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Abstract 

In this paper, we present a novel method for detecting UAVs using diverse parallel neural networks with re-
inference. The parallel networks are of type Convolutional Neural Networks (CNNs). We first set up a low 
threshold (2 respectively 20%) for each of the individual networks to detect a flying object. If all networks detect 
a flying object in the same area of a video frame with some overlap, we zoom into that area and redo the object 
detection and classification (re-inference step). To ensure correctness and reliability of the results from several 
parallel CNNs, we introduce total confidence Tc as a measurement. We also introduce the intersection over 
union for multiple parallel networks, IoUAll, and use that as threshold for calculating a reliable Tc. The results 
show great improvements regarding accurate detection of flying drones, reduced mispredictions of other 
objects as drones, and fast response time when drones disappear from the scene.   
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1. Introduction 

In recent years, several drones have been spotted close to government buildings, nuclear power 
plants and airports. Flying these drones nearby government properties or important infrastructures, 
whether it is malicious or not, constitute a high risk. It is therefore of importance to detect these air 
vehicles early, with high accuracy and integrity and then being able to track them successfully. Also, 
for vertical airports using drones as the main transportation vehicle, it would be of interest to detect 
incoming drones to warn eventual passengers or personnel being close to the landing spot. 

In this paper, we suggest a novel method for detecting unmanned aerial vehicles (UAVs) using parallel 
convolutional neural networks (CNNs). CNNs are a specific type of Deep Neural Networks (DNNs). 
Our test system consists of three parallel and diverse CNNs, each with different properties, to detect 
UAVs to address said issue. The system utilizes re-inference by zooming into a region of interest to 
increase the detection capability. 

The goal of using the method is twofold; 1) to reduce the mispredictions of detecting other flying 
objects as drones, and 2) to achieve higher accuracy in detecting UAVs compared to single CNN 
networks, under the assumption of real-time performance. Multiple methods for the detection of 
drones have been investigated by researchers. Investigated technologies include RADAR, acoustic, 
visual and radio frequency. Each of them has advantages as well as disadvantages depending on the 
selected scenario. Shi et al. [1] have explored the mentioned technologies and their strengths given 
the distance to the objects of interest. From this research, Shi et al. developed an anti-drone system 
consisting of an acoustic array, vision sensors, RF sensors, and an RF jamming unit. The idea was 
to use a single detector for a certain distance or environment, not to combine sensors at the same 
time. Taha and Shoufan [2] have explored several visual architectures for drone detection, again one 
by one, not combined. Other related research includes techniques for illegal drone detection [3] and 
comparisons of convolutional neural network models for anti-drone systems [4]. 
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2. Background 

When using CNNs for detection and classification of objects in the close airspace, it is important to 
detect as many flying objects as possible. If a flying object is not detected it is called a false negative 
(FN). If an object is detected but misclassified, it is called a false positive (FP). If the CNN correctly 
detects an object, it is called a true positive (TP). Figure 1 shows the relationship between the ground 
truth and predicted outputs. The numbers in the figure are for illustration purposes only. 

 
Figure 1 – The relationship between correct objects (ground truth) and predicted objects (predicted 
output). Correctly predicted outputs (333 drones and 330 birds in the figure above) are called true 

positives (TP). Incorrectly detected objects are called false positives (FP), and physical objects that 
are not detected are called false negatives (FN). 

Most research today focuses on maximizing correctly classified objects. To correctly identify and 
classify objects is a necessity for a reliable system, but for highly dependable systems, it is of equal or 
higher importance to reduce FPs and FNs [5]. We believe diverse redundant systems are needed to 
cope with the above. 

2.1 Network performance evaluation 

Precision and recall are evaluation metrics typically used for performance evaluation of CNN 
networks. The Precision, see Equation 1, measures the percentage of correctly detected objects over 
all detected objects. 

      𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 !"
!"#$"

           (1) 

Equation 2 shows the Recall, i.e., the percentage of correctly detected objects over the sum of 
correctly detected and undetected objects. 

      𝑅𝑒𝑐𝑎𝑙𝑙 = 	 !"
!"#$%

               (2) 

Other measurements exist, e.g., Mean Average Precision [13] or Balanced F-score [14], but are not 
used in this article. 

2.2 Accuracy of an object detector 

When detecting and classifying objects in images, it is of interest to locate the object’s position as 
well. Normally, a CNN detects an object near the ground truth object’s location and size. An object’s 
location and size is called a bounding box. The overlap region over a detected bounding box and the 
ground truth bounding box is called Area of Intersection (AoI), see Figure 2. 

