
Fast and incremental computation of weak
control closure

Abu Naser Masud[0000−0002−4872−1208]

School of Innovation, Design and Engineering
Mälardalen University, Väster̊as, Sweden

abu.naser.masud@mdu.se

Abstract. Control dependence is a fundamental concept used in many
program analysis techniques such as program slicing, program debug-
ging, program parallelization, and detecting security leaks. Since the
introduction of this concept in the late eighties, numerous definitions
of control dependencies and their computation methods have been de-
veloped. The later definitions are progressively more generalized cover-
ing a wide spectrum of modern programming language constructs. The
most generalized concepts are the weak and strong control closure (WCC
and SCC) that capture the nontermination (in)sensitive control depen-
dencies of a given program. In this paper, we have developed a novel
method to compute WCC incrementally. Any client application of WCC
such as program slicing requires computing the WCC repeatedly in a
fixpoint computation. An incremental algorithm to compute WCC will
improve the performance of the client application significantly. We have
provided the proof of correctness and the theoretical worst-case com-
plexity of our algorithm. We have performed an experimental evaluation
on well-known benchmarks, and our experiments reveal that we have
significantly improved the practical efficiency in computing WCC incre-
mentally. We have obtained an average speedup of 31.03 in all bench-
marks and a maximum speedup of 35.29 than the best state-of-the-art
algorithm computing WCC.

Keywords: Control Dependency · weak control closure · strong control
closure · program slicing · nontermination insensitive · nontermination
sensitive

1 Introduction

Control dependence is a fundamental concept used in many program analy-
ses techniques such as compiler optimization and debugging [6], program slic-
ing [22,7,11], and information flow security [5]. It expresses a relation between
two program instructions stating that one controls the execution of another.
The state-of-the-art control dependence computation is based on computing
postdominator relations [6]. It is the fastest algorithm which is applicable for
programs that must exit from a single program point. However, modern soft-
ware systems such as nonterminating reactive systems or distributed web ser-

2 Abu Naser Masud

vices do not have any exit point and postdominator-based control dependence
computation algorithms are not applicable for such systems [20,1].

Danicic et al. [4] introduced the concept of weak and strong control closure
(WCC and SCC) that capture weak and strong forms of control dependencies
from (non)terminating systems that are nontermination insensitive and nonter-
mination sensitive respectively. These are the most general form of the closure
relation of control dependencies. Program transformation technique such as pro-
gram slicing may require preserving nontermination in the sliced program if the
original program is nonterminating. Slicing based on SCC preserves nontermina-
tion and produces larger slices which may be useful for program verification. On
the other hand, slicing based on WCC may not preserve nontermination and pro-
duces smaller slices. There exist numerous definitions of control dependencies in
the literature [22,6,19,2,21]. All such dependencies are the special cases of control
dependencies captured by WCC and SCC. Thus, WCC and SCC have a wider
applicability than the control dependencies based on computing postdominator
relations.

1: x=5;
2: while(i>0)
3: {
4: x=x+i;
5: y=y−i;
6: i =i−1;
7: }
8: print(x)

Fig. 1: Programs P

Let us illustrate these concepts and their relations
by the program P in Fig. 1. Suppose we are interested
to detect program statements that affect the value of
x at Statement 8. The assignment to x at Statements
1 and 4 directly affect the value of x at Statement 8.
We can obtain these direct influences by computing
data dependencies. Moreover, the boolean expression
i > 0 at Statement 2 indirectly affects the value of
x at Statement 8 as it decides whether Statement 4
will be executed or not. We can obtain these indirect
influences by computing control dependencies. Further-
more, Statement 6 directly affects the boolean expres-
sion at Statement 2 due to data dependence, and thus
statements 1, 2, 4, and 6 affect the value of x at State-
ment 8. Statement 4 is control dependent on Statement
2 as it decides whether statement 4 will be executed or not. The standard control
dependence computation method identifies this control dependence as follows:
there exist two paths from Statement 2 to the end of this program in which
Statement 4 always executes in one path and Statement 4 may not execute in
the other path. This proves that Statement 2 controls the execution of Statement
4. This method only works if the program has a single exit point. However, if
the whole program is under an infinite loop such as the following:

Program Q: while(true){S1, . . . , S8}

where S1, . . . , S8 refers to statements 1 to 8 in Program P, then the above method
for computing the control dependencies will not work since there is no exit point
to this code. WCC (see Def. 4 in Sec. 2) is the generalization of the standard
control dependencies that also works for nonterminating programs and computes
the closure relation of control dependencies. For example, if we would like to

Fast and incremental computation of weak control closure 3

know what affects the computation of x at Statement 8 in Program Q, we see that
there are two paths from Statement 2 to statements 4 and 8. This is enough to
say that a control closure of a set S of program statements including statements
8 and 4 must include Statement 2 (provided that Statement 2 is reachable from
S) as it decides which one (Statement 4 or Statement 8) will be executed next.
One difference between SCC and WCC is that the SCC of S will also include
the while(true) statement as it preserves the nontermination. Statement 2 is
nontermination sensitively control dependent on the while(true) statement and
thus SCC will include this statement.

1 Let C be the the slicing criterion, and let S = C.
2 repeat

3 S′ :=
⋃

n∈S

{m : m
dd

→∗ n}

4 S := cl(S′)

5 until S = S′

Algorithm 1: slicing

Danicic et al.’s original algorithms to compute WCC and SCC are expen-
sive. Most recent works [12,14,18] on computing WCC and SCC have shown
performance improvements in these algorithms. These improvements are mostly
on the one-time application of these algorithms. However, client applications
such as program slicing require computing WCC/SCC incrementally. Existing
algorithms lose performance due to repeated computation of unnecessary infor-
mation. To illustrate this fact, we recall Alg. 1 from [12,14]1 which is the static
backward slicing algorithm computing the slice set S from the given slicing crite-
rion C. Given any control flow graph (CFG) representation of a program and the
slicing criterion C which is a subset of the CFG nodes, Alg. 1 computes S until

a fixpoint is reached. The relation
dd

→∗ denotes the transitive-reflexive closure

of the data dependence relation
dd→. The function cl(.) computes WCC or SCC

in each fixpoint iteration. It is obvious that an incremental computation of this
function will improve the overall performance of the program slicing algorithm.

In this paper, we have developed a novel algorithm that is able to compute
WCC incrementally. We proved the correctness of our algorithm theoretically
and experimentally, provided the theoretical worst-case time complexity of our
method which is quadratic in the size of the CFG, implemented our algorithm
in the Clang/LLVM compiler framework, and compared our results with the
best state-of-the-art method by performing experimental evaluation on SPEC
CPU 2017 benchmarks. Our experiments reveal that the algorithm developed in
this paper is the fastest among all algorithms computing WCC reported in the
literature if WCC needs to be computed incrementally. We have obtained the
maximum speedup of 35.29 on our largest benchmark and an average speedup of

1 We replaced the goto statement in [12,14] by the repeat..until loop.

4 Abu Naser Masud

31.03 on all benchmarks with respect to the best baseline approach computing
WCC.

The remainder of this paper is organized as follows. Sec. 2 brings some rel-
evant concepts and notations from the literature on control dependency and
WCC, Sec. 3 provides the details of our algorithm developed in this paper, the
proof of correctness, and its theoretical worst-case time complexity, Sec. 4 ex-
plains the experimental evaluation, Sec. 5 discusses the works that are related
to ours, and Sec. 6 concludes the paper.

2 Background

In this section, we recall definitions of CFG, control dependency, WCC, and other
related concepts from the relevant literature [14,4]. The definitions of Control
dependency and WCC are provided at the level of CFG representation of pro-
grams. First, we recall the formal definition of a control flow graph (CFG) from
our earlier study [12,14].

Definition 1 (CFG). A CFG is a directed graph (N,E) where

1. N is the set of nodes that includes a Start node from where the execution
starts, at most one End node where the execution terminates normally, Cond
nodes representing boolean conditions, and nonCond nodes; and

2. E ⊆ N × N is the relation describing the possible flow of execution in the
graph. An End node has no successor, a Cond node has at most one true
successor and at most one false successor, and all other nodes have at most
one successor.

Applications like program slicing may remove part of the code and we may
obtain a CFG from such code in which a Cond node has either or both of the
successors missing. Other kinds of nodes may have a missing successor as well.
An execution that reaches such nodes may be silently nonterminating because
an execution may not proceed and the control is not returned to the operating
system. Moreover, a CFG may not have an End node and the execution of its
code may possibly be nonterminating. Thus, our definition of CFG can repre-
sent a wide range of practical programs. Note that our CFGs are deterministic
according to the definition.

