Submitted 31 January 2022
Accepted 22 September 2022
Published 28 October 2022

Corresponding authors
Jonathan Thorn,
jonathan.thorn@westermo.com
Wasif Afzal, wasif.afzal@mdh.se

Academic editor
Stefan Wagner

Additional Information and
Declarations can be found on
page 32

DOI 10.7717/peerj-cs.1131

© Copyright
2022 Thorn et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Quality assuring the quality assurance
tool: applying safety-critical concepts to
test framework development

Jonathan Thorn', Per Erik Strandberg'”, Daniel Sundmark” and Wasif Afzal’

"'Westermo Network Technologies AB, Visterds, Sweden
?Milardalen University, Visterds, Sweden

ABSTRACT

The quality of embedded systems is demonstrated by the performed tests. The quality
of such tests is often dependent on the quality of one or more testing tools, especially in
automated testing. Test automation is also central to the success of agile development. It
is thus critical to ensure the quality of testing tools. This work explores how industries
with agile processes can learn from safety-critical system development with regards
to the quality assurance of the test framework development. Safety-critical systems
typically need adherence to safety standards that often suggests substantial upfront
documentation, plans and a long-term perspective on several development aspects. In
contrast, agile approaches focus on quick adaptation, evolving software and incremental
deliveries. This article identifies several approaches of quality assurance of software
development tools in functional safety development and agile development. The
extracted approaches are further analyzed and processed into candidate solutions,
i.e., principles and practices for the test framework quality assurance applicable in an
industrial context. An industrial focus group with experienced practitioners further
validated the candidate solutions through moderated group discussions. The two main
contributions from this study are: (i) 48 approaches and 25 derived candidate solutions
for test framework quality assurance in four categories (development, analysis, run-time
measures, and validation and verification) with related insights, e.g., a test framework
should be perceived as a tool-chain and not a single tool, (ii) the perceived value of the
candidate solutions in industry as collected from the focus group.

Subjects Real-Time and Embedded Systems, Software Engineering

Keywords Quality assurance, Test automation, Agile processes, Safety-critical development, Case
study, Hybrid processes

INTRODUCTION

The quality of embedded systems, both the software solution and the hardware platform,
is often demonstrated by the results of performed tests and assured by the quality of the
solution used to perform them. Frameworks for software testing' can also be considered
mission-critical, since development decisions rely on the correctness of and confidence
in the produced results. Poor test framework quality may lead to the introduction of, or
failure to detect errors, as well as unreliable test results that reduces feedback quality, which
in turn impedes the development process (Asplund, 2014; Shahin, Babar & Zhu, 2017).

How to cite this article Thérn J, Strandberg PE, Sundmark D, Afzal W. 2022. Quality assuring the quality assurance tool: applying safety-
critical concepts to test framework development. Peer] Comput. Sci. 8:e1131 http://doi.org/10.7717/peerj-cs.1131

https://peerj.com/computer-science
mailto:jonathan.thorn@westermo.com
mailto:wasif.afzal@mdh.se
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1131
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

! A test framework is in this case a software
development tool for automated software
testing. This contains testware with
software, documentation, test cases, test
data and test environments, which may
include physical test-systems that run
the software under test (ISTQB, 2016;
Strandberg, 2021).

2The concept of functional safety relates
to absence of unacceptable risks and
protection against human errors, hardware
failures and environmental factors. It
involves the identification of possible
failures and assigning a tolerance to
those (Smith & Simpson, 2004).

Agile and plan-driven development approaches have historically been seen as each other’s
counterparts. Plan-driven approaches are focused on discipline in long term prospects and
agile approaches on improvising and using history to adapt to new environments and
opportunities. Agile approaches are based on a model where software is evolved and
continuously delivered through short iterative cycles. Therefore, the extensive upfront
plans, designs and documentation related to plan-driven development are not considered
as valuable (Boehm & Turner, 2004; Nerur ¢ Balijepally, 2007).

