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Abstract—In recent years, maintaining test code quality has
gained more attention due to increased automation and the
growing focus on issues caused during this process.

Test code may become long and complex, but maintaining
its quality is mostly a manual process, that may not scale in
big software projects. Moreover, bugs in test code may give a
false impression about the correctness or performance of the
production code. Static program analysis (SPA) tools are being
used to maintain the quality of software projects nowadays.
However, these tools are either not used to analyse test code,
or any analysis results on the test code are suppressed. This is
especially true since SPA tools are not tailored to generate precise
warnings on test code.

This paper investigates the use of SPA on test code by em-
ploying three state-of-the-art general-purpose static analysers on a
curated set of projects used in the industry and a random sample
of relatively popular and large open-source C/C++ projects. We
have found a number of built-in code checking modules that can
detect quality issues in the test code. However, these checkers
need some tailoring to obtain relevant results. We observed design
choices in test frameworks that raise noisy warnings in analysers
and propose a set of augmentations to the checkers or the analysis
framework to obtain precise warnings from static analysers.

Index Terms—testing, static analysis, test maintenance, fault
detection, code quality

I. INTRODUCTION

Automated testing is essential in software quality assurance
projects [1]. This requires trust in the test’s quality. Despite
this reliance, test quality is not enforced to the same degree
as on production code [2] [3]. Test artefacts are generally
given less attention than production code during the code
review process. Contributing factors include the lack of time
given by management and unfamiliarity with the test code
in question [4]. This creates technical debt through issues
manifesting as e.g., flaky tests. Tests are naturally checked for
functional correctness by running them enough times to gain
confidence of their stability. In comparison, extra-functional
properties such as clarity or adherence to coding standards
are largely left to manual code review.

Static program analysis (SPA) tools can automate the review
and refactoring process. But based on issues identified by
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Spadini et al. [4], this is not done for test code, despite
available tooling [5].

Tools guide the review effort by flagging potential issues
in the code. Developers may thus focus on more difficult-
to-automate issue fixing. Tools additionally fill the role of
an expert system, as code- or certification standards may
be encoded in their ruleset1. For common cases, tools can
even suggest fixes, either for developer’s approval [6] or as
automated patches [7].

Such reviews are only as good as the tools themselves. Some
scepticism regarding the usefulness of SPA tools lives on [8].
Common issues raised include noisy reports (false positives)
and a lack of suggestions/guidance for fixing issues [8] [9].
While automation narrows down the work for developers,
time is still spent on report review [10] and configuration
of analyser options, as the default configuration may not be
fully sufficient [11].

Given the wealth of existing tools targeting different types
of code quality aspects, one must state that despite design
differences, test code is also code [12]. For tool selection
in industrial environments, the trade-off between cost and
value immediately becomes a deciding factor [13]. Familiarity
and proven reliability of already-used tools are likely less
costly to adapt and extend. Additionally, open-source tooling
allow practitioners to extend them with company- or domain-
specific checks, as such they represent extensive engineering
effort [14]. Therefore, it is well-worth investigating how static
analysis tools used for production code work for test code.

To evaluate the usefulness of general-purpose analysers on
tests we analysed a sample of 10 open-source C/C++ projects
using three analysers fitting the criteria of being open-source
and used in practice: Clang-Tidy, Clang Static Analyzer, and
CppCheck. We evaluated the warnings generated by these tools
to identify useful checks that the tools possess already and
discuss amendments for making them more suited for usage on
test code. We thereby answer the following research questions:

RQ1 What are the quality issues of test code identified by
general-purpose static analysers?

1For example, Carnegie Mellon University maintains a list of analysers
with SEI CERT C++ coverage at https://wiki.sei.cmu.edu/confluence/display/
cplusplus/CC.+Analyzers



RQ2 How serious are the identified issues for tests?
RQ3 What modifications to the static analysers and test code

are necessary to utilise the potential of SA on test code?
We identify several design choices of tests and test frameworks
that cause noisy warnings from these tools, some marked
as high-severity. Notably, many warnings of null pointer de-
referencing were raised by the analysers’ inability to recognise
custom test assertions.

