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Abstract—This paper presents NODEGUARD, a security ap-
proach for detecting and isolating misbehaving Virtual Machines
(VMs) in multi-tenant virtualized cloud data centers, based on
the Virtual Machine Introspection (VMI) monitoring primitives.
NODEGUARD employs a divide-and-conquer strategy that checks
logical groups of VMs to ensure the efficiency of the detection
mechanisms which opportunistically approaches a complexity of
O(log2(n)) when there is a relatively low number of hostile VMs.
This greatly enhances the algorithmic time complexity of the pro-
posed security system compared to the O(n) complexity achieved
by the traditional VMI inspection strategy that checks each VM
separately. The approach has been evaluated in a virtualized
cloud environment using the Mininet network emulator.

Index Terms—Cloud computing, Security, Virtual machine
introspection, VMI, Intrusion detection, Time complexity.

I. INTRODUCTION

The rapid growth of the cloud computing paradigm is

accompanied by security concerns that need to be investigated

and managed [1]. VMs can be considered as the most vul-

nerable part of the virtualized system of a cloud environment,

as they are easily accessible by tenant users. Thus, there is a

need for a security model to protect VMs from any possible

attack. VMI is a technique for monitoring the runtime state of

VMs and can be used for several security objectives such as

malware and intrusion detection. Although its benefit when

it comes to security, VMI has a primary drawback which

is the performance [2]. Conventional VMI techniques have

a high overhead [3]. Moreover, existing solutions that attempt

to bring VMI to cloud computing environments add significant

overhead to the monitored processes running inside VMs [4].

In this paper, we propose the design and implementation

of a VMI-based security approach for detecting malicious

processing nodes in virtualized cloud data centers. The pro-

posed approach, called NODEGUARD, aims to improve the

algorithmic time complexity to detect the misbehaved VMs.

This is done by employing a divide-and-conquer strategy to

reduce the search space of the running VMs.

NODEGUARD leverages the VMI interposition and intro-

spection functions to detect, locate, and isolate any source of

maliciousness in the tenants’ VMs. The approach relies on

a set of distributed task probing mechanisms to recursively

locate misbehaving VM nodes in the data center. The VMI

This work has been performed with the support from the Swedish Knowl-
edge Foundation (KKS) under the SACSys project, and from the Swedish
Research Council (VR), under the PSI project.

initiates the execution of a preconfigured collection of dis-

tributed algorithm subtasks on the VMs of each cloud tenant

and checks the accumulative final result for correctness in the

corresponding SLA-specified time frame. Once an erroneous

result or an irrational delay in execution is detected on a

probed set of tenant’s VMs, the algorithm marks the group as

malicious, and recursively divides it into two groups, repeating

the probing and divisions on each group that further produces

malicious results. Therefore, recursive probing continues with

the divisions that trigger an error and discards the divisions

that operate correctly. This will continue until the misbehaving

VM (or group of VMs) is located. The periodic probing

mechanisms in the data center result in timely detection and

reporting of misbehaving nodes. This results in a relatively

low number of hostile VM and, hence, renders the algorithmic

complexity of locating a malicious VM node opportunistically

approach O(log2(n)). Only the VMs detected as misbehaving

by the probing algorithm are deeply inspected by the VMI

mechanisms to identify the specifics of the source of misbe-

having rather than checking each VM individually as is done

in traditional VMI intrusion detection approaches.

The rest of this paper is organized as follows. Section

2 presents a background on the VMI concept. Section 3

discusses the existing work focused on intrusion detection to

secure VMs using VMI. Section 4 presents the threat model of

the attacker that may corrupt the processing logic executing

VMs. The proposed solution to detect misbehaved VMs in

an improved time complexity and the performance evaluation

of the solution are presented in Section 5 and Section 6

respectively. Finally, we conclude the paper with a conclusion

in Section 7, which also highlights the future directions of this

work.

II. BACKGROUND

Virtualization is the core technology in cloud computing.

