impact of the discount factor
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changes, we keep the learning rate fixed to 0.1. Figure 7.11 shows the
sensitivity of SaFReL to changing learning rate and discount factor
parameters when it acts on a homogeneous set of SUTs (CPU-intensive).
Figure 7.12 depicts the results of the sensitivity analysis of SaFReL on a
heterogeneous set of SUTs.
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Figure 7.11: Sensitivity of SaFReL to learning rate and discount factor on the
homogeneous set of SUTs
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Figure 7.12: Sensitivity of SaFReL to learning rate and discount factor on the
heterogeneous set of SUTs

7.8 Discussion

7.8.1 Efficiency, Adaptivity and Sensitivity Analysis

RQ1: Using multiple experiments, we studied the efficiency of SaFReL
compared to a typical stress testing procedure, on both a set of homogeneous
and heterogeneous SUTs regarding the use of different action selection
strategies. The results of the experiments running on a set of 50
CPU-intensive SUT instances as a homogeneous set of SUTs, Figure 7.7 and
Tables 7.4 and 7.5, show that using ε-greedy, ε = 0.2 as action selection
strategy in the transfer learning leads to desired efficiency and an
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improvement in the computation time (around 42%) compared to the typical
stress testing. It causes SaFReL to rely more on reusing the learned policy and
results in computation time saving. The existing similarity between the
performance sensitivity of SUTs in a homogeneous set of SUTs makes the
strategy of policy reusing successful in this type of testing situations.

Furthermore, we studied the efficiency of SaFReL on a heterogeneous set
of 50 SUTs containing different CPU-intensive, memory-intensive and
disk-intensive ones. The results of the analysis illustrate that choosing an
action selection strategy without considering the heterogeneity among the
SUTs (e.g., using the typical variants of ε-greedy) does not lead to desirable
efficiency compared to the typical stress testing (See Figure 7.8, Table 7.6 and
7.7). Then, we augmented our fuzzy RL-based approach with an adaptive
action selection strategy that is a heterogeneity-aware strategy for adjusting
the value of ε. It measures the similarity between the performance sensitivity
of the SUTs and adjusts the ε parameter. As shown in Figure 7.9, using the
adaptive ε-greedy, addressed the issue and led to an efficient generation of the
target performance test case and a computation time improvement (around
31%). It makes the agent able to reuse the learned policy according to the
conditions, which means it uses the learned policy wherever it is useful and
does more exploration wherever it is required.

RQ2: At the last part of the efficiency and adaptivity analysis, we extended
our analysis by measuring the adaptivity of SaFReL when it performs on a
heterogeneous set of SUTs. As shown in Figure 7.10, with the use of the
adaptive ε-greedy, SaFReL is able to adapt to changing testing situations while
preserving the efficiency.

RQ3: The results of the sensitivity analysis experiments on the
homogeneous set of SUTs show that adjusting the learning rate to lower
values such as 0.1 leads to better efficiency. Furthermore, regarding the
sensitivity analysis of SaFReL to the discount factor on a homogeneous set of
SUTs, the experimental results depict that lower values of the discount factor
are suitable choices for the desired operation that we expect. However, the
results of the sensitivity analysis on the heterogeneous set of SUTs do not
show a considerable effects on the average efficiency of SaFReL when it acts
on a heterogeneous set of SUTs regarding the use of adaptive ε-greedy.
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7.8.2 Lessons Learned

The experimental evaluation of SaFReL shows how machine learning can
guide performance testing towards being automated and taking one step
further towards being autonomous. Common approaches for generating
performance test cases mostly rely on source code or system models, but such
development artifacts might not always be available. Moreover, drawing a
precise model of a complex system predicting the state of the system upon
given performance-related conditions requires a solid endeavor. This makes
room for machine learning, particularly model-free learning techniques.
Model-free RL is a machine learning technique enabling the learner to explore
the environment (the behavior of the SUT on the execution platform in this
case) and learn the optimal policy to accomplish the objective (finding the
intended performance breaking point in this case) without having a model of
the system. The learner stores the learned policy and is able to replay the
learned policy in further suitable situations. This important characteristic of
RL leads to a reduction in the effort of the learner to accomplish the objective
in further cases and consequently leads to improved efficiency. Therefore, the
main features that lead SaFRel to outperform an exploratory (search-based)
technique are the capability of storing knowledge during the exploration and
reusing the knowledge in suitable situations, and the possibility of selective
and adaptive control on exploration and exploitation.

In general, automation, reduction of computation time and cost, and less
dependency on source code and models are profound strengths of the
proposed RL-assisted performance testing. Regarding applicability, according
to the aforementioned strengths and the results of the experimental evaluation,
the proposed approach could be beneficial to performance testing of software
variants in software product lines, evolving software in continuous
Integration/Delivery process and performance regression testing.

Changes in Future Trends. With the emergence of serverless architecture,
which incorporates third-party backend services (BaaS) and/or runs the
server-side logic in state-less containers that are fully-managed by providers
(FaaS), a slight shift in the objectives of performance evaluation, particularly
performance testing on cloud-native applications is expected. Within the
serverless architecture, the backend code is run without the need to manage
and provision the resources on servers. For example in FaaS, scaling,
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including the resource provisioning and allocation, is automatically done by
the provider whenever it is needed, to preserve the response time requirement
of the application. In general, regarding the capabilities of new execution
platforms and deployment architectures, the objectives of performance testing
might be slightly influenced. Nevertheless, it is still crucial for a wide range
of software systems.

7.8.3 Threats to Validity

Some of the main sources of threat to the validity of our experimental
evaluation results are as follows:

Construct. One of the main sources of threat is the formulation of the RL
technique to address the problem, which is very important for successful
learning. Modeling the state space, actions, and also the reward function are
major players to guide the agent throughout the learning and make it learn the
optimal policy. For example, boundaries defined in discrete states modeling
are a threat to internal validity. To mitigate this threat, we used a fuzzy
labeling technique to deal with the issue of uncertainty in defining sharp
values for boundaries. Regarding the actions, the formulation of actions
affects the granularity of the exploration steps, thus we tried to define actions
in a way to provide reasonable granularity for the exploration steps.

Internal. There are a number of threats to the internal validity of the results.
RL techniques like many other machine learning algorithms are influenced by
their hyperparameters such as learning rate and discount factor. During our
efficiency and adaptivity analysis experiments, we did not change the learning
parameters, we also conducted a set of controlled experiments to study the
influence of learning parameters on the efficiency of our approach.

The insufficient number of learning episodes/iterations could also act as a
source of threat in the initial learning. To alleviate this threat, we iterated the
initial learning sufficiently to ensure the convergence. Moreover, using a
performance simulation module instead of executing SUTs actually is
considered as a source of threat to the validity of results.

Finally, model-free RL is mainly intended to solve a decision-making
problem (to find an optimal policy to behave) without access to a model of the
environment. Therefore, not considering the structure of the environment
might be a source of threat in case of improper formulation of the RL
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technique.
External. Model-free RL learns the optimal policy to achieve the target

through interaction with the environment. Our approach was formulated
based on the SUTs with three types of performance sensitivity that are
CPU-intensive, memory-intensive, and disk-intensive, and our results are
derived from the experimental evaluation of our approach on these types of
SUTs. If the experiment contains SUTs with other types of performance
sensitivity such as network-intensive programs, then the approach needs to be
reformulated slightly to support new types of performance sensitivities.

Moreover, the dependency of the performance simulation module on the
performance sensitivity values could raise a threat to validity in case of
deploying the smart tester agent with the performance simulation module.
The performance simulation module requires the performance sensitivity
values for the SUTs as we described in our experiments. However, given a
real deployment of the approach, e.g., in a cloud-based testing setup without
the performance simulation module, the dependency on the performance
sensitivity values are lighter and their exact values are not necessary.
Nonetheless, it is still considered as a source of threat.

7.9 Related Work
Measurement of performance metrics under typical or stress test execution
conditions, which involve both workload and platform configuration aspects
[43, 44, 45, 46, 47], detection of performance-related issues such as functional
problems or violations of performance requirements emerging under certain
workload or resource configuration conditions [48, 49, 50, 24] are common
objectives of different types of performance testing.

Different approaches have been proposed to design the target performance
test cases for accomplishing performance-related objectives such as finding
intended performance breaking points. Performance test conditions involve
both workload and resource configuration status. A general high-level
categorization of main techniques for generating the performance test cases is
as follows:

Source code analysis. Deriving workload-based performance test
conditions using data-flow analysis and symbolic execution are examples of
techniques for designing fault-inducing performance test cases based on
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source code analysis to detect performance-related issues such as functional
problems (like memory leaks) and performance requirement violations
[51, 49].

System model analysis. Modeling the system behavior in terms of
performance models like Petri nets and using constraint solving techniques
[14], using the control flow graph of the system and applying search-based
techniques [15, 16], and using other types of system models like UML models
and using genetic algorithms [17, 18, 19, 20, 21] to generate the performance
test cases are examples of the techniques based on system model analysis for
generating performance test cases.

Behavior-driven declarative techniques. Using a Domain Specific
Language (DSL) to provide declarative goal-oriented specifications of
performance tests and model-driven execution frameworks for automated
execution of the tests [25, 26, 27], and using a high-level behavior-driven
language inspired from Behavior-Driven Development (BDD) techniques to
define test conditions [24] in combination with a declarative performance
testing framework like BenchFlow [26] are examples of behavior-driven
techniques for performance testing.

Modeling the realistic conditions. Modeling the real user behavior
through stochastic form-oriented models [22, 23], extracting workload
characteristics from the recorded requests and modeling the user behavior
using, e.g., extended finite state machines (EFSMs) [52] or Markov chains
[53], sandboxing services and deriving a regression model of the deployment
environment based on the data resulting from sandboxing to estimate the
service capacity [47], end-user clustering based on the business-level
attributes extracted from usage data [54], and using automated GUI testing
tools with capture and replay techniques to generate realistic interactive usage
sequences [55] are examples of techniques based on modeling the realistic
conditions to generate the performance test cases.

Machine learning-enabled techniques. Machine learning techniques such
as supervised and unsupervised algorithms mainly work based on building
models and extracting patterns (knowledge) from the data. While, some other
techniques such as RL algorithms are intended to train the learner agent to
solve the problems (tasks). The agent learns an optimal way to achieve an
objective through interacting with the system. Machine learning has been
widely used for analysis of data resulting from the performance testing and
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also for performance preservation. For example, anomaly detection through
analysis of performance data, e.g., resource usage, using clustering techniques
[56], predicting reliability from the testing data using Bayesian Networks
[57], performance signature identification based on performance data analysis
using supervised and unsupervised learning techniques [58, 59], and also
adaptive RL-driven performance in particular response time control for cloud
services [35, 60, 61] and also software on other execution platforms, e.g.,
PLC-based real-time systems [62]. Machine learning has been also applied to
the generation of performance test cases in some studies. For example, using
symbolic execution in combination with an RL algorithm to find the
worst-case execution path within a SUT [63], using RL to find a sequence of
input workload leading to performance degradation [64], and a
feedback-driven learning to identify the performance bottlenecks through
extracting rules from execution traces [65]. There are also some adaptive
techniques slightly analogous to the concept of RL for generating
performance test cases. For example, an adaptive workload generation that
adapts the workload dynamically based on some pre-defined adjustment
policies [50], and a feedback-driven approach that uses search algorithms to
benchmark an NFS server based on varying workload parameters to find the
workload peak rate reaching the target response time confidence level.

7.10 Conclusion
Performance testing is a family of techniques commonly used as part of
performance analysis, e.g., estimating performance metrics or detecting
performance violations. One important goal of performance testing,
particularly in mission-critical domains, is to verify the robustness of the SUT
in terms of finding performance breaking point. Model-driven techniques
might be used for this purpose in some cases, but drawing a precise model of
the performance behavior of a complex software system under different
application-, platform- and workload-based affecting factors is difficult.
Furthermore, such modeling might disregard important implementation and
deployment details. In software testing, source code analysis, system model
analysis, use-case based design, and behavior-driven techniques are some
common approaches for generating performance test cases. However, source
code or other artifacts might not be available during the testing.
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In this paper, we proposed a fuzzy reinforcement learning-based
performance testing framework (SaFReL) that adaptively and efficiently
generates the target performance test cases resulting in the intended
performance breaking points for different software programs, without access
to source code and system models. We used Q-learning augmented by fuzzy
state modeling and an action selection strategy adaptation that resulted in a
self-adaptive autonomous tester agent. The agent can learn the optimal policy
to achieve the target (reaching the intended performance breaking point),
reuse its learned policy when deployed to test similar software and adapt its
strategy when targeting software with different characteristics.

We evaluated the efficiency and adaptivity of SaFReL through a set of
experiments based on simulating the performance behavior of various SUT
programs. During the experimental evaluation, we tried to answer how
efficiently and adaptively SaFReL can perform testing of different SUT
programs compared to a typical stress testing approach. We also performed a
sensitivity analysis to explore how the efficiency of SaFReL is affected by
changing the learning parameters.

We believe that the main strengths of using the intelligent automation
offered by SaFReL are 1) efficient generation of test cases and reduction of
computation time, and 2) less dependency on source code and models.
Regarding applicability, we believe that SaFReL could be beneficial to the
testing of software variants, evolving software during the (CI/CD) process,
and regression performance testing. Applying some heuristics and techniques
to speed up the exploration of the state space like using multiple cooperating
agents, and also extending the proposed approach to support workload-based
performance test cases are further steps to continue this research.
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Abstract

Performance testing with the aim of generating an efficient and effective
workload to identify performance issues is challenging. Many of the
automated approaches mainly rely on analyzing system models, source code,
or extracting the usage pattern of the system during the execution. However,
such information and artifacts are not always available. Moreover, all the
transactions within a generated workload do not impact the performance of
the system the same way, a finely tuned workload could accomplish the test
objective in an efficient way. Model-free reinforcement learning is widely
used for finding the optimal behavior to accomplish an objective in many
decision-making problems without relying on a model of the system. This
paper proposes that if the optimal policy (way) for generating test workload to
meet a test objective can be learned by a test agent, then efficient test
automation would be possible without relying on system models or source
code. We present a self-adaptive reinforcement learning-driven load testing
agent, RELOAD, that learns the optimal policy for test workload generation
and generates an effective workload efficiently to meet the test objective.
Once the agent learns the optimal policy, it can reuse the learned policy in
subsequent testing activities. Our experiments show that the proposed
intelligent load test agent can accomplish the test objective with lower test
cost compared to common load testing procedures, and results in higher test
efficiency.
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8.1 Introduction

Performance as an important quality characteristic plays a key role in the
success of software products. Performance assurance is of great importance
particularly in the domains where quality assurance of both functional and
non-functional aspects of system’s behavior is essential. For example,
enterprise applications (EAs) [1] with Internet-based user interfaces such as
e-commerce websites are examples of systems whose success is subject to
performance assurance. EAs are often the core parts of the business
organizations and their performance is a prerequisite for acceptable execution
of business functions [2].

Performance, which is also called efficiency in classifications of quality
attributes [3, 4, 5], generally describes how well the system accomplishes its
functionality. It presents time and resource bound aspects of a system’s
behavior, which are indicated by some common performance metrics such as
throughput, response time, and resource utilization. Performance analysis is
conducted to meet the primary objectives as I) evaluating (measuring)
performance metrics, II) detecting the functional problems emerging under
specific execution conditions such as heavy workload, and III) detecting
violations of performance requirements [6].

Performance modeling and testing are considered common approaches to
accomplish the mentioned objectives at different stages of performance
analysis. Although performance models [7, 8, 9] provide helpful insight into
the behavior of a system, there are still many details of the implementation
and the execution environment that might be ignored in the modeling [10].
Moreover, building a precise detailed model of the system behavior with
regard to all the factors at play is often costly and sometimes impossible.

Performance testing as another family of techniques is supposed to meet
the objectives of the performance analysis by executing the software under
various realistic conditions.
Research Challenge. Load testing is a type of performance testing that
focuses on analyzing the performance of the system when subjected to
workloads. Workload is often configured as a set of concurrent (virtual) users
doing different transactions on the software under test (SUT), which often
mimic the behavior of the real users of the system [11]. Different transactions
do not have the same impact on the performance, and generating an effective
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test workload in an optimal way is challenging. Common load testing
approaches such as the techniques using source code [12] and system model
analysis (e.g., performance and UML models) [13, 14, 15, 16, 17], and also
use case-based [18, 19] and behavior-driven [20, 21, 22] techniques all mostly
rely on the artifacts that are not always available during the testing.
Meanwhile, in the black-box testing, in order to efficiently generate an
effective workload identifying the performance effects of the transactions
involved in the workload is important and still challenging. Therefore, this
paper is organized based on addressing the following question:

Research Goal. How can we efficiently and adaptively generate test
workload resulting in reaching the performance test objective for a SUT
without relying on the source code and performance/system models?

Contribution. In this paper, we present a self-adaptive model-free
reinforcement learning load testing agent (RELOAD), which learns how to
generate an effective test workload efficiently without relying on the system
model or source code, and is able to reuse the learned policy in further testing
scenarios. The test objective is defined as reaching a status under which a
certain performance requirement gets violated.

Solution proposal. The proposed reinforcement learning-driven load
testing agent identifies the effects of different transactions involved in the
workload and learns how to adjust the transactions to meet the test objective.
It assumes two learning phases: initial and transfer learning phases. It learns
the optimal policy (way) to generate an effective workload in the initial
learning. Then, in the transfer learning it is able to reuse adaptively the
learned policy in further testing scenarios, i.e., with different test objectives. It
uses Q-learning, a model-free reinforcement learning (RL) algorithm, as the
core learning with an adaptive action selection strategy to be able to reuse the
learned policy in the transfer learning. RELOAD uses a well-known load test
actuator, i.e., Apache JMeter [23], to execute the designed workload on the
SUT.

Experimental evaluation. We present a two-fold experimental evaluation,
i.e., efficiency and sensitivity analysis, of the proposed approach on a
functional e-commerce web application as SUT. In the experimental
evaluation we address two main research questions which are as follows:
RQ1: How efficiently can RELOAD generate an effective test workload to
meet the test objective?
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RQ2: How is the efficiency of RELOAD affected by changing the learning
parameters?

We consider test cost saving (reduction) and compare the efficiency of
RELOAD based on four configurations of the proposed learning with a
random (exploratory) and a standard baseline load testing approaches.
According to the results of the efficiency analysis, after the initial learning
RELOAD generates a more accurate and finely-tuned workload to meet the
test objective with around 32% and 17% test cost saving compared to baseline
and random approaches respectively. Moreover, once it learns how to tune the
transactions to reach the objective, it reuses the learned policy and keep the
efficiency, i.e., preserve around 25% and 13% test cost saving compared to
baseline and random approaches respectively, in further testing scenarios
without a need to redo the learning. Lastly, we also study the behavioral
sensitivity of RELOAD to the learning parameters influencing the learning
mechanism.

The rest of this paper is organized as follows: Section 8.2 discusses the
motivation for applying model-free reinforcement learning to the problem and
the primary concepts of RL. Section 8.3 presents the architecture and
technical details of the proposed RL-assisted load testing agent. Section 8.4
presents the research method and experiments’ setup. Section 8.5 discusses
the experimental results, answers to RQs, and the threats to validity. Section
8.6 gives an overview of the related work. The conclusion and future research
directions are presented in Section 8.7.

8.2 Motivation and Background
Any anomalies in the performance behavior of the system (e.g., performance
requirement violation) could be mainly a consequence of emerging
bottlenecks at the level of platform or application [24, 25]. A bottleneck can
make the system fail or not perform as required, and can happen due to the
full utilization of the component capacity, exceeding a usage threshold or
occurrence of contention [26].

Possible defects in source code or architecture and some issues related to
platform resources could be often the root causes of the emergence of
bottlenecks. Moreover, all transactions do not have the same effect on the
performance and some of them are more critical to lead to the emergence of
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performance bottlenecks. Therefore, due to the existing interplay between the
involved factors, drawing a detailed model expressing the performance
behavior of the system, is not easily possible. This issue makes room for
model-free machine learning techniques, such as model-free reinforcement
learning (RL) [27] to play an interesting role in addressing the related
challenges, in particular from testing perspective. RL algorithms are mainly
intended to address decision-making problems and have been widely used to
build self-adaptive intelligent systems.

In model-free RL the intelligent agent can learn an optimal behavior to
achieve an intended objective based on the interaction with the environment
(i.e., the system under test in this problem) without access to the source code
or a model of SUT. Furthermore, the agent is able to store the gained
knowledge and reuse the learned behavior in further potential testing
situations such as regression testing or testing of SUT with regard to different
test objectives. Model-free RL algorithms are not intended to build or learn a
model of the environment. Instead, they learn optimal behavior to accomplish
the objective through various episodes of interaction with the environment.
They are apt for the problems where the model (i.e., the dynamics) of the
environment is unknown or costly to be built, but the experience of interaction
with the environment can be sampled and used.

8.2.1 Reinforcement Learning

Using RL, the agent learns the optimal behavior to meet the objective through
being rewarded or punished in the interaction with the environment. At each
step of the interaction, the agent observes the state of the system. It takes one
possible action. The system undergoes changes upon actions. Then, the agent
receives a reward signal showing how good the action was to direct the agent
towards accomplishing the objective. The overall goal of the agent is
formulated in terms of maximizing the cumulative long-term reward. The
agent decides how to behave at each step of the interaction and based on
optimizing the long-term received reward, learns the optimal behavior
function which is called optimal policy. The agent uses an action selection
strategy to interact with and apply actions to the system. The action selection
is often based on trying the available actions, i.e., exploration of the action
space, or relying on the learned policy which leads to selecting highly valued
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actions, i.e., exploitation of the gained knowledge.

