
POSTER: Towards Cyber Resilience of Cyber-Physical Systems using Tiny Twins

Fereidoun Moradi*
Mälardalen University

Västerås, Sweden
fereidoun.moradi@mdu.se

Sara Abbaspour Asadollah
Mälardalen University

Västerås, Sweden
sara.abbaspour@mdu.se

Marjan Sirjani
Mälardalen University

Västerås, Sweden
marjan.sirjani@mdu.se

Abstract—We propose a method to detect attacks on sensor
data and control commands in cyber-physical systems. We
develop a monitor module that uses an abstract digital
twin, Tiny Twin, to detect false sensor data and faulty
control commands. The Tiny Twin is a state transition system
that represents the observable behavior of the system. The
monitor observes the sensor data and the control commands
transmitted in the network, walks over the Tiny Twin and
checks whether the observed data and commands are con-
sistent with the transitions in the Tiny Twin. The monitor
produces an alarm when an attack is detected. The Tiny
Twin is built automatically based on a timed actor code of
the system. We demonstrate the method and evaluate it in
detecting attacks using a temperature control system.

Index Terms—Monitoring, Model Checking, Cyber-Physical
Systems, Attack Detection and Prevention, Cyber-Security

1. Introduction

Cyber-Physical Systems (CPSs) are safety-critical sys-
tems that integrate physical processes in the industrial
plants (e.g., thermal power plants or smart water treatment
plants) with sensors, actuators and controller components.
Since these components are integrated via a communica-
tion network (usually wireless), a CPS is vulnerable to
malicious cyber-attacks that may cause catastrophic dam-
age to the physical infrastructure and processes. Cyber-
attacks may be performed over a significant number of
attack points and in a coordinated way. So, detecting and
preventing attacks in CPSs are of significant importance.

Intrusion Detection Systems (IDSs) are deployed in
communication networks to defend the system against
cyber-attacks. Regular IDSs cannot easily catch complex
attacks. They need to be equipped with complicated logic,
based on human (safety and security engineers) reason-
ing [1]. In rule-based IDSs [1], a set of properties that
are extracted from the system design specification are
considered as rule-sets to detect attacks. Indeed, if an
IDS finds a deviation between the observed packets in the
network and the defined rules, it produces an alarm and
takes a predefined action such as dropping the packets.
The key challenge is the effort required to specify the
correct system behavior as rules.

2. Overview

We propose a method to detect cyber-attacks on sensor
data and control commands in CPSs. The overview of

Model Checking

(Afra)


Abstraction

(Abstraction tool)


Generate Monitor
(LF compiler)


Ti
m

ed
 R

eb
ec

a
m

od
el

St
at

e 
Sp

ac
e

Ti
ny

 T
w

in

LF
 c

od
e

M
on

ito
r m

od
ul

e

+

Mapping Rebeca to LF

Step (1) Step (2) Step (3)

Figure 1: The overview of our method. Step (1), we generate the state
space of the Timed Rebeca code of a CPS by the Afra model checker
(see Sec. 3). Step (2), the state space is abstracted by our abstraction
tool (see Sec. 4). The result of the abstraction is a Tiny Twin that is used
within a monitor module (see Sec. 5) to detect the attacks. Step (3), we
develop the monitor module in LF language and use the LF compiler to
generate an executable file.

our method is shown in Figure 1. The model of a CPS
is developed in Timed Rebeca [2] and the Afra model
checker [3] is used to verify the model (step (1) in Fig-
ure 1). In [4], it is shown that how entities of a CPS, i.e.,
sensors, actuators, controllers, and physical plant are mod-
eled as actors, and interactions between them are modeled
as messages passed between the actors. We develop an
abstraction tool (step (2) in Figure 1) that abstracts the
state space of the Timed Rebeca model (generated by
Afra model checking tool) to create a Tiny Twin (TT) [5].
Digital Twins (DT) [6] are used as digital representation of
the system to advance the system monitoring. We develop
a monitor module that uses the created Tiny Twin to track
the order and the timing of events (step (3) in Figure 1).

3. Model Checking and Security Analysis

We assess the security aspects of a CPS by verifying
its security properties. Afra supports LTL, TCTL and
assertions for property specification. By model checking
we analyze security of the CPS design to recognize where
the potential attack scenarios can successfully cause a
failure in the system. We utilize the STRIDE [7] model as
a reference for classifying potential attacks on a CPS. In
Table 1, we classify the significant attacks on CPS based
on the STRIDE categories. The cyber and physical attacks
exploit emerging CPS-related vulnerabilities in the two
aspects of communication and component, and are shown
in Table 1 as Scheme-A and Scheme-B. Scheme-A consists
of the attack scenarios which are secretly recording or
modifying the data transmitted over the channels (e.g.,
eavesdropping, MITM and injection attack). Scheme-B
includes the attacks that inject malicious code into the
software components or perform a malicious alteration on
a physical component (e.g., malware and physical attack).



