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Abstract—Recently, deep neural networks (DNNs) have been
deployed in safety-critical systems such as autonomous vehicles
and medical devices. Shortly after that, the vulnerability of DNNs
were revealed by stealthy adversarial examples where crafted
inputs—by adding tiny perturbations to original inputs—can
lead a DNN to generate misclassification outputs. To improve
the robustness of DNNs, some algorithmic-based countermeasures
against adversarial examples have been introduced thereafter.

In this paper, we propose a new type of stealthy attack on
protected DNNs to circumvent the algorithmic defenses: via smart
bit flipping in DNN weights, we can reserve the classification
accuracy for clean inputs but misclassify crafted inputs even with
algorithmic countermeasures. To fool protected DNNs in a stealthy
way, we introduce a novel method to efficiently find their most
vulnerable weights and flip those bits in hardware. Experimental
results show that we can successfully apply our stealthy attack
against state-of-the-art algorithmic-protected DNNs.

I. INTRODUCTION

In the past few years, DNNs have achieved an amazing
success in many areas, especially in computer vision and speech
recognition. With respect to their great performance and au-
tonomous nature, DNNs have been recently deployed in critical
systems such as personal identity recognition systems, self-
driving cars, aircraft control and medical devices [1]. Therefore,
it is very important to study the vulnerability and safeguard of
such DNN-based systems under various attacks.

Recently, DNNs were found vulnerable to adversarial exam-
ple attacks [2]–[9], which fool DNNs to misclassify crafted
inputs with imperceptible perturbations (shown in Figure 1(a)).
Such attacks are stealthy and hard to notice for a user who
only has access to original clean inputs [9]. Thus, they are
more harmful and have raised serious concerns.

To improve the robustness of DNN models, various algorith-
mic defenses have been introduced thereafter [10]. The state-
of-the-art adversarial defenses train the DNNs using both clean
and adversarial examples [11]–[14]. As a result, when con-
fronted with adversarial examples, such trained DNN models
would behave more robust (shown in Figure 1(b)).

In this paper, we introduce a new “stealthy bit-flip attack”
against algorithmic-protected DNNs to circumvent algorithmic
countermeasures. This is based on our observation that flipping
the bits of DNN hardware parameters—i.e., DNN weights
in this paper—can cause the robustness and accuracy of a
DNN changing in different ways. Therefore, we propose an
adversarial perturbation attack on DNN weights such that the
robustness of a DNN has a significant drop but its accuracy
remains almost the same to ensure the stealthiness.

It is worth noting that while conventional bit-flip attacks
[15]–[22] aim to degrade the overall accuracy of a DNN
(for clean inputs, shown in Figure 1(c)), our attack (shown
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Fig. 1: Our “stealthy” attack against a protected DNN via
smart bit flipping of DNN weights. Both the DNN inputs and
parameters are perturbed. The DNN works correctly for clean
inputs, but misclassifies inconspicuous crafted inputs.

in Figure 1(d)) targets misclassification for selectively crafted
inputs (i.e., degrading the robustness) by the protected DNNs
with algorithmic defenses, while maintaining a similar accuracy
for clean inputs. As a result, a user of a DNN system (with
algorithmic defenses) would be unaware of the threat when
such an attack occurs, which can cause higher calamity. For
example, applying this attack (i.e., injecting specific bit-flips to
DNN weights via software) against a face identity recognition
system could cause a person’s face—to which an imperceptible
perturbation (e.g., a special wearing or masking) is attached—to
be misclassified as another person, while keeping the classifi-
cation of all normal faces accurate.

We formulate our new stealthy attack as a mathematical
optimization problem: through smart bit flipping of the weights,
we aim to reduce the DNN robustness under the constraint
that its accuracy loss is below a perceptible threshold. To find
the most vulnerable bits, we introduce an iterative gradient-
based bit search algorithm. Simulation results confirm that our
attack can successfully circumvent the state-of-the-art algo-
rithmic countermeasure [13]: flipping a small set of weight
bits (e.g., 30 out of 493,648 bits in LeNet-3) can result in a
significant robustness drop (e.g., 59.9% in LeNet-3) while there
is negligible accuracy loss.

