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Abstract—The use of wireless devices in industrial sectors
has increased due to its various advantages related to cost and
flexibility. However, legitimate wireless communication systems
are vulnerable to cybersecurity attacks, due to its inherent open
nature. Detection of rogue devices therefore plays a crucial role
in critical wireless applications.

In this paper we design a deep convolutional neural network
(DCNN) to classify legitimate and rogue devices using raw IQ
samples as input data. An algorithm is presented to find the
optimal number of convolutional layers and number of filters
for each layer under an accuracy constraint, in order to enable
fast prediction time. Furthermore, we investigate how wireless
channel models affect the accuracy and prediction time of the
designed DCNN model. Our obtained results are benchmarked
against previous DCNN models. Moreover, we discuss how the
systems should react to a detected rogue device, considering the
IEC 62443 standard.

Index Terms—deep learning, rogue device detection, finger-
printing, IEC 62443

I. INTRODUCTION

Wireless network connectivity is becoming an increasingly
important part of industrial systems. With the technological
evolution related to Industry 4.0 and the Industrial Internet
of Things (IIoT), the equipment used for industrial scenarios
are increasingly heterogeneous, and includes, e.g., wireless
sensors. Therefore, industrial standards for wireless com-
munication are being developed and implemented [1], e.g.,
WirelessHART [2], ZigBee [3] and WIA-PA [4].

Sensors in industrial systems are used to indicate different
aspects of the state of a physical environment to the overlaying
systems, in order to supervise and control the process. The
integrity and authenticity of the signal values received from
sensors are therefore of great importance - as malformed,
malicious or misleading data may lead to incorrect decisions
on control readings. Several techniques exist for establishing
trust and authenticity for sensory devices, usually embedded
as part of the signal payload - symmetric signatures, secure
encrypted data-streams based on shared secrets, etc. These
techniques may however not be applicable for all applications,
e.g., in the case of low-resource devices unable to perform
advanced cryptographic operations. Systems containing such
devices are vulnerable to spoofing attacks [5], jamming at-
tacks [6], eavesdropping attacks [7], etc., where rogue devices
emits network data with the intent of fooling the system that
it originated from a legitimate sensor. Timely and effective
detection of rogue devices’ therefore plays an important role
for the security of wireless communication systems.

There exist a wide range of solutions for anomaly device
detection, however, this paper only focuses on methods us-
ing machine learning techniques [8]–[10]. In the literature,
machine learning techniques are adopted for the detection
and identification of devices using collected traffic traces and
wireless signals [8]. Based on the unique received signature,
e.g. the in-phase (I) and quadrature phase (Q) features at the
physical layer, different deep learning models are proposed
to detect whether the given transmitter is a legitimate device
or not [11], [12]. However, hyperparameter searching is still
an open problem for the machine learning models [8], [13].
Optimal hyperparamters can be found under different con-
straints such as maximum accuracy. Fast detection of rogue
devices is important to minimize their interference and ensure
safe operations of the legitimate system. For fast prediction
time, graphics processing unit (GPU) are often used, but most
industrial platforms are not equipped with GPUs, instead they
may include good central processing units (CPUs) [14]. The
complexity of the machine learning model can significantly
affect the prediction time using CPU, which is a problem
not investigated by previous papers. Aiming at fast rogue
device detection, the following research questions (RQs) are
formulated:

• RQ1: How to find optimal hyperparameters for a designed
deep convolutional neural network (DCNN) model under
a constraint of accuracy threshold?

• RQ2: How do wireless channel models affect the accu-
racy and prediction time of the designed DCNN model?

To address RQ1, we find the accuracy threshold for the
designed DCNN first without optimal hyperparameters in
terms of number of convolutional layers and their number of
filters. Secondly, we propose an algorithm finding the optimal
parameters. The designed DCNN model is evaluated based on
an empirical dataset. In [12], the DCNN model in can obtain
100% accuracy with a few training epochs, while a more
complex DCNN model in [11] can not reach 100% accuracy.
Therefore, to tackle RQ2, we consider different ideal wireless
channel models such as Rayleigh, Rician-k, and an empirical
indoor environment Model B [15]. We benchmark the obtained
results against previous papers, e.g. [11], [12].