TABLE 1: Attack Classification according STRIDE threat modeling [4].

Threat Type Cyber or Physical Attack Scheme-A Scheme-B

Spoofing
(Authentication)

Masquerade attack [8]
Packet spoofing attack [9]

Tampering
(Integrity)

Man-in-the-middle (MITM) [8]
Injection attack [9] [9]
Replay attack [8]
Malware (Virus or Worms) [9]
Physical attack [9] [10]

Reputation
(Non-Repudiation) On-Off attack [10]

Information
Disclosure
(Confidentiality)

Eavesdropping [8]
Malware (Spyware) [9]
Side-channel attack [9]
Physical attack [9] [10]

Denial of Service
(Availability)

Resource exhaustion attack [8] [9]
Interruption attack [8]
Malware (Ransomware) [9]
Physical attack [9] [10]

Elevation of Privilege
(Authorization) Malware (Rootkit) [9]

4. Abstraction and Tiny Twin

To create a Tiny Twin, we abstract the given state
space with respect to the sensor data and control com-
mands. We abstract the state space generated by the model
checker in order to preserve sequences of observable ac-
tions while hiding internal actions. Our abstraction method
is implemented in a tool by considering the reduction
algorithm in [11]. It is applied to the original state space
where it iteratively refines indistinguishable states, i.e., the
classes containing equivalent states, while hides transi-
tions that are called silent transitions. Figure 2 illustrates
how the abstraction tool performs on an example.

The Tiny Twin defines the observable behavior of
the system in the absence of an attack and contains the
order and the time at which the sensor data and control
commands are communicated. Transitions in Tiny Twin
are tagged by a label that indicates an action or the
progress of time.

5. Monitoring and Attack Detection

We develop a monitor module that observes the sensor
data and the control commands transmitted in the network
and decides to drop or pass the control commands to
the actuators (see Figure 3). The Tiny Twin is placed
within the module and serves as a baseline for detect-
ing attacks. The module starts its observation when the
system executes. Upon receiving sensor data, the module
compares it with the state variables in the Tiny Twin. If
the module finds no differences between them, it proceeds
and checks whether the commands are consistent with
the corresponding transitions in the model. If this is the
case, the module sends the commands to the actuators.
Otherwise, the module produces an alarm and terminates
the process of monitoring.

We implement our monitor module in Lingua Franca
(LF) [12] that is a language for programming CPSs.
In principle, a Lingua Franca code can connect to the
physical plant and the controller through the input/output
communication channels in the actual system. We use
Lingua Franca to simulate the system at runtime and
evaluate the detection capability of our method by defining
compromised components.

e_class_4

e_class_3

e_class_1

e_class_5

e_class_2

e_class_6

S6
s: 20

w: true
 h: true  

(now: 10)

S7
s: 21

w: false
 h: true  

(now: 10)

GETSENSE
@(10>>0)

S8
s: 21

w: true
 h: true  

(now: 10)

GETSENSE
@(10>>0)

S4
s: 20

w: true
 h: true  
(now: 0)

S5
s: 20

w: true
 h: true  
(now: 0)

HEATING
@(0>>0)

time +=10
@(0>>0)

S1
s: 21

w: false
 h: false
(now: 0)

S2
s: 21

w: false
 h: false
(now: 0)

GETSENSE
@(0>>0)

S3
s: 20

w: true
 h: false  
(now: 0)

GETSENSE
@(0>>0)

time +=10
@(0>>10)

SWITCHOFF
@(10>>10)

S9
s: 21

w: true
 h: true  

(now: 20)

time +=10
@(10>>0)

ACTIVATE_H
@(0>>0)

GETSENSE
@(20>>10)

GETSENSE
@(20>>10)

(a)

GS1
s: 21  

h: false
(now: 0)

GETSENSE
@(0>>0)

time +=10
@(0>>10)

GS2
s: 20  

h: false  
(now: 0)

GETSENSE
@(0>>0)

GS3
s: 20  

h: true  
(now: 0)

GS4
s: 20  

h: true  
(now: 10)

time +=10
@(0>>0)

GS6
s: 21  

h: true  
(now: 20)

GS5
s: 21  

h: true  
(now: 10)

GETSENSE
@(20>>10)

SWITCHOFF
@(10>>10)

time +=10
@(10>>0)

ACTIVATE_H
@(0>>0)

GETSENSE
@(10>>0)

(b)

Figure 2: (a) The transition system of an example Timed Rebeca model
with the equivalence classes created by the abstraction tool. (b) The Tiny
Twin of the transition system depicted in Figure 2(a) [5].

