
Systems-of-Systems Design Patterns:
A Systematic Literature Review and Synthesis

Jakob Axelsson
Mälardalen University and RISE Research Institutes of Sweden

Email: jakob.axelsson@mdu.se

Abstract—Design patterns are an established approach for
reusing knowledge about good solutions to recurring problems.
Patterns can be seen as a way of describing the best practices, and
have been used in many different fields, ranging from building
architecture and city planning to software development. There
are also scattered results relating to patterns for systems-of-
systems. The purpose of this paper is to summarize and review
the literature on patterns for systems-of-systems and make a
synthesis of a recommended approach for the field. Specifically,
the novel contributions of the paper are to propose a consolidated
structure for describing individual patterns and suggest the
dimensions along which a pattern catalog can be organized.
The paper also summarizes the concrete patterns suggested
in the existing literature and classifies them according to the
recommended structure.

Index Terms—System-of-systems, patterns, styles, architecture,
literature review.

I. INTRODUCTION

Systems engineering is a purposeful activity, aiming at
providing improvements in a certain context through informed
decisions. Efficiency is always an issue in engineering, where
the effort must be balanced by the value created. One way
of reducing cost is to reuse previously created assets, such as
mass-produced or standardized material artifacts and immate-
rial assets including software libraries. In both these cases, the
benefit is that the development cost is shared by many users,
and the remaining task of the systems engineer becomes to
integrate those assets in the best way to solve the problem at
hand.

As systems become more complex, there is also a potential
for reusing best practices for the integration of elements to
achieve particular effects. Such reusable best practices are
commonly referred to as patterns, and this concept was made
popular by Christopher Alexander’s book A pattern language
[1]. It describes 253 different patterns for city planners and
building architects, where each pattern can be seen as an
abstraction that highlights certain parts of a solution and leaves
other parts open for tailoring to the specific usage context.

The idea of design patterns was later picked up in software
engineering, with the highly influential "Gang of four" book
(so-called since it has four authors) [2]. It describes 24 patterns
from object-oriented programming at a level close to the
source code. At around the same time, the field of software

This research was funded by Vinnova, Sweden’s Innovation Agency, under
grants nos. 2019-05100 and 2021-02499.

architecture was starting to develop, and this included the idea
of architectural styles [3].

Although the literature is not entirely consistent in defini-
tions, a style appears to be a pattern capturing certain aspects
of the overall structure of a system, whereas a pattern denotes
a limited part of the architecture or a detailed design solution.
The idea of capturing and reusing knowledge and experience is
however the same, and the difference in terminology is mainly
due to the level of abstraction on which the idea of patterns
is applied. Therefore, in this paper, we will primarily use the
term pattern for the general concept, regardless of the level of
application.

A. Contribution and Research Questions

In this paper, we will look into how patterns can be used
in the context of systems-of-systems (SoS), where independent
constituent systems (CS) are combined to achieve a capability
that a single CS cannot provide on its own. Combining and
reusing existing elements is at the heart of SoS engineering
(SoSE), since many CS pre-exist. The integration activity
becomes an ever-ongoing endeavor as CS come and go.

The design space of SoSE is dominated by architectural
design, which includes finding appropriate structures as well as
dynamics that foster the desired CS collaboration. Due to the
integration focus of SoSE, it seems natural to apply patterns
as a way to structure best practices in the discipline.

The literature contains many contributions related to SoS
patterns. However, the knowledge is scattered, and the contri-
bution of this paper is to give a consolidated view of SoS
patterns through a systematic literature review (SLR). The
following research questions are addressed:

1) How are SoS patterns described in the literature?
2) What categories of SoS patterns are used in the literature?
3) Which SoS patterns are proposed in the literature?

These questions together provide insights into how a pattern
catalog can be structured so that a user could navigate it
efficiently to find solutions in a given situation. It also indicates
what the community considers the SoS design space to be,
and what knowledge is reusable. A concrete contribution
of the paper is to make a synthesis for each question and
thereby provide a consolidated way of describing patterns and
organizing a pattern catalog for SoS.



B. Overview of Paper

The remainder of this paper is structured as follows: In the
next section, the methodology for SLRs is introduced together
with details of how it was applied in this study. Section III
presents the findings of the research, structured according
to the three research questions. Section IV discusses these
findings and put them in a broader perspective. Finally, in
Section V, the paper is summarized together with proposals
for future research.

