
Simulation Environment for Modular Automation
Systems
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Abstract—When developing products or performing experi-
mental research studies, the simulation of physical or logical
systems is of great importance for evaluation and verification
purposes. For research-, and development-related distributed
control systems, there is a need to simulate common physical
environments with separate interconnected modules indepen-
dently controlled, and orchestrated using standardized network
communication protocols.

The simulation environment presented in this paper is a
bespoke solution precisely for these conditions, based on the
Modular Automation design strategy. It allows easy configuration
and combination of simple modules into complex production pro-
cesses, with support for individual low-level control of modules, as
well as recipe-orchestration for high-level coordination. The use
of the environment is exemplified in a configuration of a modular
ice-cream factory, used for cybersecurity-related research.

I. INTRODUCTION

Industrial control systems are undergoing a transformation
driven by the Industry 4.0 evolution, characterized by in-
creased connectivity and flexibility. There is a trend towards
utilizing a network-centric architecture, as, e.g., described by
the Open Process Automation Standard (O-PAS) [1]. Interop-
erability is of great importance in such systems, and using
standarized, ethernet-based communication protocols, is one
way of achieving such interoperability. Two such protocols
are the Open Process Communication Unified Automation
(OPC UA) [2], which is increasingly used in Operational
Technology environments, and Message Queuing Telemetry
Transport (MQTT) [3], a lightweight messaging protocol,
suitable for constrained environments, e.g., for machine-to-
machine communication.

Modular Automation (MA) [4], is one of the design strate-
gies for Industry 4.0, adapted for process industries [5], [6],
with the main application areas within the energy, pharma-
ceutical, chemical, food and beverage sectors. According to
ZVEI [7], in 2030 MA is expected to contribute to a market
volume of 3.5 billion euros. MA is a distributed control
design strategy, which relies upon usage of interoperable
protocols, using a services-based architecture. In MA, the
physical process consists of a set of modules specialized in
autonomously performing low-level tasks with standardized
logical and physical interfaces, such that modules can be com-
bined to fulfill high-level production tasks [8]. The execution
of the high-level tasks is coordinated by an orchestrator [9]
managing a high-level workflow described by a recipe. This

creates a production system that is easy to retrofit and scale,
as well as adapt to both changing business demands and short
innovation cycles.

When conducting experiments or developing products aim-
ing for production systems, simulation of the physical pro-
cesses is a common way of understanding the benefit of the
product or the validity of the conducted experiment [10].
Typically, a math-based simulation engine such as MATLAB
is used to model the physical process. However, to do ex-
periments on systems that include interconnected and individ-
ually controlled physical modules, common in e.g., modular
automation, it is difficult to find a simulation engine capable
to act as the physical counterpart of multiple controllers, while
maintaining the physical integrity of the overall process, e.g.,
with regard to mass and temperature flow between modules.

Physical system simulation [11] is a wide research area,
with many commercial as well as open source tools available,
focusing on different objectives. However, there are few tools
available that allow integration of the simulation with a con-
troller. MATLAB contains an Industrial Communication Tool-
box1 to support integration with, e.g., the OPC UA and MQTT
protocols, with the focus on enabling MATLAB functions to
work as clients, thereby enabling access to industrial data
using these protocols. There are examples of academic works
with physics simulators having controllable I/O, e.g., Latif et
al. [12] wraps an OPC UA server around a Modelica2 model,
in order to connect it to an industrial controller. However, we
are not aware of any examples of MA system-wide simulation
environments allowing control of separate modules, together
with module orchestration.

• Physical modules - Defining the behavior and In-
put/Output (I/O) data for the modules.

• Module Interconnections - Defining how material flow
between modules, such that, e.g., the output of one
module can be input to another module.

• Sensors/Actuators - Exposing, for each module, a set of
I/O that can be used to control the module behavior from
an external controller.

• System reconfiguration - Adding and removing simu-
lated modules, to adapt the process to changing produc-
tion requirements.

1se.mathworks.com/products/industrial-communication.html
2modelica.org/index.html



• System orchestration - Automated high level synchro-
nization of the process execution, by orchestration of the
module controllers.

MQTT is used for detailed control, i.e. communication
between simulated I/O and controller, while OPC UA is used
for high-level orchestration and supervision.

The main contributions presented in this paper are:
• A simulation environment for modular production sys-

tems, following the MA design strategy.
• A description of an implementation of the simulation

environment.
• An example of the use of the simulation environment for

a modular ice-cream factory.
The remainder of this paper is organized as follows. Sec-

tion II provides details on the implementation, and Section III
contains an example of software in the loop for a modular ice-
cream factory that is created using the presented simulation
environment. In Section IV we discuss the impact, shortcom-
ings, and potential future extensions. Section V concludes the
paper and outlines future plans.