It is organized by a hypervisor (also called Virtual Machine

Manager (VMM)). VMMs virtualize all hardware resources,

allowing multiple VMs to transparently multiplex the re-

sources of the Physical Machine (PM). Thus, VM can be

defined as software that emulates the properties of a separated

PM. It appears as another program running on the host

operating system [5]. VMM is the mechanism that facilitates

the construction of (VMI). As stated in [6], VMI can leverage

three main properties of VMMs, they are: (i) Isolation: to
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ensure that any software running inside a VM cannot access

software running inside another VM or in the VMM, (ii)

Inspection: It means the VMM ability to access a VM state

which includes CPU state (e.g., registers), memory, and I/O

device state (e.g., the contents of storage devices and register

state of I/O controllers), and (iii) Interposition: It means that

VMM can interpose on certain VM operations, like executing

privileged instructions. Leveraging these properties is essential

for the proposed algorithm. The original VMI architecture

was presented in [6] for Intrusion Detection. In that archi-

tecture, VMM can provide an interface for communication

with the VMI Intrusion Detection System (VMI IDS). The

VMI IDS communicates with the VMM via commands over

this interface. There are three types of commands: Inspection
commands to examine a VM state, Monitor commands to know

when certain events occur and request notification through an

event delivery mechanism, and Administrative commands to

control the execution of a VM.

III. RELATED WORKS

The existing related works are presented and discussed in

this section.

As the VMI approach has high overhead [3], [2], many

works tried to minimize such overhead. The work in [7] tried

to minimize the performance overhead by integrating some

of the VMI operations into the hypervisor. The authors in

[8] leveraged the most commonly used VMI techniques to

monitor VM’s status by executing VMI analysis scripts in the

hypervisor domain. However, these works only focused on the

performance without considering the security issues.

There exist some works focused on intrusion detection for

securing VMs using VMI. In [6] the authors presented the

VMI approach that utilizes the host-based IDS and expands

it outside of the host for maximizing attacks’ resistance. VMI

mainly depended on the VMM capabilities and endeavored to

leverage these capabilities to completely mediate interactions

between the host software and the underlying hardware. The

work in [9] employed VMI and Machine Learning techniques

at the VMM for presenting a security architecture, called

VMGuard aiming at detecting hidden malware by performing

memory introspection. The work in [10] trained a machine

learning-based classification approach for detecting malware

in a cloud computing environment. The approach optimized

a balance between the performance of malware detection and

the overhead of the VMI-based system. In [11], an integrated

security architecture was presented. The architecture utilized

some features from the VMs, such as the resources dedicated

to VMs, types of the applications, and policies associated with

groups of VMs corresponding to a distributed application, to

secure VMs themselves. In addition to VMs’ features, the

architecture relied on exchanging information among various

security components, such as policy-based access control

and intrusion detection techniques to detect changing attacks.

In [12] presented a VMI monitor approach, called T-VMI, to

ensure the security of a specific VM in a certain host. T-VMI

is aimed at avoiding the malicious subversion of the routine of

VMI and maintaining the integrity of VMI code using some

VMI features such as isolation and correctness. The authors

in [13] utilizing VMI in proposing an approach to protect

VMs by monitoring them and recording their events. The

approach defined a policy engine that works in two phases:

an offline training phase to collect the accepted processes

from trusted VMs, and an online run-time phase to decide

on the valid actions. In [14], a VMI-based security framework

architecture is presented. It models the behavior of processes

running on VMs and uses the multi-threading capability to

analyze VMs’ activities and control all their events. In [15],

the authors integrated the concept of VMI with the Drakvuf
[16] (which is a dynamic malware analysis system) to extract

behavioral characteristics of malware, aiming at protecting

the systems from any possible attacks. In [17], the authors

proposed an introspection approach, called VMShield, for de-

tecting malware and securing virtual nodes in cloud computing

environments. VMShield monitors the behavior of processes

in the run-time by performing virtual memory introspection

from the hypervisor. However, all the mentioned works did

not consider the complexity of their approaches.

In our previous works [18], [19], we presented an approach

to detect malicious nodes in the SDN data plane and categoriz-

ing any present attacks by utilizing network programming and

probabilistic sketching. However, these works did not consider

the data processing in VMs, but they inspired the current work

in terms of time complexity.

IV. THREAT MODEL

The threat model assumed in this work is represented

by an attacker model that has the full capability to initiate

modification attacks on the tenants’ VMs in the data center

and corrupt any processing logic executing on these VMs.