II. METHODOLOGY

In this section, the process of an SLR will be briefly
explained, following the established guidelines for this type
of research [4]. In each step, the focus is on how the research
was concretely done in this study.

A. Database Search

The initial step is to search a database for literature relevant
to the stated research questions. The database used was the
Scopus abstract and citation database, which is provided by
Elsevier, and is claimed to be the largest such database in
the world. Both literature [5] and prior experience of the
researcher [6] indicated that this database was likely to provide
a large set of relevant papers for the topic of this study.

After some experiments and tuning, the following final
search string was used:

TITLE-ABS-KEY(
"systems-of-systems" AND
((pattern OR style) W/5
(design OR architectur*)))

This search will look for terms in the title, abstract, or
keywords of the publications. The first part of the search
string requires that the term "systems-of-systems" is explicitly
mentioned. Note that Scopus automatically extends terms so
that this also covers other common ways of writing, e.g.,
"system-of-systems", "systems of systems", and "system of
systems". The second part requires that either "pattern" or
"style" appears close to (more precisely, within five words, as
indicated by the W/5 operator) either "design" or "architecture"
(or similar terms, such as "architectural", which is captured by
the asterisk wildcard character).

In total, this search rendered 87 documents, which were
imported into the Covidence tool for SLRs to support the
further steps of screening and data extraction.

B. Screening and Full Paper Review

A database search broad enough to capture most of the
relevant studies will also yield some irrelevant papers. The
next phase was therefore to manually select those papers from
the search results that are really relevant to the study. First, a
screening was performed based on title and abstract, to remove
papers that do not contribute to the research questions. In total,
48 papers were excluded, and typical reasons were: the paper
uses patterns or style in a common language sense, rather than
denoting design or architectural patterns; the paper addresses a
development process where patterns come into play, but does

not discuss any concrete patterns; and non-papers, such as
conference proceedings volumes.

The next step was to perform a full-text review of the
remaining 39 papers. In total, another 25 papers were excluded
in this step, and typical reasons were: the paper is not really
about SoS; it does not present any patterns; or full text was
not accessible.

The remaining 14 papers were included in the study [7]–
[20]. In addition, a further three relevant papers were already
known by the author [21]–[23], bringing the grand total to 17.

C. Data Extraction

To extract the relevant information, a data collection form
was defined, with one text field for each research question.
Then, relevant parts of each paper concerning each of the ques-
tions were summarized. The data was subsequently exported
into a spreadsheet, thereby providing an overview of which
papers address each question, and allowing a comparison
of what the papers propose. The analysis and subsequent
synthesis differ somewhat for each research question, and the
method used for each of them will therefore be outlined in the
next section, together with a description of the results.

III. ANALYSIS AND RESULTS

In this section, each research question is discussed in more
detail, including how the extracted data was analyzed and how
that analysis was synthesized into a holistic account.

A. Pattern Description

The first research question was related to how patterns are
described. It was analyzed by comparing pattern descriptions
provided in the literature, and clustering similar approaches.
In general, the descriptions consist of informal text, structured
text, and figures. Informal text, i.e., a free text description,
is used by all papers in one form or the other, whereas
structured text and figures are used in different ways and to
various extent. The structured text and figures are discussed
in more detail in this subsection, ending with a synthesis of a
consolidated template for the description of SoS patterns.

1) Structured text: In addition to the informal text, some
papers also introduce a structured text format, consisting of
a set of subheadings that is reused in all pattern descriptions
[10], [12], [15], [16], [21], [22]. This is also the presentation
used for software design patterns in [2]. There is no agreement
between the papers on what structure to use, but still many
similarities. Some use fewer categories, and some give a
much more detailed structure. Many authors roughly agree on
categories but disagree on the subheading to use for them.