A vast majority of warnings relate to code style violation.
They become noisy as test frameworks commonly use pre-
processor macros and the warning may be triggered by some-
thing in the macro expansion.

The rest of the paper is organised as follows. Section II
provides the background discussing the details of the static
program analysis and the properties of the test code. Section III
provides the related work, IV and V gives the details of the
tools and study setup to facilitate the replication of our study.
It also discusses our data set, data extraction and evaluation.
Section VI includes the description and explanation of our
results. The results and validity threats are discussed in Section
VII. Section VIII concludes the paper along with presenting
further work.

II. BACKGROUND

In this section, we provide an overview of static program
analysis and present some properties of test code that may
benefit or hamper its analysis.

A. Static Code Analysers

Static analysis techniques extract properties from a given
software without executing it. The technique has many uses,
from compilers to heavy-duty program verification2. They
are usually a complement to the dynamic approaches in
continuous integration, such as executing a set of tests. A
benefit of static approaches is that it is applicable on parts
of the software that may not be executed in isolation. Given
a fast enough analysis, expert knowledge may be encoded to
help developers enforce coding guidelines in real-time through
automated code review [15].

Unlike tests that run on concrete software and hardware,
static analysis uses abstraction formats: abstract syntax trees
(AST), control-flow-graphs (CFG), or program dependence
graphs. This allows the analysis to scale and may give some
assurances w.r.t. absence of issues, but instead introduces the
potential of raising false positive warnings.

Pattern-based analyses look for predefined patterns in the
code. This type is suitable for finding syntactical or structural
issues, such as style-based violations or missing initialisation.
Pattern-based analyses are comparatively fast, as they rely on
only processing the statement type(s) related to the issue.

Semantic-based analyses require accounting for the under-
lying execution behaviour. Some modelling of state during
execution is required. Such analyses target issues requiring

2For a comprehensive tool list, the authors recommend https://github.com/
analysis-tools-dev/static-analysis

specific execution sequences, such as usage of undefined
variables, potential divisions by zero or memory leaks. Such
analyses often track data and execution flow through the
program. Popular approaches to perform such analysis include
abstract interpretation where a set of data-flow equations are
set up and then solved using some fixed point iteration [16].
On the other hand, techniques such as symbolic execution will
traverse some exploded version of the CFG (e.g., generate
separate nodes for each iteration and branch) and keep track
of symbolic values. During the node generation and traversal,
it also generates path constraints which are then fed to a
constraint solver in order to detect which paths are feasible to
traverse. This way, it may emulate execution while still being
able to reason about a program on a symbolic level [17].

To be useful in non-trivial software, this tracking shall han-
dle function call semantics, so-called inter-procedural analysis.
In some cases function calls may cross into different files
(a.k.a. translation units). If the function is not familiar to the
analysis, it errs on the side of caution yielding some too-
broad result. One solution is to perform a cross-translation-unit
(CTU) analysis. The analyser pre-processes available function
definitions to extract and store details for later use. Existing
approaches utilise both procedure summaries [18] [19] and
inlining of functions. While this improves the accuracy of
results, such pre-processing increases both memory usage as
well as execution time [20].

B. Test Code Design - Impact on General-Purpose Checkers

Software tests are a set of instructions where the goal is
to put the system in some given state, act upon that state,
and then verify that results match expectations [21]. Tests are
grouped together into test suites based on logical or practical
reasons. Both these properties are common enough that they
are universally supported by testing frameworks.

This design impacts the usage of general-purpose static
analysers targeting test code. Dedicated suite-wide setup func-
tions are used to prepare test objects before each test, such
as (re-)setting a database to some common state. This pro-
motes code reuse, but introduces an implicit execution order.
General-purpose tool may lack this knowledge ordering and
assume execution orderings that lead to irrational warnings.

The separation of test and production code is also true from
a project layout perspective. Based on documentation of test
frameworks, standard practice is to separate tests from the
translation unit (e.g., code file) being tested [22] [23]. This
reduces the analyser’s ability to reason about the code across
file boundaries. It reduces precision by treating unfamiliar
function calls as a black box. Analysers will then typically
err on the side of caution and fall back on e.g., unconstrained
results. Thus, we assume CTU analysis to be required to get
good results when analysing test code.