The functions succG(n) and predG(n) denote the set of successors and pre-
decessors of the CFG node n in the graph G. We sometimes drop the subscript
G if it is understood from the context. A path in a graph G is the sequence of
CFG nodes n1, . . . , nk such that ni+1 ∈ succG(ni) (also ni ∈ predG(ni+1)) for
all 1 ≤ i ≤ k − 1. We use the notation [n1..nk] to denote such a path. A non-
trivial path contains more than one node; otherwise, the path is a trivial path.
A path is proper if its initial and final vertices are distinct. Two paths [n1..nk]
and [m1..ml] are disjoint if ni ̸= mj for any k, l > 0, 1 ≤ i ≤ k, and 1 ≤ j ≤ l. If
[n2..nk] and [m2..ml] are disjoint paths and n1 = m1, then we say that [n1..nk]
and [m1..ml] are disjoint paths from n1. We use the notation n ∈ π to denote

Fast and incremental computation of weak control closure 5

that the CFG node n belongs to the path π, and use the notation n ∈ π − S
to indicate that n is any node in the path π that does not belong to the set of
CFG nodes S.

We now recall the definition of WCC from Danicic et al. [4] with some aux-
iliary relevant definitions. In what follows, let G = (N,E) be a CFG, and let
N ′ ⊆ N .

Definition 2 (N ′-Path). An N ′-path is a finite path [n1..nk] in a CFG G where
k > 1, nk ∈ N ′ and ni ̸∈ N ′ for all 1 < i < k.

Intuitively, an N ′-path must end at a node in N ′, the first node in this path
can be any node from N (or N ′), and no intermediate node in this path must
be from N ′. With this definition, we can now define an N ′-weakly committing
node as follows:

Definition 3 (N ′-weakly committing). A node n ∈ N is N ′-weakly commit-
ting in a CFG G if all N ′-paths from n have the same endpoint. In other words,
there is at most one element of N ′ that is ’first- reachable’ from n.

The following definition states whether a given subset of CFG nodes N ′ is N ′-
weakly control-closed.

Definition 4 (Weak control closure). N ′ is weakly control-closed in G if and
only if all nodes n ̸∈ N ′ that are reachable from N ′ are N ′-weakly committing in
G.

Given any subset N ′ of CFG nodes, if N ′ is not weakly control-closed in the CFG
G according to Def. 4, then we compute the WCC set of N ′ denoted WCC(N ′)
(or WCC for brevity) such that N ′ ⊆ WCC(N ′) ⊆ N . The definition of weak
control closure captures the control dependencies obtained from postdominator
relations. To illustrate this relation, we now bring the definition of postdominator
relation and the control dependencies based on this relation.

A CFG node n postdominates another CFG node m if and only if every path
from m to the End node must go through n. If n ̸= m in this definition, then
we say that n strictly postdominates m. Note that this definition relies on the
fact that the CFG must have a unique End node. The standard definition of
postdominator-based control dependencies was first introduced by Ferrante et
al. [6] as follows:

Definition 5 (Control Dependency [6,21,12]). Node n is control dependent

on node m (written m
cd→ n) in the CFG G if (1) there exists a nontrivial path

π in G from m to n such that every node m′ ∈ π − {m,n} is postdominated by
n, and (2) m is not strictly postdominated by n.

Since the definition of postdominator relies on the existence of a unique End
node, the above definition of control dependence is applicable when this restric-

tion holds. Intuitively, the relation m
cd→ n holds when there exist two branches

of m such that n is always executed in one branch and may not execute in the
other branch. To illustrate this relationship with WCC, let us assume that N ′

6 Abu Naser Masud

includes n, the unique End node ne, and the Start node n▷. Also, assume that
all nodes are reachable from node n▷. Then, [m..n] is an N ′-path. Since m is
not strictly postdominated by n, there must be another path [m..ne] which is
also an N ′-path. Then, node m is not N ′-weakly committing due to having two
N ′-paths with different endpoint. Thus, N ′ is not a WCC due to not capturing

the control dependency relation m
cd→ n, and a WCC of N ′ must include m.

The concept of N ′-weakly deciding nodes are introduced by Danicic et al. [4]
to provide an algorithm to compute the WCC of N ′.

Definition 6 (Weakly deciding vertices). A node n ∈ N is N ′-weakly de-
ciding in G if and only if there exist two finite proper N ′-paths in G such that
both start at n and have no other common vertices. WDG(N

′) denotes the set of
all N ′-weakly deciding vertices in G.

Thus, if there exists an N ′-weakly deciding vertex n, then n is not N ′-weakly
committing. The WCC of a subset N ′ ⊆ N of CFG nodes in a CFG G can be
computed according to the following equation:

WCC(N ′) = N ′ ∪ {n : n ∈ WDG(N
′), n is reachable from N ′ in G} (1)

Example 1. Consider the CFG in Fig. 2. Let N ′ = {n0, n1, n5, n11}. Here are
some examples of N ′-paths in this CFG:

π0 = n1, n0

π1 = n3, n1

π2 = n3, n2, n1

π3 = n6, n4, n3, n1

π4 = n6, n5

π5 = n10, n1

π6 = n10, n9, n6, n4, n3, n2

The path [n3..n0] is not an N ′-path as it includes the node n1 ∈ N ′. The CFG
node n1 is N ′-weakly committing since there exists a single N ′-path π0. Also,
node n3 is N ′-weakly committing as both π1 and π2 have the same endpoint n1.
However, node n6 is not N ′-weakly committing due to the paths π3 and π4. It
is an N ′-weakly deciding node. Thus, N ′ is not weakly control closed. Similarly,
nodes n7, . . . , n10 are N ′-weakly deciding due to having two disjoint N ′-paths
from these nodes. As all these nodes are reachable from n11 ∈ N ′, the WCC of
N ′ must include these nodes according to Eq. 1.

Regarding the program semantics of the client application of WCC or SCC
such as program slicing or information flow security, the execution semantics of
programs are captured/preserved through computing the additional dependen-
cies such as data dependencies as shown in Alg. 1. However, the data dependen-
cies are not enough to capture the indirect influences of conditional statements
or boolean instructions in loop statements. Thus, WCC/SCC is applied on top
of data dependencies to capture these indirect influences.

Fast and incremental computation of weak control closure 7

3 Incremental computation of WCC

We compute WCC in two steps. First, we generate an influencer graph G =
(N , E) from the CFG G = (N,E) such that N = N , and G is a directed graph
that encodes direct influences to all CFG nodes by the Cond nodes. We say that
a Cond node n influences the execution of a node m if there exists a path [n..m]
in the CFG G which does not include any other Cond node. The influencer graph
G is thus a program representation encoding all direct influences in the source
code. This simplistic informal definition of influence is extended in the following
section to construct the influencer graph G. In the second step, given any set
N ′ ⊆ N , we traverse G from the nodes in N ′ to detect all Cond nodes that are
weakly deciding and are reachable from the nodes in N ′ in G. We compute the
graph G only once. But, we traverse it incrementally to compute WCC and avoid
recomputing decisions taken earlier.

3.1 Generating the influencer graph

The intuitive idea of having an influencer graph is the following. Given any
CFG node n, we should immediately recognize which Cond node m controls
the execution of n (if any). Usually, m is the last Cond node in any path from
the Start node to n. Subsequently, there may be other Cond nodes preceding
m that control the execution of m. Let π be any path from the Start node to
n, and let m1, . . . ,mk be the subsequence of Cond nodes in π. We intend to
obtain the edges (n,mk) and (mi+1,mi) for all 1 ≤ i ≤ k − 1 in the influencer
graph. Then, given any CFG node n ∈ N ′, any path [n..mi] in the influencer
graph indicates that there may be an N ′-path [mi..n] in the CFG if no node in
this path is in N ′ except n. After obtaining the influencer graph of any CFG,
we can limit our search space to verify which Cond nodes should belong to the
WCC. We perform the search in the influencer graph in a way, as explained in
the next section, that ensures that the paths in the influencer graph correspond
to N ′-paths in the CFG. Since any Cond node m which is N ′-weakly deciding
and thus has two disjoint N ′-paths may belong to the WCC of N ′, we assign
each edge in the influence graph by a branch number to identify the disjointness
of the N ′-paths. In order to generate the influencer graph, we consider a distinct
branch number for each branch of a Cond node. A CFG node is called a Join
node if it has multiple predecessors. A Join node is also a Cond node when it has
two successors. We assign a default label to the branch emerging from a Join but
nonCond node. The influencer graph G = (N , E) is a directed graph with edge
labels that can be obtained from the CFG G = (N,E). Any edge (n,m, l) ∈ E
in G implies that there exists a path [m..n] in the CFG G, m is a Cond or a
Join node, and the edge label l can take any value from the set {0, 1, 2, 3} to
represent the branch number. The semantics of the encoding of edge label l is
the following:

– l=0 represents the default branch number emerging from the Join node m,

8 Abu Naser Masud

– l = 1 or l = 2 implies that m is a Cond node which usually has at most two
branches and n can be reached from m in the CFG by traversing the branch
marked by l,

– l = 3 implies that m is a Cond node and n can be reached from m by
traversing any of the two branches of m.