The attack vector could target the application services and

shared libraries and APIs running on the VM or the guest

VM OS itself. In such a scenario, the attack could leverage

the malicious services of a virus, trojan horse, or any form

of malware that can disrupt the normal operation of the

processing software, the supporting libraries, and interfaces,

or the underlying OS. Moreover, the attacker is capable of

executing controlled denial of service (DoS) attacks on the

tenants’ VMs which may result in unacceptable processing

delays beyond what is tolerated by the specifications of the

SLA. The probing logic as well as the interpretation of the

probing output reside in the VMI module which is assumed

safe and isolated from the cloud physical hosts and, hence,

from attacker tampering. The VMI code space is technically

very minimal compared to the code size of the VM guest

OS. This fact supports the feasibility of ensuring the safety of

the VMI module and its invulnerability to malicious code and

software bugs which we believe justifies the above assumption.

The NODEGUARD model is designed to periodically initiate a

set of well-specified processing probing tasks on the tenants’

VMs and leverages VMI introspection and interposition for en-

suring the correct operation of the VM services. This ensures

the detection of an attacker tampering with the state of the
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VM, its OS, or its running services. Moreover, the model can

detect any irrational VM processing time beyond an acceptable

threshold specified by the SLA. The main property that

allows the proposed security algorithm to succeed in detecting

malicious/misbehaving VMs is represented in the design and

utilization of transparent probing mechanisms that are viewed

as any normal processing tasks to the tenant VMs. This is

why, as will be shown later in Section 5, the task selection is

done randomly from a deliberate pool of distributed algorithms

with pre-configured input and output parameters. Once any

source of misbehavior is detected and isolated among the

processing VMs, the respective nodes are deeply inspected

by the VMI system to detect the cause of misbehavior and

whether it is benign due to a misconfiguration in the system

software/services or malicious due to an intentional external

attack. In the case of a malicious attack, the exact type of

attack and the mitigation strategies to alleviate its harmful

effects on the system operation.

V. SYSTEM MODEL

The system model in this work is a virtualized cloud data

center running a collection of VMs leased by a set of k tenants.

(refer to Figure 1).

The NODEGUARD approach includes an algorithm to detect

malfunctioning VM nodes by initiating a set of recursive

probing mechanisms on the individual tenant VMs in the data

center. The proposed algorithm leverages the VMI intrusion

detection approach; however, instead of checking the operation

of each VM individually, NODEGUARD (i) detects the VMs

that exhibit a processing error in computing a particular task

or a time delay in executing this task (beyond the tenant-

specific SLA constraints) in a logarithmic time complexity

in terms of the size of the nodes, and (ii) the malicious

or misbehaving VMs detected are deeply inspected by the

VMI mechanisms for designating the exact source of the

malfunction and whether this malfunction is a result of benign

or malicious causes.

A. NODEGUARD algorithm

1) Notation: The algorithm verifies the integrity and time-

liness of the data processing. The domain of this algorithm is

the VMs. The following notations and functions will be used

in the algorithm description:

- T = {t1, . . . , tk} is the set of k tenants renting VMs in

the data center ordered in decreasing order of number of VMs.

- Tmax is the tenant with the maximum number of VM

nodes

- VM i = {vi1, . . . , vir} is the set of r VMs belonging to

tenant i.
- n is the total number of VMs in the data center.

- Class = {c1, . . . , cp} is the set of classes of distributed

algorithms that can be used for probing the integrity of VM

processing. An example distributed algorithm class that we

will use, in the implementation part, is the matrix multipli-

cation distributed algorithm based on the standard divide-and-

conquer technique. It is worth mentioning here that the number

of the distributed algorithm classes is an implementation-

dependent configuration property that has a major impact on

the security of the intrusion detection system. As the number

of distributed algorithm classes increases the probability of the

monitored VMs detecting the probing mechanisms decreases.

The confusion introduced by selecting a different probing task

in each protocol run enhances the transparency of the probing

algorithm to be perceived as a normal processing task in the

data center.

- D = {1, . . . , d} is a strictly increasing ordered set

of the available size of subtasks comprising the distributed

algorithms.