II. RELATED WORK

In this section, we first briefly review related attacks against
DNNs, which could be classified as attacks by changing the
DNN models, inputs, or parameters. Then we summarize the
novelty of our work.
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A. Adversarial Trojan Insertion into DNN Models

Attackers may insert various types of malicious components
(i.e., Trojans) into DNN models. Typically, Trojan requires
hacking the training flow to be triggered via a specific input
pattern, which can lead to DNN misclassification [23]. Li et
al. [24] introduced a hardware Trojan circuit to implement
malicious DNN models. Clements et al. [25] exploited the
multiplexer logic to alter the internal structure of certain oper-
ations to inject malicious behavior. Zhao et al. [26] introduced
a memory Trojan attack towards DNN accelerator platforms
without toolchain manipulation. A recent more advanced Trojan
attack, Targeted Bit Trojan (TBT), leverages flipping bits of
weights of last-layer neurons to trigger Trojan with no need
for supply chain access [27].

B. Adversarial Parameter Perturbation

Lately, some researchers study the vulnerability of DNNs
against adversarial parameter perturbation (such as weights and
biases) using intentional memory fault injections. These attacks
are divided into two categories.

1) Untargeted Bit-flip Attack: The main focus of untargeted
bit-flip attack is reducing the overall prediction accuracy of
the DNN classifier to be as low as random guess. Liu et al.
[15] were the first to explore memory fault injection of a
DNN hardware to achieve misclassification. Breier et al. [16]
experimentally showed what types of memory fault attacks are
achievable in practice. Rakin et al. [17] presented a method to
find the specific memory fault patterns that can cause important
destruction to the DNN accuracy. Taking advantage of the well-
known row hammer attack [28], Yao et al. [18] attempted to
attack a DNN hardware where the network weights are stored in
DRAM. Dumont et. al [19] presented how laser injection with
state-of-the-art equipment threats against the DNN inference.

2) Targeted Bit-flip Attack: Targeted adversarial attacks pose
a greater threat as they give the attacker precise control on
the malicious behavior. Lately, Zhao et al. [20] introduced a
bit flipping attack on a DNN classifier in order to stealthily
misclassify a few predefined inputs. However, it is hard for
this method to adapt properly to (mis)classify previously unseen
inputs. Hence, it could not be applied in more general scenarios
such as autonomous vehicles, where the domain generalization
is important as well. Recent works can perform a targeted
bit flip attack on full precision models [20], although they
require large amounts of weight perturbation. Rakin et al. [21]
introduced an adversarial bit flip attack on quantized DNN
models where the main goal is to identify the weights that are
highly associated with the misclassification of a targeted output.
Lately, Bai et al. [22] formulated the targeted adversarial bit
flipping as a binary integer programming.

C. Adversarial Input Perturbation

DNNs are also susceptible to projected small input perturba-
tions. Adversarial examples can mislead state-of-the-art DNN
classifiers to make erroneous predictions [8]. The size of the
perturbation is at the heart of the adversarial example attack
which enables the possibility of the stealthy threats; in fact,
such inputs are built on the premise of a small perturbation. The

attacker wants the perturbed input to be as close to the original
input as possible when designing an adversarial example. When
it comes to images, it is close enough that a human observer
could hardly detect the perturbation. Szegedy et al. [2] first
revealed that DNNs are vulnerable to such stealthy adversarial
inputs. Recently, plenty of attacks based on the adversarial
perturbations of DNN inputs have been introduced [10]. We
classify these attacks into two main categories.

1) Per-Instance Model: In this category, the type of aug-
mented adversarial inputs highly depends on the input images
[4]. Some techniques focus on maximizing the loss function of
the target model by changing the input in the opposite direction
of its gradients [3]. Other methods such as [5] take advantage
of an objective function to alter the input image that may cause
output misclassification.

2) Universal Model: Universal perturbation attacks exploit
image-agnostic perturbations to misclassify the identity of an
object to be selected later in the field. Moosavi et al. [6] first
introduced a universal adversarial perturbation which could
fool DNN models. Recently, researchers introduce various
methods to extend the original universal adversarial attack [6].
Some methods [29] [30] exploited a data-independent approach
to generate adversarial perturbation vector by modifying the
features extracted at various layers of the network. Hayes et al.
[7] generated adversarial perturbation inputs with the generative
adversarial networks. Several other studies have also lately
introduced other methods to create adversarial attacks [9].

D. Novelty of Our Work

To the best of our knowledge, we are the first to propose a
stealthy bit-flip attack over protected DNNs with algorithmic
countermeasures. This new type of attack has a main objec-
tive: All the benign (clean) inputs are classified into correct
categories and only crafted (selected) inputs are misclassified,
and therefore, the attack cannot be easily detected via user
inspection or screening, which makes it more stealthy.