Monitor Module












(Tiny Twin)
Se

ns
or

 d
at

a

C
on

tr
ol

co
m

m
an

ds

SensorsActuators
Physical
Process

Controllers
TamperingTampering

Masquerade
attack

Figure 3: The monitor module observes the input/output of the con-
trollers and drops faulty control commands if it identifies a mismatch
between the state transitions in Tiny Twin and the observed sensor data
and control commands.

6. Case Study: a Temperature Control Sys-
tem

We evaluate our method in detecting and preventing
cyber-attacks using a temperature control system. The
temperature control system is responsible for maintaining
the temperature of a room at a desired range (e.g., the
values between 21 and 23). This system includes a sensor,
a hc unit (heating and cooling unit) as an actuator, and
a controller. The controller receives sensor data from the
sensor and transmits the activate c, activate h or switch
off command to the hc unit to respectively activate the
cooling or heating process, or switch the heating/cooling
process off. We use the Afra model checker to produce
the state space of the developed Timed Rebeca model and
exploit our abstraction tool to generate the Tiny Twin. We
implement both the system and the monitor module in LF.



6.1. Tiny Twin

We create the Tiny Twin of the state space of the de-
veloped Timed Rebeca model for the temperature control
system. The Tiny Twin is generated by the abstraction tool
based on the list V={sensedValue, cooler on, heater on}
of state variables. The original state space of the model
includes 76 states and 103 transitions while the generated
Tiny Twin contains 21 states (i.e., equivalence classes) and
36 transitions. The Tiny Twin is trace equivalent to the
original state space (projected on the variables containing
sensors data and control commands).

6.2. Attack Types and Detection Capability

We evaluate the capability of the developed monitor
module in detecting the attacks. We consider three types
of attacks that target the integrity aspect of CPS (see Fig-
ure 3). (1) Attackers have the ability of tampering sensor
data or injecting any arbitrary values into the vulnerable
channel between controller and sensors, i.e., replay or
tampering attack, (2) attackers are able to manipulate
the controller through malicious code injection into the
software of the controller, i.e., fabrication or masquerade
attack, and (3) one or more attackers can perform a
coordinated attack to force the system to change its correct
functionally.

We consider the number of false sensor data and faulty
control commands sent by the compromised components
as the number of attacks. In our experiments, we simulate
20 false sensor data and 12 faulty control commands as
listed in Table 2. We also simulate 240 coordinated attacks
(combination of the false sensor data and the faulty control
commands). We calculate the detection rate of the monitor
with respect to the detected/undetected attacks. In this case
study, the detection rate is around 68.8 percent.

TABLE 2: Attacks and detection capability of the monitor [5].
System # False sensor data/ Detection Capability
States Attacks Faulty control commands (DS/DC)

GS1 and GS2 4 Sensor data (20, 21, 23, or 24) DS (20 and 24)
GS3 and GS5 4 Sensor data (20, 21, 22, or 24) DS (20 and 21)
GS4 and GS6 4 Sensor data (20, 22, 23, or 24) DS (23 and 24)
GS8 2 Command (activate h or switchoff ) DC (activate h and switchoff )
GS9 2 Command (activate c or switchoff ) DC (activate c and switchoff )
GS11 and GS13 4 Sensor data (20, 21, 22, or 23) DS (20 and 21)
GS12 and GS14 4 Sensor data (21, 22, 23, or 24) DS (23 and 24)
GS15, GS16, GS17, GS18 2 Command (activate h or activate c) DC (activate h and activate c)

#Attacks.: Number of simulated attacks, DS: Detect false sensor data, DC: Detect faulty control commands.

Table 3 shows the alarms list returned by the monitor
module when a false sensor data or a faulty control
command is detected. The alarm is comprised of a time
value, a false sensor data or a faulty control command, the
status of the physical plant reported by the sensor and the
value of the state variables in the state where the monitor
module terminated the system execution.