Automated software tests utilise assertions to verify expec-
tations against actual behaviour. These check some condition
and aborts the execution if the condition is false. As the test
would otherwise terminate, it may be assumed that immedi-
ately after the assertion, whatever is asserted must hold. Some



analysers use this fact to increase the accuracy of the analysis.
By design assertions occur naturally in test code. Hence such
code should be well-suited for analysers that utilise them. In
fact this idea has been applied even to reduce false positives by
inserting and model checking assertions against warnings [24].

III. RELATED WORK

Many tools providing dedicated static analysis for finding
test code issues exist. A recent mapping study presented a
number of test smell detectors created until 2020 [5]. The
authors determined that from the set investigated some form
of static analysis was the most used approach for detection.
They additionally noted the large number of tools supporting
Java, the duplication of smells detected and the lack of tools
featuring refactoring guidance. Due to the specification of
smells, issues are generally detected by extracting metrics [21]
[25] or pattern-matching on the code [26] [27]. In addition
to smell detection, static analysis is also applied as part of
flakiness detection tools [28]. While our work focuses more
on the gap between general-purpose analysers and test code,
the analysers presented may be used as inspiration.

The Java static analyser FindBugs was evaluated on
tests [12]. The authors did this by extracting a set of Java tests
reverted to a known buggy state and then check if the tools
found the bug. The result noted the tool did not detect any of
the issues, despite having some checks that are closely related.
While we are interested more in causes and fixes of perceived
issues, replicating this work would give stronger evidence for
the usage of general-purpose tools in this context.

To help practitioners deal with reports, automated program
repair (and refactoring) approaches have been documented
both from academia [29] [30] and in grey literature through
blogs [31].

IV. TOOLS

Based on discussions with industrial collaborators, we
chose three C/C++ static analysers from open source that
are already in use by their organisations3: Clang-Tidy, Clang
Static Analyzer, and Cppcheck. Specifically, we utilised Clang
release 15.0.0 for Clang-Tidy and Clang Static Analyzer and
Cppcheck 2.7 for our data collection. Of course, this is not
an exhaustive list, but these tools represent commonly used
techniques used in code review and bug finding.

A. Clang-Tidy

Clang-Tidy [32] is the LLVM compiler framework linter.
Linters are static code checking tools that warn about issues
such as poor style choices or usage of bug-prone behaviour.
It follows from extreme programming practices that code
review feedback is most useful while the code is being
developed [33]. Otherwise, developers may move on to other
tasks, motivations/design choices forgotten. Linters are a way
to provide such feedback automatically. The tool works on
the Abstract Syntax Tree (AST). Thus it is most suited for
structural- and style-related issue detection. Automatic fixing

3Representatives from telecommunication and automotive domains

of issues is supported through suggestions of code changes,
which we remind the reader is a request from practitioners for
for adoption in practice [9].

Clang-Tidy consists of a set of checkers divided into groups
depending on their intended use, such as performance or
bugprone. They are designed as pattern matchers on the
AST, where matchers are constructed using a declarative-style
domain-specific-language (DSL)4. Each matcher is bound to
some callback function triggered when a match is found, in
order to take further actions.

The DSL provides a simplified way to interact with the
clang AST. It may be argued this makes it possible for stake-
holders of different levels to contribute in specifying automatic
checks and fixes. This automation alleviates maintenance and
refactoring efforts of industrial-scale code-bases [31].

B. Clang Static Analyzer

The Clang project provides a development framework for
creating checks requiring path-sensitive functionality: Clang
Static Analyzer (Clang SA) [34]. To reduce the classical scal-
ing issues of symbolic execution [17], Clang SA applies some
heuristics and path pruning (e.g., loops by default are traversed
a maximum of four times). Clang SA checkers collaborate by
producing and consuming nodes in the exploded graph. This
allows for integration and modelling of e.g., critical library-
specific functionality by simply adding a new checker.