8.3 RELOAD Test Agent for Optimal Test
Workload Generation

In this section, we present an overview of the architecture of our proposed RL-
driven load testing agent, RELOAD, and describe the technical details of the
learning procedure.

How it learns. It assumes two phases of learning, i.e., initial and transfer
learning. During the initial learning, the test agent learns the optimal policy
to generate an effective workload to accomplish the test objective. During
the transfer learning, the learned policy is reused in further potential testing
scenarios, e.g., regression testing scenarios or testing with regard to different
test objectives. In the transfer learning phase, the agent also still continues with
the learning to keep the policy updated.

We use Q-learning [27], a model-free RL algorithm, as the core learning
technique. Figure 8.1 shows the architecture of RELOAD. The main
constituent parts of each learning step in RELOAD are detecting state, taking
actions and computing reward (See Section 8.2.1). We have formulated these
parts in RELOAD as follows:

State Detection. Average response time and error rate, as two
performance metrics, are used to indicate the performance state of the SUT.
The values of these performance metrics are classified under a number of
discrete classes, which are described as Low, Normal and High for response
time and Low and High for error rate. The threshold (boundary) values for
defining these classes are selected empirically and could be updated based on
the requirements. The combinations of these classes form the discrete classes
for the state of the system, as shown in Figure 8.2. Actually, different
transactions do not have the same impact on the performance of the SUT, and
test workloads with different configurations, i.e., in terms of constituent
transactions, might lead the SUT to different performance states. The agent
fetches these metrics from the test actuator at each learning step and identifies
the state of the SUT.

Actions. At each learning step, the test agent takes one action after
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Figure 8.1: RELOAD, an RL-driven load testing agent

detecting the state of the SUT. We define the actions as adjusting the load of
constituent transactions in the workload, in terms of numbers of virtual users
running each transaction. Table 8.1 presents the list of transactions for the
SUT in our case study, which is an e-commerce web application.

Each transaction involves a certain function together with its functional
dependencies. For example, transaction Add to cart involves performing login,
accessing the search page, and selecting the product as well, since all those
functions are prerequisites for function Add to cart. Therefore, the function
in each transaction of the workload is considered together with its functional
dependencies. Then, the set of actions for the test agent is defined as follows:

ActionList = {∪ actionk, 1 ≤ k ≤ |List of Transactions|} (8.1)

actionk : {WTj
n = W

Tj

n−1, for j ̸= k,

WTj
n = W

Tj

n−1 +
W

Tj

n−1

3
, for j = k,

Tj ∈ List of transactions,

1 ≤ j ≤ |List of Transactions|}

(8.2)

where Tj indicates a transaction of the SUT. W
Tj
n indicates the load of

transaction Tj at time step n, i.e., the number of users running this transaction.
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After the agent decides on an action, a test plan is generated by the agent, and
then is executed on the SUT by the test actuator, i.e., Apache JMeter.

Table 8.1: List of transactions for the SUT

Operation Description
Home Access to home page
Sign up page Access to Sign up page
Sign up Register and add a new user
Login page Access to login page
Login Sign in at the system
Search page Access to search page
Select product See the details of the selected

product
Add to cart Add the selected product to the

cart
Payment Access to payment page
Confirm Confirm the order (payment)
Log out Log out

Reward Signal. After taking the selected action and running the tuned
workload, the test agent receives a reward signal which shows how effective
the applied action was in leading the test agent to reaching the test objective.
We define a function to represent the reward signal as follows:

Rn = (
RTn

RTthreshold
)2 + (

ERn

ERthreshold
)2 (8.3)

where Rn, RTn, and ERn indicate the reward, the average response time,
and the average error rate respectively, in step n. Also RTthreshold and
ERthreshold are the response time and error rate thresholds related to the test
objective.

Learning Procedure. In RL, the agent is intended to learn the optimal
policy to accomplish the objective of the problem. The policy determines
which action to be taken by the agent, given a certain state. The key idea for
finding the optimal policy is the use of an iterative policy iteration process at
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Figure 8.2: States of SUT in the proposed RL-based load testing

each step of the learning, which consists of policy evaluation and policy
improvement. At each step of the interaction, the agent performs both
evaluation and improvement. First, it evaluates the policy which it follows,
then it tries to improve it through a greedy approach (e.g., ε-greedy). Finally,
this process will converge on the optimal policy. In model-free RL, there are
generally two approaches to realize this: learning the policy directly and
indirectly. In the Q-learning algorithm, the agent learns an optimal value
function, i.e., an action-value function Q∗(s, a), from which the optimal
policy can be obtained. The optimal action-value function, Q∗(s, a), gives the
expected long-term return, given state s, taking an arbitrary action a, and then
following the optimal policy. It is presented as follows:

Q∗(s, a) = argmax
π

Eπ[qn|sn = s, an = a] (8.4)

qn =
∞∑
k=0

γkRn+k+1 (8.5)

where γ is a discount factor for future rewards and qn is the long-term return
in terms of cumulative discounted reward. In general, the optimal policy
selects the action maximizing the expected return given starting from state s.
Moreover, according to the definition of Q∗(s, a), given Q∗, the optimal
action for state s, a∗(s), is obtained as:

a∗(s) = argmax
a′

Q∗(s, a
′
) (8.6)
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In order to obtain the optimal policy, Q-values are stored (e.g., in a Q-table
or a neural network) and considered the experience of the agent. During the
learning, the Q-values are updated incrementally according to Eq. 8.7:

Q(sn, an) = (1− α)Q(sn, an) + α[Rn+1 + γmax
a′

Q(sn+1, a
′
)] (8.7)

where α, 0 ≤ α ≤ 1 adjusts the rate of learning which controls the impact of
new Q-values on the previous ones.

In this study the research problem, i.e., generating an effective workload
to meet an intended test objective, is regarded as a sequential decision-making
problem. Model-free RL is proposed as a beneficial learning solution to this
problem since the SUT (environment) and execution platform are supposed to
be initially unknown to the test agent. Then, in the proposed model-free
RL-driven solution, the agent finds (learns) the optimal policy to generate an
effective workload to accomplish the test objective through a built-in iterative
policy evaluation-improvement process. Algorithms 11 and 12 present the
procedure of the learning in the proposed RL-driven load testing agent.

In model-free RL, ε-greedy is a well-known method for action selection,
when RL is used to find the optimal policy in a decision-making problem. It
guarantees the sufficient continual exploration required for finding the optimal
policy, and meanwhile provides a proper trade-off between exploration of the
state-action space and exploitation of the learned value function. In ε-greedy,
the value of ε adjusts the degree of exploration versus exploitation, as it leads
the agent to select a high-value action based on the learned value function with
probability (1-ε) or a random possible action with probability ε, given a certain
state. In addition to Q-learning, we also implemented RELOAD with DQN
[28], which is a combination of Q-learning and deep neural networks and suits
the large scale problems where due to the big number of states and actions
using tabular methods (i.e., Q-table) is not practical.
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Algorithm 11 Adaptive Reinforcement Learning-Driven load Testing
Required: S,A, α, γ;
Initialize Q-values, Q(s, a) = 0 ∀s ∈ S, ∀a ∈ A and ε = υ , 0 < υ < 1;
while Not (initial convergence reached) do

Learning Episode (with initial action selection strategy, e.g., ε-greedy,
initialized ε);

end
Store the learned policy;
Adapt the action selection strategy to transfer learning, i.e., tune parameter ε
in ε-greedy;
while true do

Learning Episode with adapted strategy (e.g., new value of ε);
end

8.4 Method

We perform empirical evaluations of RELOAD 1 by running experiments on
a mature open-source software, an e-commerce web application. Our target
SUT is based on the widely-used WooCommerce platform and deployed using
XAMPP on an Apache web server with PHP 7.4.13 and MariaDB 10.4.17. The
experiments’ environment consists of two virtual machines (VMs), as one of
them hosts the SUT and the other one runs the load testing agent together with
the test actuator. Each VM has 2 CPUs at 3.1GHz, 8GB of RAM, and Linux
Ubuntu 16.04. We use Apache JMeter 5.2.1 as an actuator to execute the test
workload on the SUT.

We design a series of experiments to assess the efficiency and sensitivity of
RELOAD. The experiments investigate how different learning configurations
(setups) affect the outcome of RELOAD. For comparative purposes, we also
report results from random (exploratory) testing and a standard (naive) testing
baseline. For all experimental runs, we translate differences in the number of
generated concurrent virtual users to reduced testing costs.

Figure 8.3 shows an overview of the experimental setup. The Dependent
Variable (DV) in all experimental runs is the number of generated virtual users.
The Independent Variable (IV) defining different experimental runs is the test

1https://github.com/mahshidhelali/RL-Assisted-Performance-Testing
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Algorithm 12 Learning Episode

repeat
1. Detect the state (Sn) of the SUT;
2. Select an action (See Eq. 8.1) according to the action selection strategy,
e.g., ε-greedy: select an = argmaxa∈A Q(sn, a) with probability (1-ε) or
a random ak, ak ∈ A with probability ε;
3. Take the selected action: Tune the workload and run the modified
workload on the SUT;
4. Detect the new state (Sn+1) of the SUT;
5. Compute the reward, Rn+1;
6. Update the Q-value of the pair of previous state and taken action
Q(sn, an) = (1− α)Q(sn, an) + α[Rn+1 + γmax

a′
Q(sn+1, a

′
)]

until meeting the stopping criteria (reaching the test objective);

generation technique. We explore six discrete levels of the IV: A1) RELOAD
with ε = 0.2, A2) RELOAD with ε = 0.5, A3) RELOAD with decaying ε, A4)
RELOAD with DQN; B) Standard Baseline; C) Random Testing. In A1)-A3)
RELOAD is based on Q-learning together with ε-greedy with different values
for ε.

Figure 8.3: Overview of the experimental setup.

Section 8.3 describes the details of the RELOAD configurations in
A1)-A4). The Standard Baseline (B) applies an initial workload that contains
all the transactions with the same number of users per each transaction, then
increases the number of users in fixed steps by 33% until accomplishing the
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test objective. In Random Testing (C), a transaction is chosen randomly at
each step, and then the number of virtual users allocated for the selected
transaction is increased by 33%. The process is repeated until the test
objective has been met.

The experimental runs corresponding to the six test generation techniques
(i.e., values of the IV) are executed the same number of times, i.e., the same
number of episodes. In RL each learning episode constitutes one complete
sequence of states and actions in RL till reaching the objective (i.e., equivalent
to one epoch in supervised learning). The agents’ properties including the
value function and policy are updated gradually over the learning episodes.
Despite the lack of learning in the Baseline and Random testing, we refer to
one complete execution for those techniques as an episode too.

In the efficiency analysis, we report results corresponding to the two
learning phases of RELOAD. First, we analyze the initial learning. Second,
we study how efficiently RELOAD performs during the transfer learning, i.e.,
when the agent reuses learned policies in new similar testing scenarios.

In the sensitivity analysis, we investigate the performance sensitivity of
RELOAD to two learning hyperparameters, i.e., the learning rate α and the
discount factor γ. We explore the two hyperparameters by changing one
parameter while keeping the other one constant. As the sensitivity analysis
followed the efficiency study, we based the design on our empirical
observations at that point.

In the efficiency experiments, we use baseline values of α = 0.5 and
γ = 0.5. In the sensitivity experiments, we conduct four experimental runs to
analyze the sensitivity of RELOAD. First, we set α to 0.1 and decaying

values while keeping the value of γ fixed at 0.5. Second, we set the γ to 0.1

and 0.9, while fixing α at 0.5.

8.5 Results and Discussion

This section presents our experimental results, answers the RQs, and discusses
the main threats to validity.
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8.5.1 Experimental Results

Efficiency Analysis. Initial Learning. To see how it works during the initial
learning, we compare the efficiency of RELOAD for the learning
configurations A1)-A4) (i.e., ε = 0.2, 0.5, decaying ε, and DQN) with the
Standard Baseline and Random Testing. In particular, we are interested in
studying the behavior of RELOAD after the initial convergence in comparison
with other approaches. The convergence happens after around 30 episodes in
Q-learning with ε-greedy (A1-A3) and in some episodes later for the DQN
configuration (A4), i.e., after roughly 37 episodes. We consider the
performance of the learning-based approach during the last 10 episodes after
the convergence. We also run the Standard Baseline (B) and the Random
Testing (C) 40 episodes. The test objective is reaching a performance status
under which 1) the response time of the SUT exceeds 1, 500ms or 2) the error
rate in the received responses exceeds 20%.

Figure 8.4 shows the number of generated virtual users in all approaches
to produce an effective workload accomplishing the test objective. Table 8.2
presents the resulting test cost saving at the last 10 episodes in RELOAD, i.e.,
the last 10 episodes show the behavior of the RL approach when it has almost
achieved an initial convergence. We proceed by discussing the performance of
RELOAD using the four configurations A1)-A4).

Q-learning with ε-greedy. Using ε = 0.2 (A1) makes the agent mainly
rely on the stored experience rather than exploring new actions. It might slow
down the learning convergence in a varying environment in which more
exploration is needed. This issue is observable in terms of high spikes in
Figure 8.4a. The configuration ε = 0.5. (A2) provides an equal likelihood for
the exploitation of the learned policy and the exploration of new actions. The
decaying ε setting (A3) decreases ε gradually over the learning episodes. It
makes the agent explore new actions mainly during the early episodes of the
learning and do more exploitation of the learned policy in the later episodes.
The efficiency of the three configurations A1)-A3) are comparable, i.e., they
converge roughly on the same number of virtual users needed to meet the test
objective. DQN setup. DQN (A4) is an extension of Q-learning that uses a
deep neural network as a function approximator instead of a Q-table to
approximate the Q-values. In this experiment, the A4 obtain roughly the same
efficiency as Q-learning with ε-greedy (A1-A3). This is also in line with
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previous works on the use of Q-learning for performance assurance purposes
[29], i.e., for problems that are not high-dimensional and satisfy the required
conditions for Q-learning convergence, it is possible to obtain desired results
using Q-learning with a carefully selected configuration. For the transfer
learning part, we proceed with the A3 configuration.

Table 8.2: Average test cost saving of RELOAD in the initial learning

RELOAD

Test Cost Saving ε = 0.5 ε = 0.2
decaying
ε

DQN
setup

w.r.t Standard
Baseline

30% 30% 34% 34%

w.r.t Random
Testing

17% 17% 20% 20%

Transfer Learning. After the initial convergence, we study the efficiency
of RELOAD in reusing the learned policy in further similar testing situations
(scenarios) during the transfer learning. In this part of the experimentation,
after an initial learning of 40 episodes with RELOAD configuration A3, we
continue with 10 additional episodes (i.e., episodes 41-50 in Figure 8.5a). For
these 10 episodes, we change the test objective and keep the ε low to guide the
agent towards relying on the learned policy. Over the episodes of transfer
learning, we alter the threshold of the target performance status (i.e., test
objective). We change the target error rate threshold from 0.2 to 0.3 gradually
by an increase of 0.01 at each episode and also change the target threshold for
response time from 1, 500ms to 2, 500ms by an increase of 100ms at each
episode. Figure 8.5 shows the efficiency of RELOAD in accomplishing the
test objective in the further similar testing scenarios (i.e., represented by the
10 episodes, 41-50, after the initial learning) compared to the Standard
Baseline and Random Testing. It indicates that the smart test agent is able to
properly reuse the learned policy in the similar testing scenarios, i.e., the
episodes with new values of test objectives, and still accomplish the test
objective more efficiently. Table 8.3 presents the resulting test cost reduction
of RELOAD in the transfer learning.
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(a) RELOAD with Q-learning, ε-greedy, ε = 0.2 (b) RELOAD with Q-learning, ε-greedy, ε = 0.5

(c) RELOAD with Q-learning, ε-greedy, decaying
ε

(d) RELOAD with DQN setup
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Figure 8.4: Test efficiency of RELOAD (initial learning for configurations A1-A4),
Standard Baseline, and Random Testing
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Table 8.3: Efficiency and average test cost saving in the transfer learning

RELOAD
(with Q-
learning)

Standard
Testing

Random
Testing

Range of the number of
generated virtual users

48-62 55-99 55-68

RELOAD test cost saving 25% 13%
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Figure 8.5: Efficiency of RELOAD (in the transfer learning) vs. the baseline and
random approaches in new similar testing scenarios
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Sensitivity Analysis. We select ε-greedy with decaying ε (A3) as the
learning configuration in the sensitivity analysis. Figure 8.6 shows the
behavioral performance of RELOAD regarding changing the values of
hyperparameters as described in Section 8.4. It presents how different values
for the learning hyperparameters influence the learning behavior, e.g.,
convergence, and the learning trend, in the proposed RL-driven test agent. We
observe that RELOAD does not converge using a low learning rate, i.e.,
α = 0.1. Furthermore, we find slower convergence using both lower and
higher discount rates, i.e,. γ = 0.1 and γ = 0.9.
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Figure 8.6: Behavioral sensitivity of RELOAD to the learning hyperparameters

8.5.2 Revisiting the Research Questions

RQ1. As shown in Figure 8.4 and Table 8.2, on average RELOAD leads to
accomplishing the test objective using fewer virtual users than the Standard
Baseline and Random Testing. RELOAD learns how to meet the objective
with a more accurate and fine-tuned workload and subsequently leads to a
considerable test cost saving. In particular, RELOAD based on ε-greedy,
decaying ε and DQN setup, offers a smoother learning trend and after the
convergence results in a slightly higher cost saving, i.e., 34% and 20%,
compared to other learning configurations. Based on our experiments, we
conclude that RELOAD results in 10-30% increased test efficiency.

The test agent learns the optimal policy to meet the test objective efficiently
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over the learning episodes. The optimal policy is learned through the value
function. The agent stores the learned value function and is able to exploit it in
further testing scenarios. The results of the efficiency analysis in the transfer
learning (see Figure 8.5 and Table 8.3) confirm that the test agent after the
initial learning is able to reuse the gained knowledge in subsequent testing
scenarios, in which the SUT displays similar characteristics, and maintain its
efficiency across scenarios. As shown in Table 8.3, RELOAD leads to 25% and
13% test cost saving in the transfer learning compared to the Standard Baseline
and Random Testing.

RQ2. As shown in Figure 8.6, in the sensitivity analysis experiments,
fixing the learning rate at a low value such as 0.1 did not lead to a learning
convergence. Whereas a higher value such as 0.5 (as used in efficiency
analysis) or using a decaying learning rate results in faster updates in the
stored Q-table of the agent and works better in this case study. Moreover,
changing the values of the discount factor, e.g., setting it to 0.1 or 0.9, appears
to slow down the learning convergence.

Applicability. RELOAD generates an effective workload efficiently
without relying on source code or a system model. It is well-suited to
operational contexts where the source code, system models, and behavior
specifications are not available. Meanwhile, the pay-as-you-go cost for many
of the load generation tools on the market is proportional to the number of
generated virtual users. Therefore, the efficient generation of an effective
workload by the proposed test agent could lead to considerable cost and time
savings in the testing process. Moreover, the proposed smart test agent has the
capability of reusing the learned policy in further similar testing scenarios.
RELOAD keeps the learning running to adapt the learned policy to changes in
the environment. This feature is particularly beneficial to DevOps continuous
testing activities such as performance regression testing where performance
testing scenarios must be repeated for the SUT in a continuous integration
process.

8.5.3 Threats to Validity

Some of the potential sources of threats to validity of the experimental results
are described as follows:

Construct validity. One of the main sources of threat is the formulation of
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the RL technique to address the problem. Formulating the states, actions, and
also the reward function is a major step in building an RL-driven smart agent.

Internal validity. Dependency on the resource availability in the execution
environment of the SUT is another common source of threats to the validity of
the results in performance testing. To tackle this potential threat, we perform
the experiments on dedicated virtual machines, i.e., two separate VMs were
used for running the SUT and the test agent.

External validity. In our case, the approach has been formulated based on
a particular e-commerce web-application as SUT, which supports a certain set
of transactions. Therefore, in order to apply the approach to other types of
applications, e.g., other web-based systems, the involved transactions of the
new system should be extracted and included in the set of actions.

