
Concurrent OPC UA information model access,
enabling real-time OPC UA PubSub

1st Patrick Denzler
Institute of Computer Engineering

TU Wien
Vienna, Austria

patrick.denzler@tuwien.ac.at

2rd Mohammad Ashjaei
Innovation Design and Engineering School

Mälardalen University
Västerås, Sweden

mohammad.ashjaei@mdh.se

3nd Thomas Frühwirth
Research Department

Austrian Center for Digital Production
Vienna, Austria

thomas.fruehwirth@acdp.at

4th Victor Nicholas Ebirim
Innovation Design and Engineering School

Mälardalen University
Västerås, Sweden

vem20001@student.mdu.se

5th Wolfgang Kastner
Institute of Computer Engineering

TU Wien
Vienna, Austria

wolfgang.kastner@tuwien.ac.at

Abstract—Ongoing changes in industrial automation aim to-
wards a flat and highly interconnected architecture that includes
end-to-end real-time enabled machine-to-machine communica-
tions. Several technologies, such as OPC Unified Architec-
ture (OPC UA) publish-subscribe and time-sensitive networking
(TSN), facilitate that change. While OPC UA PubSub and TSN
can already provide real-time capabilities, the parallel operation
with standard OPC UA client-server remains an open challenge.
This article presents preliminary results for solving concurrent
information model access between OPC UA PubSub and client-
server. The results include the overall RT-TSN-OPC UA concept,
an analysis of common concurrent data access mechanisms for
their suitability, and identifying critical code segments in the
open62541 OPC UA stack. The paper concludes by outlining
further research focusing on implementing and evaluating a wait-
and obstruction-free mechanism into open62541.

Index Terms—OPC Unified Architecture, TSN, real-time Pub-
Sub

I. INTRODUCTION

Current developments in industry aim to transform industrial
automation systems from a traditional hierarchical to a flat and
highly interconnected architecture [1]. Such an architecture
is IP-based to enable seamless communication and simplified
integration of all types of devices from the shop floor up to the
cloud. Essential for such an architecture is the removal of the
historically grown gap between operational technology (OT)
and information technology (IT), which hinders unrestricted
data and information exchange [2].

Closing the OT/IT gap requires bridging two quite different
environments. The field and control layer (OT), representing
sensors, actuators, and programmable logic controllers (PLCs)
connected by industrial communication systems, perform con-
trol loops and sometimes timely communication and process-
ing to meet fixed deadlines [3]. On the other side, the IT

This work has been partially supported and funded by the Austrian Research
Promotion Agency (FFG) via the Austrian Competence Center for Digital
Production (CDP) under contract number 881843.

layers stand for commercial off-the-shelf components, such as
servers and desktop PCs running software applications, that
communicate via Internet Protocol (IP) and focus on high
average performance without strict timing requirements.

There are several technologies that provide functionalities
necessary closing the OT/IT gap [2], for example time-
sensitive networking (TSN), fog computing, and OPC Uni-
fied Architecture (OPC UA). The OPC UA protocol provides
standardised, platform-independent, and secure machine-to-
machine communication. TSN-enabled networks aim at pro-
viding robust deterministic data transport. The combination
of both technologies, especially the OPC UA extension for
publish-subscribe (PubSub), shows potential to realise an end-
to-end real-time machine-to-machine communication [4].

While TSN received much attention regarding its timing
behaviour, OPC UA PubSub was only recently investigated for
possibilities of fulfilling strict timing guarantees [5], [6]. How-
ever, an open issue is that the timing guarantees are only valid
if OPC UA PubSub is isolated from the standard OPC UA
client-server communication pattern. The reason is that both
communication paradigms access a shared information model,
which raises issues regarding concurrent data access that must
be addressed. A client-server instance might block a PubSub
data access or change a value during a reading operation with
unforeseeable consequences.

Within this context, this paper presents ongoing efforts
to implement mechanisms that allow concurrent information
model access in OPC UA and enable a distributed real-
time end-to-end data transfer environment. The paper presents
preliminary findings that include the presentation of the overall
real-time TSN OPC UA concept and its requirements. More-
over, potential mechanisms for concurrent data access are
evaluated for suitability to be implemented in the open-source
OPC UA stack open62541 [7] information model, based on an
analysis of the stack. The findings provide the base for future
adjustment of the stack and its evaluation.