- Ψx,s is a 2-dimensional vector referring to the distributed

algorithm corresponding to the class x ∈ Class with degree

s ∈ D in the pool of all available distributed probing

algorithms.

- Ψx,s(1, . . . , s): is the set of s subtasks comprising Ψx,s.

Ψx,s contains a reference (I(Ψx,s), H(F (Ψx,s)), τmin ≤ τ ≤
τmax) tuple complying with the subtask implementation.

I(Ψx,s) is the input parameters to the distributed task Ψx,s,

H(·) is a one-way collision-resistant hash function, F (Ψx,s)
is the output resulting from the execution of Ψx,s, and τmin ≤
τ ≤ τmax is the acceptable range of execution times needed

to complete the processing of Ψx,s. More details about the

one-way collision-resistant hash function can be found in[20].

- MD is an array of length k − 1 for storing the hashes

(digests) of the output. TS is an array of length k − 1 for

storing the digest timestamps. tstart is the timestamp indicating

the start of task execution on the probed VMs.

- Checked(i) is a Boolean function that returns true if the

tenant i ∈ T is checked for malicious behavior in a probing

period.

- N is the parameter that represents the base case size to

stop the recursion. It indicates the number of VMs that the

algorithm converges to raise a misbehaving output signal. By

default N = 1, but the value could be increased to enhance

the convergence time to the algorithm at the expense of a less

precise misbehaving VM localization.

- result is the variable that represents the result of the

distributed task by aggregating the output of the subtasks from

the various tenant VMs.

- VMI Interposition is the VMI primitive that allows the

VMI to execute specific tasks on a particular VM in the data

center.

- Conquer is the function that accumulates the processing

subtask output of the distributed task from the tenant VMs and

aggregates it in a result variable.

- Output is the function that computes the result of a

subtask execution on a particular tenant VM.

- Load is the function that loads a variable from the VM

memory.

- store is the function that stores a variable in the VM

memory

2) Algorithm description: The complete algorithm specifi-

cation is presented in Algorithm 1. The algorithm represents a

function that takes three parameters as an input: The tenant to
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Figure 1: System model.

be currently inspected (Ctenant), the VM set of the current

tenant (VMCtenant(a, . . . , r)), and the type of misbehaving

inspection required which can be either “processing” or “de-

lay” (type). Accordingly, as an output, it results in the VM

nodes misbehaving in processing or timely delivery of results.

The main qualities verified by the algorithm are (i) the

accuracy and validity of the processing operations executed

by the VMs and (ii) the rationality of the processing delay

incurred when the tenant VMs execute a particular distributed

task. In other words, the algorithm detects and locates any VM

producing invalid computation results or incurring irrational

or unacceptable processing delays. The specification of the

quality to be tested by the algorithm is indicated using the

type argument that can take a “processing” or “delay” value.

The probing system starts by randomly selecting a certain

type (Class) of distributed algorithms that comprises several

subtasks (Degree) that maps to the number of VM’s in the

probed group. As discussed earlier, the random selection of

the distributed class aids in picking a different class in each

protocol run, thus, decreasing the probability of the monitored

VMs detecting the probing nature of the task. The algorithm

follows a recursive divide-and-conquer design that inspects the

VMs of each tenant separately starting with the tenant leasing

the largest number of VMs.

Selecting the tenant to start the probing process with is a

design choice that needs to be determined. The algorithm can

possibly select a tenant at random to start inspecting or it

can select it based on a predefined criterion. Without loss of

generality, we chose to start with the tenant with the largest

number of VM’s. We faithfully believe that this decision can

statistically ensure the timely detection of misbehaving VMs

since such tenants are probabilistically more prone to including

misconfigured VMs due to their relatively large VM base.

The algorithm to inspect the VM set of the tenants is

achieved using a simple for loop that iterates over the

various tenant networks and applies the NodeGuard func-

tion on each tenant VM set respectively, as NODEGUARD

(T [i], V MCtenant(1, . . . , r), “processing”), ∀i = 1, . . . , k
and such that Checked(T [i]) is false.