Assertions can be used to drive the symbolic exploration.
Clang SA has automated detection mechanisms for custom
asserts but it is not fool-proof [35]. Test assertions are similar
in behaviour to C/C++ standard asserts. However, they are
implemented only to terminate a single test case. Depending
on the approach, this may not be detected by the analyser.
Instead, optional checkers exists that model detection and
extraction of conditions from test assertions. At the time of
writing, this is only done for GoogleTest assertions in official
releases of Clang SA.

C. Cppcheck

Cppcheck is a program analysis tool that focuses mostly on
finding undefined behaviour [36]. For simple rules, Cppcheck
provides configuration files for writing checks using regular
expression matching. Alternatively, checkers use a combina-
tion of unsound dataflow analysis and AST-traversal to check
the resulting code for issues.

Cppcheck ships with a set of knowledge configuration files.
These files contain specifications of well-known libraries, with
information about the behaviour of functions and their argu-
ments. These configurations include knowledge of a number
of test frameworks, among them GoogleTest and Boost.

V. STUDY SETUP AND DESIGN

We gathered some random projects for study using Github5.
The selection criteria was > 1000 stars AND > 100 forks

4For an up-to-date reference, see e.g., https://clang.llvm.org/docs/
LibASTMatchersReference.html

5https://github.com/search/advanced



TABLE I
PROJECTS USED FOR EVALUATION. FOR METRICS, WE GIVE A BRIEF

DESCRIPTION, WHICH LANGUAGE(S) ARE REPRESENTED AND THE LINES
OF TEST CODE (EXCLUDING HEADER FILES). PROJECTS FROM THE

CURATED SET IS MARKED BY A STAR.

Name Description Language Test code
(kLoC)

Thrift? Cross-language services C/C++ 54.2
Xerces? XML Parser C++ 16.0
Bullet3 3D physics engine C/C++ 43.9
CMake Build System C/C++ 37.7
LLVM? Compiler framework C/C++ 136.8
Firefox? Web browser C/C++ 511.7
OpenCV Computer vision C++ 96.3

Subsurface Diving logger C++ 47.0
Surge Sound synthesizer C++ 5.4
VTK Image processing C/C++ 402.7

TABLE II
USAGE OF C/C++ STATIC ANALYSIS PER PROJECT.

Name Used SA?
Thrift Clang-Tidy (Also Coverity)
Xerces No
Bullet3 Clang-Tidy
CMake Clang-Tidy, Cppcheck
LLVM Clang-Tidy, Cppcheck
Firefox Clang (with Mozilla extension), Cppcheck (some)

OpenCV Clang-tidy, Cppcheck (Singular reports)
Subsurface Cppcheck

Surge No
VTK Clang-Tidy, Cppcheck

AND > 100.0 MB repository size, as well as C/C++ being
the major languages and ”test” being mentioned somewhere in
the Readme file. Stars and forks were used as a crude metric
for how wide-spread the project is, although it has be noted
to increase naturally with an increase of collaborators [37].

Due to limitations on the resources for data gathering6 and
the manual nature of the review process, after some filtering
to ensure presence of tests and build system, we ended up
picking a sample at random to build. Building the projects
was done to handle projects generating tests as part of the
build process. Those would be missed if we relied only on
e.g.., exported build system information.

In addition to the random sample, we extended the set
with a curated selection used in previous work. In total, we
present analysed test code from 10 different projects. The set
of projects included in the paper can be seen in Table II, with
the curated selection being marked with a star. In addition,
we include information regarding the usage of C/C++ static
analysers in the projects, based on configurations. Clang-Tidy
has configuration files called ”.clang-tidy”, we may assume
that if the file exists it has been used. For Clang Static Analyser
and Cppcheck, we rely on the git commit log or bug tracker.

6Largely limited to one machine running Ubuntu 20.04, with 16GB RAM
and an Intel i7-7820HQ 2.90GHz CPU

A. Analysis and Review of Test Code

CodeChecker version 6.20 was used for data gathering, as
is the recommended way to perform CTU analysis in Clang
[38]. It supports build-command capturing as well as managing
and reviewing analysis reports from different analysers. Each
tool was run in two configurations: default and full suite
with CTU. Analysis reports were then parsed and stored in
a CodeChecker server, each project-mode combination as a
separate project. This allowed comparison of different modes
and similar statistics to be extracted during the review.