This paper contains five sections. The following Section II
introduces OPC UA, TSN, and related work. Furthermore,
it presents the underlying overall real-time TSN OPC UA
concept and the involved challenges. Section III contains the
findings regarding possible concurrent data access mechanisms
to realise real-time OPC UA PubSub. Section IV presents
the intended approach and preliminary results. Section V
concludes the article and points out the future activities.

II. BACKGROUND AND RELATED WORK

The aim of this section is to give a short and conceive
description of TSN and OPC UA, as a foundation for Sec-
tion II-D. The related work focuses on OPC UA PubSub in
the context of real-time applications.

A. OPC Unified Architecture
The history of OPC UA starts with its predecessor the open

platform communications (OPC) protocol and has evolved
towards one of the possible contestant to homogenise commu-
nication in the industrial domain. Simplified, the architecture
of OPC UA consists of two pillars [8]. In the first pillar, a
meta model defines all rules for modelling information. The
second pillar on the other hand, defines Transport Mechanisms
for encoding data and data exchange between devices. Histori-
cally, OPC UA’s main communication pattern is client-server,
however, a recent extension also supports the publish-subscribe
(OPC UA PubSub) communication pattern. The advantage of
client-server is the possibility to invoke complex services like
browsing the information model or calling methods. OPC UA
PubSub focuses on minimal communication overhead to en-
able lightweight data exchange for example run-time data. It
can be realised in a broker-based (e.g., MQTT) or a broker-less
architecture (e.g., Ethernet multicast or TSN).

There is a wide range of OPC UA software stacks avail-
able, which are either driven by vendors or the open-source
community. A widely used and well-maintained stack is the
open-source stack open62541 [7]. The stack follows the offi-
cial guidelines and supports a wide range of functionalities,
including OPC UA PubSub. The programming language of
the stack is C, what makes it a good reference for other
implementations.

B. Time-Sensitive Networking (TSN)
TSN evolved from the Audio Video Bridging (AVB) for

industrial real-time communication [9]. For TSN, there is no
single standard, rather a collection of IEEE 802.1 standards.
The authors in Bruckner et al. [4] provide an overview of all
TSN standards. relevant for this paper, while just assumed to
be present, are the IEEE 802.1Qbv (time-aware shaper) and
IEEE 802.1AS [10] clock synchronisation.

A major distinction to classical networks in the industrial
domain, is that TSN aims to provide dual-use in industrial
as well as consumer applications, with a higher throughput
and vendor neutrality [4]. Other functionalities of TSN are
for example adding and removing connections with assured
Quality of Service (QoS) properties over multiple hops in a
bridged network [11].

C. Related Work

There is only a limited amount of research done concern-
ing OPC UA PubSub in combination with distributed real-
time end-to-end data transfer environments. For example, in
Eymüller et al. [12], the authors describe a concept of real-
time capable and long-running tasks in OPC UA. Specifi-
cally, OPC UA programs and TSN are combined to achieve
a distributed and synchronised message exchange between
applications. Pfrommer et al. [9] explore a similar path and
analyse TSN for its usability to transport OPC UA PubSub
messages in practice. In their solution, a hardware interrupt
triggers an adjusted open62541 publisher to achieve real-
time properties and concurrent data access between OPC UA
PubSub and client-server. The publisher code is not worst-
case execution time (WCET)-analysed. Panda et al. [13]
used OPC UA PubSub to realise a field-level best-effort IP-
based communication between OPC UA servers. The authors
propose using an externally stored shared information model.

While not explicitly focusing on the real time-behaviour of
the OPC UA PubSub stack, other researchers focused on TSN-
enabled field devices with OPC UA running on commercial
off-the-shelf (COTS) hardware and software [14] or exploring
the possibilities of configuring TSN and OPC UA as an appli-
cation layer protocol [15]. Similarly, Kobzan et al. [16] look
into the combination of TSN, OPC UA, and software-defined
networking for dynamic reconfiguration. Their approach high-
lights the importance of dynamic changes in future industrial
networks while preserving real-time capabilities. Most of the
research activities use the open62541 for their implementations
OPC UA PubSub stack [7].