 

No	object
detected 3 2

Drone 333 11

Bird 6 330
------------- Drone Bird
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Predicted
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True
Positives,	TP
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Figure 2 – Area of Intersection (AoI) is the overlap area between the detected object’s bounding box 

(blue box) and the true (ground truth) bounding box (green box). 

In the same way, it is possible to calculate the Area of Union (AoU), i.e., the union over the detected 
object’s and the ground truth’s bounding boxes, see Figure 3. 
 

 
Figure 3 – Area of Union (AoU) is the union between the detected object’s bounding box (the blue 

box to the upper right) and the true (ground truth) bounding box (green box to the lower left). 

AoI and AoU are then used to calculate the Intersection over Union (IoU), see Equation 3.  

       𝐼𝑜𝑈 = 	 &'(
&')

               (3) 

The IoU is commonly used to compare the accuracy of different CNN object detectors on specific 
datasets. However, to perform the comparison, the ground truth’s bounding boxes for every object in 
every image in the selected dataset must be present (typically added manually by humans). 

2.3 Accuracy of parallel diverse object detectors 

Since we use the strength of parallel and diverse CNNs to detect the same object, we need other 
measures. First, we introduce the intersection of the bonding boxes from multiple parallel diverse 
networks and call the intersection area for Region of Interest (RoI). See Figure 4. We do not use the 
ground truth in the formula. 
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Figure 4 – The intersection of the parallel networks’ bounding boxes (red, turquoise and blue in this 

example) form a Region of Interest (RoI). 

In a similar way as AoU is calculated, we calculate the union of the output from all parallel 
networks and call the area for Area of UnionAll, see Figure 5. We do not use the ground truth in the 
formula. 

 
Figure 5 - The union of parallel networks’ bounding boxes form the Area of UnionAll. 

We finally calculate the IoUAll as the Intersection over Union over multiple diverse networks’ bounding 
boxes. See Equation 4. IoUAll may be used as an accuracy measurement for parallel networks but 
comparing different systems using different parallel networks may be difficult since the ground truth 
is removed from the equations. 

      𝐼𝑜𝑈&** =	 +'(
&,-.	'0	)12'1!""

          (4) 

2.4 Total Confidence over parallel networks 

Another contribution in this paper concerns a new approach ensuring correctness and reliability of the 
results from several neural networks in parallel. We define total confidence (Tc) as a measurement, 
see Equation 5. 

𝑇# = 1 − ((1 − 𝐶$%) × (1 − 𝐶$&) × (1 − 𝐶$') × … (1 − 𝐶$())     (5) 

𝐶!" is the confidence of the first single network, i.e., the probability that the network believes it has 
detected an object at a certain location. 𝐶!#is the confidence of the second network and so forth all 
the way up to the confidence of the xth network (𝐶!$.) 

To be able to calculate a reliable 𝑇%, the IoUAll for the identified object needs to be above 0.5. 𝐶!"&$ 
may be calculated in slightly different ways depending on the networks’ architectures. The simplest 
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way is to use networks with entire predictive distributions, and not output of single point predictions.  

3. Method 
Our novel method consists of the following steps: 
 

1. Let each parallel and diverse neural network (NN) detect flying objects from a frame. If a 
single network detects an object with a certain confidence 𝐶!$, save its bounding box. (In our 
experiments we used an individual network confidence threshold value of 2% and 20% 
respectively.) 
 

2. Use the intersection-over-union over all networks’ bounding boxes (IoUAll) as an evaluation 
method to determine if the NNs detect an object at the same location. In this stage, it doesn’t 
matter what kind of object the networks detect. 

 
3. If the IoUAll exceeds a defined threshold, zoom into the region of interest (RoI, see Figure 4). 

(We use IoUAll > 0.5 as a threshold for our experiments.) 
 

4. Use the zoomed in area to feed the parallel neural networks and let them detect the object 
again (re-inference step). Note, the zoomed in area should be slightly larger than a quadrant 
box containing the whole AoUAll. The size of the re-inferenced image needs to be large 
enough such that convolution can be performed on it. (We added 50 pixels on each of the 
four sides of the AoUAll in our experiments.) 