In comparison to stealthy adversarial example attacks in Sec-
tion II-C, our goal is attack against protected DNNs. Although
prior bit-flip attacks can be deployed against protected DNNs,
all untargeted ones, discussed in Section II-B1, try to drop the
DNN accuracy, which are not stealthy. Moreover, compared
with targeted bit-flip attacks in Section II-B2, which always
misclassifiy samples from one source class, it is difficult to
conduct a screening test for our proposed attack because it can
be used selectively for one and more source types of unseen
inputs. In contrast to a more closely related work, i.e., TBT
attack in Section II-A, which can target a Trojan through bit-
flipping and input modification as a trigger, our attack needs
to modify inputs with imperceptible perturbations that are not
visible to human eyes because our input perturbation is based
on adversarial examples. However, in order to hide the input
trigger from human eyes, TBT sacrifices its strength which may
jeopardise its stealthiness.

III. ASSUMPTIONS OF OUR PROPOSED STEALTHY ATTACK

In this section, we present the protected DNN model with
algorithmic countermeasures and our attack assumptions.



A. Protected DNN Model with Adversarial Training

A DNN model usually consists of multiple layers of neurons
and neurons in adjacent layers are connected by weighted
edges. The weights are optimized in the training stage and are
usually stored in the memory of the DNN hardware and remain
fixed afterwards during the inference stage.

In this paper, we assume that before deploying a DNN
model in the inference stage, an efficient method is in place to
protect it against conventional adversarial examples attacks (we
call it as protected DNN). Among various defense strategies,
adversarial training currently proves to be the most effective
against adversarial attacks [11]–[14] and it is one of the few
defenses that withstands against strong adversarial attacks [31].

B. Level of Access to DNN at Inference Stage

We assume that the attacker has enough information about
the DNN architecture and particularly its weight parameters,
as well as the hardware structure of the deployment platform.
Indeed, we use the standard white-box attack threat model as-
sumption in this work, which is consistent with previous DNN
bit-flip attacks [20]–[22]. Such an assumption is reasonable for
the following reasons. First, as the training process is typically
costly, developers tend to utilize pre-trained models released
by third parties (e.g., ModelZoo [32]) to accelerate the time
to market of the system. Second, even with private models,
adversaries can learn about model parameters through a variety
of information leak via side channels attacks [33]–[35].

C. Imperceptible Input Modification

In the same way that conventional adversarial example
attacks have been used [4]–[9], our attack requires modifying
the input (images) used by the DNN. We assume that the
adversary could potentially attempt to imperceptibly manipulate
the input images. Some research works showed the feasibility of
such modification for a state-of-the-art vision classifier [36] and
face recognition model [37]. For example, physical adversarial
traffic signs could be created by maliciously altering the sign
itself, such as with stickers or paint.

D. Precise Memory Fault Injection

Similar to how traditional bit-flip attacks have been used
[20]–[22], we also assume that the adversary will attempt to
precisely inject a small amount of faults into the computing
memory that is deployed for DNN inference. For example,
rowhammer attack [28], can inject faults into a computer main
memory. Rowhammer is particularly amenable to practical real-
world exploitation, including browsers, mobile and servers, as it
is the common instance of software-induced bit-flips attacks.
Precise surgical rowhammering [38] can be used as it has been
shown to be the most effective in inducing specific bit flips at
the targeted locations.

IV. SMART BIT FLIPPING ON PROTECTED DNNS

In this section, we present our stealthy attack over protected
DNNs, making adversarial attacks to be almost as easy as
before algorithmic protection. Our goal is to figure out how to
flip certain DNN weight bits in a way such that it significantly

reduces the robustness of the protected DNN while causing
negligible accuracy loss. First, we define the security threat
model and mathematically formulate our attack as an optimiza-
tion problem. Then, to find the desired bit flip candidates, we
propose an iterative gradient-based bit search algorithm.

A. Definition of Threat Model

1) Terminology: f denotes a DNN classifier function, x(i)

denotes the ith input image and y(i) denotes its associated true
class label. f(x(i)) denotes the output probability vector of
all predicted class labels (with confidence values) for the ith

input image. k(x(i)) denotes the predicted class label (with the
highest confidence) of classifier f for input x(i).

2) Adversarial Accuracy Loss Function: The loss function
is a metric to evaluate how accurate the DNN model predicts
for a given input compared to the true label. Formally, the loss
value per input (x(i), y(i)) can be defined as:

L(x(i), y(i)) = D(f(x(i)), y(i)) (1)

where D is a distance metric that varies for problems. In this
paper we use the cross-entropy loss function [39].