Similarly, standards for functional safety’ often rely on a plan-driven process with
predefined phases, although not necessarily required to be performed in a strictly sequential
manner. The production of substantial amounts of documentation and artifacts is used as
evidence to argue that the system is acceptably safe. In previous work on combinations of
agile and plan-driven methods, the perspective of utilizing agile practices into an already
existing plan-driven development process seems to dominate; we have been unable to
find previous work on the inverted scenario (see references in ‘Positioning Our Work
with Respect to Related Work’). This article targets parts of that gap with respect to
quality assurance of software development tools in general, and test framework tools in
particular. Under the assumption that adherence to safety standards results in increased
dependability, and thus increased confidence in the developed product, lessons learned in
the safety-critical domain will be valuable for increasing the quality of development tools
in an agile context. In particular, this has value in industrial contexts not compelled by
compliance to any safety standard entailing Safety Integrity Level (SIL) classification of
products or the tools used to assure them. But instead, utilizing recommendations present
in standards or approaches in a practical way to assure test frameworks can be trusted as a
guarantee of product quality.

In this article, we explore ways for non-safety related development with agile processes
to be inspired by safety-related development to develop reliable frameworks for software
testing. Thus, the research assumes that strategies for increased confidence and quality
in tools used for automated software testing in non-safety development may be found
or created from concepts and strategies related to safety-critical development, while
maintaining agile and efficient processes.

This case study started with a literature study to identify how quality assurance of
software development tools is performed with regards to functional safety development, as
well as applied methodologies in agile or hybrid development philosophies. The extracted
approaches and additional knowledge gained were then further processed and analysed
into a compiled set of candidate solutions—principles or practices for increased quality of
and confidence in an automated software test framework. The candidates were iteratively
validated and refined both to suit the industrial context of an intended application and to
increase general applicability.

The key findings are: (i) 48 approaches for quality assurance identified from previous
work and standards—e.g. to re-develop from scratch while following standards ‘Approaches
for Increased Tool Confidence’. The approaches were derived into 22 candidate solutions
for test framework quality assurance in the categories of development, analysis, run-time
measures, and verification and validation—e.g., to apply measures to avoid development

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 2137

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

faults introduced by misconceptions (Table 1). (ii) Industrial value of the approaches as
perceived by a focus group which also identified an additional three candidate solutions
‘Summary of Approaches from Previous Work’.

BACKGROUND

Plan-driven development is based in a well-defined, formal, and specific process to achieve
a predictable result; great emphasis is placed on layers of traceable requirements, risk
management, verification and validation (Hanssen, Stilhane & Myklebust, 2018a). Even
before any construction has begun, the properties of the final product are known and
can be precisely defined. A number of roles are typically defined and independence
between these is often required as a factor of control (Linz, 2014; Hirsch, 2005). Standards
for functional safety ‘Industry Standards for Functional Safety’ often assume the use of
documentation-heavy plan-driven processes, where the development is often performed
as a sequential process through predefined phases (Jonsson, Larsson ¢ Punnekkat, 2012).
Standards for functional safety, (e.g., [EC 61508:2010, 2010, ISO 26262:2018, 2018, EN
50128:2011, 2011), often describe the development life cycle as a sequential flow influenced
by the V-model (Asplund, 2014), illustrated in Fig. 1.

In contrast to plan-driven development, agile development does not rely on high degrees
of documentation or rigid processes. Instead, agile approaches are based on a model
where software is evolved and continuously delivered through short iterative cycles with
continuous feedback (Linz, 2014). An important aspect of agile is to embrace and respond
to changes. Therefore, extensive upfront plans and designs are not considered as valuable.
Working software that adds value is prioritized over comprehensive documentation.
Important aspects of agile approaches are continuous improvements and code integration,
resulting in continuous delivery. Rituals like daily stand-up meetings, demonstrations
and reflections provide progress tracking, feedback and process improvements (Nerur
¢ Balijepally, 2007; Dingsoyr et al., 2012). Two popular implementations are Scrum and
Kanban (Fowler ¢ Highsmith, 2001). Both use phases which items from the product backlog
traverse through, before being packaged for release, e.g., build, test, and done. Both use
an agile board to track progress as illustrated in Fig. 2. However, the methodologies differ
in the events occurring between the product backlog and the customer (Linz, 2014; Saleh,
Rahman & Asgor, 2017; Matharu et al., 2015).