The review process was done manually. The primary goal
was to get a broad overview and find common causes of noise
and issues with the findings of the tools. For each project we
reviewed a random selection of each checker’s warnings, with
some care to spread the review over different files.

Commonly observed false or intended warnings examples
were saved and potential solutions for filtering the noise were
discussed internally. It shall be noted that the review was done
within the author team. A more thorough approach would
require reaching out to developers for further confirmation
regarding the viability of reported issues.

VI. RESULTS

The number of hits separated by checker can be seen in
Tables III, IV and V for Clang-Tidy, Clang Static Analyzer
and Cppcheck respectively. For space reasons we omit the Low
and Style severity from the tables, instead referring the reader
to the repository. We note however those reports account for
approximately 94% of all warnings.

A. Quality Issues Reported in Test Code

To answer RQ1, we summarise the warning reports based
on reported severity levels.

Clang Static Analyzer reports a number of high-severity
core checker violations. These model and produce warnings
related to C/C++ core features. They should therefore be
relatively stable, otherwise other results would be affected.
Many warnings in the set relate to bad usage of memory and
pointers. Furthermore, there are reports of array access issues.

Clang-Tidy high-severity warnings relate to error-prone
usage of data types, such as implicit casts between integers and
floating-point data. It also reports certain data access patterns,
such as violating C++ move semantics.

For the medium-severity results, the tools reported a number
of style-, precision- and performance issues. Clang diagnostics
are reports from the compiler itself, mirroring gcc warnings.
The majority of such warnings relate to unused parameters
and uninitialised data in class objects, as well as potential
misuse of data. In the majority of cases, this is caused by test
framework- and utility functions, not test cases themselves.
Clang SA additionally detects some issues with malloc and
Unix-filestream (e.g., files not being closed).

The low-severity issues reported can be summarised to
target some performance issues. These were cases where some
sub-optimal function choices was made, or when unnecessary
operations were performed. Cppcheck produced many style



TABLE III
CLANG-TIDY WARNINGS. TO REDUCE THE LONG NAMES GIVEN TO TIDY

CHECKERS, WE USE THE FOLLOWING LEGEND. BP = BUGPRONE, CD =
CLANG DIAGNOSTIC (COMPILER WARNINGS), CPPCORE = CPPCORE

GUIDELINES.

Checker Severity All reports

BP-copy-constructor-init Medium 9
BP-implicit-widening-of-multiplication Medium 666
BP-incorrect-roundings High 16
BP-infinite-loop Medium 8
BP-integer-division Medium 82
BP-macro-parentheses Medium 748
BP-misplaced-widening-cast High 36
BP-move-forwarding-reference Medium 1
BP-multiple-statement-macro Medium 5
BP-narrowing-conversions Medium 2087
BP-not-null-terminated-result Medium 25
BP-parent-virtual-call Medium 5
BP-signed-char-misuse Medium 46
BP-sizeof-expression High 20
BP-string-constructor High 1
BP-string-literal-with-embedded-nul Medium 5
BP-suspicious-enum-usage High 18
BP-suspicious-memory-comparison Medium 10
BP-suspicious-missing-comma High 3
BP-suspicious-string-compare Medium 14
BP-too-small-loop-variable Medium 2
BP-unused-raii High 1
BP-unused-return-value Medium 3
BP-use-after-move High 112
cert-env33-c (std::system call) Medium 2
cert-err33-c (unused return value) Medium 1167
cert-flp30-c (float in loop) High 43
cert-msc51-cpp (predictable random) Medium 13
cert-oop54-cpp Medium 103
CD-bitwise-instead-of-logical Medium 1
CD-gnu-zero-variadic-macro-arguments Medium 3
CD-implicitly-unsigned-literal Medium 4
CD-main Medium 1
CD-misleading-indentation Medium 1
CD-missing-field-initializers Medium 49
CD-unused-parameter Medium 2060
CD-void-pointer-to-enum-cast Medium 20
CPP-c-copy-assignment-signature Medium 16
CPP-init-variables Medium 5334
google-build-explicit-make-pair Medium 21
google-build-namespaces Medium 26
google-explicit-constructor Medium 566
misc-definitions-in-headers Medium 1025
misc-new-delete-overloads Medium 1
misc-redundant-expression Medium 8
misc-throw-by-value-catch-by-reference High 24 (gen-cpp)
performance-move-const-arg Medium 74
performance-noexcept-move-constructor Medium 73

violations, mostly related to unused variables. In addition,
style guides such as google and SEI CERT are included in
the analysers triggered warnings.