With an adversarial attack on the DNN weights w, we define
the adversarial loss function of a DNN model as:

L(x(i), y(i);w) = D(f(x(i);w), y(i)) (2)

where f(x(i);w) is the output probability vector of all pre-
dicted class labels (with confidence values) for input x(i) under
attack of classifier f on its weight parameters w.

The adversarial accuracy loss function on the entire distri-
bution dataset D can be defined as:

L(D;w) = E(x,y)∈DL(x, y;w) (3)

where Ex,y(.) denotes the expectation function.
3) DNN Model Overall Accuracy: For a given test dataset

D, the overall accuracy of a DNN model (i.e., a classifier f ) is
defined as:

ACC = E(x,y)∈D1|{k(x,w) == y} (4)

where 1|{event} represents an indicator function that is 1 if
event happens and 0 otherwise. w notes the weights of the
model. We use the overall accuracy to evaluate the stealthiness
of our proposed attack.

4) Adversarial Robustness: For a well-trained DNN model,
its classification accuracy is usually very high in a well con-
trolled setting. However, prior studies show that these models
are fascinatingly vulnerable to small perturbations on inputs
(i.e., adversarial examples). Informally, an adversarial example
is an imperceptible perturbation (ε) that is added to an input
image, which can change the classifier’s prediction [3].

To quantify the robustness of a classifier f , we can find the
minimum perturbation vector r that is sufficient to change the
predicted class label k(x(i)) of the classifier for input x(i).
According to [4], formally, the robustness of a classifier f for
input x(i), denoted as ∆(f,x(i)), is defined as:

∆(f,x(i)) = minr||r||2 s.t. k(x(i) + r) 6= k(x(i)) (5)



where ||.||2 denotes the Euclidean norm.
The value of ∆(f,x(i)) depends on the difference between

the probability values of the predicted class with the highest
confidence (c∗) and the closest one to it (ĉ). Hence, we have:

∆(f,x) ∝ |fĉ(x;w)− fc∗(x;w)| (6)

where fc∗(x;w) is the probability of the predicted class with
the highest confidence and fĉ(x;w) is the probability of the
closest class with the second highest confidence.

According to [4], we define the adversarial robustness of
classifier f on the entire distribution dataset D with respect to
the weights parameter w as:

ρfadv(D;w) = E
x∈D

|fĉ(x;w)− fc∗(x;w)|
||x||2

(7)

where ρfadv(.) denotes the adversarial robustness of classifier
f , Ex(.) is the expectation function.

5) Stealthy Threat: In some application domains such as per-
sonal identity recognition systems, a “stealthy” attack on their
underlying DNN models becomes one of the most important
security concerns [37]. One difficulty that attackers face in such
application domains is that manipulating parameters to evade
the DNN classifiers might be easily observed from outside the
systems. For example, attackers can circumvent a DNN access
control device used in banks, however, these attackers may draw
increased attention from bystanders.

We call a bit-flip attack against a DNN (already equipped
with algorithmic defenses in our assumption) as a stealthy
threat if it could produce unexpected classification behavior
on crafted inputs while it does not affect the normal behavior
of the classifier on benign (clean) inputs.

B. Problem Formulation of Stealthy Attack

Based on our observation, changing the weight bits in a DNN
model may affect the adversarial accuracy loss and adversarial
robustness in different ways. There is an interesting scenario
where weight perturbations could significantly decrease the ad-
versarial robustness while negligibly increasing the adversarial
accuracy loss. This provides a ground for our stealthy attack
against protected DNNs.

Mathematically, we formulate our stealthy attack against
protected DNNs as an optimization problem. Our goal is to find
those vulnerable DNN weight bits to minimize the adversarial
robustness, under the constraint that the adversarial accuracy
loss is below a perceptible threshold, i.e.,

max ˆ{Bl} ρfadv(D;{Bl}L
l=1)− ρfadv(D; ˆ{Bl}

L

l=1)

s.t. L(D; ˆ{Bl}
L

l=1)−L(D;{Bl}L
l=1) < δ

(8)

where {Bl}L
l=1 is the original weight bits from layer 1 to L

of a well-trained DNN and ˆ{Bl}
L

l=1 is the modified weight
bits. δ denotes an attacker-defined constraint that is application
dependent to satisfy the “stealthy threat” attribute of the attack.