 
5. By using each individual network’s calculated confidence on the detected object in the 

zoomed in area, calculate a new Tc for the combined architecture’s capability, and new data 
for   

a. correctly detect objects of interest (accuracy),  
b. minimize false detection of other objects as drones, and 
c. minimize undetected objects of interest 

4. Test preparation 

To test our method, careful preparations were made. The dataset used to train the three networks 
was initially created by Pawelczyk and WojTyra [6]. The original dataset includes other images than 
UAVs. To exclude unwanted objects, 8 800 images were carefully handpicked. The chosen images 
depict UAVs in the form of quadcopters in different scenarios with different backgrounds with shifting 
brightness, distortion and rotation. The images were selected to be as diverse as possible for 
improved detection capabilities. The images were split in two datasets, 8 000 for training, and 800 for 
validation purposes. Figure 6 shows some sample images used for training the network. 

 
 

Figure 6 – Samples of images used for training the network. 
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4.1 Implemented neural networks 

When we selected the three parallel and diverse networks, we did not do any deeper studies of 
network diversity such that they together perform as good as possible. The selected networks needed 
to be fast, efficient, and diverse, and be useful in real-time operations. 

The selected neural networks are of type convolutional neural networks (CNNs). Their most 
outstanding features are described below. We used transfer learning on each of the networks to learn 
our handpicked dataset. 

You Only Look Once V5s 

YOLO V5s (and all previous versions of YOLO) is unique in its way the detector divides an image into 
MxM squares and performs detection on the individual squares. If an object of interest is detected in 
a square, a bounding box and a percentage reflecting confidence of the detected object is generated. 
The grid squares with high enough confidence are compiled into a heat map that uses labeled 
bounding boxes to perform a final detection [7]. See Figure 7. 

 
 

Figure 7 – Visualization of the different detection stages in YOLO. 

MobileNet V2 

MobileNet V1 and V2 are deep neural networks made for mobile platforms. MobileNets are based on 
depthwise separable convolutions which factorize a standard convolution into a depthwise and a 
pointwise convolution (1x1 convolution). This factorization drastically reduces the computation and 
model size [8]. MobileNet V2 is based on the MobileNet V1 architecture but includes inverted residuals 
and inverted bottlenecks. Inverted residuals make the network truly unique in this implementation by 
allowing the network to connect the first convolutional layer block with the last fully connected layer. 
This allows the network to skip the layers in between thus saving computational resources by reducing 
the total amount of parameters that the network must learn and compute [9]. 

EfficientDet D1 

EfficientDet D1’s unique feature is a Bi-directional Feature Pyramid Network (BiFPN), which allows 
for simple and fast feature fusion, in combination with upscaling of the images fed into the network 
[10]. The BiFPN is based on the idea of PANets [11] which is based on the original Feature Pyramid 
Networks (FPNs) [12]. PANets take the idea of FPNs but add another bottom-up information path as 
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a compliment to the top-down information path. BiFPN removes nodes that only have a single input 
edge coming into them to save computational resources. Furthermore, an extra connection is made 
from the input node to the output node that allows for the preservation of already detected features in 
the backbone. To ensure better accuracy of the network, BiFPNs compute the same layer multiple 
times to allow for better detection of high-level features. Resolution for the D1 variant of the 
EfficientDet network is defined by the following: 

𝑅𝑖𝑛𝑝𝑢𝑡 = 640 + 1 ∗ 128 = 768	𝑏𝑦	768	𝑝𝑖𝑥𝑒𝑙𝑠 

By scaling the images in this way, the accuracy increases without increasing computational cost as 
compared to other scaling methods [10]. 

4.2 Test setup  

The test environment was set up on Ubuntu Bionic Beaver operating system. The test software was 
created in the Python programming language version 3.8. Table 1 shows the test setup used in the 
experiments. 

Table 1 – Test setup used in the experiments 

Operating system Processor Graphics Unit Memory 
Ubuntu 18.04.5 

LTS 
Intel Xeon W2123 

8 cores / 16 
threads, 3.6 GHz 

Nvidia Quadro 
P4000, 8 GB 

GDDR5 SDRAM, 
PCI-E 3.0 16x 

32 GB DDR4, 
ECC, 3200 MHz 

 

5. Results 

After training, we tested our method by using a test video with quadcopters (QCs). The test video is 
completely independent from the training and validation dataset. When we selected the video 
sequence, we were particularly interested in frames where QCs enter from outside the borders as 
well as when they disappear out from the borders a shorter time and then enter the frames again. 
These situations are tricky to handle for certain neural networks. 