Answer to RQ1: Based on our selected dataset
and tools, general-purpose static analysis tools
give a wide range of warnings on test code.
However, the vast majority are style- and
performance-related and are not classified as
urgent by the tools themselves.

TABLE IV
CLANG STATIC ANALYZER WARNINGS

Checker Severity All reports

alpha.nondeterminism.PointerSorting Medium 7
alpha.security.ArrayBound High 29
alpha.security.ArrayBoundV2 High 8
alpha.security.MallocOverflow High 12
alpha.security.MmapWriteExec Medium 1
alpha.security.ReturnPtrRange High 1
alpha.security.cert.env.InvalidPtr Medium 1
alpha.unix.SimpleStream Medium 16
alpha.unix.Stream Medium 38
alpha.unix.cstring.OutOfBounds High 4
core.CallAndMessage High 63
core.DivideZero High 2
core.NonNullParamChecker High 31
core.NullDereference High 1824
core.StackAddressEscape High 3
core.UndefinedBinaryOperatorResult High 19
core.uninitialized.UndefReturn High 1
cplusplus.Move High 59
cplusplus.NewDelete High 15
cplusplus.NewDeleteLeaks High 17
cplusplus.PureVirtualCall High 1
cplusplus.StringChecker High 2
optin.cplusplus.UninitializedObject Medium 6
optin.cplusplus.VirtualCall Medium 32
optin.portability.UnixAPI Medium 2
unix.Malloc Medium 59
valist.Uninitialized Medium 1

B. Severity of Issues

The tools gave a wide range of warnings on test code. We
discovered that quite a few warnings were false positives or
simply noisy. We address here the ones of higher severity or
occurrence.

1) Null Access: The majority of the core checker issues
reported are actually infeasible in reality. The main root cause
is the analyser not recognising assertions properly. Recall that
assertions will commonly terminate the test case with an error
message if an assertion is false.

Clang recognises custom assertions based on functions
being marked with the noreturn attribute. This is not
typically done in test assertions. Problems occur when test
assertions check that some pointer is not null. The result
is that the analyser will try exploring both conditions, one
of which the assumption is made that the pointer is null
immediately after the assertion. Mozilla additionally uses null
pointer dereference to crash the program intentionally. As we
ran the checks on release builds, this was triggered essentially
on every assertion. Based on the documentation, the intent
behind the crash is to trigger a bug report from end-users to
give developers more information.

2) Bugprone Checks: Clang-Tidy gave a range of ”bug-
prone” hits related to potential precision- or performance
issues. For instance incorrect rounding may result in incorrect
behaviour. However, after reviewing the warnings, many of
them turned out to be false positives.

The majority of use-after-move violations are done inten-
tionally in order to test move semantics. Such tests will check