C. Gradient-based Bit Flip Attack

We use the mathematical gradient concept to quantify the
impact of weight bits on adversarial robustness and adversarial
loss as:

∇bρ
f
adv = [

∂ρfadv
∂bN−1

, · · · ,
∂ρfadv
∂b0

] (9)

∇bL = [
∂L

∂bN−1
, · · · , ∂L

∂b0
] (10)

where b shows binary representation of a weight using N
number of bits.

The main idea is to flip the bits along the direction opposite
of the gradient of adversarial robustness and adversarial loss
with regard to weight bits. Hence, we define sign(.) to repre-
sent the gradient direction, where sign(.) ∈ {0, 1}. In order to
simultaneously decrease robustness and preserve accuracy, we
introduce Table I to mathematically express the possibility of all
changes in the gradient values and bit flipping. This truth table
shows the original bit bi, sign(∂ρfadv/∂bi) and sign(∂L/∂bi)
as the possible states, and m shows whether there should be
a flip of original bits. To make a decision about whether a bit
should be flipped, we formulate m as:

m = ¬

[(
b⊕ sign

(
∇bρ

f
adv

))
∨
(
sign

(
∇bρ

f
adv

)
⊕ sign (∇bL)

)]
(11)

where ⊕, ∨ and ¬ present bit wise xor, or and not operators.

TABLE I: Truth table of bit flip attack. bi is the original bit.
m indicates whether there should be a flip of bi.

bi sign(∂ρfadv/∂bi) sign(∂L/∂bi) m
0 0 (-) 0 (-) 1
0 0 (-) 1 (+) 0
0 1 (+) 0 (-) 0
0 1 (+) 1 (+) 0
1 0 (-) 0 (-) 0
1 0 (-) 1 (+) 0
1 1 (+) 0 (-) 0
1 1 (+) 1 (+) 1

D. Iterative Bit Search

The number of weight bits in a DNN model ranges from
thousands to millions. Due to the long execution time, it is
impractical to explore the impact of all weight bits perturbations
on a DNN model. Therefore, to find the most vulnerable bits
precisely and effectively, we introduce an iterative method
based on a gradient ranking and iterative search. In each
iteration, it finds the top n most vulnerable wights in the l-th
layer (i.e., bl) through gradient ranking. To do so, we compute
the gradient of adversarial robustness function with respect
to weight bits b and rank them in descending order. Then,
considering Equation 11, we apply bit flip as:

b̂l = bl ⊕m (12)

where b̂l shows the flipped bit.
Afterwards, it records the adversarial robustness of each layer

and selects the most vulnerable bits in the entire DNN model
among the candidate bits of all layers. This iterative algorithm



TABLE II: Overall accuracy (for clean inputs) and robustness (for crafted inputs) results of the original and protected DNN
models before and after our bit-flip attack.

DNN Model Dataset Accuracy (Clean Inputs) Robustness (Crafted Inputs)
Protected Model Our Attack Original Model Protected Model Our Attack (Drop %)

LeNet-3 MNIST 0.9912 0.9844 0.154 0.591 0.237 (59.88%)
FCN-2 MNIST 0.8935 0.8895 0.081 0.716 0.194 (72.90%)
LeNet-5 CIFAR-10 0.7983 0.789 0.163 0.504 0.201 (60.11%)
AlexNet CIFAR-10 0.7263 0.720 0.096 0.683 0.196 (71.30%)

terminates when the robustness drop becomes sufficiently close
to an expected value or the accuracy drop becomes higher than
the attacker-defined constraint (δ in Equation 8).

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Implementation Framework: Our proposed attack is imple-
mented in Python on top of the PyTorch framework [40]. We
perform all our experiments on a Nvidia Titan V GPU.
Dataset and DNN Models: We choose two widely used visual
datasets for image classification, including MNIST and CIFAR-
10. For MNIST, we use the well-known LeNet-3 and FCN-2
network models. For CIFAR-10, we use the well-known LeNet-
5 and AlexNet network models. For all DNN models, we use
8-bit fixed-point numbers for the DNN weight parameters.
Protection Algorithm: In our experiments, we use two types
of DNN models: the original models and the protected ones.
To generate adversarial examples, we leverage the widely used
DeepFool adversarial attack tool [4]. To protect DNNs against
conventional adversarial example attacks, we use the state-of-
the-art defense algorithm called TRADES [13], which retrains
models via a mixture of clean inputs and adversarial examples
with additional training epochs.

