
Cognitive and Time Predictable Task Scheduling in
Edge-cloud Federation

Somayeh Abdi, Mohammad Ashjaei, Saad Mubeen
Mälardalen University, Västerås, Sweden

firstname.lastname@mdu.se

Abstract—In this paper, we present a hierarchical model
for time predictable task scheduling in edge-cloud computing
architecture for industrial cyber-physical systems. Regarding the
scheduling problem, we also investigate the common problem-
solving approaches and discuss our preliminary plan to realize
the proposed architecture. Furthermore, an Integer linear pro-
gramming (ILP) model is proposed for task scheduling problem
in the cloud layer. The model considers timing and security
requirements of applications and the objective is to minimize
the financial cost of their execution.

Index Terms—Edge-Cloud federation, Time predictable Task
Scheduling, Integer linear programming model, scheduling ap-
proaches

I. INTRODUCTION

The edge-cloud computing paradigm plays a crucial role in
providing computing and services for Cyber-Physical Systems
(CPS). Various tasks related to industrial systems, ranging
from infrastructure monitoring and smart automation to smart
construction equipment, need computing power and storage
capacity provided by cloud and edge computing. Although
cloud computing provides enhanced storage and computing
capacity, it causes high communication latency. Since edge
nodes with limited capacity are located closer to end-systems
and devices, utilizing edge computing is a promising strat-
egy to ensure the quality of service (QoS) for time-critical
tasks. Consequently, deploying a federation of cloud and edge
computing is a key step to benefit from their advantages in
CPS [1], [2]. This federation provides new opportunities not
only for customers but also for providers. From the customer's
perspective, the federation provides scalable services for both
compute-intensive and time-critical tasks. It also brings this
opportunity to utilize the capacity of perishable resources (e.g.
CPU cycles), saving energy, and even avoiding extra costs
caused by overprovisioning [3].

Cognitive ability, adaptivity, and timing predictability are
important factors that must be considered in industrial CPS
since most industrial tasks are time-critical and the environ-
ment can be highly dynamic [4]. To meet these requirements,
this paper proposes a hierarchical architecture that supports
cognitive and time predictable task scheduling in the edge and
cloud computing layers. In this context, time predictable task
scheduling refers to utilizing techniques that detect whether
tasks meet their deadline or not. Time predictable task schedul-
ing is supported by a cognitive adaptation mechanism in
the edge-cloud architecture. Moreover, the problem of task
scheduling in the cloud layer is formulated as an integer

linear programming model. In this work, we mainly focus
on the timing and security requirements of applications and
an application consists of a set of tasks. The novelty of this
architecture is to benefit from a hierarchical model to provide
scalable and cognitive resource allocation within different
computing layers.

II. ENVISIONED ARCHITECTURE

The proposed predictable and cognitive edge-cloud archi-
tecture is depicted in Fig. 1. In this architecture, the edge-
cloud federation consists of several layers of interconnected
computing resources. In general, the edge nodes provide
services to end-systems or devices, while a cluster of fog nodes
aggregate several edge nodes providing enhanced computing
capabilities and connectivity. The cloud computing layer can
consist of several layers itself including enterprise (private)
and public clouds. This computing architecture can provide
computing and storage resources to end-users based on appli-
cation requirements. To meet timing requirements, due to the
limited capacity of edge nodes and fog clusters, time-critical
applications should be executed on the edge-fog layer, while
less time-critical applications should be executed on the cloud
layer. To fulfill security requirements, applications with high
security-level may only be executed on the private cloud, while
applications with lower security-level may be executed on edge
nodes, fog, and cloud layers. With such an architecture, enter-
prises can take advantage of multilayer computing systems for
their tasks with different timing and security requirements. To
realize this hierarchical scheduling, three main components
are considered in the proposed architecture: cognitive task
dispatcher, edge-fog scheduler (SchE), and cloud scheduler
(SchC), as depicted in Fig. 1.