Since any CFG node can have at most two branches according to the definition
of CFG (Def. 1), we need at most four unique branch numbers. In the practical
implementation of our approach, we handle more than four branch labels to
handle switch statements. However, we restrict ourselves to four unique branch
numbers for the brevity of our presentation.

In the following, we provide the formal definition of an influencer graph G.

Definition 7 (Influencer graph). Let G = (N,E) be a CFG. An influencer
graph G = (N , E) of a CFG G consists of the set of CFG nodes N = N , and the
set of edges E containing all edges (n,m, l) such that m is either a Join or a Cond
node, and there exists a CFG path [m..n] such that no node n′ ∈ [m..n]−{n,m}
is a Cond or a Join node. The edge label l can take any value as follows:

1. l = 0 if m is a Join node
2. l = 3 if m is a Cond node, n is a Join node, and no disjoint path exists from

m to n in the CFG, and
3. l ∈ {1, 2} if m is a Cond node, n is not a Join node, and for all edges

(n,m′, l′) ∈ E such that [m..n] and [m′..n] are disjoint paths in G, we must
have that l′ ̸= l.

Any edge (n,m, l) in G implies that m may affect the execution of n if l ̸= 0.
Thus, m may influence the execution of n, and the graph G encodes all such
influences in the CFG G. When l = 0, m will not directly influence n, but n
may be influenced by another node m′ if there exists an edge (m,m′, l′) in G
such that l′ ̸= 0. In fact, for all sequences of edges (n,m, 0) and (m,m′, l′) in G,
we can remove the edge (n,m, 0) and add a new edge (n,m′, l′) in G in a post-
processing phase of generating G. This compact representation will only encode
all direct influences in G. However, we consider it as a syntactic sugar and keep
the edge (n,m, 0) in G to simplify its generation. Since any CFG node has at
most two successors according to the definition of CFG, we need at most four
unique labels for the influencer graph G.

Fig. 2(a) presents the CFG of a function taken from the Perlebench bench-
mark obtained from the well-known SPEC CPU2017 [3] benchmark suite. This
CFG is generated by the Clang frontend [9], and each node in this CFG repre-
sents a basic block containing the straight-line sequence of instructions written
in C language. All Cond nodes (e.g., n9, n8, n3, etc.) in this CFG have two
successors, all Join nodes (e.g., n1, n6, n3, etc.) have multiple predecessors, and
there exist nodes that are both Cond and Join nodes (e.g. n6, n3, etc.). Fig. 2(b)
presents the influencer graph that is obtained from the CFG in (a) according to
Def. 7.

Alg. 2 generates the influencer graph G of a given CFGG. It uses the following
notations/functions:

Fast and incremental computation of weak control closure 9

n11(Start)

n10

n9

n8

n7

n6

n5n4

n3

n2

n1

n0

(a)

n0

n1 n2

n3 n4 n5

n6

n7

n8

n9

n10

0

3

2

1

3

2
1

1

2

1

2

1

1

2

(b)

Fig. 2: (a) The CFG generated by the Clang frontend for the ”Perl do open raw”
function taken from the Perlbench benchmark in SPEC CPU2017 [3] (we omit
the program instructions for simplicity), (b) The influencer graph G generated
by Alg. 2 in which edge styles are differed by their edge labels

– The function I : N → N ∪{⊥, ι} records the direct influence of a given CFG
node. For example, I(n) = m implies that m may be a Cond node (or a Join
node) which may influence the execution of n directly (resp. indirectly).
Initially, I(n) = ⊥ for all CFG nodes n representing that an influencer node
of n is yet to be recognized. Also, we initially set I(n▷) = ι to denote that
the execution of the Start node n▷ is not influenced by any other node.

– The function Em denotes the set of all edges from the nodem in the influencer
graph G. In particular, any (n, l) ∈ Em implies that (m,n, l) is an edge in G.

– The function Dist(n,m) denotes the minimum distance of node n from either
m if m is a Cond node or a Cond node immediately before m in the CFG
if m is a Join node. We compute this function during the generation of the
influencer graph and use this function to traverse correct N ′-paths during
the computation of WCC which is explained in the next section.

Alg. 2 is a worklist-based algorithm that visits each edge (n,m) in the CFG
exactly once, detects and includes an edge (m,n′, l) in the influencer graph G
for any l ∈ {0, 1, 2, 3} and n′ ∈ N that may influence m where n′ = n or
n′ = I(n) (see Lines 13-14, 21, 27, 31, 36). It also computes the minimum
distance Dist(m,n′) from n′ to m or a Cond node immediately before m in the

10 Abu Naser Masud

Input: CFG G = (N,E)
Output: G = (N , E), Dist

1 forall (n ∈ N do
2 I(n) = ⊥, visit(n)=false
3 end
4 W = {(n▷, 0, 0)} and I(n▷) = ι
5 while (W ̸= ∅) do
6 Remove (n, l, d) from W
7 visit(n)=true
8 newlabel = 1
9 forall (m ∈ succ(n)) do

10 nedge = (⊥,⊥)
11 if (n is a Cond node) then
12 I(m) = n
13 if ((n,X) ̸∈ Em for any X ∈ {0, 1, 2, 3} then

nedge = (n, newlabel)
14 if ((n, l′) ∈ Em ∧ l′ > 0 such that l′ ̸= newlabel) then

nedge = (n, 3)
15 newlabel = newlabel + 1
16 dist = 1

17 end
18 if (n is a nonCond Join node) then
19 I(n) = n
20 I(m) = n
21 nedge = (n, 0)
22 dist = d+ 1

23 end
24 if (n is not a Cond and Join node) then
25 I(m) = I(n)
26 if (I(n) ̸= ι ∧ ¬(I(n), X) ∈ Em for any X ∈ {0, 1, 2, 3}) then
27 nedge = (I(n), l)
28 dist = d+ 1

29 end
30 if (I(n) ̸= ι ∧ (I(n), l′) ∈ Em ∧ l′ > 0 ∧ l′ ̸= l) then
31 nedge = (I(n), 3)
32 dist = min(d+ 1,Dist(m, I(n))
33 end

34 end
35 if (nedge = (m′, l′) ̸= (⊥,⊥)) then
36 Em = Em ∪ {nedge}
37 Dist(m,m′) = dist

38 end
39 if (¬visit(m) ∧ nedge = (m′, l′)) then W = W ∪ {(m, l′, dist)}
40 else if (¬visit(m) then W = W ∪ {(m, l, dist)}
41 end

42 end
Algorithm 2: genInfluencerGraph

Fast and incremental computation of weak control closure 11

CFG. The choice of n′ depends on the kind of visited node n. If n is a Cond node
or a Join node, then n′ = n as n is recognized to be the new influencer of m,
and n′ = I(n) otherwise to interpret the fact that the influencer of n becomes
the influencer of m. The choice of l depends on the following facts:

– If n is a Cond node, then the first and the second visited successors m1

and m2 of n introduce the edges (m1, n, 1) and (m2, n, 2) in G. However, we
include the edge (mi, n, 3) instead of (mi, n, l) for l = 1 or l = 2 if there
already exists an edge (mi, n, l

′) in G for any i = 1, 2, l′ > 0, and l′ ̸= l since
mi can be reached from n through either of the two branches.

– If n is a Join node and not a Cond node, we include the edge (m,n, 0) in G
to represent the fact that m is not influenced by n, but there possibly be a
successor of n in G that may influence m.

– If n is neither a Join node nor a Cond node, then we include the edge
(m, I(n), l) in G where the edge-label l may be the continuation of the pre-
viously selected edge-label or l = 3 if G already includes an edge (m, I(n), l′)
for any l′ > 0 and l′ ̸= l.

3.2 An incremental algorithm to compute WCC

Once we obtain the influencer graph G as explained in the previous section, we
perform a search for disjoint N ′-paths in G to detect all N ′-weakly deciding
nodes. Then, the WCC of N ′ includes N ′ and all N ′-weakly deciding nodes that
are reachable from N ′ in the CFG. Before we provide a systematic search in
graph G, we provide a few details on G.