TABLE 3: Alarms of the monitor module in case of attacks [5].
System False sensor data/ Alarms
States Faulty control commands list

GS1 and GS2 Sensor data (20) [time, yi : 20, y : 23, s : 22, c : false, h : false]
GS3 and GS5 Sensor data (21) [time, yi : 21, y : 22, s : 23, c : false, h : false]
GS4 and GS6 Sensor data (23) [time, yi : 23, y : 22, s : 23, c : false, h : false]
GS8 Command (activate h) [time, ud : activate h, y : 24, s : 24, c : false, h : false]
GS9 Command (switchoff ) [time, ud : switchoff, y : 20, s : 20, c : false, h : false]
GS11 and GS13 Sensor data (21) [time, yi : 21, y : 22, s : 24, c : true, h : false]
GS12 and GS14 Sensor data (24) [time, yi : 24, y : 22, s : 20, c : false, h : true]
GS16 Command (activate c) [time, ud : activate c, y : 22, s : 22, c : true, h : false]

time: The logical time which is derived using Lingua Franca code.

In a CPS, there may be several variables involved
in the physical process as well as various sensors and

actuators. The monitoring approach using the Tiny Twin
enables us to consider only variables are affected during
an attack (i.e., violation of properties). Tiny Twin provides
relevant information about attacks that can be employed
in mitigation techniques, backtracking and recovering the
system after attacks. We have developed the models and
the LF codes of two case studies (Pneumatic Control
System and Secure Water Treatment system), for which
the monitor module can properly detect the attacks on the
system.

7. Conclusion and Future Work

In this work, we proposed a method for detecting
cyber-attacks on CPSs. In particular, we used a Tiny Twin
to detect the attacks on sensor data and control commands.
We developed an abstraction tool to build the Tiny Twin,
which is an abstract version of a state transition system
representing the system correct behavior in the absence of
an attack. In our method, we built a monitor module that
executes together with the system. It produces an alarm if
the sensor data or the control commands are not consistent
with the state transitions in the Tiny Twin. We evaluated
the capability of our method in detecting attacks on a
temperature control system. As the future work, we aim
to build a module to mitigate impacts of the attacks based
on the predefined mitigation plans.

References

[1] R. Mitchell and I.-R. Chen, “A survey of intrusion detection
techniques for cyber-physical systems,” ACM Computing Surveys
(CSUR), vol. 46, no. 4, pp. 1–29, 2014.

[2] M. Sirjani and E. Khamespanah, “On time actors,” in Theory and
Practice of Formal Methods, pp. 373–392, Springer, 2016.

[3] “Afra: an integrated environment for modeling and verifying rebeca
family designs.” https://rebeca-lang.org/alltools/Afra, 2022. [On-
line; accessed Feb 09, 2022].

[4] F. Moradi, S. A. Asadollah, A. Sedaghatbaf, A. Čaušević, M. Sir-
jani, and C. Talcott, “An actor-based approach for security analysis
of cyber-physical systems,” in International Conference on Formal
Methods for Industrial Critical Systems, pp. 130–147, Springer,
2020.

[5] F. Moradi, M. Bagheri, H. Rahmati, H. Yazdi, S. A. Asadollah, and
M. Sirjani, “Monitoring cyber-physical systems using a tiny twin
to prevent cyber-attacks,” in International Symposium on Model
Checking of Software (SPIN), 2022.

[6] M. Eckhart and A. Ekelhart, “A specification-based state replication
approach for digital twins,” in Proceedings of the 2018 workshop
on cyber-physical systems security and privacy, pp. 36–47, 2018.

[7] A. Shostack, Threat modeling: Designing for security. Wiley, 2014.
[8] S. Choi, J.-H. Yun, and S.-K. Kim, “A comparison of ics datasets

for security research based on attack paths,” in International Con-
ference on Critical Information Infrastructures Security, Springer,
2018.

[9] J.-M. Flaus, Cybersecurity of industrial systems. J. Wiley & Sons,
2019.

[10] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths,
N. O. Tippenhauer, H. Sandberg, and R. Candell, “A survey of
physics-based attack detection in cyber-physical systems,” ACM
Computing Surveys (CSUR), vol. 51, no. 4, pp. 1–36, 2018.

[11] D. N. Jansen, J. F. Groote, J. J. Keiren, and A. Wijs, “A simpler o
(m log n) algorithm for branching bisimilarity on labelled transition
systems,” arXiv preprint arXiv:1909.10824, 2019.

[12] M. Lohstroh, C. Menard, A. Schulz-Rosengarten, M. Weber, J. Cas-
trillon, and E. A. Lee, “A language for deterministic coordination
across multiple timelines,” in 2020 Forum for Specification and
Design Languages (FDL), pp. 1–8, IEEE, 2020.

https://rebeca-lang.org/alltools/Afra


Towards Cyber Resilience of
Cyber-Physical Systems using Tiny Twins

Fereidoun Moradi*, Marjan Sirjani, Sara Abbaspour and Maghsood Salimi
School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden

fereidoun.moradi@mdu.se

Overview of our Method

We model system in Timed Rebeca and use Afra model
checker to verify the model (step 1). We develop an ab-
straction tool that reduces the state space of the model and
creates a Tiny Twin (step 2). We develop a monitor module
that observes sensor data and control commands and uses
the created Tiny Twin to track the order and the timing of
the observable actions (step 3).