A. Cognitive Task Dispatcher
The goal of cognitive technology is to understand the

environment abstractly and enable the system services to make
decisions or respond to events adaptively [5]. In this work,
the cognitive task dispatcher decides to send an application
to the edge-fog or cloud layer based on timing and security
requirements in addition to considering the workload of edge
nodes and fog clusters. This component can be implemented
either centralized or distributed.

B. Cloud and Edge-fog Schedulers
Task scheduling in the edge-cloud federation is challenging

due to diversity in applications requirements (e.g., timing and

Fig. 1: Proposed multi-layer edge-cloud federation architecture.

security requirements) and diversity in the characteristics of
available resources (e.g., performance and etc.). Moreover, the
essence of scheduling in edge-fog and cloud layers can be
different. In other words, the objective function and constraints
of task scheduling in the edge-fog and cloud layers can be
greatly different. Because of these reasons, in this architecture,
a cloud scheduler and an edge-fog scheduler are considered,
as shown in Fig. 1. In the proposed multilayer architecture, the
cloud scheduler minimizes the financial cost of executing ap-
plications in the cloud computing layer and considers security-
aware constraints and the edge-fog scheduler minimizes the
waiting time of tasks to meet deadlines of time-critical appli-
cations. Although offloading tasks to the closest edge nodes
reduces communication latency, the response time of the tasks
may increase due to overloading the edge nodes. To meet
timing requirements in the edge-fog layer, communication
delay, computing delay, and tasks run-time must be considered
to detect whether the scheduling of a time-critical application
is feasible or not. A task scheduling problem is feasible when
all requirements of the application can be fulfilled, such as its
deadline, age and reaction constraints [6].

III. INVESTIGATION OF PROBLEM-SOLVING APPROACHES

Regarding the scheduling problem, the three most common
problem-solving approaches1 are meta-heuristic algorithms,
mathematical models, and machine learning techniques. Even
though these approaches aim to find optimal or near-optimal
solutions, they are significantly different in the aspect of
fundamental techniques, and each of them has its pros and
cons. In this section, these approaches are investigated in
the aspects of solution quality, time complexity, detecting an
infeasible problem, and cognitive ability.

A. Meta-heuristics Approaches

These approaches (e.g. genetic algorithm) may find an
admissible approximation of an optimal solution with a low
volume of computations, based on designed partial search

1https://www.gurobi.com/resource/4-key-advantages-of-using-
mathematical-optimization-instead-of-heuristics/

algorithms. Since these approaches can be easily adapted for
a wide range of problems, they are common in computer
science. However, they do not guarantee to find optimal
solutions. In addition, it is very difficult to detect that a
problem is infeasible, using a meta-heuristic algorithm.

B. Machine Learning (ML) Techniques

Utilizing ML techniques enhances the cognitive ability of
a system since ML's essence is to learn a model based on a
dataset following a specified target. Therefore, accessing an
appropriate dataset is crucial for learning a model with high
precision. Not only the accuracy of data but also the scale
and variety of data are vitally important in improving the
model that an ML algorithm learns. Regarding the scheduling
problem, on the one hand, ML techniques are useful for online
scheduling because they can make decisions in a reasonable
time. On the other hand, appropriate datasets are not available
because of the diversity in task requirements and resource
characteristics [7]. Moreover, ML techniques do not find
optimal solutions and it is very difficult to detect that a solution
is infeasible.

C. Mathematical Models

With the improvements in parallelization and computing
power, applying mathematical optimization has gained more
and more attention in research and business domains. Propos-
ing a mathematical model is useful for formulating the ob-
jective and constraints of a problem using exact mathematical
functions and expressions. Not only does it play a crucial role
in obtaining a deep insight into the problem but it also gen-
erates globally optimal solutions, which can be used to make
optimal decisions. Moreover, a mathematical model detects
whether solving a problem is infeasible or not. Nevertheless,
some real-world problems are so complex that using exact
methods is time-consuming. In these cases, even if the models
are too difficult to solve for large instances, it is useful to run
the models for small instances and use the optimal solutions to
create datasets for utilizing ML techniques or even evaluating
the quality of solutions of other approaches, such as meta-
heuristics approaches.