As stated in Algorithm 1, the NODEGUARD is a recursive

function. It accepts as inputs: (1) the tenant to be currently

inspected, (2) the VM set of the current tenant (Ctenant),
and the type of misbehaving inspection required which can be

either “processing” or “delay”.

The base case of the NODEGUARD function is reached

when the probed network consists of N remaining VM nodes

(N = 1 by default) and the algorithm converges to locate

the individual VM node (or set of nodes) instigating the

misbehaving processing or delay of the assigned tasks. (refer

to lines 3–5).

In lines 6–10, we select the tenant with the maximum

number of VMs.

Line 11 saves the start time of the probing mechanism which

will aid in calculating the delay in the later phases of the

algorithm.

The distributed tasks to be executed on the VMs of the

current tenant under inspection are selected randomly from

the pool of distributed tasks and assigned to the VMs in

VMCtenant. Each VM in the set VMCtenant computes

the assigned task through VMI interposition. Note that, the

operation “ (task, input) ←→ VM ” indicates a task with

its corresponding input set is to be executed on the VM using

VMI interposition. (refer to lines 12–15).

The subtask processing results are sent to all other tenants

in the data center. More precisely to one randomly selected

VM in each tenant group other than the currently inspected

tenant (Ctenant). (refer to lines 16–17).

Each node in the set VMCtenant: (i) receives the subtask

processing result from each VM in the set VMCtenant (ii)

accumulates the final result using the particularities of the

probing distributed algorithm, and (iii) hashes the final result

to produce the resulting digest. (refer to lines 18–19).
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The digest from each tenant along with the digest generation

timestamp are respectively stored in the MD and TS vectors

at index t. (refer to lines 20–25).

The resulting (k− 1)-element MD is inspected with respect

to the expected digest value H(F (Ψx,s)). if H(F (Ψx,s)) does

not match any entry in the MD vector, this corroborates,

with a high confidence level, the fact that the probed tenant

Ctenant comprises malicious VM nodes contributing to an

invalid processing results in the final Ψx,s output. In the

latter case, the algorithm recursively splits the Ctenant VM

network into two equal logical domains and probes each half

separately using the same logic as described above but with

different distributed algorithm class and degree and using the

“processing” type argument to the recursive function. (refer to

lines 26–28).

On the other hand, if there is a match of at least one entry

in MD with H(F (Ψx,s)), then this indicates that the current

tenant VMs are correctly behaving. In this latter case, tenants

corresponding to the entries with the nonmatching values in

the MD vector are assigned next in row for probing using the

“processing” type argument to the recursive function. (refer to

lines 30–31).

Analogously, the algorithm checks any tenant misbehavior

represented in excessive processing delay by inspecting the TS
algorithm and subtracting the start time of the Ψx,s execution

from all the TS k − 1 entries. Note that only the tenant TS
indexes mapping to correct digest result calculation in the

MD vector are probed for the time delay. If the time delays

represented by all the TS vector entries checked are outside

the range of acceptable times τ , then this indicates, with a

high confidence level, that Ctenant is causing this delay.

Accordingly, the algorithm recursively splits VMCtenant into

two equal logical domains and applies the probing operations

on each part using the “delay” type argument. (refer to

lines 32–35).

If at least one timestamp entry in TS is producing time

delays within the range τ , then this indicates that the probed

Ctenant is most probably complying with the acceptable time

delay range and thus all non-checked tenants mapping to out

of range delay entries in TS are probed using the “delay” type

argument. (refer to lines 37–39).

Any VM domain probed producing an invalid processing

result or an excessive processing delay undergoes the same

division process until the recursive base case is reached.