2) Diagrams: The informal or structured text is often
combined with diagrams. Some use informal drawings without
well-defined semantics [11], [20]. Others apply a formally
defined modeling language, and the two options found in
the literature are the general-purpose systems engineering
modeling language SysML [7], [8], [14], [18], and the more
specific SoS architecture description language SoSADL [10],
[17]. Typically, the diagrams are used to describe the solution



TABLE I
STRUCTURE OF PATTERN DESCRIPTIONS

Subheading Interrogative Description References
Name Name of pattern all
Description What? Informal overview of the pattern all
Purpose Why? What can be achieved by using the pattern, e.g., providing a certain capability [12], [15], [16], [21], [22]
Applicability Where? Conditions under which the pattern can be used, e.g., SoS, constellation, or CS level [15], [16], [22]
Participants Who? Types of CS involved, and distribution of responsibilities [10], [15]
Solutions How? Structure: Kind of elements and relations involved, with attributes and other details [10], [12], [15], [16], [22]

Dynamics: Interaction between elements, changes in structure
Rationale: Explanation of how the solution supports the purpose
Supporting illustrations: Ad hoc or formal diagrams

Effects How much? Positive and negative effects on quality attributes [16], [22]
Examples Illustrations of usage [12], [15], [16], [21]

offered by the pattern, in particular representing structure and
to some extent dynamics.

Using a formal modeling language has its pros and cons.
For users acquainted with the language in question, it provides
clarity and precision, but for users without that prior knowl-
edge, it significantly raises the threshold for understanding
the patterns. In the examples provided in the literature, the
diagrams are quite rudimentary and use very little of the power
of formal notations. Hence, it is questionable if this level of
formality adds much value. In the end, the use of patterns is
to communicate an idea of a solution that has worked before,
not to provide a detailed design specification.

3) Consolidated template: In Table I, we propose a con-
solidated structure for pattern descriptions, based on the most
common categories found in the literature. A novelty in our
structure is the introduction of interrogative terms, to provide
a simple and easily remembered key for pattern developers
and users.

To provide clarity in the descriptions, an SoS ontology is
recommended, which clearly defines key concepts used in
pattern descriptions and the relations between the concepts.
One proposed ontology can be found in, e.g., [24]. As an
example, the participants in a pattern can be made clearer by
using standardized terms for different kinds of CS and different
roles. This ontology, or meta-model, should be used in both
the structured text and illustrative diagrams.

B. Pattern Categorization

A catalog of patterns can potentially become extensive, as is
illustrated in Alexander’s work with over 250 named patterns
described in a book of 1,200 pages [1]. It is thus evident that
a user needs support in navigating such a resource. Several
attempts at providing structures for pattern categorization exist
in the literature, and the various principles behind these are
discussed and evaluated in this section. Since there were rela-
tively few papers that discuss the categorization, the analysis
consisted of a simple clustering of a few recurring principles
suggested. In this subsection, we will first summarize how
pattern catalogs in other fields were structured, and then
discuss various alternative categories distilled from the SoSE
literature. Finally, a consolidated categorization is proposed.

1) Alexander and Gang of four: Alexander organizes the
patterns hierarchically into three broad categories: Towns (94
patterns), Buildings (110), and Construction (49). This is
further subdivided into groups of 5-10 patterns each, where the
connections within a group are explained in an introductory
text of the corresponding book section.

The software patterns [2] are divided into a two-dimensional
structure, where the dimensions are Scope and Purpose. Since
the focus is on object-oriented programming, the Scope is
divided into Class and Object, and the Purpose into Creational,
Structural, and Behavioral. In total, there are thus six cate-
gories and each pattern is placed into one of them.

2) Relation: In [22], a two-dimensional structure is pro-
posed for integration-oriented patterns. One dimension is Data,
subdivided into Shared and Independent, and the other is
Control, which can be Hierarchical or None. The principle
behind this classification is thus to focus on the dominant
relation type in the pattern, which can also be seen as the
purpose of integration. However, it is hard to see how this
particular categorization generalizes to a broader set of SoS
patterns that go beyond integration issues.

Some authors propose patterns related to self-organization,
self-adaptiveness, and reconfiguration [16], [17], [20], which
can be seen as focusing on structural dynamics. However, they
do not propose this as a general principle of organizing the
patterns catalog, and when looking in detail at the patterns
proposed, they are a lot about control, and could hence fit
within a relations-oriented categorization.

3) Element: Instead of focusing on dominant relations,
one could focus on dominant elements. This is the principle
followed in the work on mediator patterns [10], but there is
no literature providing other examples of dominant elements
than mediators, so it is not evident how this dimension can be
extended to include more categories.