There may have multiple edges (n1, n, l) and (n2, n, l) to the node n in G
with the same edge label. This is due to the sequence of CFG nodes n, n1, n2

in the CFG such that n is a Cond or Join node, and ni is neither a Cond nor
a Join node for i = 1, 2. Thus, both n1 and n2 belong to the same branch
of n and both are predecessor nodes of n in G. If either n1 or n2 belongs to
N ′, then the edge (ni, n, l) represents the N ′-path [n..ni] for any i ∈ {1, 2}.
However, if both n1 and n2 are in N ′, then only [n..n1] is an N ′-path, but
[n..n2] is not. Our systematic search in G incorporates this fact by looking into
the distance Dist(ni, n) computed in Alg. 2 and considers the N ′-path [n..n1] as
Dist(n1, n) < Dist(n2, n).

We compute the set of N ′-weakly deciding vertices by traversing the graph G
from the nodes in N ′ in the forward direction according to Alg. 4. We maintain
the following functions as invariant during the fixpoint iteration of the algorithm:

– The function End : N → N records the end element of a potential N ′-path
from the given node. For example, End(n) = m implies that [m..n] is a
potential N ′-path in the CFG. Initially, we set End(n) = ⊥ for each CFG
node n to represent the fact that an N ′-path from n is yet to be traversed
(if exists).

– For all CFG nodes n such that either n ∈ N ′ or n is identified as an N ′-
weakly deciding node, we set wdVec(n) = true; wdVec(n) = false otherwise.

12 Abu Naser Masud

– The function L : N → P({1, 2, 3}) records the set of non-zero edge-labels of
a given node n, and any l ∈ L(n) indicates that an N ′-path exists from n in
the branch of the CFG marked by l. For example, L(n) = {1, 3} indicates
that an N ′-path exists from node n in the CFG which can be visited by
traversing any of the two branches of n in the CFG.

– The function M : N×{0, 1, 2, 3} → N×N represents the pair of a CFG node
and a nonnegative integer number in relation to a given pair of a CFG node
and an edge label. Given any CFG node m and the edge label l ∈ {0, 1, 2, 3},
M(m, l) = (n, d) represents the fact that (n,m, l) is an edge in the influencer
graph G with distance d = Dist(n,m) such that the path [m..n] is either an
N ′-path or a prefix of an N ′-path. If there exist multiple edges (n′,m, l) and
(n,m, l) in G such that both represent N ′-paths (or a prefix of N ′-paths)
[m..n] and [m..n′], we set M(m, l) = (n, d) if d = Dist(n,m) < Dist(n′,m).
We set M(m, l) = (⊥,⊥) when no N ′-path exists from m in the CFG.
If M(m, l) = (n, d), we use the functions first and second to denote the
equality first(M(m, l)) = n and second(M(m, l)) = d respectively.

Given the CFG G, a subset of CFG nodes N ′, and the boolean variable ini-
tialize?, Alg. 3 computes the WCC of N ′. If initialize? is true, the functions
End,L, wdVec, and M are initialized, and the influencer graph G and the func-
tion Dist are computed by applying Alg. 2. Alg. 4 is applied to compute the set
of N ′-weakly deciding nodes WD followed by computing the reachability of the
nodes in WD from N ′ in the CFG G. We omit the details of the checkreacha-
bility function as it is a simple graph reachability algorithm visiting each edge
in the CFG exactly once starting from N ′ and return the set of all nodes in WD
that are reachable from N ′.

For the subsequent application of Alg. 3 in computing the WCC of a superset
of N ′ (after the first computation of WCC set), Alg. 3 is called with the boolean
variable initialize? set to false . Alg. 4 is applied with the previously computed
values of the functions End,L, wdVec, and M. These functions are considered
as the internal states of the algorithm which are initialized only once and the
WCC set is computed incrementally if the input set N ′ grows incrementally in
the consecutive calls of Alg. 3.

Alg. 4 computes the set of N ′-weakly deciding nodes from the influencer
graph G and the set N ′. We assume that the functions End,L, wdVec,M, and
Dist are globally available to Algorithms 3 - 5. Alg. 4 systematically traverses the
graph G from the nodes in N ′ in the forward direction and updates the functions
End,L, wdVec,M to record the visit of N ′-paths and their disjointedness. While
visiting an edge (n,m, l) in G, L(m) is updated to record the visit of the node
m through the branch l ̸= 0, M(m, l) is updated to record the predecessor node
n of m providing the N ′-path through the branch l and the distance from n
(or the nearest Cond node of n) to m. A CFG node m is included in the set of
N ′-weakly deciding vertices WD if the following constraints are satisfied:

|L(m)| > 1 (2)

|{End(p) : l′ ∈ L(m), p = first(M(m, l′)), End(p) ̸= ⊥}| > 1 (3)

Fast and incremental computation of weak control closure 13

Input: G,N ′, initialize?
Output: WCC

1 if (initialize?) then
2 forall (n ∈ N) do
3 End(n) = ⊥, L(n) = ∅, wdVec(n) = false
4 forall l ∈ {0, . . . , 3} do M(n, l) = (⊥,⊥)

5 end
6 (G,Dist) =geninfluencergraph(G)

7 end
8 WD =computeWD(G, N ′)
9 WCC = N ′∪ checkreachability(G,WD,N ′)

Algorithm 3: ComputeWCC

Input: G = (N, E), N ′

Output: WD
1 WD = ∅
2 forall (n ∈ N ′) do
3 wdVec(n) = true, End(n) = n
4 end
5 W = N ′

6 while (W ̸= ∅) do
7 Remove n from W
8 forall ((m, l) ∈ En) do
9 if (wdVec(m)) then continue

10 if (l ̸= 0) then L(m) = L(m) ∪ {l}
11 if (M(m, l) = (⊥,⊥) ∨ second(M(m, l)) > Dist(n,m)) then
12 M(m, l) = (n,Dist(n,m))
13 end
14 changed = false
15 S = {End(p) : l′ ∈ L(m), p = first(M(m, l′)), End(p) ̸= ⊥}
16 if (|S| > 1) then
17 errorEnd = End(m)
18 End(m) = m
19 WD = WD ∪ {m}
20 wdVec(m) = true
21 changed = true
22 if (errorEnd ̸= ⊥ ∧ errorEnd ̸= m) then
23 propagateToReplace(m, errorEnd)
24 end

25 end
26 else
27 changed = (End(m)! = End(first(M(m, l)))
28 End(m) = End(first(M(m, l)))

29 end
30 if (changed) then W = W ∪ {m}
31 end

32 end
Algorithm 4: ComputeWD

14 Abu Naser Masud

Input: m, errorEnd
1 Wq = {m}
2 while (Wq ̸= ∅) do
3 Remove n from Wq

4 for (m ∈ succG(n)) do
5 if (End(m) == errorEnd ∧ wdVec(m) == false) then
6 End(m) = ⊥
7 Wq = Wq ∪ {m};
8 end

9 end

10 end
Algorithm 5: propagateToReplace

n1

n2

n3

n4

n5

n6

1

1

1

2

2

2

Fig. 3: An example influencer graph

Equation 2 implies that m is a Cond node in the CFG having two branches
and multiple N ′-paths exit from m in the CFG. Equation 3 implies that there
exist two predecessors m1 and m2 of m in G such that End(m1) ̸= End(m2) and
End(mi) ̸= ⊥ for i = 1, 2. Thus, there exist two disjoint N ′-paths from m in
the CFG, and m is included in the set of an N ′-weakly deciding vertices WD.
We provide the theoretical proof of the correctness of our approach in the next
section.

While visiting the graph G, it may happen that the update of the function
End is based on partial information that may lead to error if proper actions are
not taken. We illustrate this scenario by an example in Fig. 3. Let n1 and n5

belong to N ′ and End(ni) = ⊥ for all 1 ≤ i ≤ 6 initially. During the visit of this
graph from n5, Alg. 4 updates End(ni) = n5 for all i ∈ {3, . . . , 6}. While visiting
the graph from n1, eventually node n3 is included in WD due to visiting two
disjoint paths [n3..n5] and [n3..n1], and End is updated by End(n3) = n3. Next,
if node n4 is visited without taking any action, Equations 2 and 3 are satisfied
for node n4 since End(n6) = n5 and End(n3) = n3, and node n4 will be included

Fast and incremental computation of weak control closure 15

in WD imprecisely. Even though two N ′-paths exist from n4, the paths are not
disjoint. We resolve this imprecision in our algorithm as follows. If a CFG node
m is included in WD, we set End(m) = m due to our choice of invariant during
the fixpoint computation. Moreover, node m should be the end element for all
nodes n ̸∈ WD and that belong to a path π from m in G. However, if we had
End(m) = m′ ̸= ⊥ before we set End(m) = m, and if we have End(n) = m′,
we reset End(n) = ⊥ so that End(n) can be set to m in a later visit to n from
m. For example, for the influencer graph in Fig. 3, we reset End(n) = ⊥ and
later set End(n) = n3 for n ∈ {n4, n6} after we set End(n3) = n3. This action
will not include n4 in WD as Equation 3 will not be satisfied for node n4 due to
resetting End(n6). Alg. 4 performs this reset by calling the propagateToReplace
procedure in Alg. 5.