Furthermore, different strategies for handling a detected
rogue device on systems level is discussed and contrasted
considering IEC 62443 [16], [17], a commonly used standard
for cybersecurity in industrial automation and control systems.



The remainder of this paper is organized as follows. In sec-
tion II an illustrative set of industrial use cases are presented.
In section III the system model and method for signature
measurement is introduced, and section IV describes the neural
network design used for fingerprinting, and the performance
evaluation. The numerical results of the evaluation are pre-
sented and discussed in Section V. In Section VI impact and
strategies for handling rogue device detection on a system level
is discussed. Section VII concludes the paper and outlines
future plans.

II. USE CASES

There are several scenarios in which wireless sensors are
being used in industrial systems. In this section a few of these
use cases are described, including the potential system impact
of a rogue device transmitting.

In manufacturing and process industries, the use of wireless
sensors are commonly not as part of closed automatic control
loops, the use is rather for collecting quality and health data
for production equipment and produced materials. There are
however scenarios in which wireless sensors are more practical
and secure than wired. In such scenarios the placement of the
sensors are on mechanical parts of machine that moves in a
way that makes wiring unfeasible or impossible.

The described use-cases indicate the increasing adaption of
wireless technologies within industrial settings and underlines
the need of detecting rogue wireless devices due to the
potentially adverse impact on Health, Safety and Environment
(HSE) of a successful attack.

A. Wireless sensors in a paper mill
Ahln et al. [18] writes about transitioning toward wireless

connections between I/O and controllers, using a section of a
paper mill as an example. The authors show that for a starch
cooker, which is an important part of a paper mill, the control
performance is acceptable for that specific process.

In case of a successful attack against sensors or actuators in
this example, can clearly lead to HSE incidents, with overflow-
ing tanks, dry cooking, with a potential worst case outcome
inflicting damage on plant personnel or the environment.

Another example from a paper mill where wireless sensors
may be preferred, is when measuring different aspects of the
produced paper. To measures color, fiber orientation, gloss, etc.
a frame is mounted over the paper-trail in which a measure-
ment cage is mounted. The cage, containing a set of wireless
sensors, moves back and fourth over the produced paper
sheet, see Fig. 1. The measurements are used to continuously
control the paper quality, for detecting defects and potentially
changing production parameters accordingly.

An attack on any of these sensors could lead to impaired
quality of the produced product, in case of attacks leading to
lost readings which would otherwise have led to corrective
actions, or conversely, costly corrective actions or even stop-
ping of the plant could be the cause of injected data indicating
process parameters out of range. Even though none of these
consequences have implication on HSE, they can have serious
economic consequences for the plant owner.

Fig. 1. Sensor mounting for paper mill use case. Image source: ABB

B. Waste-water handling - water quality measurements

Waste-water handling systems are typically divided into five
main steps for decontamination [19] - pretreatment in the
form of mechanical methods e.g., sedimentation, primary treat-
ment using chemical methods such as coagulation, secondary
treatment in the form of bio-degradation or filtration, tertiary
treatment in the form of chemical methods such as oxidation
and finally sludge treatment, which may be in the form of
supervised tipping or incineration.

Within waste-water handling, there processes are typically
quite slow and iterative, and therefore no fast control loops
are generally needed for supervision of water quality. The
systems are also geographically spread out over big areas.
These two characteristics makes wireless sensors a suitable
for this system type, such as e.g., described in [20].

The impact of a successful attack on a waste-water handling
which ultimately produces clean drinking water, can have a
severe effect on the society level, with far reaching HSE
consequences, as illustrated by the Maroochy water service
incident [21] in which over a million liters of untreated sewage
was released into local waterways.