8.6 Related Work
Measuring performance metrics under different execution conditions
including various workload and platform configurations [30, 31], detecting
different performance-related issues such as functional problems or violations
of performance requirements [32, 33] are common objectives of different
types of performance testing. An overview of the techniques used for
generating test workload is presented as follows:
Analyzing system models. Analysis of a performance model of SUT in Petri
nets using constraint solving techniques [34], using genetic algorithms to
generate test load based on the control flow graph of SUT [13], applying
genetic algorithms to other types of system models such as UML models to
generate stress test load [14, 15, 16, 17] are samples of the techniques in this
category.
Analyzing source code. Generating test load using the analysis of SUT’s
data-flow and symbolic execution [35, 32] are examples of using source code
analysis to generate test load and find performance-related issues.
Modeling real usage. Extracting the usage pattern of real users and modeling
their behavior using form-oriented models [18, 19], extracting workload
characteristics and modeling the user behavior based on Extended Finite State
Machines [36] and Markov chains [37] through monitoring submitted requests
to SUT, and workload characterization through users clustering based on the
business-level attributes extracted from usage data [38] are examples of the
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techniques used for modeling the realistic workload.
Declarative specification-based methods. Using a declarative Domain
Specific Language (DSL) to specify the performance testing process together
with a model-driven test execution framework [21, 22] and also using a
specific behavior-driven language, to specify load testing process in
combination with a declarative performance testing framework like
BenchFlow [20] are examples of declarative techniques for performance and
load testing.
Machine learning-assisted methods. Machine learning techniques such as
supervised and unsupervised algorithms are often intended to build models
and knowledge patterns from the data, while in other techniques like
reinforcement learning algorithms, the intelligent agent learns the way to
accomplish an objective through interaction with the environment. Machine
learning techniques have been frequently used for analyzing the resulted data,
e.g., for anomaly detection [39] and reliability prediction [40].
Machine learning techniques have been also applied to the generation of
performance test conditions in some studies. For example, using RL together
with symbolic execution to find the worst-case execution path within an SUT
in [41], a feedback-driven learning technique which extracts some rules from
the execution traces to find the performance bottlenecks, [42], and using RL to
build a smart performance testing framework which mainly generates the
platform-based test conditions [43, 44, 45]. Regarding generating
performance test conditions, a few studies have also used some other adaptive
techniques to generate the test workload. A feedback-based approach using
search algorithms to benchmark an NFS server based on changing the test
workload in [46], and an adaptive generation of test workload based on using
some pre-defined tuning policies in [33] are some other examples of using
adaptive approaches for the generation of performance test conditions.

8.7 Conclusion
System models, source code, and user behavior patterns are common sources
of information in load testing techniques for generating test workload to find
performance issues. Nonetheless, those artifacts might not be available all the
time during the testing. Moreover, in black-box testing approaches, it is
important to consider that not all transactions have the same effect on the
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performance, i.e., tuning the workload optimally is crucial for test efficiency.
We proposed RELOAD, a self-adaptive model-free RL-driven load testing
agent that learns how to tune transactions in the workload to accomplish the
test objective. It learns an optimal policy to generate an effective workload
efficiently and is able to reuse the learned policy in further similar testing
scenarios, e.g., in performance regression testing. Furthermore, RELOAD
adapts the learned policy to continuous changes in the SUT and the execution
environment, thus we believe the smart test agent to be particularly
well-suited to the continuous performance testing context within DevOps.
The smart test agent assumes two phases of initial and transfer learning and
uses Q-learning as the core learning algorithm. It performs more efficiently
than random and baseline load testing approaches, which enables reduced
testing costs.

We conclude that RELOAD provides three main strengths. First,
RELOAD provides efficient generation of effective test workloads. Second,
the RL approach reduces source code and model dependencies, e.g., system
models and user behavior models. Third, RELOAD enables generalizable
knowledge representation, i.e., previously learned policies can be reused for
other testing scenarios on the SUT. We posit that RELOAD can reduce costs
in performance testing. Furthermore, the continuous testing context that
permeates contemporary DevOps processes would further amplify the
benefits. In future work, we plan to conduct empirical studies to validate our
claims.
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Abstract

This paper presents an extended version of Deeper, a search-based
simulation-integrated test solution that generates failure-revealing test
scenarios for testing a deep neural network-based lane-keeping system. In the
newly proposed version, we utilize a new set of bio-inspired search
algorithms, genetic algorithm (GA), (µ + λ) and (µ, λ) evolution strategies
(ES), and particle swarm optimization (PSO), that leverage a quality
population seed and domain-specific cross-over and mutation operations
tailored for the presentation model used for modeling the test scenarios. In
order to demonstrate the capabilities of the new test generators within Deeper,
we carry out an empirical evaluation and comparison with regard to the results
of five participating tools in the cyber-physical systems testing competition at
SBST 2021. Our evaluation shows the newly proposed test generators in
Deeper not only represent a considerable improvement on the previous
version but also prove to be effective and efficient in provoking a considerable
number of diverse failure-revealing test scenarios for testing an ML-driven
lane-keeping system. They can trigger several failures while promoting test
scenario diversity, under a limited test time budget, high target failure severity,
and strict speed limit constraints.
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9.1 Introduction

Machine Learning (ML) nowadays is used in a wide range of application
areas such as automotive [1, 2], health care [3] and manufacturing [4]. Many
of the ML-driven systems in these domains present a high level of autonomy
[5] and meanwhile are subject to rigorous safety requirements [6]. In 2018,
the European Commission (EC) published a strategy for trustworthy Artificial
Intelligence (AI) systems [7]. In this strategy, AI systems are defined as
“systems that display intelligent behavior by analyzing their environment and
taking actions–with some degree of autonomy–to achieve specific goals”. The
EC states that a trustworthy AI system must be lawful, ethical, and robust.
Self-driving cars are examples of safety-critical AI systems, which leverage
various ML techniques such as Deep Neural Networks (DNN), machine
vision, and sensor data fusion. Meanwhile, in the context of automotive
software engineering, there is always a set of strict safety requirements to
meet.

The quality assurance methodology for AI systems [8] is quite different
from the conventional software systems, since the included ML components
in those systems are not explicitly programmed, they are intended to learn
from data and experience instead—called Software 2.0 [9]. In addition, in AI
systems, a part of the requirements is mainly seen as encoded implicitly in the
data and the challenge of under-specificity is common in requirements
definitions. However, it is still highly expected to assure the ability of the AI
system to control the risk of hazardous events in particular in safety-critical
domains. In this regard, Hawkins et al. [8] introduced a methodology for
assurance of ML in autonomous systems, called AMLAS. It presents a
systematic process for integrating safety assurance into the development of
ML systems and introduces verification procedures at different stages, e.g.,
learning model verification and system-level (integration) verification that
happens after integrating the ML model into the system.

There is also a vigorous need for integration verification and validation
(V&V) of ML models deployed in self-driving cars to make sure that they are
safe and dependable. Many of the failures basically emerge in the interplay
between software containing ML components, hardware, and remote sensing
devices, e.g., sensors, cameras, RADAR, and LiDAR technologies.
Hardware-In-the-Loop (HIL), simulation-based and field testing are common
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approaches for system-level verification of deployed ML models [8].
System-level testing mainly targets defining a set of operational scenarios that
could lead to failures. In this regard, in the ISO/PAS 21448 Safety of the
Intended Function (SOTIF) standard [10]—which addresses complementary
aspects of functional safety in ISO 26262 [11]—simulation-based testing has
been considered a proficient approach and a proper complementary solution to
the on-road testing. Testing on real-world roads is costly, does not scale to
cover all the needed scenarios, and in addition, it is dangerous to create and
execute critical scenarios. The use of virtual prototyping allows testing and
verification at the early stages of the development and offers the possibility of
efficient and effective testing. It can capture the whole of the operational
environment to a great extent using thoroughgoing physics-based simulators
[12]. Recently, a growing number of commercial and open-source simulators
have been developed to support the need for realistic simulation of
self-driving cars [13, 14, 15]—we refer interested readers to a review by
Rosique et al. [16].

Research Challenge. In this study, we target an Advanced
Driver-Assistance System (ADAS) that provides lane-keeping assistance.
Effective and efficient system-level testing in simulation environments
requires sophisticated approaches to generate critical test scenarios. The
critical test scenarios are those that break or are close to break the safety
requirements of the ADAS under test, which hence result in safety violations.
Generating effective test scenarios involves sampling from a large and
complex set of test inputs. Several authors have shown the potential of
search-based software test generation techniques to address this challenge.
Various system-level testing techniques using different search-based testing
approaches [17, 18, 19, 20, 21, 22] for different types of ADAS, relying on
simulators, have been proposed in recent years.

Research Contribution. In this paper, we present a bio-inspired
computation-driven test generator, called Deeper, for effective and efficient
generation of failure-revealing test scenarios to test a Deep Neural Network
(DNN)-based lane-keeping system in the BeamNG driving simulator. The test
subject is BeamNG.AI, the built-in ML-driven driving agent in the BeamNG
simulator. In this study, a failure is defined in terms of episodes in which the
ego car—driven by the BeamNG.AI agent—drives partially outside the lane
w.r.t a certain tolerance threshold. The tolerance threshold determines the
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percentage of the car’s bounding box needed to be outside the lane to be
regarded as a failure.

Deeper in its current version in this paper benefits from the genetic
algorithm (GA), (µ + λ) and (µ, λ) evolution strategies (ES), and the particle
swarm optimization (PSO) to generate failure-revealing test scenarios, which
are test roads in our study. The problem is basically regarded as an
optimization problem, and in order to generate the test scenarios that are of
interest, we evaluate the quality of the test scenarios using a fitness (objective)
function that guides the search process to maximize the detected distance of
the car from the center of the lane during driving of the car on the lane. The
initial version of Deeper [20] contained a test generator based on NSGA-II. In
this paper, we extend Deeper with four additional test generators based on
GA, (µ + λ) and (µ, λ) ESs, and PSO. In the newly proposed test generators,
we leverage an initial quality population seed to boost the search process, and
also propose and develop domain-specific cross-over and mutation operations
tailored for the presentation model used for modeling the test scenarios in the
search algorithms. We rely on the presentation model used by DeepJanus [23]
based on Catmull-Rom cubic splines [24].

Empirical evaluation. In order to carry out an empirical evaluation, we
use the setup provided by the cyber-physical systems (CPS) testing
competition1 at the IEEE/ACM 14th International Workshop on Search-Based
Software Testing (SBST). Our experiments are designed to answer three main
research questions which are as follows:
RQ1: How capable are these test generators to trigger failures?
RQ2: How diverse are the generated failure-revealing test scenarios?
RQ3: How effectively and efficiently do the test generators perform? I.e.,
given a certain test budget, how many test scenarios are generated, what
proportion of the scenarios is valid, and finally what proportion of the valid
test scenarios leads to triggering failures?
We provide a comparative analysis on the performance of the proposed
bio-inspired test generators in Deeper and five counterpart tools all integrated
into the BeamNG simulator. In this regard, we compare the results of the
proposed test generators in Deeper with five other test generator tools,
Frenetic [25], GABExploit and GABExplore [22], Swat [26], and also the
earlier version of the Deeper (based on NSGA-II) [20]—all participating tools

1Available at https://github.com/se2p/tool-competition-av.

https://github.com/se2p/tool-competition-av
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in the CPS testing competition at SBST 2021. In order to do a fair
comparison, we consider the same experimental evaluation procedures as the
original CPS tool competition. Our experimental results show that first, the
newly proposed test generators in Deeper present a considerable improvement
on the previous version, second, they perform as effective and efficient test
generators that can provoke a considerable number of diverse failure-revealing
test scenarios w.r.t different target failure severity (i.e., in terms of tolerance
threshold), available test budget, and driving style constraints (e.g, setting
speed limits). For instance, in terms of the number of triggered failures within
a given test time budget and with less strict driving constraints, the (µ + λ)

ES-driven test generator in Deeper considerably outperforms other tools while
keeping the level of promoted failure diversity quite close to the counterpart
tool with the highest number of detected failures in the competition.
Meanwhile, as a distinctive feature, none of the newly proposed test
generators leaves the experiment without triggering any failures, and in
particular, they act as more reliable test generators than most of the other tools
for provoking diverse failures under a limited test budget and strict
constraints. With respect to the test effectiveness and efficiency, Deeper
(µ + λ) ES-, PSO-, and GA-driven result in high effectiveness in terms of the
ratio of the number of detected failures to the generated valid test scenarios.

The rest of this paper is organized as follows: Section 9.2 presents
background information on bio-inspired search techniques including
evolutionary and swarm intelligence techniques. Section 9.3 presents the
problem formulation and the technical details of our proposed test generators
in Deeper. Section 9.4 elaborates on the empirical evaluation, including the
research method and experiments setup. Section 9.5 discusses the results,
answers to the RQs, and the threats to the validity of the results. Section 9.6
provides an overview of the related work, and finally, Section 9.7 concludes
the paper with our findings and the potential research directions for future
work.

9.2 Background
Evolutionary and swarm intelligence algorithms are two main classes of
random search techniques, which are widely used in many different
optimization problems. Genetic algorithms (GA), genetic programming (GP),
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differential evolution (DE), and evolution strategies (ES) are the main
categories inside the family of evolutionary algorithms (EAs). Particle swarm
optimization (PSO) is one of the primary representatives of swarm
intelligence algorithms [27].

Genetic algorithms is one of the most common nature-inspired
optimization techniques. It starts with a random population of
individuals—each called a chromosome—representing a potential solution for
the problem. The objectives to be optimized in the problem are defined in an
objective function and the quality of the solutions is measured via this
function. It shows how ”well” each solution satisfies the objective. The
quality of each individual, which is also referred to as “fitness”, is a main
factor during the evolution process. At each generation, a new population is
formed based on the selected individuals from the previous generation. Three
operations are involved in forming the new generation, which are as follows:

1. Selection, which mainly identifies highly-valued individuals from the
previous generation.

2. Crossover, which breeds “child” individuals by exchanging parts of the
“parent” individuals. The child individuals (offspring) are formed by
selecting genes from each parent individual.

3. Mutation, which applies small random adjustments to the individuals.

Crossover and mutation operations are applied w.r.t user-set probabilities,
and these two operations might be used, either independently or jointly, to
create new individuals to form a new population. The resulting individuals are
added to the new population. The fitness values are calculated and stored for
each individual in this population. This process iterates each generation until
stopping criteria are met, e.g., a user-set number of generations or an allowed
time budget is exhausted [21, 27].

Evolution strategy is another common class of EAs. It is commonly used
in almost all fields of optimization problems including discrete and
continuous input spaces. ES also involves applying selection, recombination,
and mutation to a population of individuals over various generations to get
iteratively evolved solutions. Individuals in ES can also include a collection of
evolvable strategy parameters, which are utilized for adjusting and managing
the statistical features of the evolution operations. Two canonical versions of
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ES are (µ/ρ + λ) and (µ/ρ, λ) evolution strategies. If ρ = 1, we have ES
cases without recombination, which are denoted by (µ + λ) and (µ, λ) ESs.
In the case of ρ = 1, the recombination is simply making a copy of the parent.
In these notations, λ and µ indicate the size of the offspring and population
respectively. One of the main differences between GA and ES is related to the
selection step. In GA, at each iteration, the next generation is formed by
selecting highly-valued individuals, while the size of the population is kept
fixed [27]. In ES, a temporary population with the size of λ is created and the
individuals in this temporary population undergo mostly mutation at user-set
probabilities regardless of their fitness values. In (µ + λ) ES, then, both
parents and the generated offspring resulting from the temporary population
are copied to a selection pool—with size (µ+ λ)—and a new population with
size µ is formed by selecting the best individuals. While, in (µ, λ) ES, the
new generation with size µ is selected only from the offspring (with size λ).
Therefore, a convergence condition as µ < λ is required to guarantee an
optimal solution [28].

Particle swarm optimization is one of the most common representatives
of the swarm intelligence (SI) algorithms, which form a big class of
nature-inspired optimization methods alongside the evolutionary algorithms.
The SI algorithms present the concept of collective intelligence, which is
mainly defined as a collective behavior in a group of individuals that seem
intelligent. SI algorithms have been inspired from collective behavior and
self-organizing interactions between living agents in the nature, e.g., ant
colonies and honey bees [29].

PSO is an optimization method simulating the collective behavior of
certain types of living species. In PSO, cooperation is an important feature of
the system as each of the individuals changes its searching pattern based on its
own and others’ experiences. PSO starts with a swarm of random particles.
Each particle has position and velocity vectors, which are updated w.r.t the
local and global best values. The best values get updated at each iteration. In
the application of PSO, each particle (individual) represents a potential
solution and is often modeled as a vector containing n elements, in which
each element represents a variable of the problem that is being optimized.
Like GA, PSO searches for the optimal solution through updating solutions
and creating subsequent generations, though without using evolution
operators [30]. The position (the elements) and velocity of each particle are



9.3 Deeper:
A Bio-Inspired Simulation-Integrated Testing Framework 193

updated as follows:
P t+1 = P t + V t+1 (9.1)

V t+1 = wV t + c1r1(P
t
best − P t) + c2r2(G

t
best − P t) (9.2)

where P t and V t are the position and velocity of the particle at iteration t,
respectively; P t

best and Gt
best are the local best position of the particle and the

global best one up to the iteration t. The first part of (9.2) is perceived as
inertia, which indicates the tendency of the particle to keep moving in the
same direction, while the second part—which reflects a cognitive
behavior—indicates the tendency towards the local best position discovered
by the particle and the last part—which is the social knowledge—reflects the
tendency to follow the best position found so far by other particles.

Therefore, at each iteration, the position of each particle is updated based
on its velocity, and the velocity is controlled by the inertia and accelerated
stochastically towards the local and global best values. r1 and r2 are random
weights from range (0, 2] which adjust the cognitive and social acceleration.
In (9.2), w is inertia weight, which adjusts the ability of the swarm to change
the direction and makes a balance between the level of exploration and
exploitation in the search process. A lower w leads to more exploitation of the
best solutions found, while a higher value of w facilitates more exploration
around the found solutions. c1 and c2 are the acceleration hyperparameters
defining to what extent the solutions are influenced by the local best solutions
and global best solution. These hyperparameters and the inertia weight could
be static or changed dynamically over the iterations. For instance,
w = 0.72984 and c1 + c2 > 4 is a common setup for a static configuration of
these parameters [31].

9.3 Deeper:
A Bio-Inspired Simulation-Integrated Testing
Framework

This section presents the technical details of Deeper and shows how it
challenges a DNN-based lane-keeping system in a self-driving car trained and
tested in the BeamNG simulator environment [13]. The subject system is a
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Figure 9.1: A test scenario executed in the BeamNG simulator.

built-in AI driving agent encompassing a steering angle predictor (ML model)
which receives images captured by an onboard camera in the simulation
environment. Then, the test inputs (test cases) generated by Deeper are
defined as scenarios in which the car drives. Our target is to generate diverse
test scenarios triggering the misbehavior of the subject system. In this regard,
we benefit from bio-inspired search-based techniques to explore the input
space and generate highly-valued failure-revealing test scenarios.

9.3.1 Test Scenario and Failure Specification

Test scenarios are defined as combinations of roads, the environment including
e.g., the weather and illumination, and the driving path, i.e., starting and end
points and the lane to keep. Hereafter, we consider scenarios involving a single
asphalt road surrounded by green grass where the car is to drive on the right
lane, and the environment is set to a clear day with the overhead sun (See Figure
9.1). Therefore, the focus of Deeper is to generate diverse roads which trigger
failures in the system under test. In this system, failure is defined in terms of
an episode, in which the car drives partially outside the lane meaning that X%

of the car’s bounding box gets outside the lane. X is a configurable tolerance
threshold for Deeper.

In the test scenarios, the road composes two fixed-width lanes with a yellow
center line and two white lines separating the lanes from the non-drivable area.
In BeamNG, each road is mainly described by a set of points that are used by
the simulation engine to render the road. The simulation engine accomplishes
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the rendering by interpolating the points and creating a sequence of polygons
on the points—provided by the SBST competition setup 2. Notably, not every
sequence of road points results in valid roads, so each sequence of points is
also validated against some initial geometrical constraints related to the road
polygons and some other domain-specific constraints. The main constraints
are: 1) the start and end points of the road shall be different, 2) the road shall
be completely contained in the map used in the simulation, 3) the road shall
not self-intersect, and 4) the road shall not contain too sharp turns that force
the vehicle to invade the opposite lane. To assure the satisfaction of these
constraints, Deeper validates the generated roads before getting executed and
consequently, the invalid roads are not counted as failed test scenarios.

Road Representation Model: In order to convert the abstract road model
into a proper set of points that can be rendered by the simulation engine—as
candidate solutions in the test generator—we rely on the representation model
used by DeepJanus [23] based on Catmull-Rom cubic splines [24]. Therefore,
each road is represented by two sets of points, control points and sample
points. First, control points are provided as an input specification for a
candidate road. Second, sample points are calculated using the Catmull-Rom
calculation algorithm. Third, the simulation engine uses the sample points, if
they are valid, to render the road. Figure 9.2 shows the representation model
of a road in terms of control and sample points (9.2a and 9.2b) and the
corresponding rendered road in the simulation (9.2c).

CP = ⟨C1, C2, · · · , Cm⟩ , Rimin ≤ Ci ≤ Rimax (9.3)

Rimin, Rimax ∈ R (9.4)

SP = ⟨S1, S2, · · · , Sn⟩ , SP = Catmull Rom Spline(CP ) (9.5)

Rimin ≤ Si ≤ Rimax (9.6)

Rimin, Rimax ∈ R (9.7)

2https://github.com/se2p/tool-competition-av.git.

https://github.com/se2p/tool-competition-av.git
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(a) Control Points. (b) Calculated Sample Points.

(c) The corresponding road in the simulation.

Figure 9.2: The representation model of a road

9.3.2 Fitness Function

As indicated above, the focus is the generation of diverse failure-revealing test
scenarios w.r.t the intended tolerance threshold. The competition setup
elaborates the positional data and detects the episodes in which the car breaks
out of the lane bounds, i.e., out of bound episodes (OBE). It computes the
distance of the car from the center of the lane in those OBE episodes and
reports an OBE failure [32] each time that the car drives outside the lane if the
percentage of the area of the car that is outside the lane is bigger than the
intended threshold (referred to as X in Section 9.3.1).