II. IMPLEMENTATION

The main goal of this work is to provide a simulation
environment that can be used to demonstrate and simulate
different features of a system built using the MA design strat-
egy. The aim is to use standardized protocols and extendable
techniques to allow continuous improvement and development
of the simulation environment for different research purposes.

The simulation engine is not intended to provide high-
fidelity simulation of a specific physical process, since there
are several much more capable solutions available on the
market. Instead, the purpose of the implementation is to create
a re-configurable environment, able to concurrently simulate
the behavior and interactions of several high-level modules
that are individually controlled.

The simulation engine is developed using C# targeting the
.NET Core platform. MQTT connectivity has been imple-
mented using the M2Mqtt3 library for .NET core, while the
OPC UA support for the simplified module controllers and the
orchestrator has been implemented using the .NET core OPC
UA stack from the OPC foundation4.

A. Functional overview

Fig. 1 shows an overview of the simulation engine archi-
tecture. The first step is to provide a configuration file that
describes the modules to be simulated, including their physical
properties, I/O, and details on how signals are interconnected
(e.g., the output signal of one module may be the input signal
of another one). This file is used to construct instances of all
the specified modules and to populate the internal database
with initial values of the simulation signals. Several tasks are
started to allow concurrent execution of the physical process
simulation, message handling, and the user interface.

3github.com/eclipse/paho.mqtt.m2mqtt
4github.com/OPCFoundation/UA-.NETStandard
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Fig. 1: Architecture overview of the simulation engine.

The simulation execution task contains a periodically exe-
cuting loop. During each run, the physical behavior of each
module is simulated, executing the internal module logic
which reads and updates the simulated signals accordingly.
Interactions between the modules are modeled by connections
between the simulation signals.

The message handler is responsible for MQTT broker
interactions. Signals representing sensor outputs are published
and control signals are subscribed to, allowing interactions
between the simulated modules and individual module con-
trollers. Publishing to the MQTT broker is done periodically.

Modules are implemented as separate classes that simulates
module behavior and contain the logic for tying signals to
module properties. In principle, the simulated module behavior
is implemented using discrete physics formulas, e.g., the level
l′ of a tank which is drained from an output aperture by gravity
pressure is calculated according to:

l′ = l +∆T (Vin − Vout)/A, (1)

where l is the previous level, Vin and Vout are the volume
input and output flows respectively, ∆T is the length of the
sample time in seconds, and A is the base-area of the tank.
The volume outflow Vout is calculated according to [13]5:

Vout = cccvAo

√
2gl, (2)

where cc is the contraction coefficient for the outlet aperture
of the tank, cv is the medium specific velocity coefficient, Ao

is the outlet area, and g is the gravity acceleration constant.

5www.engineeringtoolbox.com/flow-liquid-water-tank-d 1753.html



B. Signals and Parameters

We distinguish between five major types of signals: Digital
Input (DI), Digital Output (DO), Analog Input (AI), Analog
Output (AO) and Calculated Signal (CO). The DI, DO, AI,
DO types correspond to the traditional I/O signals in an
automation system, representing sensors and actuators. The
CO describes interconnections (e.g., when the outflow of one
tank is connected to the inflow of another one), or a predefined
relationship (e.g., the signal representing the level of a tank
expressed in meters can be used to directly calculate the
fill percentage, based on the height of the tank). We model
the deviation of the signals that represent sensor readings by
adding randomized noise to the actual ground-truth sensor
values (sv), where the amplitude of noise for a specific sensor
is available as an attribute in the configuration file. This
attribute defines the sensor precision (p). Sensor readings are
generated according to the uniform distribution defined on the
range from (sv − p) to (sv + p).

The basic physical properties of the modules are described
as parameters. For example, for a simple tank, the parameters
are base area, height, and outlet area. These static values are
part of the simulation engine configuration file.

C. User interface

Visualization of the current state of the simulated set of
modules is provided as a simple graphical user interface
(see Fig. 2). It contains visual representations of modules,
their interconnections, and current values of the parameters.
Modules are represented with rectangles, pipes with lines, and
valves with circles that can be white colored (opened valve)
or black colored (closed valve). The dark gray color indicates
the level of material in each module. By default, only the
basic parameters for each module are visible (i.e., module
name, temperature, and level), but when the user selects a
specific module, all parameters are shown (e.g., T1 in Fig. 2).
Moreover, there is an option to view raw data in real time and
to download it for the desired period (Fig. 3).