3.3 Proof of correctness

In this section, we provide a number of lemmas to justify that Alg. 4 correctly
discovers all N ′-weakly deciding nodes. Finally, we provide Theorem 1 to prove
that Alg. 3 correctly computes the WCC of N ′.

Lemma 1. Any path [n1..nk] in the influencer graph G implies that there exists
a path [nk..n1] in the CFG.

Proof. Let n ∈ N be a CFG node such that ni ∈ succ(n) for any 1 ≤ i ≤ k − 1.
Alg. 2 includes the edge (ni, ni+1) in G while visiting the CFG node n due to
one of the following cases:

1. If n is a Cond node or a Join node, then ni+1 = n and ni+1, ni is a path in
the CFG,

2. Otherwise, ni+1 = I(n).

Let I(n) = m1 for any m1 ∈ N . According to Alg. 2, m1 can only be a Join
or a Cond node (see Lines 12, 19-20). Then, I(n) = m1 is obtained due to
traversing a CFG path m1, . . . ,ml = n such that no mj is a Cond or Join node
and I(mj) = m1 (Line 25) for 2 ≤ j ≤ l. Thus, there exists CFG paths [m1..n],
and consequently, [m1..ni] is a CFG path with ni+1 = m1 being a Cond node.
Thus, any path [n1..nk] in the influencer graph G is obtained due to the existence
of a CFG path [nk..n1] such that n2, . . . , nk are all Cond or Join nodes. ⊓⊔

Note. While constructing the graph G, an edge (n,m) is included in this graph
if either m is a Cond or Join node, or m = I(n′) for some node n′ such that
I(n′) ̸= ⊥. If I(n′) = ⊥, we would not have an edge (n,m) in this graph (see the
conditions at lines 26, 30, and 35 in Alg. 2.

Lemma 2. Let N ′ ⊆ N , let [n1..nk] be any path in the influencer graph G, let
n1 ∈ N ′, and let ni ̸∈ N ′ for all 2 ≤ i ≤ k. Then, either π = [nk..n1] is an
N ′-path or there exists another N ′-path which is a prefix of π in the CFG G.

16 Abu Naser Masud

Proof. According to Lemma 1, there exists a path [nk..n1] in the CFG G. If
no node in this path is in N ′ except n1, then [nk..n1] is an N ′ path. However,
if the path [nk..n1] includes multiple nodes from N ′, then there exists a node
m ∈ [nk..n1] which is in N ′ and the closest node to nk. Thus, [nk..m] is an
N ′-path in the CFG which is the prefix of [nk..n1]. ⊓⊔

Lemma 3. Let End(n) = m for any n,m ∈ N computed in Alg. 4. Then, there
exists a path π = [m..n] in the influencer graph G such that either m ∈ N ′ or
m ∈ WD.

Proof. Alg. 4 assigns End(n) = m while traversing an edge (n′, n, l) in G for
any n′ ∈ N . Either (i) End(n) = n (Line 18) or (ii) End(n) = End(n1) = m
for any predecessor n1 = first(M(n, l) of n (Line 28). In the first case, n = m
and n ∈ WD. Thus, π is a trivial path containing only the node n, and the
lemma trivially holds. In the second case, we use the inductive reasoning to
show that there exists a path nk, . . . , n1 in G such that End(ni) = End(ni+1) for
all 1 ≤ i ≤ k − 1 due to the update in Line 28, and eventually we must have
nk = m and End(m) = m since G is a finite graph. Alg. 4 assigns End(m) = m
if m ∈ N ′ (Line 3) or m ∈ WD (Line 18) during traversing G, and consequently,
the lemma holds. ⊓⊔

Lemma 4. Let End(n) ̸= ⊥ for any n ∈ N computed in Alg. 4. Then, there
exists an N ′-path from n in the CFG.

Proof. Let n = n0, and let End(n0) = n1 for any n1 ∈ N . According to Lemma 3,
there exists a path [n1..n0] in the influencer graph G such that either n1 ∈ N ′

or n1 ∈ WD. If n1 ∈ N ′, then according to Lemma 2, there exists an N ′-path
from n in the CFG G. However, if n1 ∈ WD, there exists a predecessor m1 of
n1 in G such that End(m1) ̸= ⊥. Let End(m1) = n2. We apply the inductive
reasoning to infer that there exists a sequence of paths [nk..nk−1], . . . , [n1..n0]
in G such that ni ∈ WD for 0 ≤ i ≤ k − 1, and eventually nk ∈ N ′ since G is
finite, End(m) = m for all m ∈ N ′ due to initialization (Line 3 in Alg. 4), and
End(m′) for all m′ ̸∈ N ′ are updated from End(m) by traversing G from N ′.
Thus, according to Lemma 2, there exists an N ′-path from n in the CFG. ⊓⊔

Lemma 5. Let n ∈ N be a CFG node satisfying Equation 2 and Equation 3.
Then, there exist two edges (n1, n, l1) and (n2, n, l2) in G such that l1 ̸= l2,
End(n1) ̸= End(n2), End(ni) ̸= ⊥ and li > 0 for i = 1, 2.

Proof. Since |L(n)| > 1, there exist two edges (n1, n, l1) and (n2, n, l2) in G for
any n1, n2 ∈ N such that l1 ̸= l2 and li > 0 for i = 1, 2. The conditions l1 ̸= l2
and li > 0 for i = 1, 2 imply that node n is a Cond node having two successors
in the CFG.

Since Equation 3 is satisfied for the node n, either End(n1) ̸= End(n2) and
the lemma holds consequently, or End(n1) = End(n2). In the second case, there
exists another edge (n3, n, l3) such that End(n3) ̸= End(ni) for i = 1, 2. As n is
a Cond node, l3 ̸= 0 according to Alg. 2 (see Lines 13 and 14 in Alg. 2). So, we
have one of the following possibilities: (i) l3 ̸= l1 and l3 ̸= l2, (ii) l3 = l1, but

Fast and incremental computation of weak control closure 17

l3 ̸= l2, or (iii) l3 = l2, but l3 ̸= l1. Consequently, we have the CFG nodes n3 and
either n2 due to Case (i) or (ii) or n1 due to Case (iii) such that the conditions
in the lemma are satisfied. ⊓⊔

Lemma 6. Let π = [n..m] be a CFG path such that n is reachable from the
Start node. Then, there exists a subsequence of CFG nodes n1, . . . , nk = m of π
such that [nk..n1] is a path in G.

Proof. We consider the subsequence of CFG nodes n1, . . . , nk = m of π such that
each ni is a Cond or Join node for 1 ≤ i ≤ k − 1. Let mi

0 = ni, . . . ,m
i
ik

= ni+1

be the sequence of nodes from ni to ni+1 in π for all 1 ≤ i ≤ k − 1 and ik ≥ 0.
Alg. 2 traverses the path π as it is reachable from the Start node. At each visit
to the node mi

j for any 1 ≤ j ≤ ik, Alg. 2 inserts the edge (mi
j , ni, l) for any

l ∈ {0, . . . , 3}. Thus, (ni+1, ni, l) is an edge in G for all 1 ≤ i ≤ k−1, and [nk..n1]
is a path in G. ⊓⊔

Lemma 7. Let n ∈ N be a CFG node such that there exist two disjoint N ′-paths
from n in the CFG. Then, Equations 2 and 3 are satisfied for n in Alg. 4.

Proof. Let π1 and π2 be two disjoint N ′-paths from n in the CFG. According to
Lemma 6, there exist two paths [nk..n1] and [ml..m1] in G which are subsequences
of nodes in π1 and π2 respectively. Also, nk,ml ∈ N ′ since π1 and π2 areN

′-paths
in the CFG.

Node n is a Cond node having two distinct branches in the CFG, and thus
we must have n1 = n and m1 = n. So, there exist two edges (n2, n, l1) and
(m2, n, l2) in the influencer graph G such that l1 ̸= l2 since n2 and m2 are at
different branches of n. Also, since n is a Cond node, li > 0 for i = 1, 2. Thus,
Equation 2 is satisfied for n.

Since π1 and π2 are disjoint paths that only meet at the CFG node n, [nk..n1]
and [ml..m1] are also disjoint paths that only meet at n1 = m1. We must have
End(nk) = nk and End(ml) = ml since nk,ml ∈ N ′. While visiting the influ-
encer graph G in Alg. 4, End(n2) and End(m2) may take any value from the
sets {n2, . . . , nk} and {m2, . . . ,ml} respectively, which are disjoint sets. Thus,
Equation 3 is satisfied for n. ⊓⊔

Lemma 8. Let n ∈ N be a CFG node satisfying Equation 2 and Equation 3.
Then, n is an N ′-weakly deciding node.