4) Capability: The mediator patterns in [10] are subdivided
into the categories Communication, Conversion, and Control,
which appear to be an extension of the relational categories
Data and Control described above [22]. However, these can
also be seen as generic capabilities, which would then consti-
tute another possible dimension, where further categories than
these three can also be imagined. (The data fusion patterns
suggested by [19] could be seen as a kind of conversion.)



5) Level of abstraction: Alexander’s three main categories
are to some extent based on the level of abstraction, which also
implies a level of scope and extent. A similar idea is proposed
in [13], which uses the categories Architectural (focusing on
operational models), Interaction (systems models), and Design
(component models). However, the paper does not provide any
concrete examples of these categories, which makes it hard to
evaluate the appropriateness of the categorization.

A related structure is proposed by [8], which distin-
guishes between Architectural patterns (describing specific,
constrained, system architectures in terms of structure and
behavior) and Enabling patterns (specific constructs of mod-
eling elements that can be combined into many applications).
Architectural patterns are exemplified by service-oriented ar-
chitecture, centralized, and publish-subscribe. Enabling pat-
terns include interface and traceability. It thus seems that the
architectural patterns refer to the overall structure of the SoS,
and the enabling patterns are generic solutions that apply to
parts of the SoS.

6) Quality attribute: Some other papers implicitly suggest
possible dimensions for categorization by discussing a partic-
ular pattern. This includes patterns related to dominant quality
attributes, such as testability [18] or security [15]. However,
this is difficult to use as a general characterization, since a
pattern may very well affect many attributes, some positively
and some negatively. Therefore, we find it better to include this
in the description of effects (see Table I) than as a dimension
of categorization.

7) Consolidated categorization: In summary, the main di-
mensions proposed in the literature are: relation type; element
type; capability; level of abstraction; and quality attributes.
As discussed above, many of the proposed dimensions have
drawbacks, such as being hard to generalize. We find that
the capabilities and levels of abstraction seem to be most
promising, and could serve as the axes of a two-dimensional
categorization. Emphasizing capability is also in line with
contemporary accounts of SoS, such as the recent standards
which define SoS as a "set of systems [...] that interact to
provide a unique capability that none of the CS can accomplish
on its own" [25].

For the capabilities dimension, the categories Communica-
tion, Conversion, and Control suggested by [10] appear to be
a good starting point. However, one should be aware that due
to the independent nature of CS, control is not absolute. It
could instead be seen as a kind of communication, where one
actor explains what it would like another actor to do, and the
power relation between the actors determines the likelihood
of the action taking place. Related to this is also the question
of incentives, which express values (monetary or other) and
could be an important part of negotiations within an SoS.

For the dimension related to levels of abstraction, the
proposals in the literature are only described briefly, and
without concrete examples of patterns at the different levels
[8], [13]. A proposal that is more in line with contemporary
SoS terminology is the following three levels:

• System-of-systems. Patterns that describe aspects of the

overall SoS architecture, such as general communication,
governance, coordination, etc. This resembles the Archi-
tectural level in [8], [13].

• Constellation. A constellation is a temporary assembly of
a subset of CS, which is formed to realize a particular
SoS capability [26]. This category thus covers patterns
involving several CS, but not the entire SoS. Relevant
patterns would describe the dynamics of constellation
formation and dissolution, as well as communication,
coordination, and control within the constellation. This
resembles the Interaction level in [13].

• Constituent system. Many aspects of CS internal design
are irrelevant to the SoS, but examples of useful patterns
could be methods for preparing an existing system to
become a CS in a particular SoS. This resembles the
Design level in [13].

Some patterns are generic and applicable at several levels
of abstraction or for several purposes. This resembles the
enabling patterns in [8].

It should also be noted that the two dimensions of capabili-
ties and levels of abstraction connect naturally to the proposed
structure for describing patterns shown in Table I, where the
provided capability can be explained as part of the purpose
(Why?), and the level of abstraction as part of applicability
(Where?).

C. Concrete Patterns

Many papers propose concrete patterns, and in total 38 indi-
vidual patterns were extracted from the literature. Particularly
rich sets of patterns were found in [10], [21]. Some of the
patterns resemble each other at least partly, but an attempt
to cluster the recurring ones was inconclusive since only a
few patterns were the same in multiple sources. Therefore, the
analysis proceeded by trying to map the proposed patterns to
the categories described in the previous subsection. The result
of this is shown in Table II.