The graphical user interface is created as a Windows
desktop application, using Windows Presentation Founda-
tion (WPF) and Extensible Application Markup Language
(XAML). It does not allow any direct interactions with the
simulation engine, but there is a command-line interface
that can be used to manually modify the values of internal
simulation signals, which can be used to drive the simulation
without connected controllers.

D. High-level and low-level Control

In order to allow the individual control of the modules,
the simulation environment also contains implementations of
a few variants of control engines.

They enable low-level control logic for the modules based
on I/O signals using MQTT connectivity, and expose high-
level control functions using OPC UA. These controllers run
as individual processes and may be deployed on any node, as
long as they can access the MQTT broker. A simple example
is a tank level controller, which reads the level of the tank

and controls the in-flow by a pump. The low-level control
may in this case be in the form of a PID-loop, and the
high-level control function may be changing the set-point for
the level. This separation of low-level and high-level control
allows recipe orchestration according to the MA system design
strategy.

The control-part of the simulation environment is com-
pletely independent of the simulation engine, any controller
that can communicate using the MQTT protocol could be used
for the low-level module control, and any controller using OPC
UA can be used for the high-level orchestrator control.

E. Data extraction

Logging of signal values in the simulation engine can be
turned on using one of the parameters in the configuration file.
If this option is selected, all the signal values will be recorded
in a single CSV file. One row in the CSV file represents the
current status of the simulation engine at a specific time point,
including the exact date and time of each record. The logs are
recorded with a configurable periodicity. Additionally, data can
be extracted using different logging options for the MQTT
broker, and network data can be recorded using software
solutions for network monitoring (e.g. Wireshark6).

The collected data can be used for machine learning appli-
cations, e.g., anomaly and intrusion detection research areas.

III. AN EXAMPLE: THE MODULAR ICE-CREAM FACTORY

To illustrate how the simulation engine can be configured
and integrated into a larger simulator environment, this sec-
tion provides an example of a simulation of a modular ice-
cream factory. The factory is split into five main modules,
each individually controlled and physically interconnected.
An overview of the environment is depicted in Fig. 4. The
simulation engine is configured to simulate behavior of five
separate modules, a mixer, a pasteurizer, a homogenizator, a
module handling dynamic freezing that whips air into the ice-
cream mixture while refrigerating it, and a packaging module.
For each of the modules, a separate module controller is
implemented containing the low-level control logic for each
module, as well as high-level commands, e.g., StartPasteurize,
EmptyModule, etc.

The controllers are running on separate physical nodes in
the system, and have separate network connections for process
orchestration, and sensor network connectivity, respectively.

The simulation environment contains one orchestrator that
uses recipes defined as Sequential Function Charts (SFC) [14]
to perform the high-level synchronization of production. Fur-
thermore, there are control room functionalities (operator
workplace), that allow human operators to monitor the sys-
tem, and engineering tools (engineer workplace), that enable
functionality for engineering of the production recipes.

The hardware (Fig. 5) and software used with the experi-
mental setup of the simulation environment contain:

• SNL (Sensor Network Layer) - a network switch used for
field communication, i.e., low level control of the process.

6www.wireshark.org/



Fig. 2: User interface that visualizes five interconnected modules of different types with all parameters shown.

Fig. 3: User interface used for raw data view and download.
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Fig. 4: Ice-cream factory overview.

• POL (Process Orchestration Layer) - a network switch
used for the high level control and process supervision.

• Simulation node - a Windows 10 server connected to the
SNL switch, for running the simulation engine and the

Mosquitto7 MQTT broker.
• Module controllers: A set of Raspberry PI devices, model

4, running Ubuntu server ver.16, for the module con-
trollers, equipped with double network interfaces, with
the lower side connected to the SNL switch, and the upper
interface connected to the POL switch.

• The Orchestrator, executed on a Raspberry PI model 4
device, connected to the POL switch.

• Engineering and Operations, executed as a separate vir-
tual machines running on a Windows 10 server machine,
connected to the POL switch.

The purpose of this specific system is to evaluate how
different types of disturbance on components of the system
may influence the physical process, or even the produced
product. The disturbances may be emulated by the simulator,
in the case of sensor faults or noise, or injected on the network
using various fuzzing tools. One example of data-collection
from a sub-section of the simulation environment is visualized
in Fig. 6, which shows the module levels and in-flows during
two cycles of mixing and pasteurization.

IV. DISCUSSION

In the previous sections, we have described the simulation
environment and ways to instantiate the principal components
of a modular automation process, using the simulation engine
combined with controllers and the orchestrator. In this section,
we discuss the advantages and current limitations of the
developed simulation environment, present new functionalities

7mosquitto.org/



Fig. 5: Lab environment setup which includes hardware of the ice-cream factory example, with two modules simulated.
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that will be developed in the future, and suggest the potential
use of our solution.