TABLE V
CPPCHECK WARNINGS

Checker Severity All reports

accessForwarded Medium 1
accessMoved Medium 5
allocaCalled Unsp 27
assertWithSideEffect Medium 20
assignBoolToPointer High 1
constParameter Unsp 90
constStatement Medium 1
containerOutOfBounds High 1
cppcheckError Unsp 1
danglingTempReference High 3
danglingTemporaryLifetime High 1
duplInheritedMember Medium 19
funcArgOrderDifferent Medium 1
identicalInnerCondition Medium 2
ignoredReturnValue Medium 1
integerOverflow High 8
invalidFunctionArg High 2
invalidPrintfArgType sint Medium 114
invalidPrintfArgType uint Medium 74
literalWithCharPtrCompare Medium 6
localMutex Medium 4
memleak High 4
mismatchingContainerExpression Medium 5
mismatchingContainers High 1
missingReturn Unsp 37
negativeContainerIndex High 1
noCopyConstructor Medium 5
noOperatorEq Medium 5
nullPointer High 15
nullPointerArithmetic High 16
nullPointerRedundantCheck Medium 59
operatorEqVarError Medium 21
qrandCalled Unsp 3
qsrandCalled Unsp 1
resourceLeak High 1
returnDanglingLifetime High 2
returnReference High 1
returnStdMoveLocal Unsp 3
returnTempReference High 6
selfAssignment Medium 1
shiftTooManyBits High 1
shiftTooManyBitsSigned High 15
sizeofFunctionCall Medium 1
staticStringCompare Medium 16
syntaxError Unsp 26
uninitDerivedMemberVar Unsp 876
uninitMemberVar Medium 207
uninitMemberVarPrivate Medium 12
uninitStructMember High 4
uninitvar High 5
unknownMacro Unsp 17
unreachableCode Medium 1
uselessAssignmentPtrArg Medium 6

some state of an object before and after a move. The second
check will naturally result in a warning, as accessing a value
that has been moved results in undefined behaviour.

3) Miscellaneous Issues: In general, cases of unused pa-
rameter/function warnings are especially common in relation
to mocking. This typically meant that only a few methods were
actually implemented in practice. The rest would simply be
stubs, either doing nothing or returning some base value, such
as nullptr. In that case naturally the parameters are unused.
The common fix for this is to simply comment out the names

of the parameters in the argument list.
Clang SA found cases where files may be left opened. The

issue was that tests were reading and asserting the content
piece-by-piece. If an assert fails due to unexpected contents,
the test execution stops, keeping the file pointer open. By first
reading all of it into some temporary buffer, the file can be
closed before performing the assertions.

We also note that Clang-Tidy comes with a check that looks
for constant seeded random generators. In normal software
that is considered a potential security risk as malicious users
may use it for exploits. However, in testing deterministic
behaviour is to prefer as it might otherwise cause flakiness if
the randomness is dependent on e.g., time or random memory
contents.

Answer to RQ2: Our results suggest that
general-purpose static analysis tools can be
used to detect several high-severity issues.
Nevertheless, most of these issues are false
positives or happen due to intended behaviour.
To summarise, the lack of test-specific context
information is causing issues by creating false-
positive reports.

C. Potential Fixes

Most warnings reviewed during the work were determined
to be either noise or intended. Style- or Low-level severity
issues are clear candidates for suppression. However, core
checkers in Clang should not be turned off, and through
suppression, we run the risk of missing real issues. Instead,
we may rely on some test-specific assumptions to perform
automatic clustering or refutation of reports, as has been
suggested for usage of mitigating the manual effort [10].

The main culprit in Clang SA is the inability to identify
custom assertions. This detection is detailed in documentation
[35]. Extending the analysis core to allow users to provide
information, similar to how Cppcheck works, would be one
way. The analysis may then directly take advantage of the
information. The downside is that such additions would require
re-verification of the entire analyser in some contexts, and mal-
formed configurations could lead to unintended consequences.

Clang and similar tools give justifications for produced
warnings in the form of bug paths. Hence we may also post-
process results to detect these cases:

• Warnings raised inside an assertion, as they are likely to
be intended behaviour (e.g., testing error handling)

• Reports that continue on after a halting assertion has
been failed. This is a mismatch between analyser and
test behaviour.

Bug path nodes containing halting assertions may be iden-
tified based on e.g., user-provided configurations. Having that
allows detecting cases where error handling is being tested: In
the ideal case, the warning is raised in an assertion condition.
This reduces to checking if an assertion part of the final node
on the bug path. Warnings are by construction the final control
node of the bug path, but may be followed by notes. If not,



we may backtrack to check whether it is part of a ”death test”
that is used to test termination [39]

Detecting warnings where Clang has explored an infeasible
path is more straightforward given the context and data pro-
vided by bug paths. If it has continued on a faulty path, there
is a halting assertion where Clang has assumed the assertion
to be false. If a warning is raised at a later execution step that
is not part of the assertion’s evaluation, it is an indication that
the warning is based on faulty information.