Proof. According to Lemma 5, there exist two edges (n1, n, l1) and (m1, n, l2) in
G such that l1 ̸= l2, End(n1) ̸= End(m1), End(n1) ̸= ⊥, End(m1) ̸= ⊥ and li > 0
for i = 1, 2.

For any m ∈ N ′, End(m) = m due to initialization, and End(m′) ̸= ⊥ is
derived from this initial values of End(m) for all other m′ ̸∈ N ′. Let End(n1) =
n2. There exists a path [n2..n1] in G such that either n2 ∈ N ′ or n2 ∈ WD
(Lemma 3). If n2 ∈ WD, there exist a predecessor n′

2 of n2 such that End(n′
2) ̸=

⊥ according to Alg. 4 (see Lines 15-18 in Alg. 4). Let End(n′
2) = n3. Since G is

finite, we apply inductive reasoning to infer that there exists a path [nk..n1] in
G such that nk ∈ N ′, [ni+1..ni] is a path in G and ni ∈ WD for all 1 ≤ i ≤ k− 1

18 Abu Naser Masud

. Similarly, there exists a path [ml..m1] in G such that ml ∈ N ′, [mi+1..mi] is a
path in G and mi ∈ WD for all 1 ≤ i ≤ l − 1.

In what follows, we show that the paths π1 = [ml..m1, n] and π2 = [nk..n1, n]
are disjoint by contradiction. Suppose there exist no such disjoint paths to n.
Thus, they meet at the first common node ni = mj in π1 and π2 for any 1 ≤ i ≤ k
and 1 ≤ j ≤ l. So, the paths [nk..ni+1] and [ml..mj+1] are disjoint.

Now, if there exists a node m ∈ [ni..n] which is in WD and thus End(m) ̸= ⊥,
we can apply inductive reasoning as before to show that there exists a path
[mp..m1] for any p ≥ 1 such that mp ∈ N ′. This path does not meet any of the
paths [nk..ni+1] and [ml..mj+1] as they are disjoint. This implies that we can
always have two disjoint paths from n regardless of whether [mp..m1] meet with
[ni..n] and/or [mj ..n]:

1. the path [nk..n] if [m
p..m1] meet with both [ni..n] and [mj ..n] or only with

[mj ..n], and
2. another path [mp..mt] followed by [mt..n] where mt meet at [mj ..n].

This contradicts our assumption that no paths like π1 and π2 to n are disjoint.
So, our assumption about the existence of the nodem ∈ WD is not correct. Thus,
no node in the paths [ni..n] and [mj ..n] are in WD. We must have End(ni) ̸= ⊥
due to the path [nk..ni] such that End(nk) = nk. Alg. 4 then traverses the
paths [ni..n] and [mj ..n] and set End(m) = End(ni) for all m ∈ [ni..n] and
m ∈ [mj ..n] (see conditions at Line 16 and the update at Line 28 in Alg. 4).
This contradicts the assumption of the lemma that End(n1) ̸= End(n2). Thus,
our only assumption that π1 and π2 are not disjoint cannot be true.

Then, π1 and π2 lead to two N ′-paths π3 and π4 from n in the CFG G
according to Lemma 4. These paths are disjoint as all Cond and Join nodes in
these paths are disjoint. Node n is thus an N ′-weakly deciding vertex. ⊓⊔

Theorem 1. Alg. 3 correctly and precisely computes the WCC of a subset N ′

of CFG nodes.

Proof. For all N ′-weakly deciding node n in the CFG, Equations 2 and 3 are
satisfied for n in Alg. 4 according to Lemma 7. Moreover, for all CFG nodes n
satisfying Equations 2 and 3 in Alg. 4, n is anN ′-weakly deciding node according
to Lemma 8. Since Alg. 4 includes all CFG nodes n in WD if Equations 2 and
3 are satisfied for n, Alg. 4 includes a CFG node n in WD if and only if n is an
N ′-weakly deciding node. Alg. 3 then computes the set WCC that includes N ′

and a subset of WD that are reachable from N ′ in the CFG. ⊓⊔

3.4 Worst-case time complexity

In this section, we provide a number of lemmas to state the theoretical worst-case
time complexity of our algorithms.

Lemma 9. Let G = (N , E) be the influencer graph generated from a CFG G =
(N,E) such that |G| = |N | + |E| and |G| = |N | + |E|. Then, it holds that
O(|G|) = O(|G|).

Fast and incremental computation of weak control closure 19

Proof. For each visit to a CFG edge, Alg. 2 inserts at most one edge in G.
Moreover, since N = N , we must have O(|G|) = O(|G|). ⊓⊔

Lemma 10. The worst-case time complexity of Alg. 2 is O(|N |).

Proof. The worst-case time complexity of Alg. 2 is dominated by the while loop
(line 5-42). The while loop visits each CFG node exactly once. For each visited
node n, the forall loop (line 9-41) visits each edge from n exactly once. Thus,
the while and the forall loop collectively iterates |N | + |E| times. The worst-
case cost of each basic operation inside the while and the forall loop is constant
except for the costs of the operations (n,X) ∈ Em and (I(n), X) ∈ Em at Lines
13, 14, 26, and 30, the cost of inserting the edge {nedge} in Em at Line 36, and
the cost of accessing and updating Dist(m, .) at Lines 32 and 37. Since each
CFG node and each edge in the CFG is visited at most once, the cost of these
operations during the entire iteration of the while and the forall loop is O(|G|)
which is equal to O(|G|) according to Lemma 9. Thus, the worst-case cost of
the entire loop (Line 5-42) is O(|N |+ |E|+ |G|) which is equal to O(|N |+ |E|).
Since any CFG node has at most two outgoing edges according to the definition
of CFG, we have O(|N |) = O(|E|), and the worst-case time complexity of Alg. 2
is O(|N |). ⊓⊔

Lemma 11. The worst-case time complexity of Alg. 4 is O(|N |2).

Proof. The worst-case cost of Alg. 4 is dominated by the while loop (Line 6-
32). This loop iterates as long as there exist elements in the worklist W . While
visiting an edge (n,m, l) in the influencer graph G, m is included in W if End(m)
is changed (see Lines 18, 21, 27-30). The function End(m) may change its value
⊥ to some other value n ∈ N for the first time. If End(m) = m is set once, its
value will never be changed and it will never be included inW . Also, End(m) = n
may change to End(m) = n′ if there exists a path [n..m] in the influencer graph
such that n′ ∈ [n..m] and n′ is included in WD, or n′ ∈ N ′ is an immediate
predecessor of m. Thus, if End(m) is changed |N | times, it implies that |N |
nodes are in WD ∪N ′ and thus no new node can be included in W as End will
then never be changed, and the changed variable will always be false afterward.
So, we can safely consider that for each node m in the influencer graph, End(m)
may change two times (from ⊥ to some value n ∈ N , and n to m if m ∈ WD).
Each additional change will be due to including a node in WD. Since at most
|N | node can be included in WD, the while and the loop forall loop (Lines 8-31)
will iterate at most 2 ∗ |N |+ 2 ∗ |E| times in total.

By choosing suitable data structures, all other operations in the while and
forall loops can be performed at constant time except for the operation of the
propagateToReplace procedure in Alg. 5. Alg. 5 requires visiting each node and
edge in the graph G at most once with all other operations in the while loop
at constant cost. Thus, the worst-case cost of Alg. 5 is O(|N | + |E|) which is
effectively O(|N |) due to Lemma 9. Thus, the worst-case cost of the while loop
in Alg. 4 is O((2 ∗ |N | + 2 ∗ |E|) ∗ |N |) which is equivalent to O(|N |2). This is
also the worst-case cost of Alg. 4. ⊓⊔

20 Abu Naser Masud

Theorem 2. The worst-case time complexity of Alg. 3 computing the WCC set
is O(|N |2).

Proof. The worst-case cost of the checkreachability procedure can be at
most O(|N |) times as it requires visiting each node and edge at most once in a
loop with all other operations in the loop at a constant cost. Thus, the worst-
case cost of Alg. 3 is dominated by the worst-case cost of the computeWD
procedure which is O(|N |2) according to Lemma 11.

Note that even though the worst-case cost of Alg. 3 is quadratic in the size
of the CFG, we believe that the amortized complexity of this algorithm is much
better as indicated by our experimental evaluation in the next section.

4 Experimental Evaluation

The main objectives of our experimental evaluation include measuring the cor-
rectness of our algorithm and comparing its practical efficiency with the state-
of-the-art approaches. In doing so, we have implemented our algorithms in the
Clang/LLVM compiler framework [9]. We have compared our approach with
the state-of-the-art WCC computation algorithm developed earlier [14,12] which
is currently the best-known algorithm for computing WCC with an average
speedup of 10.6 compared to the algorithm of Danicic et al. [4]. This state-of-
the-art algorithm is also implemented in the Clang/LLVM compiler framework
and released as open-source in a GitHub repository2.