5.1 Test results without re-inference 

In the first test sequence, we explore the total confidence of the three parallel networks without using 
re-inference. We set the confidence threshold for each single network to 2%. That is, if each of the 
networks believe an object is a drone with only 2% probability, we then continue to check the IoUAll 
and if above 0.5, a positive has been found (includes both true and false positives).  

In the test sequence, a drone flies from the right to the left in the video. The drone then disappears 
on the left side of the frames then enters the scene again (from left). In the end of the video the drone 
disappears on the right side of the frames and never enters again. The video sequence consists of 
359 frames of which 184 contain a drone (true positives, TP) and then the rest of the frames (175) no 
flying object (true negatives, TN). Table 2 shows the results. Note that no false negatives (FNs) were 
identified in this test sequence, thus FN and Recall are not included in the table.  

 
Table 2 – Test results without re-inference, 𝐶!"&' set to 2% each. 

Detection 
type 

Yolo V5 MobileNet V2 EfficientDet Combined Network 

TP 183 99.5% 182 98.9% 182 98.9% 184 100% 
TN 112 64% 0 0% 0 0% 172 98.2% 
FP 64 17.8% 177 49.3% 177 49.3% 3 0.84% 

Precision 74.1% 50.7% 50.7% 98.4% 
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The percentage of TPs is calculated by dividing the number of identified TP frames with the true total 
amount of TP frames. The percentage of TNs is calculated similarly, i.e., by dividing identified TNs 
with the total amount of negative frames.  

When a network believes it has detected a drone, but it is something else, e.g. a building, it becomes 
a FP. In the case above, EfficientDet mispredicts a sign to be a drone in several frames when the 
drone is outside the scene, and MobileNet mispredicts several other objects to be a drone randomly 
in the frames when the drone is outside the scene. But even when a drone is present, a network 
sometimes detects other objects. 

The percentage of FPs is calculated by dividing identified FPs with the total amount of frames in the 
video. Similarly, the percentage of FNs is the amount of identified FNs divided with the total amount 
of frames in the video. A FN is when a network doesn’t detect a flying object but indeed there is one. 
The Precision and Recall are calculated according to Equations 1 and 2. 

When calculating TP in the combined network, each network must first detect an object in the same 
area with a probability higher than 2% (𝐶!"&' are set to 2%). If the IoUAll is higher than 0.5, it is 
considered a TP. Since the combined network above detects all TPs, it must be a situation (for one 
or two frames) where one or two networks detect a FP in the same area as the other network/networks 
correctly detect a drone, such that IoUAll >0.5.  

The only way the combined network above can detect a FP is when all three networks falsely detect 
a drone in the same region such that the IoUAll >0.5. In any other case, when the IoUAll < 0.5, no FP 
is detected. In the table above, three frames are classified as FPs. These frames are the ones not 
detected among the TNs. 

Studying Table 2 there three two observations deserving attention; 1) MobileNet and EfficientDet 
seem to always detect flying objects even though there are no ones, 2) the networks altogether have 
detected false positives in the same location in three frames, and 3) the Precision is much higher for 
the combined network compared to each of the networks. Observation two is quite realistic since the 
threshold for detecting an object is set as low as 2% for each of the networks. 

The IoUAll and the total confidence (Tc) are calculated for each frame and the results are visible in 
Figure 8. As can be seen, when there is a flying drone in a frame in the video, the Tc is higher than 
0.8 and when the drone flies outside the scene (frames 94-225), the IoUAll becomes zero and the total 
confidence drastically changes (but is still high). The same thing happens in the end of the video when 
the drone flies outside the scene and never comes back again. 

 

 
 

Figure 8 – The IoUAll and calculated total confidence (Tc) for each frame in the test sequence when 
confidence threshold for each single network is set to 2%. 

Already in this first experiment (without re-inference), the strength of using multiple diverse networks 
is obvious. Figure 9 shows one example of this. EfficientDet and Yolo V5 both detect a drone with 
bounding boxes that are inaccurate (too high bounding boxes) but with high confidence (> 50%.) 
MobileNet, on the other hand, produces a much more accurate bounding box but to the expense of a 
lower confidence. Since the IoUAll is higher than 0.5, the total confidence for a positive can be trusted 
and in this frame (55 of 359 in the video sequence) Tc is 0.955. 
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Figure 9 – Bounding boxes and confidences for the three parallel networks for frame 55 in the video 
sequence. IoUAll is 0.847 and Tc is 0.955. 