III. SYSTEM MODEL AND SIGNATURE MEASUREMENT

We consider a system consisting of n source nodes
Si (1 ≤ i ≤ n) communicating with an access point (AP) in
uplink as shown in Fig. 2. We assume that all source nodes and
AP work in half-duplex mode with a single antenna using Time
Division Multiple Access (TDMA) to avoid collisions among
legitimate transmissions. These assumptions are reasonable
in industrial settings. However, there exist a malicious actor
who tries to attack the legitimate communication system for
gaining different purposes, e.g. access to the system. While all
legitimate nodes are protected inside the border by fences or
walls, the attacker is only allowed to appear outside the border.
Hence the legitimate nodes operating close to the border may
be attacked by the attacker. It is more difficult for the attacker
to reach the nodes located far away from the border, but it can
potentially attack the whole system once any of the nodes close
to the border is compromised. In contrast to the legitimate
nodes, the attacker is modeled to be computationally powerful,
communicate using full-duplex mode, and highly motivated to
reach its objectives. The attacker works by means of signal
jamming, spoofing or eavesdropping.
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Among the different available techniques for protection
of the wireless communication system the detection of an
anomaly node in run-time plays a crucial role to guarantee
smooth operation of the system. This means that the legiti-
mate system must deal with an anomaly node detection with
different strategies during run-time.

To evaluate the system performance for the proposed
DCNN, the IQ samples are extracted at the receiver based
on the IEEE 802.11n standard, Fig. 3. This standard is used
because it can provide higher throughput compared to the low
energy and low throughput wireless communication standards
based on IEEE 802.15 [22], [23]. At the transmitter side, a
Medium Access Control (MAC) address is generated before
creating a waveform for the given beacon frame bits. Then,
the signal is transmitted via different types of wireless chan-
nel models such as Rician-k, Rayleigh, indoor environment
channel model, etc. In practice, due to the imperfection of the
hardware, IQ imbalance, phase noise, nonlinear distortion, and
noise floor, we must add RF impairments and white Gaussian
noise at the receiver side. This is also why the IQ samples
as RF fingerprinting are unique for each pair of transmitter-
receiver [11]. After that, packet detection and preamble signal
extraction are conducted before separating I and Q parts. This
is because the designed DCNN only accept real numbers
as input data All aforementioned steps are implemented by
using the MATLAB, WLAN Toolbox, and Communications
Toolbox [24].

IV. DEEP CONVOLUTIONAL NEURAL NETWORK DESIGN

The raw time-series IQ samples are used as input to a
neural network, a DCNN is thus adopted [13]. A DCNN can
be used for many applications such as image classification,
object detection, etc. In the literature, there are several typical
DCNN configurations such as Alexnet [25], VGG-16 [26],
ResNet-50 [27], and Efficient-B0 [28]. In line with these
approaches, the DCNN as shown in Fig. 4 is proposed.
Particularly, the proposed DCNN includes L convolutional
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Fig. 4. Deep convolutional neural network architecture.

blocks, K fully connected layers blocks, dropout, last fully
connected layer, and softmax layer. Each convolutional block
is based on convolutional layer (Conv), batch normalization
layer (BatchNorm), leaky rectified linear unit (LReLU), and
pooling layer (Pool), while each fully connected layers block
consists of fully connected layer (FC), LReLU, and dropout.

Extracting features from the raw input data is conducted
by a Conv with a kernel, high level features can be obtained
by multiple Convs. The size of features after each Conv is
decreased and then redundant information is removed by a
Pool to reduce the computational load. Moreover, BatchNorm
and LReLU layers are adopted to speed up the training
process, while dropout layer is deployed to cope with the
overfitting problem. In addition, K blocks of fully connected
layers also contribute to the extraction of higher level non-
linear combinations of the features attained from the previous
blocks.

To generate a dataset for the designed DCNN, we consider
multiple pairs between the AP and wireless devices including
possible attackers using different types of wireless channel
models as described in section III. Then, the obtained dataset
is divided into three parts consisting of 80% training set, 10%
validation set, and 10% test set. Both training and validation
sets are adopted during training phase, while test set is
employed for performance evaluation phase. The performance
metric used for evaluating the designed DCNN is its’ accuracy.