All experiments are performed in an Intel(R) Core(TM) i7-7567U 3.50GHz
CPU with 16 GB of RAM memory and all implementations are compiled using
the LLVM version 11.0.0. We have used seven benchmarks from the SPEC CPU
2017 benchmark suite consisting of approximately 2081 KLOC. These bench-
marks are written in C language and were also used in the experimental evalu-
ation of the state-of-the-art approaches. Note that the SPEC CPU 2017 bench-
mark suite contains other benchmarks. However, they are not written solely in
the C language. Since our implementation can only handle C code, these other
benchmarks are thus excluded from the experiments.

In order to perform experiments for the incremental computation of WCC,
we choose the set N ′ of CFG nodes randomly. This choice of randomness is due
to the fact that N ′ should be provided by the client application of WCC such
as program slicing as illustrated in Alg. 1. This choice of randomness neither
affects the generality of our algorithm nor affects our experiment in any way. We
run each experiment 10 times. The number 10 is selected due to the fact that
earlier experimental evaluation [14,12] ran each experiment 10 times as well.
For the client applications like slicing or information flow control, this number
will depend on the size of the CFG, the maximal number of Cond nodes in a
maximal path, and the point of interest such as the nodes in the slicing criterion,
etc. Usually, this number should be the maximum number of iterations to reach

2 https://github.com/anm-spa/CDA

Fast and incremental computation of weak control closure 21

benchmarks KLOC #proc Tω TM speedup

1 Mcf 3 40 17728.4 52010.9 2.93
2 Nab 24 327 121747.7 430778.8 3.54
3 Xz 33 465 66832.0 147705.6 2.21
4 X264 96 1449 60603.5 208273.6 3.44
5 Imagick 259 2586 56359.8 225375.0 4.0
6 Perlbench 362 2460 2006511.4 18762418.0 9.35
7 GCC 1304 17827 12317538.2 434684910.3 35.29

Total/Average 2081 25154 14647321.0 454511472.2 31.03

Table 1: Execution times of computing WCC incrementally on seven selected
benchmarks from SPEC CPU 2017 [3]

fixed-point in Alg. 1. However, since this number is unknown, 10 is a good
number for the experiments to get an indication of whether we can obtain a
significant speedup or not. Each experiment took the Z number of randomly
selected N ′ sets where Z is a random number between 1 and 15.

We computed the influencer graph only once and apply our WCC computa-
tion algorithm (Alg. 3) Z times consecutively for each experiment. On the other
hand, we apply the state-of-the-art algorithm [14,12] Z times consecutively to
compute the WCC set for each experiment. In order to verify the correctness
of our method, we compare the WCC sets computed by our incremental al-
gorithm and the best baseline algorithm in [14,12] computed for the same N ′

set. We obtained exactly the same WCC sets for all experiments in each bench-
mark computed by both methods. This provides us the empirical proof of the
correctness of our method.

For each experiment, we recorded the time in milliseconds taken by both
methods. The results are presented in Table 1 in which Tω denotes the execution
time of our algorithm, TM denotes the execution time of the best baseline algo-
rithm, and #proc is the number of procedures in each benchmark. The speedup
column indicates the speedup of our method which is computed as TM/Tω. In
the final row, all numbers in each column are the sum of the numbers in 7 bench-
marks except the final number in the speedup column. The speedup in the final
row is obtained from the values of TM and Tω in the final row which gives us
the average speedup for the entire experiment.

Table 1 illustrates that we improved the performance in the incremental
computation of WCC significantly. The performance improvements are between
2 to 4 times for smaller benchmarks compared to the best baseline approach.
However, for larger benchmarks like Perlbench or GCC, the performance im-
provements are significant. We obtained a speedup of 9.35 and 35.29 times for
Perlbench and GCC respectively. On average, we obtained a speedup of 31.03 for
the entire experiment. This proves that our approach can be the best alternative
to compute WCC over the state-of-the-art algorithms.

As seen in Table 1, the performance improvement results are skewed towards
larger benchmarks such as GCC and Perlbench. We bring our discussion of these

22 Abu Naser Masud

skewed results from our earlier results on non-incremental WCC computation
methods [14]. The higher gain for GCC is due to the fact that GCC is the largest
benchmark in the benchmark suite, the size of CFGs for the procedures in this
benchmark is much bigger than the size of the CFGs in the benchmarks like Mcf,
Xz, or Nab. The Xz benchmark (for example) provides the lowest speedup due
to the fact that it has fewer procedures than GCC and the sizes of the CFGs
for most procedures in this benchmark are very small; the average size of a CFG
(i.e. number of CFG nodes) is only 8 per procedure. GCC has 38 times more
procedures than Xz and the average size of a CFG per procedure is 20. Also,
greater speedups are obtained in larger CFGs. There are 171 and 55 procedures
in GCC with the size of the CFGs greater than 200 and 500 respectively and
the maximum CFG size is 15912, whereas the maximum CFG size in Xz is 87.
The Perlbench is the second largest benchmark in our experiments in terms of
the CFG size and the number of procedures. We obtained the second highest
speedup (9.35) for this benchmark. Our results would have been less skewed if
we would consider other benchmarks similar to GCC or Perlbench that have
more procedures and the CFG sizes are larger, unlike Xz or Mcf.

5 Related Work

The concept of control dependence was first introduced by Denning and Den-
ning [5] in analyzing the information-flow security of programs. He used the
dominator-based (inverse of postdominator) approach to identify program in-
structions influenced by the conditional instructions in the program. Weiser [22]
shown how to use this concept in program slicing. This concept was first for-
malized by Ferrante et al. [6] and used it to compute the program dependence
graph (PDG). PDG is a program representation that can be used for program
slicing and program optimization techniques. This formal definition of control
dependence was based on computing postdominator relation which is still being
used in modern compilers such as LLVM or GCC for program transformation
and program optimization techniques.

Several alternatives to this standard definition are introduced in the litera-
ture. The earliest of these alternatives is the work of Podgurski and Clarke [19].
They provided the concept of weak and strong syntactic dependence where
strong syntactic dependence is the standard control dependence relation of Fer-
rante et al. and the weak syntactic dependence is the nontermination sensitive
control dependence relation. Bilardi and Pingali [2] provided a generalized frame-
work of Podgurski and Clarke which is parameterized with respect to a set of
CFG paths providing different control dependence relations. The above control
dependences were extended by Ranganath et al. [21,20] to deal with programs
containing exceptions or nonterminating programs. Modern software such as web
services, distributed systems, or robot control software may be nonterminating
and it may be desirable to compute control dependence from such systems. The
authors in Reference [21,20] introduced control dependencies that are applicable
to these modern programming language constructs. They defined the nonter-

Fast and incremental computation of weak control closure 23

mination insensitive and nontermination sensitive control dependencies in the
opposite sense of Podgurski and Clarke, and provided algorithms to compute
these control dependence relations.

Danicic et al. [4] provided the concept of weak and strong control closure
that are nontermination insensitive and nontermination sensitive respectively.
These definitions are the most general and unifying definitions capturing a wide
variety of programming language constructs. They have shown that all previously
defined control dependence relations are the special case of these two generalized
concepts. They have provided algorithms to compute WCC and SCC and the
worst-case time complexity of these algorithms are O(|N |3) and O(|N |4) where
|N | is the number of vertices of the CFG.

More recently, a number of works extending and improving various concepts
of Danicic et al. have been introduced. Our earlier works in [14,12] provided
algorithms to compute WCC and SCC that improved the theoretical worst-case
time complexity by an order of the size of the CFG as well as the practical
efficiency. We have extended the definitions of WCC and SCC for interproce-
dural programs in order to prove the semantic correctness of dependence-based
program slicing in [17], and provided an algorithm to compute the WCC for in-
terprocedural programs in [18]. However, none of these improvements considered
the incremental computation of WCC.

Léchenet et al. [10] provided an improvement of Danicic et al. by applying
various optimizations and demonstrated the efficiency improvements in practical
evaluation. The theoretical complexity of their algorithm is not provided and the
algorithm is not incremental in nature. Khanfar et al. [8] developed a demand-
driven algorithm to compute direct control dependencies to a particular program
statement which requires that the program must have a unique exit point. This
algorithm is not incremental in nature and their algorithm does not compute
WCC.

Recently, we have shown an interesting duality relationship between comput-
ing the SSA program and the WCC relation [13]. Our incremental algorithm may
provide an improved algorithm to compute the SSA program without computing
the standard dominance frontier-based SSA construction as done in [15,16].