Model Checking 
(Afra) 

Abstraction 
(Abstraction tool) 

Generate Monitor
(LF compiler) 

Ti
m

ed
 R

eb
ec

a
m

od
el

St
at

e 
Sp

ac
e

Ti
ny

 T
w

in

LF
 c

od
e

M
on

ito
r m

od
ul

e
+

Mapping Rebeca to LF

Step (1) Step (2) Step (3)

Monitoring

The monitor observes the
input/output of the con-
trollers and detects faulty
control commands.

Monitor Module 
 
 
 
 
 

(Tiny Twin)

Se
ns

or
 d

at
a

C
on

tr
ol

co
m

m
an

ds

SensorsActuators
Physical
Process

Controllers
TamperingTampering

Masquerade
attack

Security Analysis

The STRIDE threat mod-
eling is used as a reference
for classifying potential
attacks on cyber-physical
systems.

Threat Type Cyber or Physical Attack Comm. Comp.

Spoofing
(Authentication)

Masquerade attack ✓

Packet spoofing attack ✓

Tampering
(Integrity)

Man-in-the-middle (MITM) ✓

Injection attack ✓ ✓

Replay attack ✓

Malware (Virus or Worms) ✓

Physical attack ✓ ✓

Reputation
(Non-Repudiation) On-Off attack ✓

Information
Disclosure
(Confidentiality)

Eavesdropping ✓

Malware (Spyware) ✓

Side-channel attack ✓

Physical attack ✓ ✓

Denial of
Service
(Availability)

Resource exhaustion attack ✓ ✓

Interruption attack ✓

Malware (Ransomware) ✓

Physical attack ✓ ✓

Elevation of Privilege
(Authorization) Malware (Rootkit) ✓

Create a Tiny Twin

The Tiny Twin is an ab-
stract model which defines
the observable behavior of
the system in the absence
of an attack and preserves
branching bisimulation re-
lation with the original
model.

e_class_4

e_class_3

e_class_1

e_class_5

e_class_2

e_class_6

S6
s: 20

w: true
 h: true  

(now: 10)

S7
s: 21

w: false
 h: true  

(now: 10)

GETSENSE

@(10>>0)

S8
s: 21

w: true
 h: true  

(now: 10)

GETSENSE

@(10>>0)

S4
s: 20

w: true
 h: true  
(now: 0)

S5
s: 20

w: true
 h: true  
(now: 0)

HEATING

@(0>>0)

time +=10

@(0>>0)

S1
s: 21

w: false
 h: false
(now: 0)

S2
s: 21

w: false
 h: false
(now: 0)

GETSENSE

@(0>>0)

S3
s: 20

w: true
 h: false  
(now: 0)

GETSENSE

@(0>>0)

time +=10

@(0>>10)

SWITCHOFF

@(10>>10)

S9
s: 21

w: true
 h: true  

(now: 20)

time +=10

@(10>>0)

ACTIVATE_H

@(0>>0)

GETSENSE

@(20>>10)

GETSENSE

@(20>>10)

GS1

s: 21  
h: false

(now: 0)

GETSENSE

@(0>>0)

time +=10

@(0>>10)

GS2

s: 20  
h: false  
(now: 0)

GETSENSE

@(0>>0)

GS3

s: 20  
h: true  
(now: 0)

GS4

s: 20  
h: true  

(now: 10)

time +=10

@(0>>0)

GS6

s: 21  
h: true  

(now: 20)

GS5

s: 21  
h: true  

(now: 10)

GETSENSE

@(20>>10)

SWITCHOFF

@(10>>10)

time +=10

@(10>>0)

ACTIVATE_H

@(0>>0)

GETSENSE

@(10>>0)

Case-Studies

We develop the Timed Re-
beca models and the Lin-
gua Franca (LF) codes of
two case studies, a wa-
ter treatment system and
a pneumatic control sys-
tem, for which the monitor
module can properly de-
tect coordinated and com-
plex attacks on the system.

Impact and Contribution

Defining policies for detecting attacks is a manual and challenging task for safety/security
engineers. We make the attack detection process systematic and automatic, and provide
tractable reports after a successful detection. We employ a Tiny Twin to detect cyber-
attacks including complex attacks.