By experimentation, we realized that K blocks of fully con-
nected layers do not contribute significantly to the achievable
accuracy of the designed DCNN. Moreover, an increase of
complexity of the DCNN in terms of number of convolutional
blocks L and fully connected layers blocks K lead to a
significant growth of execution time for prediction.

To optimize the performance of neural networks, a number
of methods have proposed in the literature such as manual hy-
perparameter tuning, automatic hyperparameter optimization,
grid search, and so on [13]. Algorithm 1 propose a method
to find the optimal number of filters for each Conv of K
convolutional blocks under a constraint of accuracy threshold.
An increase of number L convolutional blocks as well as
number of filters for each Conv layer can improve the accuracy
performance. However, a more complex DCNN model has to
deal with the overfitting problem, while the obtained accuracy
does not improve significantly with complexity. The number
of Conv layers as well as number of filters for each Conv layer
and other parameters are found, first using a manual method



to define the accuracy threshold before running the proposed
algorithm to find the optimal DCNN model. While lines 6-18
are responsible for finding number of filters for each Conv
layer with a specific number of Conv layers l, the loop at line
5 is to find the optimal number of Conv layers. The proposed
algorithm is not optimized for speed, but for reaching the best
parameters, as it is executed offline.

Algorithm 1 Finding optimal number of convolutional blocks
L and number of the filters for each Conv layer. Algorithm in
pseudo-code.

1: Input: Maximum number of filters for each Conv layer
Q, accuracy threshold A0

2: Output: L, number of filters for each Conv layer (Nl)
3: function main
4: Init maximum number of convolutional blocks L0;
5: for l = 1 : L0 do
6: for j1 = 1 : Q do
7: N1 = j1;
8: for j2 = 1 : Q do
9: N2 = j2;

10: for jl = 1 : Q do
11: Nl = jl;
12: Evaluate the accuracy of the DCNN

model, obtained accuracy A.
13: if A ≥ A0 then
14: L = l; Return L, Nl;
15: end if
16: end for
17: end for
18: end for
19: end for
20: end function

V. RESULTS AND DISCUSSIONS

The dataset is generated for 8 legitimate wireless devices
and 10 unknown wireless devices with signal-to-noise ratio
(SNR) = 20 dB using Rayleigh, Rician k = 2.8, and indoor
environment Model B [15]. Each pair generates 5000 IQ
samples [29]. All simulations, including the evaluation of
the proposed algorithm, have been carried out on a 64-bit
Windows 10 Pro machine with Intel Core I7-10700KF CPU
@ 3.8 GHz, 16 GB memory and GPU NVIDIA GeForce RTX
3080 using the Deep Learning Toolbox [24]. l2 regularization
0.0001, learning rate 0.0001, mini batch size 256, and Adam
optimizer are configured.

First, we consider the proposed DCNN in [11] with L =
2 including 50 filters for each convolutional layer with size
of [7 1] and [7 2], respectively, and stride of [1 1]; Max
pooling with pool size [2 1] and stride [2 1]; K = 2 fully
connected layers blocks with 256 and 80 neurons, respectively;
dropout layer with dropout probability 0.5; nine neurons for
classification layer. The accuracy during the training phase for
different wireless channel models is shown in Fig. 5.

 

Fig. 5. Training progress for different wireless channels.
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Fig. 6. Prediction time for different wireless channels.

It can be seen from the figure that the accuracy can reach
100% during a small number of iterations for both Rayleigh
and Rician channel models as presented in [12], while it takes
a much larger number of iterations to obtain 99.6% for the
indoor environment Model B. This is due to ideal conditions
of both Rayleigh and Rician channel models, while the indoor
environment Model B is generated based on experiment data
[15].

In Fig. 6, the prediction time following number of wireless
devices is described when the prediction phase is executed on
both CPU and GPU. It can be seen from the figure that the
prediction time on GPU is very small, around 4.3 ms for both
indoor Model B and Rician channel models and 2.8 ms for
the Rayleigh channel model, and these values do not change
much for different number of wireless devices. However, the
prediction time for the Rayleigh channel model running on
CPU increases significantly and higher than both indoor Model
B and Rician channel model. Here, the prediction time for
the indoor environment Model B is the smallest when the
prediction phase runs on CPU.