It should be stressed that this is a preliminary analysis
based on how the patterns are described in the sources. Some
patterns map very well to the suggested categories, but in some
cases, there are elements in the pattern that map to several
categories (such as both communication and control, or generic
concepts useful on several levels). In those cases, a somewhat
subjective decision on the most suitable category was made,
based on which category along each dimension appeared to
be emphasized.

There is also a broad spectrum of scopes for the patterns,
where some are generic and involve relatively few elements,
such as the mediator-focused patterns [10]. Others are very
specifically written with a certain application area in mind,
such as command and control [19] or automotive [15]. To
make a fully consistent pattern categorization, the descriptions
of many patterns need to be aligned in the same presentation
style, and some suggested patterns would need to be reformu-
lated, possibly merged, or in other ways refined. The structure
proposed in Table I would be a good starting point for such a
clarification.



TABLE II
CONCRETE PATTERNS FROM LITERATURE ORGANIZED ACCORDING TO THE CONSOLIDATED CATEGORIZATION

Capabilities
Level of abstraction Communication Conversion Control
System-of-systems Publish-subscribe [12], [21] Service-oriented [12], [21] Centralized [12], [14], [21]

Blackboard [12], [21] Pipe and filter [10], [12], [21] Infrastructure grid [21]
Collaborator [10] Supply chain [21] Monitor / Collecter [10]
Distributor [10] Adaptor / Translator [10] Analyzer [10]
Router [10] Aggregator / Data fusion [10] Planner / Decider [10]
Trickle-up [19] Sandwich [11] Executer / Actuator [10]
Crowd-sourced incident [16] Local adaptations [20]

Regional monitoring with local adaptations [20]
Collaborative adaptations [20]
Multi-scale feedback [9]

Constellation Collaborative learning [16] Reconfiguration control [21]
Contract monitor [21]
C2-zone [19]
Swarm discovery and cooperation [16]
Testability aiding mediator [18]

Constituent system Separation of networks [15] Wrapper [10] Contract [8]
Singleton [11] Interface [7]
Disconnected [23]
Embedded [23]
Remote [23]
Split [23]

IV. DISCUSSION

We will now take a step back, and discuss the usage of
patterns in SoSE from different perspectives. First, we will
reflect upon the quality of pattern descriptions, and on how
an engineer can find the most appropriate patterns efficiently.
We will also highlight some areas in which there seems to be
room for more patterns than have been described so far in the
literature, and evaluate the validity of this study’s results.

A. Pattern Quality

The patterns proposed in the literature are of quite different
nature, some being specific to a certain type of application,
and others being generic or very simple. This raises questions
about what constitutes a good pattern.

The essence of a pattern is to convey an understanding of a
design idea, so the descriptions must be clear and accessible,
which makes the motivation for formal modeling notations
weak. The patterns need to be non-trivial, otherwise, the
engineer could easily reinvent them for the concrete problem
at hand. At the same time, they should not be so detailed
that they become hard to understand. It must also be possible
to recognize and apply them in a concrete setting, which
means that they should not be too abstract, but if they are too
concrete, they become less general. Hence, there are delicate
trade-offs to be made when designing a set of patterns.

B. Navigating the Patterns Catalog

In the SoS literature, almost 40 patterns have already been
proposed, and it can be expected that this number would
increase drastically if more systematic efforts were made
in collecting patterns. Therefore, finding good support for
engineers to navigate the patterns catalog is essential. In
this paper, we have therefore proposed a two-dimensional
structure, which is the approach taken in previous work [2].

However, one could also consider the pattern catalog to be
an information system, rather than a booklet, and this opens
up new possibilities for navigation. It would be possible to
use database searches along several dimensions and include
support for trade-offs between different quality attributes.

Eventually, integrating the patterns database with tools for
model-based systems engineering would make the search for
and application of patterns even more efficient. This further
increases the demand for well-described patterns.

C. Missing Patterns

Table II reveals that the literature has focused on certain
types of patterns, whereas other categories have received far
less attention. In particular, there are more patterns on the SoS
level than on the lower levels, and particularly few related to
communication and conversion in constellations. However, one
should be aware that depending on the nature of the SoS and
its constellations, some of the patterns on the SoS level may
very well be applicable also on the constellation level, but on
a smaller scale, so this picture is a bit deceptive. There is also
only one pattern for communication within a CS, and this is
not too surprising since this is mostly an internal matter for
CS designers and with marginal interest to SoS researchers.