D. Overall RT-TSN-OPC-UA Concept

As mentioned before the wider aim of this research is
to realise a distributed real-time end-to-end data transfer
environment. While the issue of deterministic data transport
between nodes is solved by the use of TSN, the end systems
need to fulfil certain criteria. Each node is required to support
TSN, additionally the OPC UA stack needs to process data
packages deterministic, i.e. the stack needs to fulfil timing
guarantees. Both issues have been previously investigated in
Denzler et al. [5] for pure OPC UA PubSub systems including
WCET analysis of the OPC UA PubSub stack. A remaining
issue is to guarantee the timing behaviour of OPC UA PubSub
in systems where the information model is also accessed by
OPC UA client-sever.

OPC UA organises data and the corresponding semantic in-
formation in an OPC UA information model. The information
model of a specific OPC UA sever is the so-called address
space. Information in the address space can be accessed and
modified via the client-server or publish-subscribe communi-
cation scheme as illustrated in Figure 1. During an address
space access, the information can be read or adjusted without
any restrictions, which leads to four possible concurrent data
access cases:

• The publisher reads and the server writes a value.
• The publisher reads and the server reads a value.
• The subscriber writes and the server writes a value.
• The subscriber writes and the server reads a value.
All four cases could create an undesired outcome, for

example, value changes during a read operation where the unit
of a value changes (server writes) while the publisher packs the
data frame (publisher reads). Other possible unwanted effects
are, depending on the specific implementation, race conditions,
deadlocks or life locks. For the OPC UA PubSub to remain
time predictable, it is necessary to implement a concurrent
data access mechanism that honours the time boundaries as
well as the correctness of the sent value. The next sections
introduce related work and possible data access mechanisms.

Sensor (e.g., Pressure
Measuring Unit)

 OPC UA Server
 Application 1

OPC UA Server
Application 2

O
PC

 U
A

Pu
bl

is
he

r

O
PC

 U
A

Su
bs

cr
ib

er Address
Space

ControlValue

Actuator

Parameter

Address
Space

SensorValue

Sensor

Parameter
(Real-Time)

OPC UA
PubSub

OPC UA Client (e.g., SCADA System)

Actuator (e.g., Valve)

OPC UA
Client Session

OPC UA
Client Session

(Best-Effort)
OPC UA

Client Server

Fig. 1. OPC UA client-server and PubSub accessing a shared address space

III. CONCURRENT DATA ACCESS MECHANISMS

The OPC UA address space is a shared resource that
provides access to different processes. Therefore, the address
space is a critical section or code block in OPC UA where
only one task may execute at a time. This section presents the
results of an investigation about suitable mechanisms to realise
concurrent data access in OPC UA client-server and PubSub.

One possible solution to avoid simultaneous access is to
implement only Single-threaded applications as they do not
require shared data access mechanisms. If the application
runs on a single-core processor (e.g., small microprocessors),
another option is to allow a process to disable interrupts
before entering the critical section and then re-enable inter-
rupts after leaving it. The processor will not be able to switch
between processes, if interrupts are disabled. Other solutions
are required for more complex scenarios, which can be broadly
categorised into blocking and non-blocking mechanisms.

A. Blocking Mechanisms

The primary requirement for a blocking mechanism is that
one thread of execution never enters a critical section while a
concurrent thread of execution is already accessing a critical
section. In other words, while a thread accesses a shared
resource, no other access is allowed during a specific time.

For mutually exclusive access, a process has to lock the
address space before accessing it and unlock it when the
access has been completed. Over the last decades, different
implementations for lock and unlock mechanisms have been
proposed; some are briefly described in the following.

A well-known blocking mechanism (semaphores) was in-
vented by the Dutch computer scientist Dijkstra [17]. The
semaphore ensures that a resource can only be exclusively
accessed and must be released. There are several variations
on the semaphore concept that are widely used.

Adding to the concept of a semaphore is the idea of a Mutex.
A Mutex introduces ownership, meaning when a thread/task
locks (acquires) a Mutex, it is the only one that can unlock
(release) it. No other thread can unlock a Mutex. There
are several other possibilities to implement lock and unlock
mechanisms, but they must be omitted for space reasons.

B. Non-Blocking Mechanisms
If a resource must be accessed without blocking, so-called

non-blocking mechanisms are used. Such mechanisms do not
employ locks and eliminate the need for a critical section [18].