The problem is regarded as an optimization problem, and in order to
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generate valuable test scenarios leading us to meet the target, we evaluate the
quality of the test scenarios using a fitness (objective) function. In this regard,
for each test scenario, the main objective of interest to be optimized is the
maximum detected distance of the car from the center of the lane during
driving of the car on the lane. So, more accurately the fitness function that we
want to minimize is as follows:

Fitness Function = (lane width)/2− d(center polyline, car position)

(9.8)
where lane width is the width of the lane and
d(center polyline, car position) indicates the distance of the car position
from the central polyline (center) of the lane.

9.3.3 Bio-Inspired Search Algorithms

We are interested in sampling from the space of possible test scenarios in an
effective way to generate those that lead to the emergence of failures. This
can be achieved by using an optimization algorithm to guide the search by
the fitness function. Therefore, in order to find the solutions of interest, we
use bio-inspired search-based algorithms, i.e., GA, (µ + λ) and (µ, λ) ESs,
and PSO, guided by the fitness function introduced in Section 9.3.2. These
search algorithms are mainly modeled on the basis of population evolution over
time and they usually get started with the creation of a random population of
solutions. In Deeper, we leverage an initial quality population seed to boost the
search process regarding the fact that the search is done at a fixed test budget.
Throughout the development, the impact of different initial population seeds
was investigated. For instance, starting from an initial random population seed
was not quite effective to lead the search to find the failure-revealing solutions
w.r.t high tolerance thresholds within a reasonable test budget. The quality
population seed used in the current search algorithms of Deeper is a mix of
some valid random solutions and some extracted randomly from the solutions
generated by a 5-hour execution of the first version of Deeper (based on NSGA-
II [33]) that start from an initial random population seed. For the latter part,
those solutions are extracted randomly from the the generated solutions by
Deeper NSGA-II which could cause OBEs w.r.t a tolerance threshold τ ≥ 0.5.
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Genetic Algorithm

The GA-driven test generator in Deeper starts with forming an initial
population by sampling from the quality population seed. Over various
generations, new populations of test scenarios are formed through applying
crossover and mutation operations to the best ones selected from the previous
generations.

Selection: We use tournament selection for identifying the promising test
scenarios, which have a high probability to lead to failures and safety
violations. In tournament selection, a subset of the population is selected at
random in each tournament and the best test scenario of the subset is picked.
The number of individuals participating in each tournament indicates the size
of the tournament.

Crossover: We develop a domain-specific one-point crossover operation to
create new test scenarios, i.e., new test roads, from the ones selected from the
previous generation. The proposed crossover operation performs the segment
exchange at the sets of control points, which means that a random point is
selected as the crossover point in the sets of control points in the parent roads,
then the parts of the sets beyond the crossover point are swapped between the
parents, and accordingly, two new sets of control points for two child roads
are formed. The corresponding sample points for the generated child roads are
calculated using the Catmull-Rom calculation algorithm (See Figure 9.3).

However, still, these resulting sets of points might not represent valid roads
w.r.t the geometrical constraints, so before adding these new test scenarios to
the offspring, we also check their validity and let only the resulting valid roads
be added to the offspring. If both generated child roads are valid, then both of
them will be transferred to the offspring, while if one of them is valid, we keep
the valid child and another crossover point is tried to breed the parent roads
and generate the second valid child. Likewise, if none of the child roads are
identified as valid roads, another crossover point is tried. All in all, in order to
generate two valid child roads from a crossover operation, at most five attempts
to try with different crossover points are done. If in the end, the attempts do not
lead to valid child roads, the whole process will be rolled back and the original
parents will be added to the offspring.

Mutation: The mutation operation also targets the coordinate values of the
control points. We use Polynomial Bounded mutation, a bounded mutation
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(a) Parent Road 1: Control
Points.

(b) Child Road 1: Control Points.(c) Child Road 1: Sample Points.

(d) Parent Road 2: Control
Points.

(e) Child Road 2: Control Points. (f) Child Road 2: Sample Points.

Figure 9.3: Crossover operation on two sample roads

operation for real-valued individuals which was used in NSGA-II [33]. It
features using a polynomial function for the probability distribution and a
user-set parameter, η, presenting the crowding degree of the mutation and
adjusting the diversity in the resulting mutant. A high value for η results in a
mutant resembling the original solution, while a low η leads to a more
divergent mutant from the original. This domain-specific polynomial bounded
mutation operation selects randomly a point—mutation point—in the set of
control points and mutates randomly the x or y coordinate of the selected
control point (See Figure 9.4). Accordingly, the sample points are
re-calculated for the mutated set of control points, and their validity w.r.t the
geometrical constraints are checked. In case the mutant does not represent a
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valid road, another control point is tried. The GA-driven test generator of
Deeper is configured as presented in Algorithm 13.

(a) Original road. (b) Mutated road.

Figure 9.4: Mutation operation on the road

Evolution Strategies

The ES-driven test generators in Deeper use two canonical (µ+ λ) and (µ, λ)

ES algorithms. The ES-driven test generators start with initializing a
population with µ test scenarios sampled from the population seed. The
fitness value of each test scenario is calculated through rendering them in the
simulation. Next, a temporary population with size λ is formed by the
reproduction of test scenarios from the original population. This temporary
population is used to create offspring by applying the proposed
domain-specific crossover or mutation operations (See Section 9.3.3 ) to its
individuals according to user-set crossover and mutation probabilities. In
(µ + λ) ES, then both parents and the resulting offspring are copied to a
selection pool, and a new population with size µ is created by using
tournament selection. While, in (µ, λ) ES-driven test generator, the new
population is selected only from the offspring. Algorithm 14 presents the
procedure of (µ + λ) ES-driven test generator, where µ = 70 and λ = 30.
The procedure of (µ, λ) ES test generator is almost the same as (µ + λ) ES,
and the main difference is in the selection step, where the µ highly-valued
individuals are selected only from the offspring in (µ, λ) ES. However, with
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Algorithm 13 GA-driven test generator in Deeper
1. Initialize a population of test scenarios (with size = 70) from the quality
population seed
2. Evaluate the test scenarios through rendering them in the simulation and
computing the fitness values
repeat

3. Select highly-valued scenarios using tournament selection
(Tournament size = 3)
4. Create offspring by using crossover and mutation operations

4.1. Apply the domain-specific crossover operation
(Crossover rate = 0.3)

4.2. Apply the domain-specific polynomial Bounded mutation
operation (Mutation rate = 0.7)

5. Evaluate the offspring
until reaching the end of the test budget (e.g., given time);
6. Collect the test scenarios revealing OBE failures

regard to the required convergence condition (µ < λ) in this case, then those
parameters in (µ, λ) ES test generator are configured as µ = 70 and λ = 100

(the size of the main population is fixed at both ES-driven test generators).

Particle Swarm Optimization

The PSO-driven test generator in Deeper starts with initializing a population
of particles from the quality population seed. Each test scenario is modeled as
a particle, and the set of control points represents the position vector of the
particle that is updated according to Eq. (9.1) and (9.2) over various
generations. After each updating, the corresponding sample points for the
updated set of control points are calculated and the validity of the new set of
road points is checked against the geometrical constraints. The PSO-driven
test generator is configured as presented in Algorithm 15 and based on the
following setting for the parameters, which is w = 0.8, c1 = 2.0, and
c2 = 2.0.
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Algorithm 14 (µ+ λ) ES-driven test generator in Deeper
1. Initialize a population P with µ test scenarios sampled from the quality
population seed
2. Evaluate the test scenarios in the population P through simulation and
computing the fitness values
repeat

3. Create a temporary population PT with size λ by reproduction of test
scenarios from the population P
4. Create an offspring by applying the crossover or mutation operation to
the test scenarios in the population PT (with crossover probability
CxP = 0.3 and mutation probability MuP = 0.7)

4.1. choice = Random.random(), 0 < choice < 1

4.2. If choice < CxP then
Apply the domain-specific crossover operation

else if choice < CxP +MuP

Apply the domain-specific polynomial Bounded mutation operation
5. Evaluate the offspring
6. Select µ highly-valued test scenarios using tournament selection
(Tournament size = 3) from the original population P and the offspring

until reaching the end of the test budget (e.g., given time);
7. Collect the test scenarios revealing OBE failures

9.4 Empirical Evaluation

We conduct an empirical evaluation of the proposed simulation-integrated bio-
inspired test generators in Deeper, by running experiments on an experimental
setup based on a PC with 64-bit Windows 10 Pro, Intel Core i7-8550U CPU
@ 1.80GHz, 16GB RAM, Intel UHD Graphics 620, and BeamNG.tech driving
simulator together with the software requirements for running Deeper3.

Test Subject: The system under test is BeamNG’s built-in driving agent,
BeamNG.AI. It is an autonomous agent utilizing optimization techniques to
plan the driving trajectory according to the speed limit while keeping the ego
car inside the road lane. It is equipped with a DNN-based lane-keeping

3See requirements at https://github.com/mahshidhelali/Deeper_ADAS_
Test_Generator.git

https://github.com/mahshidhelali/Deeper_ADAS_Test_Generator.git
https://github.com/mahshidhelali/Deeper_ADAS_Test_Generator.git
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Algorithm 15 PSO-driven test generator in Deeper
1. Initialize a swarm of test scenario particles (with size = 70) from the
quality population seed
2. Evaluate the particles of the swarm through simulation and computing
the fitness values
3. Select the global best particle w.r.t the fitness value (Gbest)

repeat
for each test scenario particle P in the swarm do

4. Calculate the particle’s velocity according to Eq. 9.2
5. Update particle’s position according to Eq. 9.1
6. Evaluate the particle based on the fitness function
if fitness value of P is better than the local best of P, (Pbest), then

7. Update Pbest with P

end
if fitness value of P is better than the global best, (Gbest), then

8. Update Gbest with P

end
end

until reaching the end of the test budget (e.g., given time);
9. Collect the test scenario particles revealing OBE failures

ADAS. The DNN-based lane-keeping system learns a mapping from the input
of the onboard camera in the simulated environment to the steering angle. It is
based on the DAVE-2 architecture including a normalization layer, five
convolutional layers followed by three fully connected layers [34]. This test
subject has been used in previous research and also in the SBST 2021
cyber-physical tool competition for evaluating test scenario generators
[32, 23, 35], and moreover does not require manual training, which can
mitigate the threats to the validity of the results [35].

9.4.1 Research Method

We design and implement a set of experiments to answer the research
questions:

1. RQ1: How capable are these test generators to trigger failures?
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2. RQ2: How diverse are the generated failure-revealing test scenarios?

3. RQ3: How effectively and efficiently do the test generators perform, i.e.,
given a certain test budget how many test scenarios are generated, what
proportion of the scenarios is valid, and what proportion of the valid test
scenarios leads to triggering failures?

The experiments are simulation scenarios generated by a Python test
scenario generator and executed by the simulation engine. BeamNG.AI is the
autonomous driving agent controlling the ego car in the simulation (Figure
9.5). In order to provide quantitative answers to the RQs, we use the following
quality criteria to assess the bio-inspired test scenario generators in Deeper:

• Detected Failures: The number of generated test scenarios that lead to
failures, w.r.t the given tolerance threshold.

• Failure Diversity: The dissimilarity between the test scenarios that lead
to the failures. Generating diverse failure-revealing test scenarios is of
interest, since triggering the same failures multiple times results in
wasting the test budget, e.g., computation resources. In order to
measure the failure diversity, we rely on a two-step strategy adopted by
the SBST 2021 tool competition. It extracts, first, the road segments
related to the failures, then computes the sparseness, which is
considered as the average of the maximum Levenshtein distance [36]
between those road segments.
The failure-related road segments are referred to as the parts of the road
30 meters before the OBE and 30 meters after it, and accordingly, the
sparseness is calculated as follows:

Sparseness =

∑
i∈OBEs maxj∈OBEs Lev dist(i, j)

|OBEs|
(9.9)

where Lev dist(i, j) indicates the weighted Levenshtein distance
between the road segments.

• Test generation efficiency and effectiveness: It indicates how the test
generator uses the given test budget to generate the test scenarios, in
particular how many test scenarios are generated in total, what fraction
of them are valid, and what fraction of the valid ones triggers failures.
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Figure 9.5: An overview of the experimental setup

Experiments: We design two sets of experiments as implemented in the
SBST 2021 CPS testing tool competition. In order to provide a comparative
analysis, we compare the results of the proposed test generators in Deeper
with the presented test generators in the tool competition, i.e., Frenetic [25],
GABExploit and GABExplore [22], Swat [26], and also the earlier version of
Deeper [20]. We run the test generators on the test subject based on the same
two experiment configurations as in the competition, which are shown in table
9.1. The SET1 of experiments provides a 5-hour test generation budget,
meanwhile sets the failing tolerance threshold to a high value, 0.95, and does
not consider any speed limit. This experiment configuration might lead to a
more careless style of driving. The SET2 of the experiments allocates a
shorter time budget for the test generation and considers a lower tolerance
threshold, 0.85, while imposing a speed limit of 70 km/h—promoting a more
careful driving style. To ensure a fair comparison, we run each tool the same
number of times on the same dedicated machine. We run each test generator 5
times in experiment configuration SET1 and 10 times in SET2 and report
distributions of the results.
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Table 9.1: Experiment configurations

Name
Test
Budget
(h)

Map Size
(m2)

Speed
Limit
(Km/h)

Failing
Tolerance
Threshold
(%)

SET1 (careless
driving)

5h 200× 200 None 0.95

SET2 (cautious
driving)

2h 200× 200 70 Km/h 0.85

9.5 Results and Discussion

This sections reports results corresponding to the three RQs.

9.5.1 Detected Failures (RQ1)

Figure 9.6 reports the number of triggered failures by each of the tools in
experiment configuration SET1. In this regard, (µ + λ) ES-driven test
generator in Deeper could successfully trigger at least 2X more OBEs than the
highest record—held by GABExploit—in the competition. At the same time,
Deeper (µ + λ) ES showed more consistent performance over the runs, i.e.,
with lower standard deviation, compared to GABExploit, which revealed
highly different behavior across the runs (e.g., returning over 100 OBEs in
some runs, but failed to trigger any failure in other runs [35]). PSO- and
GA-driven test generators in Deeper, in half of the cases and also on average,
triggered higher numbers of failures than the competition’s test
generators—except for GABExploit, which showed comparable results.
Moreover, the PSO- and GA-driven approaches were able to trigger the
failures in which the ego car invades the opposite lane of the road—a type of
failure that has been typically considered difficult to trigger in most of the test
generator tools [35]. Lastly, in SET1, Deeper (µ, λ) ES clearly gave a better
performance, in terms of the number of detected failures, than Deeper
NSGA-II, GABExplore, and Swat.

Similarly, Figure 9.7 presents the number of triggered failures in
experiment configuration SET2. With regard to the limited time budget, the
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speed limit of 70 km/h and the tolerance threshold 0.85, in contrast to Deeper
NSGA-II, GABExplore, GABExploit, and Swat, none of the newly proposed
test generators in Deeper left an experiment without triggering any failure or
with a very low number of failures (i.e., less than 3), which means they are
able to detect failures even within a limited test budget and strict constraints
such as setting a speed limit (See Table 9.2). It is noted that Deeper NSGA-II,
GABExplore, and Swat triggered just equal or less than 1 failure in a
considerable number of experiments done based on configuration SET2.
Therefore, all the new test generators in Deeper outperform Deeper NSGA-II,
GABExplore, and Swat w.r.t the number of triggered failures within a limited
test time and moreover the PSO-driven test generator results in a very
comparable number of detected failures to Frenetic. Additionally, in the
experiment configuration SET2, the GA-driven test generator is still able to
trigger the failures showing the invasion of the car to the opposite lane of the
road.

Figure 9.6: Number of detected failures in SET1
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Figure 9.7: Number of detected failures in SET2

9.5.2 Diversity of Failures (RQ2)

Figure 9.8 depicts the diversity of the detected failures in SET1 in terms of the
distribution of the failures’ sparseness. All the new test generators in Deeper
resulted in a considerable improvement on failure sparseness compared to the
first version, Deeper NSGA-II in the competition. Meanwhile, among the new
test generators of Deeper, the PSO- and GA-driven test generators lead to a
higher average sparseness compared to the (µ+ λ) and (µ, λ) ES approaches.
Deeper PSO, (µ + λ), and GA also show a higher sparseness than
GABExploit—both on average and in almost half of the cases. However, still
the failure diversity—in terms of the special sparseness metric defined by the
competition—promoted by the new test generators in Deeper are not as high
as Frenetic, GABExplore, and Swat. Note that GABExplore and Swat in 20%

of the experiments did not report any sparseness figure, since they just
triggered one failure in each of those experiments.

Figure 9.9 shows the distribution of the failures’ sparseness in SET2. In the
limited test budget and strict driving constraints, all the newly test generators
again show a big improvement on promoting failure sparseness in comparison
to the first version, Deeper NSGA-II. In the meantime, Deeper PSO, (µ + λ),
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Table 9.2: Triggered failures in SET2

Test
Generator Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 Exp.7 Exp.8 Exp.9

Exp.
10

Deeper
NSGA-II

0 0 0 1 1 0 0 0 3 0

Frenetic 12 8 9 11 19 10 15 20 6 23
GABExplore 0 1 1 0 1 3 0 0 3 0
GABExploit 84 18 126 38 0 11 47 0 28 5
Swat 0 0 0 0 5 1 1 2 1 2
Deeper
PSO

54 8 13 13 10 9 10 15 18 12

Deeper
(µ, λ) ES

8 4 3 5 7 7 3 5 7 9

Deeper
(µ + λ)

ES
29 5 9 4 4 7 19 3 14 5

Deeper
GA

11 7 11 15 14 9 25 9 14 20

and GA promote comparable levels of failure diversity, though more consistent,
compared to GABExploit. At the same time, GABExplore and Swat in around
70% of the experiments in SET2 did not provide any sparseness figure, since
they triggered just one or zero failure (See Table 9.2).

9.5.3 Test Effectiveness and Efficiency (RQ3)

In SBST competition, test effectiveness and efficiency were indicated by how
many test scenarios are generated and what proportion of the scenarios is
valid, given a certain test budget. They basically show how well the test
generator is able to utilize the test budget. Figures 9.10 and 9.11 report the
average number of total test scenarios, as well as the number of valid and
invalid scenarios generated by each tool in SET1 and SET2 respectively.
Generally, the new test generators in Deeper utilize the test budget more
efficiently than the competition tools and generate a higher number of test
scenarios within the given test time. In this regard, Deeper PSO results in the
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Figure 9.8: Failure diversity in terms of sparseness in SET1

highest efficiency (e.g., generates more than 650 scenarios on average within
5 hours) among all the test generators in both experimental configurations.
Regarding the number of valid test scenarios, all the Deeper test generators
along with Swat lead to an almost comparable number of valid scenarios.
However, with respect to the ratio of the valid test scenarios to the total
generated ones—called test effectiveness according to the competition
evaluation—Swat, Deeper NSGA-II, and GABExploit are the ones showing
the highest result.

To answer RQ3 on test effectiveness and efficiency, in addition to the
metrics defined and used by the competition, we defined an extra metric,
aggregated test effectiveness called effectiveness plus, which indicates what
proportion of the valid test scenarios leads to triggering failures. It is defined
as the ratio of the triggered failures to the number of valid test scenarios and is
intended to present the effectiveness of the test generators w.r.t meeting the
target—detecting failures. Figures 9.12 and 9.13 report the test effectiveness
plus for the test generators in SET1 and SET2 respectively. With respect to
the effectiveness plus, Deeper (µ + λ) ES-driven test generator results in the
highest target-based effectiveness in SET1 and then Deeper PSO and GA are
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Figure 9.9: Failure diversity in terms of sparseness in SET2

the next most effective tools. In SET2, GABExploit shows the highest
effectiveness plus, while Frenetic, Deeper PSO and GA are the next most
effective ones. It is worth noting that as shown in Figures 9.12 and 9.13 both
Deeper PSO- and GA-driven test generators keep their effectiveness in
generating failure-revealing scenarios in both experimental conditions of
SET1 and SET2, which means they are effective test generators even within a
limited test budget and strict driving constraints.

9.5.4 Threats to Validity

The evaluation of Deeper comes with a set of threats to construct, internal,
and external validity of the results.
Construct validity: The choices of the fitness function—the distance of the
car position from the center of the lane—and also the metrics used for
calculating the sparseness and indicating the diversity of the test
scenarios—weighted Levenshtein distance—in this study are domain-specific.
However, we have based our choices on the sound metrics adopted by other
research works in the literature [35, 32, 23].
Internal validity: The randomized nature of the used bio-inspired algorithms
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Figure 9.10: Test generation effectiveness and efficiency in SET1

Figure 9.11: Test generation effectiveness and efficiency in SET2
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Figure 9.12: Test generation effectiveness plus in SET1

could be a source of threats to the internal validity of the results. In this
regard, we follow the guidelines given by Arcuri and Briand [37] for the
evaluation and analysis of the results, and mitigate this threat by running the
experiments multiple times (e.g., 5 times in SET1 and 10 times in SET2),
reporting the distribution and statistics of the results (e.g., using Box plots to
show the results), using same algorithm settings, e.g., population size,
crossover and mutation probabilities, in the proposed test generators.
External validity: The choice of the test subject system is a potential threat to
the external validity of the results. However, the test system in this study is
one of the main and commonly used systems in self-driving cars, and
furthermore different ML models with various quality levels (i.e., different
accuracy levels) could be deployed within the BeamNG.AI agent, and in this
regard, the proposed test scenario generation techniques can still be used.
Nonetheless, it still offers one type of deep learning(DL)-based systems in
self-driving cars, and further studies are required to address the testing of
other DL-driven systems, meanwhile, we also keep the tool open for
extensions, for example, to support the execution of test scenarios in other
simulators.
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Figure 9.13: Test generation effectiveness plus in SET2

9.6 Related Work

Input data assurance alongside the model and integration testing [8, 38] are
considered different test levels investigated by various research works for ML
systems. Model testing could be regarded as unit testing for ML components
and integration testing focuses on the issues emerging after the integration of
the ML model into the system. Regarding access to the test subject, there are
black-box and white-box testing approaches analogous to traditional non-ML
systems. Black-box testing involves access only to the ML inputs and outputs,
while the white-box testing implies access to the internal architecture of the ML
test subject, code, hyperparameters, and training/test data. However, Riccio et
al. in [38] also introduced another type of ML testing called data-box, which
requires access to data plus everything that a black-box test requires.