B. Overall Accuracy and Robustness Results

Table II summarizes the overall accuracy and robustness
results for the protected DNN models, both before and after our
bit-flip attack. First, the accuracy loss of all models under our
attack is within 1%, which makes users hard to notice for clean
inputs. Second, under our bit-flip attack, the robustness drops
significantly by 59.9% to 72.9% which indicates that it could
circumvent the TRADES defense using adversarial examples.
To better illustrate the impact of the robustness drop, we also
measure the robustness of the original DNN models (without
any protection), which is also shown in Table II. The robustness
metric of the protected DNNs under our bit-flip attack becomes
low, which suggests that we successfully compromised the
robustness of protected DNNs (with negligible accuracy loss).

C. Number of Perturbed DNN Weight Bits

Table III summarizes the number of bit-flips that is required
for each DNN model to achieve our attack, which is a very
small amount that ranges from 30 to 101 bit-flips. Generally, we
require less than 0.006% of the weight bits (note each weight
has 8 bits) to be perturbed. This indicates that our attack could
be easily and effectively deployed in the hardware.

TABLE III: Number of bit flips in our attack. Note that each
weight has 8 bits in our DNN models.

DNN Model #Total Weights #Bit Flips Flip Percentage
LeNet-3 61,706 30 0.0060%
FCN-2 589,160 49 0.0010%
LeNet-5 657,080 71 0.0013%
AlexNet 2,472,266 101 0.0005%

Fig. 2: Comparison of prediction (P=..) class with the highest
confidence (C=..%) by the protected LeNet-3 on MNIST
dataset: (a) clean inputs, our attack; (b) crafted inputs, our
attack; (c) crafted inputs, no (hardware parameter) attack.

D. Case Study of Our Attack on Protected DNNs

To better illustrate the effectiveness of our stealthy attack on
protected DNNs, we conduct a case study of our attack over the
protected LeNet-3 on the MNIST dataset and protected LeNet-5
on CIFAR-10 dataset.

Figure 2 shows some example classification results—i.e.,
the classification class with the highest confidence—for both
clean and crafted inputs. The subfigures (a) confirm that the
protected DNN still correctly classifies the clean images under
our attack. The subfigures (b) confirm that the protected DNN
misclassifies the crafted images under our attack. These two
points further confirm that we have successfully achieved the
stealthy attack on protected DNNs. The subfigures (c) confirm
that the protected DNN still correctly classifies the crafted
images without our attack on hardware parameters; that is, prior
adversarial input attacks do not work for protected DNNs.

Figure 3 shows some example input perturbations required
to fool the protected LeNet-5 on CIFAR-10 dataset. Figure 3(a)
shows the clean images; (b) and (c) show the input perturbation
vectors and crafted images required by DeepFool [4] to fool
protected LeNet-5; (d) and (e) show the input perturbation



(a) (b) (c) (d) (e)

Fig. 3: Comparison of the input perturbation vector required to
fool the protected LeNet-5 on CIFAR-10 dataset: (a) clean
inputs; (b) perturbation vectors required by DeepFool [4];
(c) crafted inputs for DeepFool [4]; (d) perturbation vectors
required by our attack; (e) crafted inputs for our attack.

vectors and crafted images required by our bit-flip attack to
fool protected LeNet-5. It can be easily seen by human eyes
that our attack requires much less perturbations to the input
images in order to fool a protected DNN.

VI. CONCLUSION AND DISCUSSION

Continuing their great success in many areas, DNNs are
being deployed in critical systems such as personal identity
recognition systems and autonomous vehicles. This creates
great security concerns about the DNN deployment. In the
recent years, researchers have already investigated various types
of adversarial example attacks on DNNs and proposed algorith-
mic countermeasures for adversarial examples. In this paper, we
have proposed a new type of stealthy bit-flip attack on protected
DNNs to compromise their robustness while reserving their
accuracy, by attacking the DNN weight parameters in the hard-
ware. We mathematically formulate this stealthy attack as an
optimization problem and introduce a gradient-based algorithm
to efficiently find the most vulnerable weight bits. Experimental
results demonstrate that the robustness of protected DNNs can
significantly decrease under our adversarial attack with a small
number of bit-flips, while there is negligible accuracy loss for
clean inputs. Our attack on TRADES [13] protection-based
models can decrease the robustness value by 59.9% to 72.9%.

Our proposed stealthy attack opens new opportunities re-
garding the attack and defense of DNNs with an emphasis
on software-hardware co-design. In future work, we plan to
investigate corresponding defenses for this new type of attack.
For example, one may attempt to reconstruct DNN weights in
a way such that the change in a weight value diffuses to its
neighbor weights and hence removing the stealthy attribute.
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