IV. PRELIMINARY PLAN TO REALIZE THE ARCHITECTURE

Each of the mentioned problem-solving approaches has
its merits and drawbacks. Therefore, utilizing an appropriate
combination of them is required to realize cognitive and time
predictable task scheduling within the presented multilayer
architecture.

To implement cognitive task dispatcher, we aim to utilize
ML techniques to increase the cognitive ability of the proposed
system. Indeed, the task dispatching problem will be formu-
lated as a classification algorithm, and well-known algorithms
such as decision tree, SVM, and NN algorithm will be used to
deploy a suitable algorithm with the highest rate of precision.
This component decides to send an application to the edge-fog
or cloud layer based on its timing and security requirements.

To support time predictable task scheduling in Edge-fog
layer, we aim at utilizing approaches that can prove or demon-
strate whether the scheduling problem is infeasible or not.
As discussed, a mathematical model detects that a problem
is infeasible, conversely, other approaches cannot detect it.
Moreover, to obtain a deep insight into the scheduling problem
and generate optimal solutions, we will formulate the task
scheduling problem in the edge-fog layer as a linear model
to minimize the waiting time of tasks and fulfill constraints
related to task requirements and the limited capacity of re-
sources in this computing layer. Furthermore, we will propose
a meta-heuristic approach to find near-optimal solutions in a
reasonable time. The results of the meta-heuristic algorithm
will be compared with the optimal solutions of the mathemat-
ical model.

The novel essence of this architecture is its support for
timing predictability in all layers. Indeed, each application has
a deadline that must be met; time-critical applications have
short deadlines and execute on the edge-fog layer while less
time-critical applications have longer deadlines and execute
on cloud layers. Therefore, to support time predictable task
scheduling in the cloud layer, we formulate the problem as an
integer linear programming model to minimize the financial
cost of executing applications.

V. PROPOSED INTEGER LINEAR PROGRAMMING MODEL
FOR TASK SCHEDULING IN THE CLOUD LAYER

An integer linear programming is a mathematical optimiza-
tion in which objective function and constraints are linear.
This paper proposes an ILP model for the task scheduling
problem is the cloud layer. Indeed, an optimization algorithm
is executed in the cloud scheduler, shown in 1. In this
computing layer, the private and public clouds provide virtual
machines (VMs) with different costs and performance levels.
The scheduler selects virtual machine types that are appropri-
ate to minimize financial cost of executing applications.

A. Application and computing model

To solve a scheduling problem, structure of the application
must be specified in advance. Indeed, some constraints of
a mathematical model are related to characteristics of the
application. In this work, we consider bag of tasks (BoT)

TABLE I. Model parameters and their description.

Notation Description
m The number of participating clouds in the cloud layer.
CPk kth cloud in the cloud layer.
Jk The set of VM types provided by CPk in the federation.
VMkj jth VM type provided by CPk.
λ Ready time of VMs
Pkj The fee of running VMkj in dollar per hour.
ccukj The performance of VMkj in

Cloud Harmony Compute Unit (CCU).
CPUkj The CPU capacity of VMkj .
RAMkj The memory capacity of VMkj .
Storkj The Storage capacity of VMkj .
CPUCk The CPU capacity of kth cloud.
RAMCk The memory capacity of kth cloud.
Stork The Storage capacity of kth cloud.
CSTk Security tag of cloud CPk.
DTRk The data transfer rate in MB per second between