One mechanism proposed by Herlihy, Luchangco, and Moir
in 2003 is called obstruction-free. The idea is that any process
can finish in a bounded number of steps if all other processes
stop. Other implementations that allow concurrently access
shared resources are called lock-free. Such algorithms ensure
that if a scheduler suspends a task in the middle of its activity,
dependent tasks can still finish their activities without waiting.
An extension of lock-free is wait-free algorithms that add
the condition that every task using the shared resource may
perform its operation in a finite number of steps, independent
of the other tasks.

C. Properties of Concurrent Data Access Mechanisms
While each of the previously mentioned mechanisms aims

to enable access to a shared resource, there are situations
where they fail. One such situation is a deadlock. In a
deadlock, threads/tasks obstruct each other by preventing each
other from accessing the resource while making no progress
in the meantime and eventually ceasing to function. Similarly,
in a livelock, the tasks’ status are continually changing while
being dependent on each other and therefore can never finish
their tasks. The significant difference to a deadlock is that the
states are changing, but still, no progress is achieved. Another
possibility is that a task cannot acquire access to a shared
resource needed to progress. Such a situation is commonly
known as starvation.

All those situations lead to no progress or ceasing function;
however, shared resource access can also cause a limitation
of efficiency. The desired characteristic of a concurrent data
access mechanism is a high throughput, i.e., a high number of
operations per unit of time. Therefore, an efficient mechanism
has a high throughput the more successful operations can be
completed in a given amount of time. High efficiency also
includes a fair share of the resource between the tasks. These
properties build a decision ground for choosing a suitable
concurrent data access mechanism.

TABLE I
CONCURRENT DATA ACCESS MECHANISMS VS. PROPERTIES

Mechanism Deadlock Livelock Starvation Throughput
/ Fairness

Semaphore yes yes yes low / low
Mutex yes yes yes low / low
Obstruction-free yes yes yes low / low
Lock-free no yes yes high / low
Wait-Free no no no low / low

IV. APPROACH AND PRELIMINARY RESULTS

In the ongoing activities to realise the concurrent informa-
tion model access in OPC UA between PubSub and client-
server, the open62541 OPC UA stack [7] was analysed. Addi-
tionally, the previous mechanisms were investigated for their
suitability.

A. Analysis of Concurrent Data Access Mechanisms

As indicated beforehand, a simple solution for concurrently
accessing the information model is changing the stack to a
single-threaded application. However, the open62541 code for
the client-sever is not WCET analysable [6]. It would take a
considerable effort to change the code to become deterministic
enough to fulfil the necessary timing bounds. Moreover, the
solution to disable the interrupts before entering the critical
section of the code is not feasible for a real-time system.

Concerning the presented mechanism in Section III, a first
suitability analysis resulted in Table I. The analysis consid-
ered real-time capabilities only for OPC UA PubSub. At first
glance, the blocking mechanisms Semaphores, Mutex would
not make a good choice, as both carry the risk of deadlocks.

The non-blocking mechanisms show better compatibility for
the intended implementation. Primarily, the Lock and Wait-
Free mechanisms could provide a feasible solution if the
throughput is high enough. However, considering the specific
setup, it might be possible to stop the client-server application
and realise a obstruction-free solution. Such a solution would
need some more profound analysis of the consequences.

This limitation also applies to the other mechanisms, seem-
ingly unsuitable from the above analysis, which could be
practical in a system where certain limitations are acceptable.

B. OPC UA Code Analysis

In addition, the analysis of the open62541 stack identified
the critical code passages where a potential mechanism needs
to be implemented. The analysis was performed using standard
code analysis tools such as call graphs. Most relevant code
segments connect directly to the OPC UA Node Store. A
detailed code analysis will be provided in future work.

V. CONCLUSION AND ONGOING WORK

This paper presents an ongoing work to implement a concur-
rent data access mechanism into the OPC UA stack to allow
parallel operation of OPC UA client-server and a real-time
capable OPC UA PubSub. Identifying critical code segments
and analysing potential concurrent data access mechanisms

provided the ground for the next steps. The future steps
will involve the implementation of wait- and obstruction-free
mechanisms and evaluating their suitability. Combined with
ongoing activities related to buffer management, the results
will contribute to realising an end to end real-time enabled
machine-to-machine communication environment.