6 Conclusion and Future works

Numerous definitions of control dependency relations are introduced in the lit-
erature to handle a wide spectrum of programming language constructs. The
weak and strong control closures are the most generalized definitions captur-
ing nontermination (in)sensitive control dependencies. Since the introduction of
these concepts, a series of works have been published to provide an improved
algorithm computing WCC and SCC and extend them to handle interprocedural
programs. However, there exists no effort that provides an incremental computa-
tion of WCC. Incremental computation of WCC is especially important for the
client application of WCC such as program slicing since it requires the repeated
computation of WCC in a fixpoint iteration. A non-incremental algorithm loses

24 Abu Naser Masud

performance by repeatedly computing unnecessary information. In this paper,
we have developed a novel algorithm to compute WCC incrementally which is
also the fastest algorithm among all the existing approaches to computing WCC.
We have provided the proof of correctness of our method and analyzed its theo-
retical worst-case time complexity which is quadratic in terms of the size of the
CFG. We have implemented our algorithm in the Clang/LLVM compiler frame-
work and compared it with the best baseline approach by running experiments
on well-known benchmarks. We have obtained an average speedup of 31.03 in all
benchmarks and a maximum speedup of 35.29 in the largest benchmark. This
gives us an indication that the amortized complexity of our algorithm is much
better than the theoretical worst-case complexity.

The future direction of this work includes developing a method that also
computes SCC and is applicable to interprocedural programs. The further ex-
tension will be to develop definitions and algorithms to handle time-sensitive
weak and strong control closure that will be beneficial to detect timing leaks in
security-critical software.

Acknowledgment This research is supported by the Swedish Knowledge Foun-
dation via the HERO project

References

1. Amtoft, T.: Correctness of practical slicing for modern program structures. Tech.
rep., Department of Computing and Information Sciences, Kansas State University
(2007)

2. Bilardi, G., Pingali, K.: A framework for generalized control dependence. SIG-
PLAN Not. 31(5), 291–300 (May 1996). https://doi.org/10.1145/249069.231435

3. Bucek, J., Lange, K.D., v. Kistowski, J.: Spec cpu2017: Next-generation compute
benchmark. In: Companion of the 2018 ACM/SPEC International Conference on
Performance Engineering. pp. 41–42. ICPE ’18, ACM, New York, NY, USA (2018).
https://doi.org/10.1145/3185768.3185771

4. Danicic, S., Barraclough, R., Harman, M., Howroyd, J.D., Kiss, Á., Laurence,
M.: A unifying theory of control dependence and its application to arbitrary
program structures. Theoretical Computer Science 412(49), 6809–6842 (2011).
https://doi.org/10.1016/j.tcs.2011.08.033

5. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow.
Commun. ACM 20(7), 504–513 (Jul 1977). https://doi.org/10.1145/359636.359712

6. Ferrante, J., Ottenstein, K.J., Warren, J.D.: Dependence graph and its use
in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (Jul 1987).
https://doi.org/10.1145/24039.24041

7. Khanfar, H., Lisper, B., Masud, A.N.: Static backward program slicing for safety-
critical systems. In: de la Puente, J.A., Vardanega, T. (eds.) Reliable Software
Technologies – Ada-Europe 2015. Lecture Notes in Computer Science, vol. 9111,
pp. 50–65. Springer (2015). https://doi.org/10.1007/978-3-319-19584-1 4

8. Khanfar, H., Lisper, B., Mubeen, S.: Demand-driven static backward slicing
for unstructured programs. Tech. rep. (May 2019), http://www.es.mdh.se/

publications/5511-

https://doi.org/10.1145/249069.231435
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1016/j.tcs.2011.08.033
https://doi.org/10.1145/359636.359712
https://doi.org/10.1145/24039.24041
https://doi.org/10.1007/978-3-319-19584-1_4
http://www.es.mdh.se/publications/5511-
http://www.es.mdh.se/publications/5511-

Fast and incremental computation of weak control closure 25

9. Lattner, C., Adve, V.: The LLVM Compiler Framework and Infrastructure Tu-
torial. In: LCPC’04 Mini Workshop on Compiler Research Infrastructures. West
Lafayette, Indiana (Sep 2004). https://doi.org/10.1007/11532378 2

10. Léchenet, J.C., Kosmatov, N., Le Gall, P.: Fast computation of arbitrary control
dependencies. In: Russo, A., Schürr, A. (eds.) Fundamental Approaches to Soft-
ware Engineering. pp. 207–224. Springer International Publishing, Cham (2018).
https://doi.org/10.1007/978-3-319-89363-1 12

11. Lisper, B., Masud, A.N., Khanfar, H.: Static backward demand-driven slic-
ing. In: Proceedings of the 2015 Workshop on Partial Evaluation and Program
Manipulation. pp. 115–126. PEPM ’15, ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2678015.2682538

12. Masud, A.N.: Simple and efficient computation of minimal weak control clo-
sure. In: Pichardie, D., Sighireanu, M. (eds.) Static Analysis - 27th Interna-
tional Symposium, SAS 2020, Virtual Event, November 18-20, 2020, Proceedings.
Lecture Notes in Computer Science, vol. 12389, pp. 200–222. Springer (2020).
https://doi.org/10.1007/978-3-030-65474-0 10

13. Masud, A.N.: The duality in computing ssa programs and control de-
pendency. IEEE Transactions on Software Engineering pp. 1–16 (2022).
https://doi.org/10.1109/TSE.2022.3192249

14. Masud, A.N.: Efficient computation of minimal weak and strong control closure.
J. Syst. Softw. 184, 111140 (2022). https://doi.org/10.1016/j.jss.2021.111140

15. Masud, A.N., Ciccozzi, F.: Towards constructing the SSA form using reach-
ing definitions over dominance frontiers. In: 19th International Working Con-
ference on Source Code Analysis and Manipulation, SCAM 2019, Cleve-
land, OH, USA, September 30 - October 1, 2019. pp. 23–33. IEEE (2019).
https://doi.org/10.1109/SCAM.2019.00012

16. Masud, A.N., Ciccozzi, F.: More precise construction of static single assignment
programs using reaching definitions. Journal of Systems and Software 166, 110590
(2020). https://doi.org/https://doi.org/10.1016/j.jss.2020.110590

17. Masud, A.N., Lisper, B.: Semantic correctness of dependence-based slicing for in-
terprocedural, possibly nonterminating programs. ACM Trans. Program. Lang.
Syst. 42(4) (Jan 2021). https://doi.org/10.1145/3434489

18. Masud, A.N., Lisper, B.: On the computation of interprocedural weak control clo-
sure. In: Proceedings of the 31st ACM SIGPLAN International Conference on
Compiler Construction. p. 65–76. CC 2022, Association for Computing Machinery,
New York, NY, USA (2022). https://doi.org/10.1145/3497776.3517782

19. Podgurski, A., Clarke, L.A.: A formal model of program dependences and its im-
plications for software testing, debugging, and maintenance. IEEE Trans. Softw.
Eng. 16(9), 965–979 (Sep 1990). https://doi.org/10.1109/32.58784

20. Ranganath, V.P., Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer, M.B.: A new foun-
dation for control dependence and slicing for modern program structures. In: Eu-
ropean Symposium on Programming. LNCS, vol. 3444, pp. 77–93. Springer-Verlag
(2005). https://doi.org/10.1007/978-3-540-31987-0 7

21. Ranganath, V.P., Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer, M.B.:
A new foundation for control dependence and slicing for modern pro-
gram structures. ACM Trans. Program. Lang. Syst. 29(5) (Aug 2007).
https://doi.org/10.1145/1275497.1275502

22. Weiser, M.: Program slicing. In: Proc. 5th International Conference on Software
Engineering. pp. 439–449. ICSE ’81, IEEE Press, Piscataway, NJ, USA (1981),
http://dl.acm.org/citation.cfm?id=800078.802557

https://doi.org/10.1007/11532378{_}2
https://doi.org/10.1007/978-3-319-89363-1{_}12
https://doi.org/10.1145/2678015.2682538
https://doi.org/10.1007/978-3-030-65474-0_10
https://doi.org/10.1109/TSE.2022.3192249
https://doi.org/10.1016/j.jss.2021.111140
https://doi.org/10.1109/SCAM.2019.00012
https://doi.org/https://doi.org/10.1016/j.jss.2020.110590
https://doi.org/10.1145/3434489
https://doi.org/10.1145/3497776.3517782
https://doi.org/10.1109/32.58784
https://doi.org/10.1007/978-3-540-31987-0{_}7
https://doi.org/10.1145/1275497.1275502
http://dl.acm.org/citation.cfm?id=800078.802557

	Fast and incremental computation of weak control closure