The developed simulation engine can mimic the behavior
of a fixed set of physical module types, limited by what is
described in the code. Although some physical properties, as
well as the interconnections between simulated modules, can
be configured, the fidelity and granularity can be improved.
More advanced interactions and physical behaviors, as well as
additional module types, cannot be simulated without expand-
ing the code-base of the engine, which is a clear limitation.
One of the ideas for future development is to integrate the
developed solution with a math-based simulator, for example
Modelica, which could be used for high-fidelity and extendable
module definitions.

The signals-based approach for module interactions, using
only analog and digital signals, provides a loosely coupled de-
sign, which can easily be for example extended with additional
module types. When the material propagates between modules,
the features of the produced material require separate signals
for different aspects (e.g., density, temperature, viscosity).
This propagation brings compatibility issues when adding new

modules, or realizing new features that must be handled in the
simulation. One future improvement of the simulation engine
is, therefore, to change the modeling of the material flow
from analog/digital signals into complex-type signals, with a
common functionality for handling propagation of different
features, when mixing materials.

The simulation engine is developed using .NET Core,
allowing it to be executed on different platforms. However, the
user interface is limited to the Windows operating system, but
we plan to explore alternatives for a cross-platform solution.

In addition, we plan to extend the simulation environment
with functionalities related to different internal and external
threats that can affect the normal behavior of the system. For
this purpose, we plan to implement the following:

• Anomaly simulation, which enables users to simulate
lower-level anomalies that can occur during the produc-
tion process itself (e.g., anomalies in the signals of differ-
ent sensors) and observe how these anomalies can affect
system behavior. Data collected during the simulation
with anomalies is used to create a suitable dataset for
the development of a reliable anomaly detection.

• Anomaly detection, [15], [16] which enables generation
of alerts when an anomaly occurs within the environment.
Different machine learning algorithms will be evaluated
on the created dataset and the ones with the best perfor-
mances can be used to develop this functionality.

• Intrusion detection [17], [18], which enables the gener-
ation of alerts when a threat is detected at network level
(i.e., different network attacks). Similar to the previous
functionality, the machine learning algorithms for intru-
sion detection that we find most suitable shall be used.

When this type of environment is developed, it is important
to have a clear vision of how it can be used and which
target groups can benefit from it. To some extent, the potential
use of the simulation environment overlaps with use-cases
for traditional physics simulators. The major difference is
that this environment is developed with a focus on the MA
design strategy and network connectivity. On the other hand,
easy integration of external controllers is typically not part of
physics simulators. The developed simulation environment can



be used for several different purposes, including the following:
• Research - The simulation of a realistic system can

be used to conduct research in different research areas,
including cybersecurity for manufacturing systems, such
as the development and evaluation of access control
mechanisms [19] and AI-based anomaly detection. For
example, in the system described in Section III, anoma-
lies can be injected into different layers, and different
cyberattacks can be simulated to assess the impact on
the physical process and to evaluate the effectiveness of
the implemented mechanisms.

• Education - We see education as one of the main areas
that can benefit from the developed simulation environ-
ment. Students in computer science can use it in areas
ranging from control theory to artificial intelligence.

• Product Development - When developing products or
creating prototypes for components and services for con-
trol systems, easy integration with a test environment is
important for verification and evaluation purposes. The
simulation environment can be used for simulation at
system level, with a small footprint and cost. This makes
it a useful tool for prototyping and product development
related to control, operations, engineering, specifically for
software products in the modular automation area.

• Other industrial use cases - Virtual commissioning [20]
and operator training are two areas for which the simu-
lation environment can be useful, thanks to its ability to
interact and integrate with controllers and orchestrators.

V. CONCLUSIONS

In this paper, we present a simulation environment that
can be used to simulate the physical process of a modular
automation system with the ability to individually control the
physical modules. The implementation uses the MQTT pro-
tocol for interactions between controllers and the simulation
engine, and the connectivity in the orchestration layer is using
OPC UA. The described solution is following the distributed
control design strategy mandated by modular automation,
and is highly configurable, allowing for any combination of
implemented modules being simulated. It can be used in
product development, research, and education.

The feasibility of the simulation environment for use as
a part of an automation system test-bed is illustrated by the
implementation of a modular ice-cream factory simulator.

As the future work, we aim to integrate the developed
environment with a math-based simulator, such as MATLAB,
and provide a user interface that can be used on different
operating systems. We are also currently developing a set of
functionalities related to anomaly and intrusion detection to
enable cybersecurity related simulations and research.
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