B. Algorithmic runtime complexity

The dominant input size contributing to the main complexity

of the algorithm is represented in n, the total number of VMs

in the data center. We assume that n is significantly higher

than the number of tenants k. As discussed previously, the

NODEGUARD algorithm recursively operates on the VM set

of each tenant in a divide-and-conquer fashion to locate the

VM node or set of nodes exhibiting a misbehaving execution

or instigating unreasonable delay in providing the requested

services. Let T (n) be the total runtime execution function of

the NODEGUARD algorithm. Then,

T (n) =

{
k∑

i=1

O(f(|VMk|)), n =

k∑
i=1

|VMk|
}

(1)

where O is the asymptotic worst-case runtime classification

function, |VMk| is the number of VMs belonging to the k-th

cloud tenant, and f is the runtime complexity function on the

k-th cloud tenant.
When the number of misbehaving VM nodes at a particular

tenant k is low, this number is considered of order O(n), i.e.

a constant in algorithmic complexity terms, compared to the

total number of VMs |VMk|, and as a result in the order of n,

f(|VMk|) asymptotically approaches log2(|VMk|). This can

be easily proved by representing f(|VMk|) in its recursive

form and solving the resulting difference relation to find its

closed-form as a function of |VMk|. The difference relations

for f(|VMk|) is presented as follows:

f(|VMk|) =
{
f( |VMk|

2 ), |VMk| > 1

1, |VMk| = 1

⇒ f(|VMk|) ∈ O(log2(|VMk|)) (2)

On the other hand, when the misbehaving rate at tenant k is

relatively high, say in the order of |VMk|, and as a result, n,

which in the worst-case scenario indicates that the number of

misbehaving VM nodes asymptotically approaches the total

number of VMs |VMk| in the tenant k jurisdiction, then

the complexity of the NODEGUARD algorithm asymptotically

approaches O(|VMk|). In such a case, the two halves of

the tenant VM network signal a malicious operation, which

designates the scenario when the recursive divide-and-conquer

technique is required to probe both halves in all the recursive

steps of the algorithm. This results in the following recurrence

relation for f(|VMk|):

f(|VMk|) =
{
2 f( |VMk|

2 ) +O(1), |VMk| > 1

1, |VMk| = 1

⇒ f(|VMk|) ∈ O(|VMk|) (3)

This scenario, of having all the VMs in the set |VMk|
malicious, is assumed uncommon in conventional cloud en-

vironments, and the O(|VMk|) runtime complexity is exactly

the runtime of the traditional VMI algorithm that inspects

each VM individually to detect malicious VM behavior. The

O(log2(|VMk|)) runtime complexity results in a total runtime

T (n) as follows:

T (n) =
{ k∑

i=1

O(log2(|VMk|)), n =

k∑
i=1

(|VMk|)
}

=

{
O(log2({ max

i=1,...,k
(|VM i|)}), n =

k∑
i=1

(|VM i|)
}

⇒ T (n) ∈ O(log2(n)) (4)

A similar analysis for the distrustful scenario of having all

VM nodes in the tenant networks exhibiting a misbehaving

794

Authorized licensed use limited to: Malardalen University. Downloaded on August 24,2022 at 13:09:02 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1: NODEGUARD algorithm

1 Function NODEGUARD (Ctenant, VMCtenant(a, . . . , r), type):
2 Set Ctenant as Checked
3 N = 1
4 if a− r + 1 = N then
5 return VM [a], V M [a+ 1], . . . , V M [a+ r] as a “type” maliciously detected node(s)

6 Select random Ψx,s , s.t.: x = random(1, . . . , p) AND s = 1
7 for i = 1 to d do
8 if Degree[i] ≥ Tmax then
9 s = i

10 break

11 set tstart

12 for i← 1 to s do
13 j ← (i− 1) mod (|VMCtenant|) + 1
14 Interposition @ VMCtenant[j]
15 (Ψx,s[i], (I(Ψx,s))←→ VMCtenant[j]
16 for t in T (1, . . . , k) AND t �= Ctenant do
17 send Output(Ψx,s)[i], VMCtenant[j]) to any running VM in VM t

18 Interposition @ VM t

19 Conquer(result, Output(Ψx,s[i]), V MCtenant[j])

20 for t in T (1, . . . , k) AND t �= Ctenant do
21 Interposition @ VM t

22 digest = H(result)
23 Load(digest)
24 Store(MD[t], digest)
25 Store(TS[t], digesttimestamp)

26 if H(F (Ψx,s)) /∈MD then
27 NODEGUARD (Ctenant, V MCtenant(a, . . . , r/2), “processing”)
28 NODEGUARD (Ctenant, V MCtenant((r/2) + 1, . . . , r), “processing”)