The results from the first test show that the three neural networks together are much better in detecting 
non-threating objects, i.e., increased number of true negatives (TN), as well as in reducing the number 
of incorrectly detected objects (reduced number of false positives (FP)) compared to each of the single 
network. The accuracy, however, did not increase (0.5% increase is negligible.)  

In the second test, we changed 𝐶!$ from 2% to 20% for each network (at the same time, not 
separately.) The results are shown in Table 3. 
 

Table 3 - Test results without re-inference, 𝐶!"&' set to 20% each. 

Detection 
type 

Yolo V5 MobileNet V2 EfficientDet Combined Network 

TP 183 99.5% 170 92.4% 184 100% 184 100% 
TN 167 95.4% 167 95.4% 0 0% 175 100% 
FP 9 2.5% 4 1.1% 130 36.2% 0 0% 
FN 0 0% 7 1.9% 0 0% 0 0% 

Precision 95.3% 97.9% 58.6% 100% 
Recall 100% 96.0% 100% 100% 

 

Figure 10 shows the IoUAll and the Tc for each frame in the video. 

 
 

Figure 10 – The IoUAll and the total confidence (Tc) for each frame in the test sequence when 
confidence threshold for each single network was set to 20%. 

The results show a marginal increase in accuracy with increased 𝐶!$ from 2 to 20% but the outcome 
indicates that by raising the confidence threshold of the networks, it is possible to faster detect a TN 
while reducing FP detections. In Figure 10 this can be seen when the Tc drops from a high level to 
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zero, which it does much steeper than it did in Figure 8, with Cn1-3 set to 2%. (It is a reduction from 4 
to 1 frame when dropping from higher than 80% confidence to zero.) The Precision and Recall are 
both 100% for the combined network. 

5.2 Test results with re-inference 

In the following test sequence, we explore re-inference by first detecting a flying object in one frame. 
Then if the IoUAll > 0.5, we zoom into the area of interest (AoI) and let the CNNs detect if it is a drone 
in the zoomed in area (with individual network confidences as response). 

Figure 11 shows the detected flying object from all three parallel networks in frame 75. The confidence 
for each network detecting the flying object is higher than 20% (which is our threshold value for the 
individual networks). The IoUAll is 0.837 which is higher than 0.5. Therefore, we zoom into the AoI and 
let the parallel neural networks detect drones in that zoomed in area (re-inference step). Without 
zooming into the AoI, the Tc is 96.4% for detecting a flying object. With re-inference using the AoI as 
the focus point, the total confidence for detecting a drone increases to 99.8% (see below). 

 
 

Figure 11 – The three parallel networks have detected a flying object in frame 75. 

Figure 12 shows the bounding box for the MobileNet V2 network which has identified a drone within 
the zoomed in area. The confidence for MobileNet to detect it as a drone in the zoomed in area can 
be seen in Figure 11 (0.942).  
 

 
 

Figure 12 – The MobileNet V2 network identifies a drone in the zoomed in area (AoU plus additional 
pixels). It identifies the drone with a confidence of 0.942. 
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By using the AoU plus some additional pixels on each side, a new image is created for the three 
neural networks to detect objects in. With this method, the confidence for detecting drones increases. 
Table 4 shows the re-inference confidence for each individual network, i.e., their probability that they 
have detected a drone in the zoomed in area in frame 75 in the video sequence. 
 

Table 4 – re-inference confidence for the individual neural networks. 

 Yolo V5 MobileNet V2 EfficientDet 
Re-inference confidence for 
the zoomed in area in frame 

75 

74% 94.2% 88.8% 

 

By using Equation 5, the total re-inference confidence for frame 75 is calculated to 99.8%.  

𝑇#,*+,-$.+*+$#+ = 1 − *(1 − 0.74) × (1 − 0.942) × (1 − 0.888)2 = 99.8% 

From the test results for frames 1 – 93, the Tc,re-inference never falls below 99%. 

Since the above re-inference method requires each of the three networks to detect objects twice per 
frame, we experimented with another approach using re-inference with reduced computational 
performance. We calculated a new Tc based on Equation (6). 