The proposed patterns also reveal that some aspects of the
SoSE design space have received much more attention than
others. The proposed patterns are mainly technical and in-
formation oriented. Areas that are completely missing include
"soft" aspects such as how to organize SoS governance, or how
to provide incentives for CS to act in the interest of the overall
SoS to create a viable SoS business model. Other lifecycles
than the operational phase would also deserve further study.

D. Validity

The validity of research addresses to what extent the results
can be trusted. In SLRs, one question is always whether all the



relevant literature has been found. In this case, we choose to
use Scopus, as it is the broadest available literature database,
but it still does not cover all publications, and we did have to
add a few papers that were known beforehand. The validity of
the search could be improved by either looking at additional
databases or doing snowballing (i.e., trace references to and
from the identified papers). However, it should be noted
that a similar search as ours was performed in [10], which
only resulted in four papers, so our study with 17 papers is
significantly broader than previous research.

Apart from missing papers, there is also a risk of misin-
terpretations of the proposed patterns, which could lead to
incorrect classification. This risk is in some cases quite large
since many patterns are described informally and leave a lot
of room for subjective interpretation.

Another aspect of validity is the quality of the primary
sources. In this case, it should be noted that the included papers
are primarily theoretical, and there is very little evidence from
practical usage of the proposed patterns.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented a systematic literature review
on SoS patterns, focusing on how to describe patterns; how
catalogs of patterns should be structured; and what concrete
patterns have been presented. The findings concerning each
research question can be summarized as follows:

1) Pattern description. We recommend that SoS patterns are
described using structured text following the template
shown in Table I combined with informal figures to
illustrate the solutions.

2) Pattern categories. We recommend a two-dimensional
structure. One dimension is the capability, with the initial
categories Communication, Conversion, and Control. The
other dimension is the level of abstraction, with cate-
gories System-of-systems, Constellation, and Constituent
system.

3) Concrete patterns. We were able to identify almost 40
different patterns, covering most combinations of capabil-
ity and level of abstraction. However, the majority of the
patterns cover the SoS level, and there is less research on
specific patterns for constellations and for adapting CS.

This work could continue in several directions, some of
which were indicated in Section IV above. Improving the qual-
ity of the available pattern descriptions through the application
of a common format as proposed in the paper would be a big
step forward. This, combined with a consolidated and well-
organized catalog of patterns, would make the knowledge more
available and increase the chances of the patterns being tried
in practice. In that way, the validity will also be improved.
An important asset for writing clearer patterns would be a
common ontology of key SoS concepts.

REFERENCES

[1] C. Alexander, A pattern language: towns, buildings, construction. Ox-
ford university press, 1977.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

[3] D. E. Perry and A. L. Wolf, “Foundations for the Study of Software
Architecture,” ACM SIGSOFT Software Engineering Notes, vol. 17,
no. 4, pp. 40–52, 1992.

[4] B. Kitchenham and S. Charters, “Guidelines for performing Systematic
Literature reviews in Software Engineering Version 2.3,” Keele Univer-
sity, Tech. Rep. 4ve, 2007.

[5] M. E. Falagas, E. I. Pitsouni, G. A. Malietzis, and G. Pappas, “Compari-
son of PubMed, Scopus, Web of Science, and Google Scholar: strengths
and weaknesses.” FASEB journal, vol. 22, no. 2, pp. 338–42, feb 2008.

[6] J. Axelsson, “A Systematic Mapping of the Research Literature on
System-of-Systems Engineering,” in IEEE 10th System of Systems
Engineering Conference, 2015.

[7] J. Bryans, R. Payne, J. Holt, and S. Perry, “Semi-formal and formal
interface specification for system of systems architecture,” in Annu. IEEE
Int. Syst. Conf., Proc., 2013, pp. 612–619.

[8] J. Bryans, J. Fitzgerald, R. Payne, A. Miyazawa, and K. Kristensen,
“SysML contracts for systems of systems,” in Proc. Int. Conf. Syst.
Syst. Eng., 2014, pp. 73–78.