29 else
30 for all t where MD[t] �= H(F (Ψx,s) AND !Checked(T [t]) do
31 NODEGUARD (t, V M t(1, . . . , r), “processing”)

32 for all t where MD[t] = H(F (Ψx,s) do
33 if all TS[t]− tstart /∈ τ then
34 NODEGUARD (Ctenant, V MCtenant(a, . . . , r/2), “delay”)
35 NODEGUARD (Ctenant, V MCtenant((r/2) + 1, . . . , r), “delay”)

36 else
37 for all t where MD[t] = H(F (Ψx,s) AND !Checked(T [t]) do
38 if TS[t]− tstart /∈ τ then
39 NODEGUARD (t, V M t(1, . . . , r), “delay”)

processing or delay patterns results in an asymptotic runtime

complexity of T (n) ∈ O(n) which is the same runtime com-

plexity of the traditional VMI intrusion detection algorithm

inspecting the VMs in the data center one at a time.

VI. PERFORMANCE EVALUATION

A proof-of-concept testbed emulation of the system design

is implemented on the Mininet network emulator [21]. Mininet

enables the creation of a real virtual network composed of

a central controller and a set of hosts and switches running

actual Linux kernel on a single computer. Mininet emulates

an actual cloud environment with virtualized software-defined

networking (SDN) modules that allow for the realization

and testing of relatively large-scale cloud services. Selecting

Mininet for implementing the NODEGUARD system model

is not only due to the realistic cloud platform and scalable

virtualization support but also due to its seamless ability to

simulate the introspection primitives provided by a standard

VMI platform. This is done by leveraging the centralized

control modules realized in the SDN controller to have access

to the underlying processing units in the virtualized hosts.

This is because, in Mininet, The SDN controller is deployed

on the local host system running the network virtualization

hypervisor with direct access to the VM runtimes and memory

resources. We employed a VMware Linux VM for running

the Mininet network emulator. The VM is hosted on VMware

Fusion Professional Version 12.1.0 running on a MacBook

Pro, Intel Core i9 @ 2.4GHz, with 64GB of main memory.

The guest system was assigned 4 cores, 33.5GB of memory,

795

Authorized licensed use limited to: Malardalen University. Downloaded on August 24,2022 at 13:09:02 UTC from IEEE Xplore.  Restrictions apply. 



and it was running on Ubuntu 14.04 (64 bit), using Floodlight

v1.2.

The system configuration we followed is comprised of 8

cloud tenants (T1 to T8) leasing several VMs, r, as indicated

by Table I. This implies a network size n of 3875 VMs. This is

the largest number of virtual hosts that we were able to boot on

a single emulation laptop with the above-listed configuration.

To emulate the malicious behavior in the network, we induced

intentional processing flaws in a set of VMs at each tenant

configuration. We formalized the degree of malicious behavior

in the network by the parameter ρ which indicates the percent

maliciousness in the network. ρ is defined as the percent of

VM nodes exhibiting misbehaving or malicious behavior to the

total number of VM nodes at a particular tenant configuration.

The misbehaving pattern could be designated by an invalid

processing result when executing a corresponding probing task

or an intolerable processing delay in generating the result.

In the testbed implementation, we selected 12 ρ malicious

rates starting with 0% maliciousness indicating an error-free

network to 100% where uncommonly all the VM nodes in the

network are demonstrating a form of malicious behavior. The

NODEGUARD algorithm convergence time for each network

malicious rate is computing and compared to that of the tradi-

tional VMI intrusion detection methodology. Without loss of

generality, we utilized a set of matrix multiplication distributed

tasks to probe the different tenant VMs.

In the traditional VMI technique, the input matrix sizes are

set to 100x100 elements of random values in the range of [1,

500000]. In the NODEGUARD approach, to ensure a fair com-

parison with the traditional approach, we selected the parent

problem size in a way to ensure that each subtask consists of

the multiplication of input matrices of 100x100 elements. We

applied the standard divide-and-conquer matrix multiplication

algorithm to subdivide the large matrix multiplication problem

into a set of smaller subtasks to respectively execute at each

tenant VM as designated by the NODEGUARD algorithm

specifications. The NODEGUARD probing mechanisms are

periodically replicated every 10 minutes over a period of

7 days. We selected a random malicious rate ρ discretely

from the set [0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100].