Test input data that can reveal failures in the test subject is the most
common generated test artifact in the literature related to testing of
automotive AI systems [38]. Depending on the test level and the test subject,
the inputs could be images, for instance, as used in DeepTest [39], or test
scenario configurations as used in [21]. A brief overview of the most common
techniques used to generate the test data is as follows:
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Input data mutation. This type of mutation involves generating new
inputs based on the transformation of the existing input data. For instance,
DeepXplore [40] uses such input transformations to find the inputs triggering
different behaviors between similar autonomous driving DNN models, while
also striving to increase the level of neuron coverage. Moreover, in many
studies, those transformations are based on metamorphic relations. DeepTest
[39] applies different transformations to a set of seed images with the aim of
increasing neuron coverage and uses metamorphic relations to find the
erroneous behaviors of different Udacity DNN models for self-driving cars.
DeepRoad [41] uses a GAN-based metamorphic testing technique to generate
input images to test three autonomous driving Udacity DNN models. It
defines the metamorphic relations such that the driving behavior in a new
synthesized driving scene is expected to be consistent with the one in the
corresponding original scene.

Test scenario manipulation. Another major category of the methods to
generate test input data is based on the manipulation and augmentation of the
test scenarios. Most of the works in this category use search-based techniques
to go through the search space of the scenarios to find the failure-revealing or
collision-provoking test scenarios. In this regard, simulators as a form of
digital twins have played a key role to generate and capture those critical
failure-revealing test scenarios. Simulation-based testing can act as an
effective complementary solution to field testing, since exhaustive field testing
is expensive, meanwhile inefficient, and even dangerous, in some cases.
Recently, various high-fidelity simulators such as the ones using
physics-based models (e.g., SVL simulator [42], Pro-SiVIC [43], and PreScan
[44]) and the ones based on game engines (e.g., BeamNG.tech [13] and
CARLA [14]) have considerably contributed to this area by providing the
possibility of realistic simulations of functionalities in autonomous driving.

Accordingly, various testing approaches relying on the simulators have
been presented in the literature and in this regard, search-based techniques
have been frequently used to address the generation of failure-revealing test
scenarios. Abdessalem et al. utilize multi-objective search algorithms such as
NSGA-II [45] along with surrogate models to find critical test scenarios with
fewer simulations and then at less computation time for a pedestrian detection
system. In a following study [19], they use MOSA [46]—a many-objective
optimization search algorithm— along with objectives based on the branch
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coverage and some failure-based heuristics to detect undesired and
failure-revealing feature interaction scenarios for integration testing in a
self-driving car. Further, in another study [47], they leverage a combination of
multi-objective optimization algorithms (NSGA-II) and decision tree
classifier models—referred to as a learnable evolutionary algorithm—to guide
the search-based process of generating critical test scenarios and also to refine
a classification model that can characterize the failure-prone regions of the
test input space for a pedestrian detection and emergency braking system.
Haq et al. [48] use many-objective search algorithms to generate critical test
data resulting in severe mispredictions for a facial key-points detection system
in the automotive domain. Ebadi et al. [21] benefit from GA along with a
flexible data structure to model the test scenarios and a safety-based heuristic
for defining the objective function to test the pedestrian detection and
emergency braking system of the Baidu Apollo (an autonomous driving
platform) within the SVL simulator.

Regarding the impacts of the simulators in this area, Haq et al. [49] provide
a comparison between the results of testing DNN-based ADAS using online
and offline testing. Their results clearly motivate an increased focus on online
testing as it can identify faults that never would be detected in offline settings—
whereas the opposite does not appear to be likely. Our current study responds to
this call, and motivates our work on systems testing in simulated environments.
With regard to a different perspective, Borg et al. [50] discuss the consistency
between the test results obtained from running the same experiments based
on two different simulators and investigate the reproducibility of the results in
both simulators. When running the same testing campaign in PreScan and ESI
Pro-SiVIC, the authors found notable differences in the test outputs related to
revealed safety violations and the dynamics of cars and pedestrians.

9.7 Conclusion
Deeper in its extended version utilizes a set of bio-inspired algorithms,
genetic algorithm (GA), (µ + λ) and (µ, λ) evolution strategies (ES), and
particle swarm optimization (PSO), to generate failure-revealing test scenarios
for testing a DL-based lane-keeping system. The test subject is an AI agent in
BeamNG.tech’s driving simulator. The extended Deeper contains four new
bio-inspired test generators that leverage a quality seed population and
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domain-specific cross-over and mutation operations tailored for the
presentation model used for modeling the test scenarios. Failures are defined
as episodes where the ego car drives partially out of the lane w.r.t a certain
tolerance threshold. In our empirical evaluation we focused to answer three
main questions: first how many failures the test generators can detect, second
how much diversity they can promote in the failure-revealing test scenarios,
and third how effectively and efficiently they can perform, w.r.t different
target failure severity (i.e., tolerance threshold), available test budget, and
driving style constraints (e.g., speed limits). Our results show that the newly
proposed test generators in Deeper present a considerable improvement on the
previous version and they are able to act as effective and efficient test
generators that provoke a considerable number of diverse failure-revealing test
scenarios for testing an ML-driven lane-keeping system. They show
considerable effectiveness in meeting the target, i.e., detecting diverse
failures, with respect to different target failures intended and constraints
imposed. In particular, they act as more reliable test generators than most of
the counterpart tools for provoking diverse failures within a limited test
budget and with respect to strict constraints.

As some directions for future work, we plan to apply the proposed
approaches to testing further types of ML-based lane-keeping systems, i.e.,
more industrial ones and also in other state-of-the-art simulation platforms.
We also plan to extend the approaches by applying machine learning-based
techniques such as reinforcement learning or Generative Adversarial
Networks (GANs) for empowering the discovery of failure-revealing test
scenarios.
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Abstract

With the growing capabilities of autonomous vehicles, there is a higher
demand for sophisticated and pragmatic quality assurance approaches for
machine learning-enabled systems in the automotive AI context. The use of
simulation-based prototyping platforms provides the possibility for
early-stage testing, enabling inexpensive testing and the ability to capture
critical corner-case test scenarios. Simulation-based testing properly
complements conventional on-road testing. However, due to the large space of
test input parameters in these systems, the efficient generation of effective test
scenarios leading to the unveiling of failures is a challenge.

This paper presents a study on testing pedestrian detection and emergency
braking system of the Baidu Apollo autonomous driving platform within the
SVL simulator. We propose an evolutionary automated test generation
technique that generates failure-revealing scenarios for Apollo in the SVL
environment. Our approach models the input space using a generic and
flexible data structure and benefits a multi-criteria safety-based heuristic for
the objective function targeted for optimization. This paper presents the
results of our proposed test generation technique in the 2021 IEEE
Autonomous Driving AI Test Challenge. In order to demonstrate the
efficiency and effectiveness of our approach, we also report the results from a
baseline random generation technique. Our evaluation shows that the
proposed evolutionary test case generator is more effective at generating
failure-revealing test cases and provides higher diversity between the
generated failures than the random baseline.



10.1 Introduction 229

10.1 Introduction

The capabilities of autonomous vehicles have increased remarkably in recent
years. A self-driving car is arguably the most tangible example of what the
European Commission (EC) defines as an Artificial Intelligence (AI)
system [1]. From an AI perspective, the automotive industry has successfully
harnessed the disruptive potential of machine learning over the last decade.
Driven by the availability of big data and computing power, deep neural
networks (DNNs) have enabled new levels of vehicular perception. However,
performing effective quality assurance of systems that rely on DNNs requires
a paradigm shift [2]. No longer do human engineers explicitly express all
logic of the system in source code. Instead, DNNs are trained using enormous
quantities of manually annotated data and perform actions probabilistically
based on patterns observed in that data. The research community has put
substantial effort into making DNN-based systems trustworthy in the
automotive AI context, spurring major R&D projects and global safety
standardization efforts.

The concept of Trustworthy AI receives particular attention in the EC’s AI
Strategy [3]. EC defines AI systems as “software (and possibly also hardware)
systems designed by humans that, given a complex goal, act in the physical or
digital dimension by perceiving their environment through data acquisition,
interpreting the collected structured or unstructured data, reasoning on the
knowledge, or processing the information, derived from this data and deciding
the best action(s) to take to achieve the given goal” [1]. Novel ways to test AI
systems, including autonomous vehicles, are urgently needed—and the
research community has taken up the challenge [4, 5].

The use of virtual prototyping platforms for automotive software
engineering has rapidly grown in recent years [6]. The use of virtual methods
allows testing and validation at early development stages, which leads to
fewer development cycles and faster time-to-market. Simulation-based testing
is required to complement conventional on-road testing due to severe
drawbacks in the use of on-road testing [7], i.e., system testing on public
roads is costly and does not scale to the quantity of scenarios needed—in
addition, it can be dangerous to provoke a critical situation on the road.
Testing autonomous vehicles in simulators is fundamental to quality assurance
in the automotive sector—as indicated in the evolving standard ISO 21448
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Safety of the Intended Functionality [8].
Efficient and effective testing in simulated environments requires

sophisticated approaches to automatically generating test cases. Several
authors have demonstrated that search-based software test generation
(SBST) [9] is a feasible approach to generate critical test scenarios in the
automotive context [10, 11, 12, 13, 14], i.e., test scenarios that lead to the
violation of safety requirements. SBST formulates test input selection as a
search problem, where optimization algorithms attempt to systematically
identify the test input that meet goals of interest. Given a scoring function
denoting closeness to the attainment of those goals—called objective
function—optimization algorithms can sample from a large and complex set
of test inputs as guided by a chosen sampling strategy (a metaheuristic—in
our case, a genetic algorithm) [9].

In the 2021 IEEE Autonomous Driving AI Test Challenge competition,
our contribution, ScenarioGenerator, uses SBST to generate test
scenarios that cause the Baidu Apollo’s autonomous driving platform to fail.
While different scenarios can be tested using ScenarioGenerator, for
the purpose of this work, we assume a scenario with a pedestrian crossing a
street with the following high-level safety goal: “The ego car shall not crash
into pedestrians on collision course.” We refer to any crashes between an ego
car and pedestrians as a safety violation or failure.

Our work relies on a test strategy involving the following steps of
simulation-based automotive testing using SBST. We:

1. Build a scene in the virtual environment.

2. Define the parameters involved in creating a varied set of test cases.

3. Define ranges for each parameter, representing the test input space to
explore.

4. Define an objective function that measures the quality of a generated test
case, in terms of its potential to demonstrate a safety violation. In our
case, lower scores indicate more dangerous scenarios.

5. Apply a genetic algorithm to generate test cases that minimize the
objective function, leading to safety-critical scenarios.
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To accomplish this, we first import a pre-existing map into the SVL Visual
Scenario Editor and create an initial movement path for a pedestrian using
fixed waypoints—a set of coordinates (points) showing the initial path of the
pedestrian’s movements. Then, during the simulation, in the designed scene,
the ego car moves forward toward a target and a pedestrian crosses the road
from the right.

The proposed evolutionary test case generation formulates the search
space using a generic noise vector data structure and minimizes a
multi-criteria objective function that combines (1) distances between the ego
car and other road agents, (2) the distance of the journey taken by the ego car
towards the target, and (3), the number of accidents detected. Using the noise
vector, as a generic and flexible structure for representing the search space of
the problem, facilitates the use of a wide variety of search algorithms. This
paper presents the results of our proposed test case generation technique in the
2021 IEEE Autonomous Driving AI Test Challenge. To provide the
comparative results and demonstrate the efficiency and effectiveness of our
evolutionary text case solution, we also compare our results to random
generation of test scenarios.

The rest of the paper is organized as follows: Section 10.2 presents the
details of the proposed search-based test case generation approach.
Section 10.3 elaborates on the empirical evaluation, including the research
method, test scenario execution, and experiment setup. Section 10.4 discusses
results and threats to the validity of the results. Section 10.5 presents an
overview of related work, and Section 10.6 summarizes our findings in light
of the importance of simulation-based testing of autonomous vehicles and
potential research directions for future work.

10.2 Search-based Test Case Generation
This section presents how we use an evolutionary search-based technique to
generate test cases. Since each scenario takes a few seconds to execute, it is
not feasible to try all possible test scenarios. Our approach is to adopt a
generic data structure, i.e., a data vector called a “noise vector”, to represent
the test input domain for producing test scenarios. Each element of this vector
represents a parameter that defines a test scenario, e.g., waypoints,
illumination, and weather. The values of these parameters do not lie within
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the same range, so to bind the values within a specific range, the input
representation also scales the concrete real values to values within the range
[−1,+1]. The values in the noise vector are manipulated by the search
algorithm to produce test cases. In our approach, we use a genetic algorithm
to explore the search space and produce test cases that are judged as more
valuable using an objective function based on potential pedestrian collisions.

10.2.1 Scenario Creation and Manipulation

We use SVL Visual Scenario Editor as the first step to create a basic scheme
of the test scenarios that are going to be executed by SVL simulator. SVL
Visual Scenario Editor is a GUI application that can be used to create basic
scenarios specifying where agents (pedestrians, vehicles, ego vehicle, etc.) are
positioned in a map and the basic scheme of the path that they should take
through the map, which is specified in the form of waypoints.

The basic scenario is created and exported from SVL Visual Scenario
Editor to SVL simulator. This scenario is then manipulated by
ScenarioGenerator to produce new test scenarios. In
ScenarioGenerator, a derived test scenario is specified by a vector of
real numbers, the noise vector, with values between −1 and +1.

10.2.2 Scenario Specification

A test scenario is defined as a set of parameters used for test scenario
generation, i.e., modeling the test inputs, which is shown as follows:

TS = ⟨S1, S2, · · · , Sm⟩ , Rimin ≤ Si ≤ Rimax

Rimin, Rimax ∈ R
(10.1)

Where TS indicates a test scenario and Si denotes a test input parameter. The
values of the test input parameters often vary over different ranges. Rimin

and Rimax represent the upper and lower boundaries of the value range for
parameter Si.

For example, the scenario may define a variable Stod representing the time
of day. In the base scenario, the time of day may be defined as 12:00.
Rtodmin and Rtodmax are used to limit the change in this value in a generated
test scenario (e.g., values of −5 and 5 would allow the time to vary from 7:00
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to 17:00). The values of parameters representing the positions of the agents
would have different ranges—e.g., the position points in a path that the
vehicle takes may change by ±2 (meters).

10.2.3 Noise Vector

The proposed representation for a test case is a vector, which is defined as
follows:

noise vector = ⟨N1, N2, · · · , Nm⟩ , −1 ≤ Ni ≤ +1 (10.2)

where each element, Ni, corresponds to a test input parameter, Si, and the
values of components of the noise vector are scaled to values in R using a
linear scaling function to create a test scenario, TS.

Si = (Ni + 1)× (Rimax −Rimin)/2 +Rimin (10.3)

This transformation allows the use of a generic representation that can be
uniformly manipulated by the test generator without detailed knowledge of
each input parameter. All elements of the noise vector fall within the range
[−1,+1], and are scaled appropriately using Rimin and Rimax for that Si.

For example, a noise vector value of 0.5 for the entry representing the time
of day, Stod, would result in the following concrete value in a test case: Stod =

(0.5 + 1)× (17− 5)/2 + 5 = 1.5× 6 + 5 = 14, or 14:00.

10.2.4 Objective Function

In order to generate valuable test scenarios, we must identify scenarios that are
more likely to lead to safety violations. Safety violations can occur then the ego
car moves toward its target at a reasonable speed. Specifically, the objectives
to be optimized are as follows:

• The total distance1 of the ego vehicle from other non-ego traffic during
scenario execution. This objective should be minimized—we want to

1Euclidean distance

d(p1, p2) =

√
(p1x − p2x)

2 + (p1y − p2y)
2 + (p1z − p2z)

2)
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examine ego vehicle behavior in potentially dangerous scenarios.

ego agents distance =∑
agent∈agents

∑
s∈(1,...,steps)

d(ego.poss, agent.poss)
(10.4)

• The total distance of the journey. This should be maximized, as longer
journeys are preferred.

journey distance = d(ego.pos1, ego.posfinalstep) (10.5)

• acc : the number of accidents. This should also be maximized, as we
seek failures in ego vehicle behavior.

Since the aforementioned objectives do not conflict with each other, we
merge them to form a single objective function. This function is minimized—
lower scores are preferred. The objective function that we seek to minimize is
defined as:

E = ego agents distance− journey distance− 1000× acc (10.6)

We put high values on the number of accidents, as we are interested in
generating test scenarios leading to crashes.

10.2.5 Search Algorithm

It is not possible to execute every possible test scenario that can be defined by
an instance of the noise vector. Instead, we seek a systematic means to sample
from the space of possible scenarios in search of those that could lead to safety
violations. This can be done by using an optimization algorithm to sample the
space, as guided by the objective function.

The optimization algorithm used to minimize the objective function is a
Genetic Algorithm (GA). Genetic Algorithms are modeled on the evolution of
a population over time. Initially, a random population of solutions
(noise vector instances) is generated. Then, at each generation, a new
population is formed based on the best solutions resulting from the previous
generations of evolution. This population is formed by:
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• Identifying good solutions using tournament selection, where a subset of
the population is selected at random and the best member of the subset
is identified.

• Breeding “child” solutions by combining elements of “parent” solutions
through crossover, where the child solutions are formed by selecting
genes (elements) from each parent solution.

• Introducing mutations into the population by making small, random
adjustments to solutions.

Tournament selection is performed to identify parent solutions, then crossover
and mutation are performed at user-set probabilities. Either, or both, may be
applied to transform the identified solutions. Finally, the resulting solutions
are added to the new population. This process continues until a new
population is formed. The objective function is calculated for each member of
this population, and the score is stored for that solution. This process is
performed each generation, until a user-set number of generations has been
exhausted. At the end, the best solutions are returned.

In our case, we have three objectives—ego agents distance,
journey distance, and acc, which have been merged into a single formula.
Tournament selection picks the best solution among the solutions in each
tournament. The number of individuals participating in each tournament
denotes the size of the tournament. In our approach, we omit the crossover
operation, as the noise vector contains the values for the parameters of the test
scenarios in a certain order, and crossover could violate this ordering. Instead,
we apply mutation with a high probability. We use Polynomial Bounded
mutation, as proposed and implemented in NSGA-II [15]. It is a bounded
mutation operation for real-valued parameters and uses a polynomial function
for the probability distribution. It uses a parameter, eta indicating the
crowding degree of the mutation, which is used to encourage diversity in the
resulting population. A high eta yields a mutant resembling the original
solution, while a small value for eta produces a solution more divergent from
the original. The GA algorithm used for generating test scenarios is
configured as presented in Algorithm 16.
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Algorithm 16 GA for Test Scenario Generation
Initialize population with solutions from random seeds;
Evaluate the population;
repeat

1. Select offspring using Tournament Selection with replacement;
2. Mutate the resulting offspring using Polynomial Bounded mutation
operation with a certain probability (mutation rate = 0.95);
3. Evaluate the offspring using the objective function;

until meeting the stopping criteria (reaching the maximum number of
generations or other limitations specified in the test budget);

Figure 10.1: Overview of the experimental setup.

10.3 Implementation and Empirical Evaluation

We perform an empirical evaluation of the proposed test case generation
technique, ScenarioGenerator by running experiments on our
experimental setup on a desktop PC with the following specifications:

• Ubuntu version 18.04

• Intel Core i7-10700K CPU @ 3.80GHz × 16

• 32GB RAM

• GeForce RTX 2070 SUPER/PCIe/SSE2
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• SVL simulator 2021.1 (linux64) with modular testing setup (3D Ground
Truth sensor and Signal sensor publish ground truth perception data to
Apollo via CyberRT bridge)

• Baidu Apollo (r6.0.0 branch)

The experiments are simulations that are controlled by a Python scenario
runner which uses our test case generation technique for generating the
scenarios in the simulation environment. Baidu Apollo is the autonomous
driving software platform that controls the ego vehicle. It connects to the
simulator through its customized bridge and drives the ego vehicle (Figure
10.1).