[9] A. Diaconescu, L. J. DI Felice, and P. Mellodge, “Multi-Scale Feedbacks
for Large-Scale Coordination in Self-Systems,” in Int. Conf. Self-
Adaptive and Self-Organizing Syst., 2019, pp. 137–142.

[10] L. Garces, F. Oquendo, and E. Y. Nakagawa, “Towards a taxonomy of
software mediators for systems-of-systems,” in ACM Int. Conf. Proc.
Ser., 2018, pp. 53–62.

[11] R. H. Hodges, M. A. Bone, R. J. Cloutier, and P. Korfiatis, “Singleton
to sandwich chunking into buslets for better system development,” in
Proc. Int. Conf. Syst. Syst. Eng., 2011, pp. 125–130.

[12] C. Ingram, R. Payne, S. Perry, J. Holt, F. O. Hansen, and L. D. Couto,
“Modelling patterns for systems of systems architectures,” in Annu.
IEEE Int. Syst. Conf., 2014, pp. 146–153.

[13] R. S. Kalawsky, D. Joannou, Y. Tian, and A. Fayoumi, “Using architec-
ture patterns to architect and analyze systems of systems,” in Procedia
Comput. Sci., vol. 16, 2013, pp. 283–292.

[14] R. S. Kalawsky, Y. Tian, D. Joannou, I. Sanduka, and M. Masin,
“Incorporating architecture patterns in a SoS optimization framework,”
in Proc. IEEE Int. Conf. Syst., Man, Cybern., 2013, pp. 1726–1731.

[15] N. Marko, A. Vasenev, and C. Striecks, “Collecting and Classifying Se-
curity and Privacy Design Patterns for Connected Vehicles: SECREDAS
Approach,” pp. 36–53, 2020.

[16] C. Nichols and R. Dove, “Architectural Patterns for Self-Organizing
Systems-of-Systems,” in INCOSE Intl. Symp., 2011, pp. 851–862.

[17] F. Petitdemange, I. Borne, and J. Buisson, “Approach Based Patterns
for System-of-Systems Reconfiguration,” in Proc. Int. Workshop Softw.
Eng. Syst.-Syst., SESoS, 2015, pp. 19–22.

[18] A. Riboni, L. Guglielmo, M. Orru, P. Braione, and G. Denaro, “Design
for testability of ERMTS applications,” in Proc. IEEE Int. Symp. Softw.
Reliab. Eng. Workshops, ISSREW, 2019, pp. 128–136.

[19] K. J. Rothenhaus, J. B. Michael, and M.-T. Shing, “Architectural patterns
and auto-fusion process for automated multisensor fusion in SOA
system-of-systems,” IEEE Syst. J., vol. 3, pp. 304–316, 2009.

[20] D. Weyns and J. Andersson, “On the challenges of self-Adaptation in
systems of systems,” in Proc. Int. Workshop Softw. Eng. Syst.-Syst.,
SESoS Proc., 2013, pp. 47–51.

[21] C. Ingram, R. Payne, and J. Fitzgerald, “Architectural Modelling Patterns
for Systems of Systems,” in INCOSE Intl. Symp., 2015, pp. 1177–1192.

[22] R. Kazman, K. Schmid, C. B. Nielsen, and J. Klein, “Understanding
patterns for system of systems integration,” in Proc. 8th Intl. Conf. on
System of Systems Engineering, 2013, pp. 141–146.

[23] J. Axelsson, J. Fröberg, and P. Eriksson, “Architecting systems-of-
systems and their constituents: A case study applying Industry 4.0 in the
construction domain,” Systems Engineering, vol. 22, no. 6, pp. 455–470,
nov 2019.

[24] Y. Baek, J. Song, Y. Shin, S. Park, and D. Bae, “A Meta-Model for
Representing System-of-Systems Ontologies,” in 6th Intl. Workshop on
Software Eng. for Systems-of-Systems, 2018, pp. 1–7.

[25] ISO/IEC/IEEE, “Standard 21841 Systems and software engineering -
Taxonomies of systems-of-systems,” ISO/IEC/IEEE, Tech. Rep., 2019.

[26] J. Axelsson, “A Refined Terminology on System-of-Systems Substruc-
ture and Constituent System States,” in IEEE Systems of Systems
Conference, Anchorage, Alaska, 2019, pp. 31–36.