Test fixtures (primarily setup/teardown) cause noise w.r.t.
uninitialised data. Recall that such cases occur as general-
purpose analysers are not aware of the inherent call order
between these test functions. A simple way to improve ac-
curacy for certain checks would be to connect the test method
with its optional setup and teardown. This may be done
inlining the setup and teardown function bodies into the test
cases. The benefit is that setup and teardown methods are
typically well-defined based on naming conventions within a
framework.

Answer to RQ3: Based on the root causes
of noisy reports related to test code design
we suggest a number of ideas for how to fix
these issues. By post-processing the generated
bug paths we may remove certain blatantly
erroneous issues, reducing the manual time
spent on reviewing such issues.

VII. DISCUSSION

Despite the numerous checkers offered by the tools, they
yielded somewhat lackluster results when applied specifically
to test code. There is some overlapping functionality between
Cppcheck and e.g., Clang-Tidy, related to move semantics.
Despite this, Cppcheck did better w.r.t. not reporting false
positives. Cppcheck comes packed with predefined knowledge
rules for at least Googletest and CppUnit, which are com-
mon frameworks encountered during the study. This makes
Cppcheck suitable for usage on test code out-of-the-box.

The tools are fairly straightforward to extend with custom
checkers, especially Cppcheck as this requires simply adding
a configuration file. This allows augmenting them with checks
targeting test issues, and reducing the false positives identified
within this dataset. This would, in turn, allow for easier
integration into existing workflows, compared to the effort of
adding (and approving) entirely new tools.

Furthermore, as refactoring test code is an arduous task,
the ability to suggest or even apply fixes automatically would
allow us to reduce the effort spent on this task. In fact,
several of the checkers triggered on tests came with concrete
suggestions for how to improve the code.

A. Threats to Validity

A threat to the generalisation of results is the filtering
process of projects under study and the set of tools used. We

based the initial set on a few ”popularity” metrics and then
due to filtering and issues during the build process, the final
set was reduced to 10 projects. While the results may not
generalise to all domains, the projects selected include some
well-known and mature applications.

There are threats to the reliability of the result obtained:
The configuration or bugs in the underlying tools used may
cause issues to be missed. In cases where this was determined
to be user error, we updated the configuration for analysis
and re-analysed the projects. Even for a reduced number of
projects, the number of warnings generated too many reports
to fully review manually. Instead of going through every
warning, observations were discussed and documented at a
high level within the author team. Potential issues may thus
have been missed. To mitigate this, details regarding examples
and mitigation approaches are provided online [40].

VIII. CONCLUSION

We investigated the usage of three state-of-the-art static
analysers: Clang-Tidy, Clang Static Analyzer, and Cppcheck.
The goal was to find out how well they behaved when applied
to test code. In total, we ran the tools on ten different open-
source projects. Based on the results we conclude that on test
code the warnings were mainly noisy reports. To some extent
this is natural due to lack of contextual knowledge on the tool’s
part; a lack of test behaviour modelling. Some issues derive
from testing goals: The nature of tests is to expose potential
issues in the code. Hence their implementation may violate
established design rules to put the system in the necessary
state. To augment the functionality of analysers on test code,
we suggest some ideas to improve the developer’s control of
e.g. the sensitivity of checkers.

A. Future Work

We plan to expand the exploration with more tools and
projects. Based on some encountered issues during the ex-
perimentation related to invalid configurations we propose
investigating of how SPA analysis configurations could be
inferred automatically (or at least warn practitioners of com-
patibility issues). For the tools evaluated, support for test code
is still limited mainly to googletest framework. Extending it
with some framework-agnostic modelling of testing semantics
would be a follow-up. The tools studied offer support to
implement a number of test smell detection identified in the
work by Aljedaani et al. [5].

Clang specifically already provides a framework for auto-
mated refactoring suggesting, which would benefit users in
large-scale systems. Cppcheck has numerous checks that could
have fixes applied automatically, but to our knowledge, this
feature is not available in the tool itself. Furthermore, the tool
uses some annotations as part of its knowledge database. To
our knowledge, these are partially created manually, which
hampers its usage on new projects. It may thus be beneficial
to investigate how this process can be automated.
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