We design a set of experiments to assess the efficiency and effectiveness
of the proposed test case generation for testing Apollo in the SVL simulation
environment. Pedestrian detection and proper responding is the target use case
of Apollo in our experiments. For a comparative analysis, we also report
results from a random testing technique as a baseline approach. In random
testing, the test cases are generated randomly, which means that the set of
noise vector instances are generated by setting the test input parameters to
random values within the allowed range. The target is to generate the highest
number of diverse valid test cases leading to failures, i.e., collisions between
the ego vehicle and pedestrians. We use the following quality criteria for
evaluating the proposed test case generation technique:

• Detected Failures: The number of test cases that lead to a collision.

• Failure Diversity: The dissimilarity between the generated test cases
leading to failures. We are interested in generating diverse test cases, as
triggering similar failures leads to waste of the test budget, e.g.,
computation resources. To measure failure diversity, we use the
Euclidean distance between failure-revealing noise vectors.

10.3.1 Test Scenario Execution

The testing budget (including, e.g., execution time) is a limited resource.
While not as expensive to perform as on-road testing, running test scenarios in
simulators also takes time. In our experiments, each scenario takes about 10
seconds to execute and evaluate. Therefore, for the purpose of this
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competition, we set the limit for the number of simulation executions to 200
in the Genetic Algorithm. This would correspond, for example, to 20
generations with a population size of 10.
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(a) Number of detected failures.
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distance during failure-revealing test cases.
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from ego car during failure-revealing test
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Figure 10.2: Comparisons between GA and random generation.

In ScenarioGenerator, the user-controllable parameters for test
scenario creation and manipulation are as follows:

• Initial JSON file created by SVL Visual Scenario Editor.

• Test case generation strategy, which is used for scenario generation.
Currently, Differential Evolution, Powell Optimization, Genetic
Algorithm, and random generation strategies are supported.
Meanwhile, the capability of replaying a scenario is also supported by
passing the JSON file and setting the action to replay. A specific noise
vector in combination with replay action can also be used. In this mode,
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Figure 10.3: Collision between pedestrian and the ego vehicle on a rainy night.

in addition to all the previous parameters, a specific noise vector is
given to be played.

• The ego vehicle destination.

• Acceptable range of changes in the values for the position of each
waypoint (x, z).

• Acceptable range of changes in the color of each agent (r, g, b).

• Acceptable range of changes in the weather in the simulation (e.g., rain,
fog, wetness, cloudiness, road damages).

• Acceptable range of changes in the time of day.

• Acceptable range of changes in the speed of each agent.

In a test case, the generated noise vector is used to impose changes to the
position of each waypoint, the color of each agent, the weather, the time of day,
and the speed of each agent. The base scenario defines a value for each of these
parameters. The user-controllable parameters are used to constrain the range
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of changes made by the noise vector between minimum and maximum values,
as discussed in Section 10.2.

10.4 Results and Discussion
This section presents the experimental results and assesses the proposed test
case generation compared to the random testing with regard to the quality
criteria.

Detected Failures: Figure 10.2(a) shows the number of detected failures
(test cases leading to collisions) by the GA-based test case generation and
random testing. The proposed GA-based technique trigger twice as many
failures as random testing on the same configuration and test budget, and
consequently, in this regard, works more effectively. Figure 10.3 also shows a
sample of a generated test scenario leading to a collision between the
pedestrian and the ego vehicle.

In order to investigate the characteristics of the detected failures, we can
examine the values of two of the objectives in the objective
function—ego agents distance and journey distance. These can show the
characteristics of the detected failures. Figure 10.2(b) and (c) show the
average values of the two objectives in failure-revealing test cases for both
techniques. These average values do not differ significantly between the two
approaches. This indicates that the GA reveals more failures, but the failures
revealed by the two techniques fall in similar objective ranges. However, both
distances are somewhat higher in the GA—i.e., the GA generates tests with
slightly longer journey distances and a slightly higher distance from the ego
car. These tests may be somewhat more interesting for revealing errors in the
ego car functionality, as—for example—a longer distance between the ego car
and a pedestrian should offer more time to make corrections. In future work,
we will examine failing scenarios more closely and discuss them with domain
experts.

Failure Diversity: We use pairwise Euclidean distance between the noise
vectors to show diversity between the failure-revealing test cases. Figure 10.4
and 10.5 show the average pairwise Euclidean distance for each of the failure
test cases generated by GA and random testing respectively. The average
pairwise Euclidean distance refers to the average difference between a test
case and the other test cases. Table 10.1 shows the range of average pairwise
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Figure 10.4: Diversity of failure-revealing test cases generated by the GA.

Figure 10.5: Diversity of failure-revealing test cases generated by random testing.

Euclidean distance for the failure-revealing test cases from the GA and
random testing. In this regard, the GA technique also promotes more diversity
between generated failure-revealing test cases than random testing.

10.4.1 Threats to Validity

Some of the main sources of threats to validity of the experimental results are
as follows:
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Table 10.1: Failure diversity, shown as the range in the average pairwise Euclidean
distance for test cases.

Genetic Algorithm Random
Range of Euclidean Distances 4.1− 4.7 3.2− 4.2

Internal Validity: During the experiment, we noticed that many of the
failures that are captured are not completely reproducible. In fact, the
simulation execution often does not produce identical results given identical
input parameters and configuration setup. One of the main reasons is that
Apollo does not function in a deterministic manner. We tried to mitigate the
effects of this by reporting average values from the experiments, and
conducting the experiments in a controlled manner, i.e., using the same
experimental setup and keeping the user-controllable parameters fixed
between executions. Another source of threat is the fact that as the simulator
runs a large number of test cases, the simulations become slower and less
responsive probably due to performance bottlenecks.

External Validity: We have focused on a single scenario. As we have used a
generic data structure consisting of variables scaled in a certain range, i.e., the
noise vector with variables within the range [−1, 1], we believe that the
representation model and test case generation approach could be used for
simulation-based testing of more complex scenes and other use cases.
However, the variables in the noise vector might need to be modified (e.g.,
extended) for different use cases.

10.5 Related Work

Simulators as a form of digital twins play a key role for different purposes in
testing and verification, control and monitoring, and improvement of
cyber-physical systems (CPS). For ADAS and autonomous-driving cars, this
is even more significant and there is a higher demand for high-fidelity
simulators. Simulation-based testing is one of the most effective approaches
for system-level testing of ADAS and acts as a suitable complementary
solution to on-road testing, since it provides the possibility for early stage
testing, capturing critical corner test scenarios and enabling inexpensive
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testing. Field testing of such systems is expensive, inefficient and even
dangerous, in some cases. Recently, various simulators such as those ones
using physics-based models, e.g., SVL simulator [16], PreScan [17] and
Pro-SiVIC [18] or the ones relying on game engines, e.g., BeamNG [19] and
CARLA [20], have been developed to meet the need for realistic simulation of
the functions in autonomous driving.

Accordingly, various system-level testing approaches relying on the
simulators have been proposed in the recent years. One of the common
intended purposes in those studies is generating critical test cases (scenarios)
that lead the system to fail. This is a challenging problem, due to the large
search space of input parameters in these systems. Covering all possible
simulation test scenarios is not feasible in practice. Therefore, in this regard
SBST techniques have been widely used to generate effective test simulation
scenarios for those systems. In recent studies, multi-objective search
algorithms like NSGA-II [10], many-objective algorithms like MOSA [21]
using a combination of different objectives based on branch coverage and
failure-based heuristics [22], and learnable evolutionary algorithms [23] have
been used to generate critical test cases leading to violations of safety
requirements in autonomous driving cars. Moreover, there have also been
studies focusing on the role of simulators and the type of test data. In [24] a
comparison between testing of DNN-based ADAS using real-world and
simulator-generated data is conducted and it is also showed that how on-line
and off-line testing of these systems can differ and meanwhile complement
each other. Markus et al. studied the consistency between the results obtained
from two different simulators and investigated whether the obtained results
could be mutually reproducible in both simulators [13].

10.6 Conclusion and Future Work
Efficient and effective test case generation for use in virtual environments is
essential for testing AI-based automotive systems. In this paper, we presented
a SBST approach to generate test scenarios that lead to detection of failures and
safety violations of the Baidu Apollo pedestrian emergency braking system.
We have made three primary observations. First, our results show that the
proposed GA-based test case generation is more effective than random testing,
i.e., it is more effective in generating failure revealing test cases and provides
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higher diversity between the generated test cases compared to random testing.
Second, unfortunately, many of the captured failures could not be reproduced
given the same configuration and user-controlled parameters due to the non-
deterministic nature of Apollo. Third, we see great potential in simulation-
based testing of different functions of autonomous driving systems using SVL
simulator and Baidu Apollo. In future work, we will broaden the scope of the
research into additional safety scenarios. We will also extend SBST approaches
with machine learning-based techniques (e.g., reinforcement learning) for test
case generation in system-level testing of ADAS. We are also interested in the
use of Generative Adversarial Networks (GANs) as a technique for enabling
the discovery of failure-revealing test cases.
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Abstract

Timing requirements such as constraints on response time are key
characteristics of real-time systems and violations of these requirements
might cause a total failure, particularly in hard real-time systems. Runtime
monitoring of the system properties is of great importance to check the system
status and mitigate such failures. Thus, a runtime control to preserve the
system properties could improve the robustness of the system with respect to
timing violations. Common control approaches may require a precise
analytical model of the system which is difficult to be provided at design time.
Reinforcement learning is a promising technique to provide adaptive
model-free control when the environment is stochastic, and the control
problem could be formulated as a Markov Decision Process. In this paper, we
propose an adaptive runtime control using reinforcement learning for
real-time programs based on Programmable Logic Controllers (PLCs), to
meet the response time requirements. We demonstrate through multiple
experiments that our approach could control the response time efficiently to
satisfy the timing requirements.
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11.1 Introduction

Real-time control programs implemented on Programmable Logic Controllers
(PLCs) are key parts of many time-critical industrial control systems like
those in the railway domain. The timing properties in these systems include
period of tasks, deadline, worst-case execution time or response time. From
the perspective of timing analysis, schedulability analysis methods, statistical
and formal timing analysis are common analysis techniques to provide a
response time estimation of real-time programs [1, 2, 3]. Static analysis-based
approaches, in some cases, might not be practical for complex real-time
systems. Even if they are feasible, the results might not be valid due to
unpredictable factors in runtime and the difference between analysis
environment and the realistic one [4].

Generally, there is often a strict set of timing requirements such as
deadlines and limits on response time for real-time programs in
mission-critical contexts. Correctness of functionality of real-time systems
highly depends on satisfying the timing requirements as important features of
these systems. Any serious deviation in temporal behavior of real-time
programs due to unpredicted runtime events like asynchronous
message-passing and runtime changeable priorities, particularly in complex
systems, might cause a total failure in the function of system. Thus, providing
more robustness against unpredicted varying conditions during runtime is of
great importance. In general, robustness could be defined as to which degree
the system is tolerable against incorrect inputs or unexpected stressed
conditions [5]. In a real-time program, robustness could be defined as the
ability to adapt to the varying conditions while satisfying the timing
requirements.

An adaptive runtime control in addition to the scheduling capabilities
could lead to more robustness in real-time control systems, to cope with
changing runtime conditions and unpredicted states [6]. Runtime monitoring
could check if the system adheres to the predefined requirements like timing
constraints. A control approach based on runtime monitoring could help
preserve these timing properties by applying runtime control operations.
Adaptive control strategies are considered as one of the promising solutions to
improve robustness through providing adaptation to the varying conditions in
dynamic environments. Reinforcement learning (RL) has been frequently
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applied to address the adaptive control strategy in dynamic environments, in
case the environment is stochastic, and the control problem can be formulated
as a Markov Decision Process (MDP).

In this paper, we propose a self-adaptive response time control for
real-time programs in PLC-based systems using reinforcement learning. In
our previous work [7], we presented the initial idea on how a learning-based
solution can be used to provide assurance of timing properties; here in this
work we extend that initial idea and provide an industrial evaluation of our
proposed approach. We present the evaluation experiments of the proposed
approach on sample programs inspired from our collaboration with
Bombardier Transportation in Sweden. The proposed approach formulates the
response time control problem as an MDP and uses Q-learning as a
model-free RL to provide adaptive control of response time while meeting the
timing requirement. We show the efficacy of the proposed approach through
multiple experiments based on simulating real-time programs in a PLC-based
control system. Our approach mostly keeps the programs adhering to the
response time constraints despite the occurred time deviations during the run
time. Based on the evaluation results, the proposed approach with ε-greedy,
ε = 0.5, and α = 0.1 and γ = 0.5 provided better satisfaction of the response
time threshold without any programs ending with medium or high deviation.

The rest of this paper is organized as follows; Section 11.2 discusses briefly
the motivation and background concepts of RL. The technical details of the
proposed approach are discussed in Section 11.3, while Section 11.4 presents
the evaluation experiments and results. Section 11.5 provides a review of the
related works and background techniques. Conclusions and future directions
are provided in Section 11.6.

11.2 Motivation and Background

11.2.1 Motivation

Runtime monitoring is considered as a principal means for real-time systems.
Providing an adaptive control for satisfying the timing requirements such as
constraints on response time/execution time based on runtime monitoring could
improve the robustness of the system. Model-driven control approaches may
require precise knowledge of the system and environment. The complexity
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of real-time systems, for example, intricate temporal dependencies between
real-time tasks and the dynamism of the environment are major barriers which
motivate towards model-free learning-based control. Learning-based control
can find an adaptive control policy to varying conditions regardless of having
a precise model of the environment. Reinforcement learning-based control
techniques have been used for runtime control of non-functional properties to
satisfy the performance and timing requirements in many application contexts.

Reinforcement learning [8] is a learning mechanism working based on
interaction with the environment. In RL, the agent senses the state of the
environment continuously, takes a possible action and in return, receives a
reward signal from the environment which shows the desirability and
effectiveness of the applied action. During the learning, the agent follows a
policy which maximizes the long-term received reward. The agent learns this
policy through an action selection strategy which is based on selecting an
action randomly (exploration) or selecting an action with a high utility value
(exploitation). Q-learning [8] is a model-free RL algorithm in which the agent
learns the value function of the long-term expected reward associated to the
pairs of states and actions. It is an off-policy learning as the optimal policy is
learnt independently of the action selection strategy being used by the agent.
Once the learning converges, the agent replays the learned policy.

11.2.2 PLC-Based Industrial Control Programs

Many of the real-time industrial control systems like those ones in the
transportation domain, are implemented based on IEC 61131-3 [9] which is
one of the main programming language standards for programmable
controllers. According to the proposed software structure in IEC 61131-3,
Programmable Organization Units (POU) are the building blocks of a PLC
program. They are hardware-independent and programmable in a flexible
fashion facilitating the reusability and modularization in this context.

There are mainly three unified types of POUs: program, function block
and function. A function block has its own data record to remember the state
of the information, while a function always produces the same result based on
the same input. A program may consist of zero or multiple function and
function blocks. A real-time task can execute one or multiple programs or a
set of function blocks. Timer function blocks are widely used as one of the



254 Paper F

main constituent POUs in PLC-based real-time programs. Their basic
functions involve providing their output after a preset
controllable/programmable time interval. There are three types of timers as
standard PLC timer blocks, i.e., TP (Timer Pulse), TON (Timer On-Delay)
and TOF (Timer Off-Delay). Timer TP is a pulse generator which supplies a
constant pulse on output upon detecting a rising edge at input. TON supplies
the value of input at output with a delay upon detecting a rising edge at input.
TOF has an inverse functionality to TON. Figure 11.1 shows a schema sample
from a real-time control program in Function Block Diagram format, as an
integration of multiple functions and function blocks. The number of POUs in
each control program depends on the complexity of the program. The time
delay of timer function blocks in time-critical programs are the target entities
supposed to be tuned in urgent conditions by our control approach to satisfy
the response time requirements.

11.3 Adaptive Response Time Control Using
Q-Learning

In this section, we present the technical details of the proposed runtime
response time control using reinforcement learning for real-time programs
running on PLC-based systems. This control method is incorporated into the
control scan program which is responsible for executing the building blocks
and preserving their execution orders within real-time programs. Timer
function blocks are one of the standard function blocks which are widely used
and play a key role in many time-critical industrial control programs.

The proposed control strategy is supposed to use the capability of tuning

Figure 11.1: A schema sample from a PLC-based control program
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the time delay of timer function blocks to control the response time of real-
time programs. The main objective of the proposed runtime response time
control is to meet the response time requirements in abnormal conditions when
time deviations happen, by optimally tuning the time delay parameters. The
proposed approach uses Q-Learning as a model-free RL to learn the optimal
tuning of delay parameters to preserve the program responsive within the target
response time threshold. The learning task in the proposed control approach
mainly involves the following steps:

1) Detecting the State of the system. Based on the interactive
characteristic of the reinforcement learning, the control agent/controller
observes the state of the program at discrete time steps. After each execution
cycle, the controller measures the execution time until the current time point.
The actual execution time until the end of the nth function block execution,
ETn, is classified under four classes. This is done based on the amount of
compliance with the desired/target execution time until the end of the nth

function block (e.g., from requirements/constraints), Tn, calculated as
follows:

Tn =
n∑

i=1

T f
i (11.1)

Where T f
i is the desired response time of the ith function block. The class

values representing the state of the program, s, are Required, Low, Medium
and High, as shown in Figure 11.2. They represent the acceptable state, and
the states with low, medium and high deviation, respectively. We defined the
acceptable state based on a target execution time characterized by a tolerance
region [Tn, T

′
n] where T ′

n = Tn + τ . where τ in ms is defined based on the
characteristics of the system.

2) Selecting a Control Action. We defined the control actions as tuning
operations for the time delay of the next running function block, Dn+1

f . For
providing a safety margin, we also considered a required minimum delay, Dm,
for function blocks. Then, the time delay of function blocks could not be set to
a value less than Dm. Regarding the minimum time delay, we specified a set
of control actions for tuning the time delay as follows:

Actions = {(1− fd)D
n+1
f + fdDm : fd ∈ K} (11.2)
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Figure 11.2: States of the program
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Where fd is a decreasing factor.
3) Receiving the Reward signal and updating the stored experience. After

applying the selected action, the system will go to the next state and the
controller will receive a reward signal representing the effectiveness of the
applied action. We derived a utility function based on a Normal probability
density function with µ = Tn and σ = Tn/10 which is as follows:

rn =

 1
Tn
10

√
2π

e
− 1

2 (
ETn−Tn

Tn
10

)2

, Tn < ETn

1, ETn ≤ Tn

(11.4)

The computed reward values will be in the range (0, 1].
The final objective of the learning is to find a policy π, a mapping between

the states and actions, which maximizes the expected long-term reward defined
as follows [8]:

Rn = rn+1 + γn+2 + ...+ γkrn+k+1 (11.5)

Where γ ∈ [0, 1] is a discount factor specifying the importance of future
rewards compared to the immediate reward. The long-term expected return of
selecting action a in state s, based on policy π, is specified by a utility value
Qπ(s, a) defined as follows [8]:

Qπ(s, a) = Eπ[Rn|Sn = s,An = a] (11.6)

The Q-values stored in a look-up table, Q-table, form the experience of the
agent. The controller relies on Q-values to make decision on actions. During
the learning, the Q-values are updated incrementally via temporal differencing.
The agent updates the associated Qπ(s, a) for each experienced (s, a) through
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the following rule:

Q(sn, an) = Q(sn, an) + α[rn+1 + γmax
a

Q(sn+1, a)−Q(sn, an)] (11.7)

Where α ∈ [0, 1] is the learning rate parameter. It specifies to what extent
new information impacts the q-values. The all steps of the adaptive control
procedure are described in Algorithm 17. Eventually, after multiple learning
cycles, the controller finds the optimal policy of selecting the action which
maximizes the q-value in a given state.

Learning performance. Different action selection strategies could be used
during the learning. The agent can use a random action selection method or
select greedily an action with the highest utility value according to the Q-table.
ε-greedy is an action selection strategy which allows the agent to make a trade-
off between the exploration and exploitation in the action space. In ε-greedy,
with probability ε, a random action is selected and with probability 1 − ε, an
action based on the utility value is selected. However, RL-based approaches
might generally suffer slow convergence due to the need for exploring the state
space. To alleviate this effect, we also introduced an initial control mapping in
Q-table by specifying some invalid pairs of state and action to guide the agent
not to explore specific actions in a specific state. For example, when it is in
acceptable state, no need to change the time delay parameter.

11.4 Results and Discussion

This section presents the results of the early stage evaluation experiments
addressing the performance of the proposed approach in terms of meeting the
predefined response time threshold. The main objective of the experiments is
to assess to which degree the learning-based control can work adaptively on
varying conditions and untimely behavior of function blocks in a realistic
environment.

11.4.1 Evaluation Setup

In this study, we implemented the proposed approach based on three action
selection strategies. We incorporated it into an environment which simulates
multiple real-time programs consisting of various timer function blocks. The
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Algorithm 17 Adaptive Response Time Control in PLC-based Real-time
programs
Required: S, A, ε, α, γ, ϕ (invalid state-action pairs)
Initialize Q-values, Q(s, a) = −1 if (s, a) ∈ ϕ else 0 ∀s ∈ S, ∀a ∈ A;
1. Detect the current state of the program, sn
2. Select an action using the action selection policy
(e.g., ε-greedy: select an = argmaxa∈AQ(sn, a) with probability (1- ε) or a
random action with probability ε)
3. Apply the selected action, let the system continue running and execute the
next function block
4. Detect the new state of the system
5. Compute the reward (reinforcement) signal
6. Update the Q-value by:
Q(sn, an) = Q(sn, an) + α[rn+1 + γmax

a
Q(sn+1, a)−Q(sn, an)]

7. Repeat for every observed state at the start of each function block execution

simulation environment emulates the temporal behavior of the function
blocks, their responses in realistic environments and the corresponding control
scan program for controlling the execution order of the function blocks. The
learning-based control has been integrated into the control scan thread to
provide a runtime control of the response time of real-time programs.