an end-device and and CPk

DTCk The price of data transfer in $ per MB from
an end-device to CPk

applications; a BoT application consists of a set of independent
tasks A = {t1, t2, ..., tn} which δ =| A | represents the
number of tasks of the application and DSA indicates the
input data size of one task in MB. Moreover, to demon-
strate other requirements of an application, we can consider
< App, TSTA, D,RAMA, StorageA > which TSTA ∈
{private, public} represents security requirement and D indi-
cates deadline of the application. RAMA, StorageA indicates
minimum required RAM and storage for executing the appli-
cation. Our proposed mathematical model fulfills constraints
related to the required computing and storage resources for
executing tasks, deadline of the application, and security
requirements. Since in cloud computing layer the private
and public clouds provide virtual machines with different
performance levels, we use CCU metric as the assessment
metric [8]. This metric was developed by CloudHarmony 2 to
provide a uniform metric for the performance evaluation of
virtual machine types belonging to different IaaS providers.
A value of 1 CCU, which is approximately equal to 1 ECU,
indicates a CPU capacity of 1.0–1.2 GHz 2007 Opteron or
2007 Xeon processor. Table I lists the characteristics of the
virtual machine types provided by the participating clouds in
the cloud layer.

Required auxiliary parameters that are inputs of the pro-
posed mathematical model are as follows:

- τkj = BT
ccukj

indicates the execution time of one task of
on a VMkj .It is supposed that run time of tasks is known
beforehand 3 and BT indicates the run time of one task
of the application on a VM with 1 CCU.

- DTT in
k = DSA

DTRk·3600 indicates the data transfer time
of one task from the end-device to cloud provider CPk.
To calculate data transfer time, the average bandwidth

2http://blog.cloudharmony.com/2010/09/benchmarking-of-ec2s-new-
cluster.html

3https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

between the end-device and the clouds can be measured
using a bandwidth measurement tool iperf4.

- ηkj = min(δ, ⌊D−DTT in
k

τkj
⌋) determines the maximum

number of tasks which can be executed on VMkj pro-
vided that the deadline D is met. It should be noted that if
the maximum number of tasks can be executed on VMkj

is more than δ then ηkj attains δ.
- Since cost of running a VM is charged in dollar per hour,

it is necessary to round up required time of running each

VM. Tkj =

{
∞ ηkj = 0

⌈τkj · ηkj⌉ ηkj > 0
denotes rounded up

time of running each VMkj in hours for executing tasks.
Moreover, Tkj attains ∞ for infeasible assignment.

B. Mathematical model

In this model, the objective function is to minimize the
financial cost of executing applications. This cost includes
the cost of running VMs in dollar per hour and data transfer
cost. The model fulfills constraints on timing and security
requirements, and resource limits of the private cloud. The
objective function and model constraints are as follows:

Cost=min

m∑
k=1

∑
j∈Jk

Pkj ·Nkj · Tkj +

m∑
k=1

yk ·DSA ·DTCk

subject to:
yk ∈ {0, 1} ∀k ∈ {1, ..,m} (1)
Rkj ∈ {0, 1} ∀k ∈ {1, ..,m}, ∀j ∈ Jk (2)
Nkj ∈ Z ∀k ∈ {1, ..,m}, ∀j ∈ Jk (3)
m∑

k=1

yk = 1 (4)∑
j∈Jk

Nkj · ηkj >= δ · yk ∀k ∈ {1, ..,m} (5)

Nkj ≥ Rkj ∀k ∈ {1, ..,m}, ∀j ∈ Jk (6)
Nkj ≤ Nkj ·Rkj ∀k ∈ {1, ..,m}, ∀j ∈ Jk (7)
yk · CSTk ≤ TSTA ∀k ∈ {1, ..,m} (8)

Rkj · Tkj +DTT in
k + λ ≤ D ∀k ∈ {1, ..,m},∀j ∈ Jk

(9)
Rkj · Storkj ≥ StorA ∀k ∈ {1, ..,m},∀j ∈ Jk (10)
Rkj ·RAMkj ≥ RAMA ∀k ∈ {1, ..,m},∀j ∈ Jk (11)
Nkj · Cpukj ≤ CPUCk ∀k ∈ {Private cloud},∀j ∈ Jk