Based on parameters for the DCNN model in [11], the
optimal parameters are found using Algorithm.1, with an
equivalent accuracy to the DCNN model in [11], [12], 99.61%.
Resulting in 22 filters for the first Conv layer and 48 filters
for the second Conv layer instead of 50 filters for each Conv
layer in [11]. Fig. 7 illustrates the accuracy of training phase
for different DCNN models.



Fig. 7. Training progress for different DCNN models.

Fig. 8. Prediction time for different sets of hyperparameters of the DCNN.

We can see that both models in [11], [12] can reach the
stable accuracy value sooner than others including the model
with optimal parameters and the model in [11] with K =
0. However, after a large number of iterations, all models
can obtain the same accuracy level. As stated previously, the
training phase is implemented offline. Therefore, the optimal
DCNN model is much less complex than others, leading to a
reduction of prediction time. In Fig. 8, we can see how the
prediction time changes versus number of wireless devices.
Here, it is clear that the optimal DCNN model can offer
a smaller prediction time compared to other DCNN models
when executing on CPU.

VI. SYSTEM REACTION

In previous sections, we describe a method which with
high accuracy can identify wireless traffic from rogue devices
using fingerprinting. Assuming such traffic is detected, the
system must react in a meaningful way. The method for
detection is by its nature distributed to each access point, but
an effective response may require system-level coordination.
The realization that a rogue device is sending traffic in the
network may be an indication of an on-going attack and
there could be good reason to increase the overall security
posture of the system. It is noted that a classification of rogue
devices is necessary to propose the most effective solution
for each case [30]. This is out of scope of this paper. The
legitimate communication systems can still deploy a wide

range of solutions dealing with specific anomaly device such
as resources allocation [31], [32], friendly jammer [33], etc.
However, several cases, e.g., a jammer covering the full legit-
imate communication frequency band with very high transmit
power, the aforementioned solutions can not work, and a
system reaction is therefore needed.

Following are examples of strategies which could be applied
on detection of rogue communication:

• Deny or close the connection for anomalous device,
which in principle is equal to using fingerprinting for
authentication. No system-wide response.

• Raising an alarm, e.g., to local system administrators
or operators. This is required by the IEC 62443 stan-
dard [16] for security level 3 or higher1.

• Raising an alarm after a threshold is reached, e.g., to
a Security Information and Event Management (SIEM)
system [34].

• Changing state of system, may include:
– Revocation / closure of open sessions, requires clients

to re-open session with fresh access tokens [35].
– Graceful degradation - i.e. increase / enable security

checks and similar which are normally disabled.
– Switching to island mode, i.e., prevent communication

through control system boundary2.
• Any combination of above strategies.
As can be seen, several different strategies can be applied. It

is important that the response is proportionate to the potential
attack, otherwise the system reaction can be the actual goal of
the attacker, as a means to force the system into a degraded
state, or cause economic harm.

VII. CONCLUSIONS

In this paper, typical use cases are analyzed to highlight the
rogue device detection problem. A method for rogue device
detection using raw IQ signal data is presented, using DCNN.
An algorithm is proposed for finding optimal number of
convolutional layers and their number of filters is provided for
the designed DCNN under a constraint of accuracy threshold
to decrease the prediction time. The performed simulations
indicates that the selected parameters significantly affect the
prediction time when using a standard CPU, as compared to a
GPU. Moreover, the effects of wireless channel models on the
accuracy and prediction time of the designed DCNN model
are investigated. Finally, we discuss system-wide reactions of
the legitimate system when rogue devices are detected, using
the the IEC 62443 standard.

As future work, we envision implementing and evaluating
the rogue device detection algorithm in a realistic system,
along with system-wide reactions, to investigate its feasibility.
Evaluations of different heuristics to decrease the training time
is another possible avenue of future work.

1IEC 62443-3-3 System Requirement 2.2, Requirement enhancement 1 -
Identify and report unauthorized wireless devices.

2IEC 62443-3-3 System Requirement 5.2, Requirement enhancement 2 -
Island Mode
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