The average runtime for completing a NODEGUARD probing

step is calculated for the 12 different malicious rates ρ and

this is respectively compared to the runtime of executing the

standard VMI intrusion detection algorithm that checks each

VM individually for correct processing and reasonable delay.

The results in Figure 2 remarkably comply with the theoretical

analysis presented in the previous section. As expected, when

the malicious rate is relatively low, the NODEGUARD algo-

rithm exhibits a runtime complexity in the order of log2(n).
As the malicious rate increases above the 50% - 60% mark, the

runtime complexity incrementally approaches a linear function

and gets closer to the performance of the traditional VMI

intrusion detection technique. Due to the time limitation for

presenting this work, the probing runtime measurements are

carried out on idle VMs without any accompanying processing

workload. Future extensions will consider the effect of various
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Figure 2: Convergence time of the NODEGUARD approach

compared to that of the standard VMI intrusion detection

method for several VM malicious rates.

probabilistic workloads on the performance of the probing

mechanisms on the tenants’ VMs. The range of reasonable

processing times τmin ≤ τ ≤ τmax is incrementally deter-

mined from one probing period to the next based on the

execution time of the distributed task on the tenant with the

maximum number of VMs (this determines τmax) and the

tenant with the minimum number of VMs (this determines

τmin) in each probing period. Since the values of τmin and

τmax depend on the overall processing time of each distributed

task TS[t]− tstart on a particular VM tenant network t (which

can change from one probing period to the other (even within

an individual probing period), the values of tmin and tmax

dynamically change based on this variation in the execution

time. To sustain a smooth disparity in the values of tmin and

tmax we followed an algorithm analogous to the retransmission

timer derivation algorithm maintained in TCP [22].
The details of the tmin and tmax calculations are provided

in the subsequent smoothing equations using the estimators

mτ and vτ , respectively, representing the mean and variance

of the execution time of the distributed task in the kth probing

period.
We start with τmax, let tmax represent the tenant with the

maximum number of leased VMs and tmin represent the tenant

with the minimum number of leased VMs:

mτk+1 = α (TS[tmax]− tstart) + (1− α)mτk

vτk+1 = β (|TS[tmax]− tstart −mτk|) + (1− β) vτk+1

τmax = mτk + 4 vτk+1

In the first probing period, the mean and variance estimators

are set as follows:

mτ1 = TS[tmax]− tstart, vτ1 =
TS[tmax]− tstart

2
Analogously, τmin is derived as follows:

mτk+1 = α (TS[tmin]− tstart) + (1− α)mτk

vτk+1 = β (|TS[tmin]− tstart −mτk|) + (1− β) vτk+1

τmin = mτk + 4 vτk+1

In the first probing period, the mean and variance estimators

are set as follows:

mτ1 = TS[tmin]− tstart, vτ1 =
TS[tmin]− tstart

2
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Table I: Samples of VMs configurations.

Tenant T1 T2 T3 T4 T5 T6 T7 T8
Number of VMs r 1250 1000 750 500 200 100 50 25

The gains α and β are set to 1
4 and 1

8 respectively [22].

VII. CONCLUSION AND FUTURE DIRECTIVES

In this work, we presented NODEGUARD, a security ap-

proach for detecting and isolating misbehaving processing

nodes in virtualized cloud data centers. The main contribution

of this work is represented by employing the VMI interpo-

sition and introspection functions to detect and isolate any

source of maliciousness in the tenants’ VMs. NODEGUARD

follows a divide-and-conquer strategy to result in a logarithmic

run time complexity compared to the linear traditional VMI

intrusion detection mechanisms. The system is implemented

in a virtualized cloud environment using the Mininet network

emulator. Experimental performance measurements corrobo-

rate the logarithmic complexity advantage of NODEGUARD

over the traditional VMI intrusion detection strategy. Future

extensions include: (1) investigating customized divide-and-

conquer configurations that might take advantage of policy-

based network division mechanisms to better enhance the

runtime complexity of the system, and (2) realizing the system

in a real cloud computing environment to get a more realistic

performance profiling of the security processing.
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