REFERENCES

[1] T. J. Williams, “The Purdue enterprise reference architecture,” Comput-
ers in Industry, vol. 24, no. 2-3, pp. 141–158, 1994.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, ser. MCC ’12. New York,
NY, USA: Association for Computing Machinery, 2012, pp. 13–16.

[3] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The Future of Industrial
Communication: Automation Networks in the Era of the Internet of
Things and Industry 4.0,” IEEE Industrial Electronics Magazine, vol. 11,
no. 1, pp. 17–27, 3 2017.

[4] D. Bruckner, M. Stănică, R. Blair, S. Schriegel, S. Kehrer, M. See-
wald, and T. Sauter, “An Introduction to OPC UA TSN for Industrial
Communication Systems,” Proceedings of the IEEE, vol. 107, no. 6, pp.
1121–1131, 2019.

[5] P. Denzler, T. Frühwirth, A. Kirchberger, M. Schoeberl, and W. Kastner,
“Static Timing Analysis of OPC UA PubSub,” in 2021 17th IEEE
International Conference on Factory Communication Systems (WFCS),
2021, pp. 167–174.

[6] ——, “Experiences from Adjusting Industrial Software for Worst-Case
Execution Time Analysis,” in 2021 IEEE 24th International Symposium
on Real-Time Distributed Computing, ISORC, 2021.

[7] F. Palm et al., “open62541,” Available at https://github.com/open62541.
[8] W. Mahnke, S.-H. Leitner, and M. Damm, OPC unified architecture.

Springer Science & Business Media, 2009.
[9] J. Pfrommer, A. Ebner, S. Ravikumar, and B. Karunakaran, “Open

Source OPC UA PubSub Over TSN for Realtime Industrial Commu-
nication,” in 2018 IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA), vol. 1, 2018, pp. 1087–
1090.

[10] S. Schriegel and J. Jasperneite, “Investigation of Industrial Environmen-
tal Influences on Clock Sources and their Effect on the Synchronization
Accuracy of IEEE 1588,” in 2007 IEEE International Symposium on
Precision Clock Synchronization for Measurement, Control and Com-
munication, 2007, pp. 50–55.

[11] M. Gutiérrez, A. Ademaj, W. Steiner, R. Dobrin, and S. Punnekkat,
“Self-configuration of IEEE 802.1 TSN networks,” in 2017 22nd IEEE
International Conference on Emerging Technologies and Factory Au-
tomation (ETFA), 2017, pp. 1–8.

[12] C. Eymüller, J. Hanke, A. Hoffmann, M. Kugelmann, and W. Reif,
“Real-time capable OPC-UA Programs over TSN for distributed indus-
trial control,” in 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), vol. 1, 2020, pp. 278–
285.

[13] S. K. Panda, M. Majumder, L. Wisniewski, and J. Jasperneite, “Real-
time Industrial Communication by using OPC UA Field Level Com-
munication,” in 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), vol. 1, 2020, pp. 1143–
1146.

[14] A. Gogolev, R. Braun, and P. Bauer, “TSN Traffic Shaping for OPC
UA Field Devices,” in 2019 IEEE 17th International Conference on
Industrial Informatics (INDIN), vol. 1, 2019, pp. 951–956.

[15] F. Prinz, M. Schoeffler, A. Eckhardt, A. Lechler, and A. Verl, “Con-
figuration of Application Layer Protocols within Real-time I4.0 Com-
ponents,” in 2019 IEEE 17th International Conference on Industrial
Informatics (INDIN), vol. 1, 2019, pp. 971–976.

[16] T. Kobzan, I. Blöcher, M. Hendel, S. Althoff, A. Gerhard, S. Schriegel,
and J. Jasperneite, “Configuration Solution for TSN-based Industrial
Networks utilizing SDN and OPC UA,” in 2020 25th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
vol. 1, 2020, pp. 1629–1636.

[17] E. W. Dijkstra, “The structure of the “THE”-multiprogramming system,”
Communications of the ACM, vol. 11, no. 5, pp. 341–346, 1968.

[18] L. Lamport, “Concurrent reading and writing,” Communications of the
ACM, vol. 20, no. 11, pp. 806–811, 1977.