(12)
Nkj ·RAMkj ≤ RAMCk ∀k ∈ {Private cloud},∀j ∈ Jk

(13)
Nkj · StorCkj ≤ StorCk ∀k ∈ {Private cloud},∀j ∈ Jk

(14)

The constraints of the proposed model are defined in Eqs.
(1)-(14). These constraints are explained in details as follows:

- Eqs. (4)-(7) are related to scheduling policy. Indeed,
these equations guarantee that an application is submitted

4http://iperf.sourceforge.net/

to a cloud and VM types of that cloud are selected for
executing its tasks.

- Eqs. (8) insures security requirements of the application.
Indeed, we consider security tags for applications and
clouds.

- Eqs. (9) fulfills deadline of application A. To fulfill the
deadline, the completion time of tasks must be less than
or equal the deadline. In this constraint, time of executing
tasks, data transfer time and ready time for VMs are
considered.

- Eq. (10)-Eq. (11) meet the minimum required storage
and RAM for executing tasks.

- Eqs. (12) and (14) fulfill resource limits related to the
private cloud.

VI. CONCLUSION AND ONGOING WORK

In this paper, we presented the work in progress on the
development of a cognitive and time-predictable architecture
for task scheduling in the edge-cloud federation. The proposed
architecture supports task scheduling for any task domain
with strict and non-strict timing and security requirements that
employs edge-cloud computing, such as construction vehicles,
railways, telecommunication, and many more. What is worth
highlighting here is that the proposed architecture benefits
from a hierarchical model that can be applied to implement
task scheduling among various computing layers. Moreover,
this paper proposed an ILP model for task scheduling in the
cloud layer with cost minimization objective. The proposed
model considers timing and security requirements of tasks.
The concrete implementation of various components in the
proposed architecture comprises the ongoing work.

Acknowledgement: The work in this paper is supported
by the Swedish Governmental Agency for Innovation Sys-
tems (VINNOVA) through the DESTINE, PROVIDENT and
INTERCONNECT projects and KKS foundation through the
projects DPAC, HERO and FIESTA.

REFERENCES

[1] C.-H. Hong, B. Varghese, Resource management in fog/edge computing:
a survey on architectures, infrastructure, and algorithms, ACM Computing
Surveys (CSUR) 52 (5) (2019) 1–37.

[2] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, A. Ahmed, Edge computing:
A survey, Future Generation Computer Systems 97 (2019) 219–235.

[3] B. Kar, W. Yahya, Y.-D. Lin, A. Ali, A survey on offloading in feder-
ated cloud-edge-fog systems with traditional optimization and machine
learning, arXiv preprint arXiv:2202.10628 (2022).

[4] M. Ashjaei, S. Mubeen, M. Daneshtalab, V. Casamayor, G. Nelissen,
Towards a predictable and cognitive edge-cloud architecture for industrial
systems, in: Real-time And intelliGent Edge computing workshop, 2022.

[5] M. Chen, W. Li, Y. Hao, Y. Qian, I. Humar, Edge cognitive computing
based smart healthcare system, Future Generation Computer Systems 86
(2018) 403–411.

[6] S. Mubeen, T. Nolte, M. Sjödin, J. Lundbäck, K.-L. Lundbäck, Supporting
timing analysis of vehicular embedded systems through the refinement of
timing constraints, Software & Systems Modeling 18 (1) (2019) 39–69.

[7] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, I. Osband, et al., Deep q-learning from
demonstrations, in: Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 32, 2018.

[8] S. Abdi, L. PourKarimi, M. Ahmadi, F. Zargari, Cost minimization for
deadline-constrained bag-of-tasks applications in federated hybrid clouds,
Future Generation Computer Systems 71 (2017) 113–128.