The proposed approach has been evaluated through two analysis
scenarios. In the first scenario, concerning response time analysis, the
performance of the learning-based control based on using three action
selection algorithms has been studied. In this scenario, the performance of the
proposed approach after 100 learning episodes (interaction with various
real-time programs) has been demonstrated. The real-time programs have
been characterized with different numbers of function blocks, predefined
response time requirements and minimum required delay time (safety
margin). The second analysis scenario, sensitivity analysis, analyzes the
sensitivity of the learning-based approach to the learning parameters. This
scenario involves investigating the effects of the learning parameters by
systematically changing the values of one parameter while keeping the other
one constant.
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11.4.2 Experiments and Results

Timing Analysis. In the timing analysis scenario, the efficacy of the
learning-based approach was evaluated in terms of adaptation to changeable
behavior while meeting the timing requirement. The simulated real-time
programs have different numbers of function blocks in the range [5, 25]. The
predefined response time requirements of function blocks and associated
safety margins in ms have been initialized with values in the range [1000,
6000] and [1000, 2000], respectively. A maximum deviation at most equal to
25 percent of the upper bound of the response time requirement was allowed
during the simulation. The default acceptable tolerance value was considered
as 500ms. Time deviations were injected into the programs randomly. Figure
11.3 shows a random pattern for injecting time deviations to function blocks
within three program samples. ε-greedy was used in the proposed approach as
an action selection strategy with ε = 0.1, ε = 0.5 and ε = 0.9. The ε-value
determines to what extent exploration and exploitation are weighted during
the action selection procedure. Figures 11.4 and 11.5 show the observed
response time plots of real-time programs after applying the learning-based
control approach based on different values of ε parameter in the action
selection strategy. Clearly, the learning-based control approach tries to adapt
well to the varying temporal behaviors of the function blocks while meeting
the response time thresholds of the programs. Results in Figures 11.4 and
11.5 describe the efficacy of the learning-based control approach based on the
number of programs ended with medium or high deviations from the timing
requirements and also the achieved average deviations.

Figure 11.3: Pattern of time deviations
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According to the results, the performance of the proposed approach with
different action selection strategies is described as follows:

1) ε-greedy with ε = 0.1 makes the controller trust most on its stored
experience, rather than exploring new actions. The learning-based approach
based on this action selection strategy, showed less efficiency in terms of
optimizing the response time and also the number of programs which ended
with medium or high deviations. In this case, the experience of the controller
has not been extended well and needs more exploration to be improved.

2) ε-greedy with ε = 0.9 provides more opportunities towards the
exploration of the action space. It provided partially better performance in
terms of optimizing the response time and preventing the programs from
exceeding the predefined thresholds with medium or high deviations
compared to ε-greedy with ε= 0.1.

3) ε-greedy with ε = 0.5 provides a trade-off between the exploration and
exploitation of the action space. It showed a better adaptation to the varying
conditions and tried to preserve the response time close to the requirement
threshold. In some cases where a sharp satisfaction of the timing requirement is
needed, e.g., airbag control systems of automotive products, this is the desired
performance which is required.

4) ε-greedy with decaying ε, is an action selection strategy during which
the ε parameter gradually decreases. It causes more exploration during the first
steps of the learning and more exploitation at the last steps. Using this strategy,
the performance controller first explores the action space, then tends towards
using the achieved experience. The learning-based approach based on ε-greedy
with decaying ε, showed the most promising results, i.e., it outperformed the
other ε-strategies both in terms of optimizing response time and preventing
medium or high deviations from the predefined timing thresholds.

Sensitivity Analysis. The behavior of the proposed learning-based control
approach could be impacted by the learning parameters including learning rate
(α) and discount factor (γ). In the sensitivity analysis, two sets of experiments
were done to study the effects of varying learning parameters. Each set of
experiments involves changing the value of one parameter while keeping the
other one constant. ε-greedy with ε = 0.5 was used as a baseline action
selection strategy during the sensitivity analysis experiments. Table 11.1
shows the performance of the learning-based approach regarding the number
of real-time programs which ended with medium or high deviations from the
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predefined response time thresholds and also the achieved average deviation
in response time, during the sensitivity analysis experiments. In Table 11.1 the
bold column represents the baseline parameter setting which was used in each
sensitivity analysis experiment. We set the learning rate to 0.1 and the
discount factor to 0.5 at the first and second experiments, respectively.

It seems that setting the learning rate to 0.1, which provides a slower
learning, leads to good performance, particularly in adaptation to varying
behaviors and preventing the real-time programs from exceeding the timing
thresholds. Increasing the learning rate towards 0.5, which aims at balancing
between learning new information and saving previous experience, causes
improvement in optimizing the response time of the programs. The proposed
approach also does not show as much performance improvement as when we
set the discount factor to values other than 0.5.

11.5 Related Work
We classify the relevant works on timing properties of real-time systems
under modeling, verifying and some approaches to preserve and satisfy the
timing requirements. Many of the verification and preservation/control
approaches are based on runtime monitoring of the properties. Real-time
Specification for Java (RTSJ) was introduced to provide a real-time scheduler
with the facility of monitoring deadlines and enforcing the execution cost
[10]. Mezzetti et al. [11] used the Ada Ravenscar Profile for preserving the
timing properties of real-time systems. Saadatmand et al. [12, 13] developed
an extra scheduler taking the temporal properties including period, execution
time and deadline of the tasks and scheduled them using the underlying
scheduler of the operating system. A model synthesis approach for timing
properties of real-time systems based on monitoring the running system was
proposed in [14]. A runtime framework for monitoring the runtime constraints
such as timing constraints and detecting the violations of timing properties
was presented in [15]. The related issues on runtime monitoring of properties
in real-time systems were discussed in [16]. Goodloe et al. [6] surveyed
different runtime monitoring techniques including off-line and on-line
techniques for distributed real-time systems, in particular hard real-time
systems. Das et al. [17] presented a tool environment which provided runtime
monitoring, animating the development and analysis of the components to
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support model-driven development of real-time embedded systems. In [18] a
runtime monitoring approach for checking the system properties in embedded
systems was presented. It used a control method to coordinate the time
predictability and memory utilization in the monitoring solution.

Table 11.1: Impacts of varying learning parameters on the performance of control
approach

LR-based performance
control using ε= 0.5,
Discount factor γ=0.5

LR-based performance
control using ε= 0.5,
Learning rate α=0.1

α= 0.1 α=0.5 α=0.9 γ=0.1 γ=0.5 γ=0.9
#RT programs with
highly exceeded
predefined threshold
(Uncontrolled
Condition)

0(10) 0(6) 0(3) 3(8) 0(10) 0(7)

Average deviation
(Uncontrolled
Condition)

-1228
(5731)

-6475
(5378)

-4395
(5455)

-1052
(5484)

-1228
(5731)

-1210
(5744)

11.6 Conclusion
Runtime monitoring of system properties remains as a principal need for
real-time systems. A runtime control approach based on runtime monitoring
could improve robustness of the system. In this paper, we present an adaptive
runtime response time control based on reinforcement learning for PLC-based
real-time programs, to satisfy the timing requirements. In this study, we
formulate the control problem as an MDP and apply Q-learning to provide a
control technique to preserve the response time according to the timing
requirements. We evaluate the efficacy of the approach through multiple
experiments. The learning-based approaches generally require multiple
learning trials to converge and stabilize the learned policy. Regarding this
issue and the characteristics of soft and hard real-time systems, it is supposed
that the proposed learning-based approach in its incremental learning fashion
could be used in soft real-time systems. While the controller with the
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converged policy, after training based on simulation environment, could be
integrated into the hard real-time systems. Furthermore, the result values (the
tuned values) of the control policy could be used as a feedback to correct the
initial model of the system. Future directions of this study will be evaluating
the efficacy of the approach in the industrial platforms, improving the training
time and adaptation precision of the approach by modeling the state space as
fuzzy state space and using cooperative agents to speed up the learning.
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Monitoring capabilities of schedulers in model-driven development of
real-time systems. In Proceedings of 2012 IEEE 17th International
Conference on Emerging Technologies & Factory Automation (ETFA
2012), pages 1–10. IEEE, 2012.

[13] Nima Asadi, Mehrdad Saadatmand, and Mikael Sjödin. Run-time
monitoring of timing constraints: A survey of methods and tools. In
the Eighth International Conference on Software Engineering Advances,
2013.

[14] Joel Huselius and Johan Andersson. Model synthesis for real-time
systems. In Ninth European Conference on Software Maintenance and
Reengineering, pages 52–60. IEEE, 2005.

[15] Farnam Jahanian. Run-time monitoring of real-time systems. Advances
in Real-Time Systems. Prentice Hall, 1995.



[16] Henrik Thane. Design for Deterministic Monitoring of Distributed
Real-Time Systems, 2000. Technical Report ISSN 1404-3041 ISRN
MDHMRTC- 23/2000-1-SE, Målardalen University.
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Abstract

Scheduling is one of the important problems within the scope of control and
management in grid and cloud-based systems. Data grid still as a primary
solution to process data-intensive tasks, deals with managing large amounts of
distributed data in multiple nodes. In this paper, a two-phase learning-based
scheduling is proposed for data-intensive tasks scheduling in cluster-based
data grids. In the proposed approach, a hierarchical multi agent system,
consisting of one global broker agent and several local agents, is applied to
scheduling procedure in the cluster-based data grids. At the first step of the
proposed approach, the global broker agent selects the cluster with the
minimum data cost based on the data communication cost measure, then an
adaptive policy based on Q-learning is used by the local agent of the selected
cluster to schedule the task to the proper node of the cluster. The impacts of
three action selection strategies have been investigated in the proposed
approach, and the performance of different versions of the approach regarding
different action selection strategies, has been evaluated under three types of
workloads with heterogeneous tasks. Experimental results show that for
dynamic workloads with varying task submission patterns, the proposed
learning-based scheduling gives better performance compared to four
common scheduling strategies, Queue Length (Shortest Queue), Access Cost,
Queue Access Cost (QAC) and HCS, which use regular combinations of
primary parameters such as, data communication cost and queue length.
Applying a learning-based strategy provides the scheduling with more
adaptability to the changing conditions in the environment.
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12.1 Introduction
Grid computing is a distributed computing system, which enables the
integrated and collaborative use of many heterogeneous resources owned by
different organizations. It is still used for computation- and data-intensive
processing. Data grid deals primarily with data-intensive applications. Many
scientific and engineering problems require to access and process large
amounts of distributed data [1, 2, 3]. In many application environments, there
is a complex of heterogeneous tasks, which are quite different in terms of their
sizes and their processing requirements. Studies show that the variability of
task sizes is an important factor, which highly affects the performance of the
scheduling [4]. Using adaptive control strategies in dynamic environments
with varying conditions may be a proper solution to deal with changing
features of the problem environment. Adaptive control is a type of control
dealing with time-varying parameters. It does not need a priori knowledge
about the uncertain parameters and involves a control method changing itself.

Learning automata is a machine-learning field considered as an adaptive
control method [5]. Generally, in learning automata, the current action is
selected based on the experiences collected from the environment. It may be
in the domain of reinforcement learning (RL), if the environment is stochastic
and can be modelled as a Markov Decision Process (MDP). In a grid system,
the state of the system can be described by a random process, Xtn , specifying
the state of the system as a function of time. The state space of the system is
known, and the scheduling of submitted tasks is conducted according to the
current state of the system. Therefore, the random process describing the
system is a Markov process and satisfies the Markov property as follows:

P
(
Xtn = j |Xtn−1 = in−1, Xtn−2 = in−2, . . .

)
= P

(
Xtn = j |Xtn−1 = in−1

)
(12.1)

The state describing process is memoryless to the visited states in the past and
to the time spent in each state. Overall, the process of task scheduling can be
considered as an MDP in which various types of RL-based control scheduling
can be applied to the system. In this paper, the issue of task scheduling in a
cluster-based data grid using an adaptive learning-based scheduling is studied.

In the past decade, there has been a plenty of well-studied works on
immediate task scheduling in grid systems. Several of the scheduling
strategies were mainly intended for computation-intensive task scheduling in
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computational grids. In addition to primary immediate task scheduling
algorithms such as Opportunistic Load Balancing (OLB), Minimum
Completion Time (MCT), Minimum Execution Time (MET), Switching
Algorithm (SA), and K-Percent Best (KPA) [6, 7, 8], several different
scheduling strategies have been also proposed such as a hybrid (GA/TS)
independent task scheduling [9] for computational grids, a coloured petri net
model for independent task scheduling in computational grids [10], a
probabilistic task scheduling algorithm based on a discrete time Markov chain
[11], an independent task scheduling based on Imperialist Competition
Algorithm for grid systems [12] and a combined meta-heuristic (PSO with
gravitational emulation local search) scheduling [13].

Regarding the ever-increasing needs for processing data-intensive tasks in
scientific communities, several types of data-aware task scheduling strategies
such as, HCS (Hierarchical Cluster Scheduling) [14], DIANA (data intensive
and network aware scheduling) [15], RBHS (rank-based hybrid
scheduling)[16], ASJS (adaptive scoring job scheduling) [17], CSS
(Combined Scheduling Strategy) [18] and various scheduling strategies using
meta-heuristic algorithms were proposed. Min-Min, Max-Min and Sufferage
[7], RASA [19], FPLTF [20], and RRTS as the combination of Round Robin
and Dynamic Time Slice (DTS) [21] are also some of the primary algorithms
for batch mode scheduling of computation-intensive tasks. Regarding the
dynamic workloads with a large complex of heterogeneous tasks, varying
submission patterns and high heterogeneity of resources, the adaptive
scheduling deserves to be used in many grid and cloud-based systems.

Reinforcement learning, as an important class of learning automata is a
sort of learning based on iterative interaction with environment and analysis of
the received reward signal. The learning is based on a type of trial-and-error
search and delayed reward. RL is quite different from supervised learning, the
most common learning in machine learning. Supervised learning is based on
learning from training examples provided by an expert supervisor. But in an
interactive environment, it is often impossible to have sufficient examples of
desired behaviours covering all the state space. In these situations, it is highly
beneficial if the learner is able to learn from its experiences. It is the exact
benefit which is gained from reinforcement learning [22].

In general, reinforcement learning can be considered as an effective way
of solving many types of optimal control problems, particularly the MDP
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ones. So, many of the optimal control solving methods are considered as
reinforcement learning solutions. However, many of them require partially
complete knowledge of the environment. Three primary classes of
reinforcement learning are Dynamic Programming (DP), Monte Carlo
methods, and Temporal-Difference (TD) learning. DP methods need an
accurate model of the environment and are computation-intensive. Monte
Carlo solutions do not require complete knowledge of the environment and
are simpler to be applied, but are not effective for step-by-step learning. The
TD methods are free of model and well suited for incremental learning. It
takes advantages of DP and Monte Carlo methods and learns directly from
experiences without need for model [22]. Q-learning is one of the well-known
algorithms in the category of reinforcement learning. It is an off-policy TD
algorithm with early convergence. The efficiency of reinforcement learning
has been shown in many dynamic application environments such as traffic
control systems [23, 24], wireless sensor networks [25] and distributed control
domains [26].

In this paper, a two-phase scheduling acting based on data awareness and
using Q-learning algorithm was proposed for data-intensive task scheduling
in a cluster-based data grid. In this study, a hierarchical multi-agent system
consisting of two levels of broker agents was applied to the task scheduling
in the cluster-based data grid. There is a global broker at the first level of the
system, which makes decisions based on the data communication cost to select
a suitable cluster. Then, at the second level the local brokers use a learning-
based strategy to select the proper processing node.

Most of the previous studies used different parameters of data access cost,
queue length or different combinations of them as primary optimization
strategies for task scheduling in data grids. In this study, along with data
communication cost, a Q-learning-based method has been used to improve the
scheduling adaptation to dynamic changes and to high variability of submitted
tasks. Exploiting an adaptive control method showed better performance than
other common scheduling strategies for dynamic workloads with different
task submission patterns.

This paper is organized as follows: In Section 12.2 a further overview of
related works is presented. Section 12.3 discusses the learning concepts used
in the proposed scheduling and presents the proposed two-phase
learning-based scheduling for cluster-based data grids. Section 12.4 describes
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the simulation environment, evaluation scenarios and experimental results.
Section 12.5 discusses performance evaluation of the proposed scheduling in
comparison with other task schedulings. Section 12.6 concludes the paper and
presents some directions for further study.

12.2 Related Work
There are a number of related works for using RL-based methods in task
scheduling in grids. In [27] a simple reinforcement learning was used for
resource selection in a grid-like environment. In the proposed method, the
learner keeps a score indicating the efficiency of the resource for each
possible resource selection action. For scheduling a new submitted task, it
selects the resource with the maximum score. Then, it receives a
reinforcement signal and calculates a reward signal for the resource that has
been selected. The simple proposed learning-based selection was applied to a
distributed resource allocation in grid systems, but there was no explicit
interaction between learners. The agents just learnt from expected response
time of jobs as a reinforcement signal.

In [28] and [29] a dynamic resource selection called DRA-FRL was
presented, which used RL in conjunction with a fuzzy rule base. A new
RL-based method, Actor Critic Fuzzy Reinforcement Learning (ACFRL-2),
was proposed to extend the application of RL to domains with large
state-action space like dynamic resource allocation in grids or computer
networks. Using RL in dynamic resource allocation is difficult, because the
size of state space will increase dramatically with the number of resource
types. In [30] a multi-agent reinforcement learning method called Ordinal
Sharing Learning (OSL) was proposed to realize a learning-based
coordination between agents with the aim of load balancing in large scale
grids. The proposed learning was based on using an ordinal information
sharing system with limited communication. In OSL, the agents make
decisions based on shared utility tables.

In [31] a table-based RL called Sarsa was used for resource allocation in
autonomic systems for a simple scenario where the state space is small. In
[32] a multi-agent learning called Fair Action Learning (FAL) was proposed
for online resource selection in a distributed sequential resource allocation
problem (DSRAP). DSRAP refers to a resource allocation problem in a
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cluster-based network. FAL is a policy gradient ascent algorithm to learn the
local decision policy. In [33] a decision-making framework of agents was
proposed. It consists of two learning problems: local resource allocation and
task routing problem (choosing a neighbor to forward a task). In [33] a
gradient ascent learning called Weighted Policy Learner (WPL) was proposed
for a distributed task allocation in various applications like grids and web
services.

In [34] an RL-based resource allocation combined with Artificial Neural
Network (ANN) was proposed. This RL-based algorithm uses an ANN
component to estimate the long-term reward through various iterations. In
[35] an RL-based task scheduling in grid called Centralized Learning
Distributed Scheduling (CLDS) was presented. It is a multi-agent scheduling
consisting of one learner agent and several scheduler agents. In this
scheduling, the scheduler agents submit their local rewards to the learner
agent. The learner agent updates its global utility table and shares the updated
utility table with the scheduler agents. The schedulers make decisions based
on the updated utility table.

In this study, a two-phase adaptive task scheduling based on data-awareness
and reinforcement learning for cluster-based data grids is proposed. It applies
a hierarchical multi-agent system consisting of two levels of broker agents to
task scheduling in a cluster-based data grid. The broker agent at the first level
of the system makes decisions based on the data communication cost to select
a suitable cluster. Then, at the second level, the local brokers use Q-learning
to select the proper processing node. The proposed scheduling uses learning in
conjunction with minimizing data communication cost.

12.3 Adaptive Scheduling Based on
Reinforcement Learning

In large-scale grid systems, due to high variability and heterogeneity of
submitted tasks and resource types, it is reasonable to have an adaptive
scheduling to easily adapt to different changing conditions. To meet these
requirements, an adaptive RL-based scheduling algorithm may be suited for
this application environment. In the following, a brief discussion on the
primary concepts of Q-learning as a model-free offline policy is presented,
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then the details of the proposed scheduling are described.

12.3.1 Q-Learning: A Model-Free Reinforcement Learning

Reinforcement learning addresses learning from the experiences. It states how
an agent can learn an optimal policy to reach its goals by sensing the
environment, taking possible actions and receiving consequent reward. In the
standard RL, the agent continually monitors the environment. It observes the
current state of the environment and selects an action based on its experiences
to be applied to the environment. The selected action may affect/change the
current state. The agent receives a reinforcement signal in a form of scalar
reward as a result of the selected action and state transition.

In order to reach a learning goal, the agent is responsible to find a policy
mapping states to actions in a way which maximizes the long-term cumulative
reward. Generally, the reinforcement learning problem is formulated as a
Markov Decision Process which is described by a tuple S, A, T , r, where S is
the state space of the environment, A is the set of possible actions, T is the
transition function which specifies the transition probability in state s by
action a, and r is the reward function specifying the immediate reward after a
transition to a new state from state s by taking action a.