 
𝑇#,*+,-$.+*+$#+,$+/ = 1 − (*1 − 𝐶$%,0*-12 × *1 − 𝐶$&,0*-12 × *1 − 𝐶$',0*-12 × *1 − 𝐶$(,*+,-$.+*+$#+2)    (6) 

Cn1-3,orig are the original confidences for each individual network detecting a drone in a frame. 
𝐶!$,)*&+!,*)*!%* is the confidence for the best network of the three (x = 1, 2 or 3) of detecting a drone 
in the zoomed in area (re-inference step). The same rules apply as previous, i.e., each network’s 
confidence must be higher than a certain threshold (20% in this test) and the IoUAll must be higher 
than 0.5. If that applies, only the network with best capability to detect drones in the zoomed in area 
is used in the re-inference step. The new confidence is then calculated for that network and this 
confidence is used in the calculations for the new total confidence according to Equation 6. Figure 13 
shows the results for all frames in the video sequence using re-inference with only one network. In 
this case MobileNet V2. The figure shows each individual network’s confidence in the original frame, 
the IoUAll and the Tc before re-inference, and the new total confidence after re-inference using 
Equation 6 for all frames in the video sequence. 

 

 
 

Figure 13 – Effects of using re-inference with one network only (MobileNet V2). 
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Table 5 shows the average total confidence using re-inference with only one network at a time. The 
average confidence is calculated on frames 1-93 in the video sequence. 

 
Table 5 – Average re-inference confidence for detecting a drone using one network only in the re-

inference step. 

Network used in the re-
inference step 

Yolo V5s MobileNet V2 EfficientDet 

Average re-inference 
confidence using Equation 

6 for frames 1-93 
98.41% 99.50% 99.33% 

 

The results from both methods of using re-inference (all three networks versus only one involved in 
the re-inference step) show improvements in total confidence and significant improvements compared 
to single network confidence for all frames. 

6. Discussion 

In this paper we introduced two new measurements to be used when multiple parallel neural networks 
work together to identify the same objects. The first one is the IoU over multiple diverse neural 
networks’ bounding boxes, IoUAll, see Equation 4. The formula doesn’t need the ground truth bounding 
boxes which is great but on the other hand it is harder to compare different constellations of diverse 
neural networks. The second measurement is the total confidence over multiple networks, Tc, see 
Equation 5. To be able to calculate a reliable Tc, the threshold for IoUAll needs to be 0.5 for three 
parallel networks. If more than three parallel networks are used, and if they are very dissimilar in the 
way they detect their objects and create their bounding boxes, the threshold for IoUAll may be set 
lower than 50% to be useful. We did not experiment with more than three parallel networks. 

When we selected the three parallel and diverse convolutional neural networks (CNNs), we had to set 
single network accuracy aside in favor of performance. The selected networks needed to be fast, 
efficient, and diverse, and be useful in real-time operations. The last requirement forced us to select 
between few available CNNs. We did indeed investigate the different architectures of the networks 
but did not do any deeper study of which combination should be the best. For the purpose to validate 
our method, the three selected networks (MobileNet V2, EfficientDet, and YOLO V5s) did perform 
very well together. In some experiments, two of them produced less accurate bounding boxes but did 
detect the object of interest with high confidence, and the third network did the opposite, i.e., produced 
a more accurate bounding boxe but with lower confidence. 

The test videos did not include simultaneous multiple objects of interest. If this would be the case, 
other neural networks and detection methods should be further investigated. The re-inference step 
would also be more complicated but still possible (frames may be buffered and reused for each object 
of interest). Although, the performance requirements would increase. Thus, the method of using only 
one network for the re-inference step would make more sense than using all three networks. 

To further enhance the tracking of flying objects of interest, detection history can be used to calculate 
moving trajectories. We did not explore detection history in this paper. 

7. Conclusion 
In this paper we have introduced a novel method for detecting drones. The method relies on multiple 
diverse convolutional neural networks (CNNs) that together identifies objects of interest. We also 
introduced the Intersection over Union over multiple networks’ bounding boxes, IoUAll, and the total 
confidence, Tc, over multiple networks as a measurement for the confidence in detecting the same 
object at the same location in a frame. By implementing diverse redundant CNNs, mispredictions 
during tests were heavily reduced compared to individual outputs from each single CNN. By using 
re-inference, average confidence over all frames in a video increased drastically. The detection time 
of objects of interest moving out from the scene and then back again was also improved. Finally, the 
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implemented re-inference was performed with two different algorithms. The first one used all parallel 
networks to recalculate the confidence of detecting an object of interest using a zoomed in area over 
the region of interest. The second algorithm used only one of the CNNs to detect an object of interest 
in a zoomed in area, and then combined the new confidence data with the previously detected Tc 
from all networks. 
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