In general, for learning the optimal policy, the goal of the learner is to
maximize the total reward. If the model of environment is completely known,
the optimal policy can be derived by DP method. But, in many problems, the
model environment is unknown and there is no accurate knowledge of the
environment. In these conditions, RL learns the optimal policy by
trial-and-error experiences in the state space. Q-Learning is an RL algorithm
which learns an action-value function, Q, estimating the long-term
action-value. The learned action-value simply approximates the optimal
action-value, independent of the policy being followed. All the Q-values are
stored in a Q-table. At each step of learning, the Q-value is updated by

Q (st, at)← Q (st, at) + α
[
rt+1 + γmax

a
Q (st+1, a)−Q (st, at)

]
(12.2)

where α ∈ [0, 1] is the learning rate which specifies to what extent the agent
learns new information and, γ ∈ [0, 1] is the discount factor specifying the
weight of future rewards in the action-value update and, r is the immediate
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reward [22]. Value 1 for the learning rate means that the agent considers only
the latest information while value 0 causes the agent not to learn anything. A
value of 0 for discount factor shows that the agent only considers the current
reward, while approaching value 1 will make the agent try for acquiring a long-
term high reward. The procedural form of Q-Learning is shown in Algorithm
18.

Q-learning will learn the optimal policy regardless of the policy that the
agent follows for action selection. Since it learns the optimal policy by any
policy which is followed, it is called off-policy TD learning [22]. In many
straightforward implementations of Q-learning, the learner chooses the action
with maximum Q-value at each step. To enhance the performance of learning,
an exploration strategy is usually added to the algorithm. One of the standard
ways is to introduce an additional value, epsilon, 0 < ε < 1. A value, between
0 and 1, is generated randomly, if it is less than epsilon, a random action is
chosen (exploration), otherwise the action with maximum Q-value is selected
(exploitation). Randomly choosing the next action in conjunction with giving
a higher probability to the actions that currently have higher Q-values may be
another way to improve the exploration of the learning.

Regarding the convergence of Q-learning, with a total number of transitions
on the order of Nlog(N), where N is the number of states, the agent can obtain
the near-optimal policy [36].

Algorithm 18 Q-Learning
1. Set the learning rate and discount factor parameters;
2. Initialize Q(s, a), ∀s ∈ S, ∀a ∈ A, arbitrarily;
3. While Not (end of learning) do:

3.1 Initialize s;
3.2 Repeat until reaching the terminal state:

3.2.1 Select an action among all possible actions for the current state
using the behavior policy (e.g., ε-greedy);
3.2.2 Take the action;
3.2.3 Observe the next state and receive reward;
3.2.4 Set the new Q-value by:
Q(st, at) = Q(st, at) + α[rt+1 + γmax

a
Q(st+1, a)−Q(st, at)]
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12.3.2 A Two-Phase Adaptive Scheduling Based on Data
Awareness and Reinforcement Learning

In data grids, reducing data access cost plays an important role to decrease the
tasks completion time and improve performance of scheduling. Data access
cost is the required time to access data to process tasks. The model of
computing data access cost in a cluster-based data grid is defined as follows:

If task Ti is scheduled on node Sj , the data communication cost for
accessing required data of Ti from Sj is given by [14]

DCCTi

Sj
=

∑
For all FlK in Ri

|Flk|/BjK (12.3)

where Ri is the list of required replicas/data files to process the task, FlK is
the kth data replica in Ri, |Flk| is the size of the replica, BjK is the network
bandwidth between node S and the source node of the kth replica. According
to the cluster-based topology of the data grid, the required data may be moved
to node Sj from various nodes in other clusters or within the same cluster. The
model of data communication cost can be defined as follows:

DCCTi

Sj
= Inter CTi,Sj

+ Intra CTi,Sj
(12.4)

where Inter CTi,Sj
is the data communication cost for accessing the required

replicas residing in different clusters from the origin cluster of Ti and
Intra CTi,Sj

is the data communication cost for the required replicas which
reside in the local cluster. The wide-area links between clusters are usually
much slower than local networks within a cluster. Thus, the cost of data
communication between clusters is more than the cost of data communication
within a cluster. As a result, reducing the number of data communications
between clusters for accessing distributed data is of great importance for
data-intensive task scheduling in cluster-based grid systems.

The proposed algorithm is an immediate task scheduling based on a
two-step decision process in which the first step is to select the cluster which
contains the node(s) with the lowest data communication cost. The decisive
factor of total data communication cost would be the cost of data
communication among different clusters. At the next step, to improve the
scheduling adaptation to the dynamic environment including dynamic
workloads with varying task intervals, and high heterogeneity of submitted
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tasks and resources, an adaptive reinforcement learning-based task assignment
policy using Q-learning is used to select a proper node in the selected cluster
with the minimum data communication cost.

The proposed adaptive scheduling applies a hierarchical multi-agent
system to the scheduling process. It consists of one global broker agent at the
first level and several local broker agents at the second level within the
clusters. The global broker selects the proper cluster with minimum data
communication cost, then the local broker inside the selected cluster exploits
an adaptive task assignment policy based on Q-learning for selecting the
proper processing node. Figure 12.1 shows the general structure of the
proposed scheduling. The local broker observes the current state, selects a
proper node as a possible action, then receives the reward, and updates the
Q-values.

The state of the environment is specified by a tuple (ns1, ns2, ..., nsn)

where nsn represents the number of tasks (waiting and underprocessing) at
node sn of the local cluster. The possible actions are specified by a set of
{as1, as2, ..., asn} where asn represents the action of selecting node sn. The
reward function is defined by

reward =
1

Completion time
(12.5)

where, Completion time is the required time for the completion of a
scheduled task. In the Q-learning based method, different action selection
strategies can be used. In this study, two types of action selection methods
will be used and investigated. One of them is a two-phase
exploration-exploitation strategy based on the size of the submitted task set.
The other one is ε-greedy algorithm. The completion time (response time) of
task Ti on Sj , can be computed using the following equation:

CTTi

Sj
= WTi

+DACTi

Sj
+ PTi

(12.6)

where WTi is the waiting time in the queue (queuing latency) to get the
processing service, DACTi

Sj
is the data access cost for task Ti, and PTi

is the
processing time of the data files. In the grid environment, in order to avoid
data collision, the performance isolation for data transfer through connecting
links should be guaranteed. Data access cost regarding waiting time for
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getting permission to transfer data is defined as follows:

DACTi

Sj
= DCCTi

Sj
+ Delay DTTi (12.7)

where Delay DTTi is the delay of data transfer in network links and DCCTi

Sj

is the data communication cost. Figure 12.2 shows the steps of the proposed
learning-based scheduling.

Figure 12.1: The structure of the proposed scheduling

Figure 12.2: Two-step learning-based task scheduling
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12.4 Evaluation

In this study, OptorSim [3, 37], an open source data grid simulator, was used
to simulate the proposed two-step learning-based scheduling with different
action selection strategies and to perform the experimental evaluation. The
purpose is to assess its performance compared with four baseline scheduling
strategie sunder different workload patterns and analyze the effects of learning
configuration parameters on the performance of the proposed scheduling.
OptorSim, a java-based simulation tool developed under the European data
grid project, supports simulation of data grids with different topologies,
scheduling algorithms and various replication mechanisms.

In this study, the proposed adaptive scheduling has been implemented
with three action selection strategies, and incorporated as anew scheduling
into OptorSim. The performance of the scheduling is evaluated during three
scenarios with three types of workloads, i.e., simple, random and CMS Data
Challenge 2004 [3]. In each type of workload, several task sets with different
number of tasks are submitted to the grid. The performance of the proposed
scheduling algorithms is compared based on the makespan of the submitted
task sets.

In the first step, through each scenario, the performance of the proposed
scheduling using three action selection and three replication strategies under a
specific type of workload was evaluated in terms of makespan. The first action
selection strategy is a two-phase exploration-exploitation acting based on the
size of the submitted task set. The other two action selection strategies use
ε-greedy algorithm with ε = 0.2 and ε = 0.5 respectively.

At the next step, the sensitivity of the proposed scheduling algorithm to
varying the learning parameters, i.e., learning and discount rates, is examined
and the effects of the learning parameters on the scheduling performance are
investigated.

The experiment environment including implementation details, the
properties of simulation environment, performance and sensitivity analysis
scenarios and simulation results will be described in the following Sections.
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12.4.1 Simulation Environment

In OptorSim, data grid can be implemented with different topologies. The
topology of the simulated cluster-based data grid and its structural properties
are given in Figure 12.3. It consists of 3 clusters and 27 nodes in which 13
nodes have both computing and storage elements. The processing properties
of the computing elements of all nodes are the same. The capacity of queue
in computing elements was 200. A central node (node 17) is considered as
a master storage node for storing master copies of all files. In the simulation
environment, some nodes may have neither computing nor storage elements.
They are used as network nodes. Connecting links between various nodes have
different bandwidths. The network bandwidth between clusters is 500Mb/s and
the band-width inside a cluster is 1000Mb/s for connections between nodes and
first level switches, and is 2000Mb/s for connections between switches.

During the experiments, there were 300 initial files distributed randomly
to the nodes of the grid. The size of a single file was 1GB. During the
simulation, tasks were randomly selected from 30 task types based on the
selection probability of each type. Each task type had the same probability of
being selected. Each type of tasks requires different number of files.

In order to simulate the conditions of a real application environment and
to provide high variability for submitted tasks, the distribution of task size was
considered as Pareto, a heavy-tailed distribution. In this distribution, most of
the task types had small size, i.e., required only a few number of files, and the
remaining few types were of large size.

At the first step of evaluation, three scenarios using three types of
workloads were arranged to evaluate the performance of the proposed
learning-based scheduling in comparison to four baseline scheduling
strategies. In each scenario, several sets of tasks with different numbers of
tasks from 100 to 1200 were submitted to the data grid according to a specific
submission pattern stated in the scenario.

Tasks were placed in the nodes according to the selected scheduling
immediately after their arrival. Three replacement mechanisms such as Least
Recently Used (LRU), Least Frequently Used (LFU) and Eco Model
Optimizer (Binomial) were also used to manage the storage space for storing
new replicas in the nodes during the task execution. LRU replicates the new
required replica. It deletes the oldest file if there is no enough storage space
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Number	of	clusters	=	3,	Number	of	sites	=	27
Number	of	sites	with	computing	elements	=	13
Number	of	sites	with	storage	elements	=	14
Storage	space	of	the	central	node	=	300	GB
Storage	space	of	other	nodes	=	10	GB
Bandwidth	--		WAN:	500	Mb/s,	LAN:	1000	Mb/s,	2000	Mb/s
Number	of	task	types	=	30
Number	of	initial	files	=	300
Size	of	a	single	file	=	1	GB	

Grid	and	Job	Configuration	Parameters

Figure 12.3: Topology of the simulated cluster-based data grid

for the new replica. LFU replicates the new replica while deleting the least
frequently accessed file if there is no enough space. Eco Model Optimizer
(Binomial) is a built-in replication optimizer in OptorSim which replicates the
data file if deleting the least valuable file is economically beneficial according
to binomial prediction function.

At the second step of experimental evaluation, a sensitivity analysis
scenario under CMS DC04 workload pattern regarding using LFU replication
strategy is performed to examine how the learning parameters can affect the
performance of the proposed learning-based scheduling.

12.4.2 Experimental Results

For the purpose of performance evaluation, we designed a number of
experiments to examine how the proposed scheduling can work under
different workloads and also how its performance can be affected by the
values of learning parameters, i.e., learning and discount rates. In this study,
the performance of the proposed learning-based scheduling was compared
with four baseline scheduling algorithms including Queue Length (Shortest
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Queue), Access Cost, Queue Access Cost (QAC) and HCS during three
performance analysis scenarios under different types of workloads. The
mechanism of each baseline scheduling algorithm is as follows:

Queue Length schedules the task to the node with the shortest waiting
queue. In Access Cost, the task is assigned to the node with the lowest data
communication cost for accessing the required data which is unavailable in
the processing node. Queue Access Cost uses a combination of queue length
and data communication cost to schedule tasks. HCS scheduling [14] uses a
two-step decision making mechanism based on data transfer cost and the
length of waiting queue, in order to decide the host processing node of the
submitted task.

In each performance analysis scenario, the behaviours of scheduling
algorithms are examined under a variety of task sets with different numbers of
tasks that are submitted according to a submission pattern. In the experiments
of performance analysis scenarios, three types of action selection strategy
were used in the proposed learning-based scheduling and the performance of
the proposed scheduling using different action selection strategies was
compared with baseline scheduling algorithms. The first version of the
proposed scheduling uses a two-phase exploration-exploitation strategy acting
based on the number of tasks in the submitted task set. In this strategy, the
random action selection, i.e., exploration, is used for the first half of the tasks
in the task set. Afterwards, the exploitation strategy, which selects the action
with the highest Q-value, is used for the second half of the tasks. The
ε-greedy algorithm with ε = 0.2 and ε = 0.5 was used as the action selection
strategy in the second and the third version of the proposed scheduling. The
ε-greedy algorithm is one of the standard ways to make trade-off between
exploration and exploitation in the action selection. The proposed scheduling
in the performance analysis experiments is run with the configuration of
learning rate α = 0.1, and discount rate γ = 0.5.

12.4.3 Performance Analysis

Scenario 1. In this scenario, a simple workload pattern was used to evaluate
performance of scheduling algorithms. In the simple workload, tasks are
submitted at regular intervals until all tasks have been submitted. A fixed
interval between tasks is set by parameter delay in the simulation
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environment. In this scenario, the tasks of each task set were submitted
according to a simple submission pattern.
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Figure 12.4: Scheduling algorithms’ makespan regarding the simple workload

The parameter of delay between tasks was set to 1000ms. The
performance of the proposed learning-based scheduling with different action
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selection strategies was compared with baseline scheduling algorithms in
terms of makespan of the task sets. Figure 12.4 shows the behavior of
evaluated scheduling algorithms in terms of makespan under different task
sets regarding using LRU, LFU, and Eco Model Optimizer replication
strategies respectively.

Scenario 2. In the second performance evaluation scenario, the tasks were
submitted according to a random workload pattern. Random workload uses
uniformly random values for task intervals. The random intervals are between
zero and twice the task delay parameter. In this scenario, the parameter of delay
was set to 1000ms as well. Figure 12.5 shows the makespan of the various task
sets scheduled by different scheduling algorithms while LRU, LFU and Eco
Model Optimizer were used as replication algorithms respectively.

Scenario 3. In the third performance evaluation scenario, CMSDC04
pattern was applied to task submission. This workload pattern uses a Gaussian
distribution for submitted tasks. Figure 12.6 presents the makespan of the
various task sets scheduled by the algorithms with regard to the use of LRU,
LFU, and Eco Model Optimizer as replication strategies.

12.4.4 Sensitivity Analysis

The behavior of the learning-based scheduling can be affected by varying the
learning rate (α) and discount rate (γ) as learning parameters. Two
experiments were performed to analyze the effects of learning parameters on
the performance of learning-based scheduling. The sensitivity analysis
experiments are done with the second type of the proposed learning-based
scheduling which uses ε-greedy with ε = 0.2, under CMS DC04 workload
pattern and regarding LFU replication. Each experiment involves varying the
values of one of the learning parameters, while keeping the other one
constant. The first experiment characterizes the effects of learning rate (α)

and the second one involves analyzing the effects of discount rate (γ) on the
performance of learning-based scheduling. To examine the results of varying
learning parameters, the discount rate (γ) was set to 0.5 in the first experiment
and we set the learning rate (α) to 0.1 during the second experiment. Figure
12.7 shows the impacts of varying learning parameters on makespan values of
scheduling algorithms.
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Figure 12.5: Scheduling algorithms’ makespan regarding the random workload
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Figure 12.6: Scheduling algorithms’ makespan regarding the CMS DC04 pattern
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12.5 Discussion

The makespan plots of scheduling performance during the performance
analysis experiments generally demonstrate lower values of makespan for
submitted task sets which were allocated resources by learning-based
scheduling than baseline scheduling algorithms. Consequently, the
performance analysis results show that the learning-based algorithm adapts
well to the workload pattern and status of the environment by scheduling tasks
to the proper host nodes.

In the first scenario, simple workload was used for evaluating the
performance of the proposed scheduling, using LRU, LFU, and Eco Model
Optimizer replication strategies. In this scenario, according to Figure 12.4, the
learning-based scheduling algorithms mainly scheduled the task sets with
lower makespan than other base-line algorithms. The learning-based
algorithm which uses ε-greedy with ε = 0.2 gives the lowest makespan for
task sets, specifically with increase in the size of task sets. The performance
improvement caused by all versions of the learning-based scheduling were
more considerable when Eco Model Optimizer has been used as replication
strategy. On the other hand, under the simple workload pattern, the data grid
will not face critical conditions like spikes in the number of submitted tasks.
Consequently, during the simple workload, the scheduling performance of the
algorithms are generally close to each other.

In the second scenario, a random submission pattern was used for
performance evaluation of scheduling algorithms. Using random workload,
all versions of the learning-based scheduling led to lower makespan for
different submitted task sets than base-line scheduling algorithms. The
learning-based scheduling using ε-greedy with ε = 0.22 led to the lowest
makespan for submitted task sets among all versions of the proposed
scheduling. The learning-based scheduling using ε-greedy with ε = 0.2

results in the most improvement regardless of the replication strategy used in
the experiment. In general, the learning-based scheduling primarily acts
adaptively to the changes and performs independently of replication
strategies. During the random workload, the effectiveness of the
learning-based scheduling ability to adapt to the status of the grid and to learn
the optimal policy is presented more than the simple workload. It led to a
considerable performance improvement in terms of makespan measure.
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Figure 12.7: Learning parameters’ impact on the learning-based scheduling
performance

In the third performance evaluation scenario, CMS DC04 pattern was used
as task submission patter for the task sets. CMS DC04 uses a Gaussian
distribution model for the tasks submitted over one day. During the
experiments of the third performance evaluation scenario, the learning-based
scheduling algorithms also worked better than other scheduling algorithms,
regardless of the replication strategy. The amount of performance
improvement mainly rises, specifically with increase in the size of task sets.
With the CMS DC04 workload pattern, the learning-based scheduling which
uses ε-greedy with ε = 0.2 also gave the most improvement among the other
versions of the proposed scheduling.

Generally, in all the performance analysis experiments with the learning
configuration of learning rate α = 0.1 and discount rate γ = 0.5, the
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learning-based scheduling which uses ε-greedy with ε = 0.2 led to the most
performance improvement. Using ε = 0.2 provides more exploitation than
other action selection strategies and let the learner uses its learned experiences
more.

With ε = 0.2 the local brokers act primarily based on the achieved
experience stored in the Q-table, i.e., they select actions based on the
Q-values. It implies that with a high probability, the learner selects an action
with the highest utility value among the experienced actions, rather than a
random action. Therefore, the contribution of the experience is more than
simple exploration in the action selection. This lets the learners use their
experience more than using random selection and exhibit a good play of
learned policy for task scheduling. Almost, all experiments showed that the
performance improvement of the learning-based scheduling using ε-greedy
with ε = 0.2 is more considerable when there is an increase in the size of task
sets; this is because the broker acts based on the learned policy which has
been converged during more number of learning steps. In other words, the
experience of the broker will be more accurate during the experiments with
task sets of larger size.

Simulation results of the performance analysis experiments demonstrate
that the learning-based scheduling can outperform other baseline scheduling
strategies particularly under different workloads with changing features in
dynamic environments. It can well adapt to the changing conditions given
limited knowledge of the environment. It is also presented that using an action
selection strategy with more tendency to exploitation leads to more
performance improvement in the learning-based scheduling of different
workloads.

In the sensitivity analysis experiments, the effects of varying learning
parameters, i.e., learning and discount rates on the performance of
learning-based scheduling are examined. The learning rate controls how fast
the learner learns the policy, i.e., to what extent the new utility value affects
the Q-value. The discount rate shows to what extent the learner concerns itself
with maximizing the future rewards. Setting the learning rate to a high value
causes the learner to consider only the new information and using a high value
for the discount rate makes the learner take into account the future rewards
strongly.

According to the simulation results of the sensitivity analysis in Figure
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12.7, the baseline learning configuration of learning rate α = 0.1 and discount
rate γ = 0.5 leads to the best performance in terms of makespan for the
selected learning-based scheduling. Since the problem environment is
stochastic, setting the learning rate to a low value like 0.1 and using a balance
between impacts of immediate and future rewards by setting the discount rate
to 0.5, provides the best performance for the learning-based scheduling.

12.6 Conclusion and Future Work
In grid systems, heterogeneity of submitted tasks and workload
unpredictability are some of the important barriers to task scheduling in
changing environments. Thus in order to improve the performance of task
scheduling in dynamic environments, in this study, a two-step adaptive task
scheduling based on data awareness and reinforcement learning was proposed
for cluster-based data grids. The proposed adaptive scheduling consists of one
global broker agent and several local broker agents inside the clusters. At the
first step of the proposed scheduling, the global broker selects the cluster with
minimum data communication cost. At the second step, in order to make the
scheduling adaptive to changing features of the environment, a reinforcement
learning-based task assignment policy based on Q-learning is used by the
local brokers to select a proper node in the cluster selected at the first step.
According to the experimental results, the proposed learning-based
scheduling gives better performance, in comparison with other scheduling
strategies. The performance improvement of the proposed learning-based
scheduling is more considerable with increase in the number of tasks in
varying workloads. Setting the learning rate to a rather low value and putting
a balance between the immediate and future rewards provide the best learning
configuration for the learning-based scheduling in cluster-based data grids.

Applying cooperative multi-agent systems with cooperative learning to
scheduling problems could be further directions for future study in the scope
of applying machine learning techniques to control and management
problems in grids and cloud-based environments.
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