Industry standards for functional safety

Among the standards for functional safety, the transportation domain is often considered
important with respect to tools used during development (Asplund, 2014; Asplund, 2015;
Asplund, El-khoury & Torngren, 2012; Conrad, Munier & Rauch, 2010; Ekman et al., 2014;
Krauss, Rejzek ¢ Hilbes, 2015; Notander, Host ¢ Runeson, 2013). IEC 61508:2010 (2010) is
a generic industrial standard covering the lifecycle activities for systems in this domain.
The standard also serves as a template for other standards. ISO 26262:2018 (2018) is the
domain-specific adaption of IEC 61508 for the automotive domain (this, and many other
standards, exist in several editions, and much literature instead investigate older version(s)
such as ISO 26262:2011, 2011). EN 50128:2011 (2011) is the domain-specific adaption of

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 3/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

Table 1

Candidate solutions for quality assurance of a quality assurance tool (22 from the literature study, and three from the focus group).

The third column links back to main text and the approaches described in Section 3.3. The two rightmost columns describes qualitative and quan-
titative appraisal from the focus group, explained in Section 4.8.2 —Qual. indicates good idea :-)’, bad idea :-(’ or indifferent opinion - |’, whereas

Quan. shows percentage of effort the focus group would like to invest in the approaches.

1d Candidate Based on Ap. # Qual. Quan.

D Main aspect: Development

D.1 Apply measures to avoid development faults introduced by 9,22,24 & 42 :-) 13%
misconceptions

D.2 Apply restrictions on tool usage 29 & 42 - | -

D.3 Apply measures to avoid potential errors introduced by 22,28 & 34 :-) -
users

D4 Develop the test framework based on requirements 12, 14, 21,23 & 40 -(-

D.5 Apply measures of rigour to the development process 20 & 25 - -

D.6 Re-develop the entire test framework with a suitable safety 3,11,18 & 48 =(-
standard

A Main aspect: Analysis

A.l Perform formal risk and impact analysis 1,5,9,24,27,29 & 33 :-) 10%

A2 Analyze the tools using a tool error checklist 9 - | -

A3 Perform analysis with regards to abnormal operating 16, 26,27 & 45 :-) -
conditions

A4 Analyze using well defined peer-reviews during 15,17 & 42) 18%
development

A5 Analyze the tools with static analysis 15 & 42 -) 5%

A.6 Perform sufficient root-cause analysis on detected errors -) -

R Main aspect: Run-time measures

R.1 Develop automated sanity checks of important tool actions 6,29 & 41 - 5%

R.2 Implement checks of output from a preceding tool in the 6,10 & 41 - -
tool-chain

R.3 Develop a monitoring system for error detection and 7,8,19 & 41 -) 15%
prevention

R.4 Develop protection against identified abnormal operating 16, 22, 26 & 45 -) 5%
conditions

R.5 Implement redundancy in tools and tool-chain 29,36 & 41 - | -

R.6 Halt execution on detection of errors or erroneous - -) -
conditions

\4 Main aspect: Verification & Validation

V.1 Utilize a suitable safety standard to validate the tool and 3,31,37 &47 =(-
related processes

V.2 Formally prove that tool outputs conforms to specification 4 :-) -

V.3 Base tool confidence on history of successful use 30, 35, & 46 - -

V.4 Use a customized tool validation test suite for critical use 44 :-) -
cases

V.5 Perform tests based on fault injection 2&43 :-) 10%

V.6 Perform unit tests on modules and tools in tool-chain(s) 15 :-) 19%

V.7 Implement requirement-based testing — :-) —

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 4/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

System Validation ystem
Subsystem < Verification
69111-’6 Item =< erification e
2
elltsa \ /
K Dev.

Oes,é

27

Implementation

Figure 1 The V-model software development process.
Full-size Gal DOI: 10.7717/peerjcs.1131/fig-1

Product
Backlog

Dev. Test Done

oo TloegTooo
0 N o | 0o0

Figure 2 Illustration of an agile board.
Full-size & DOI: 10.7717/peerjcs.1131/fig-2

IEC 61508 for railway control and protection applications. Derived from this standard is
EN 50657:2017 (2017), which is an adaption of EN 50128 for application in the rolling
stock domain. EN 50657 was partially created to ease work with non-safety related software
after the changed definition of SIL 0 made in EN 50128:2011 compared to EN 50128:2001.
The former definition of SIL 0 “no safety impact” was changed to “lowest level of safety
impact,” rendering some confusion on how to handle products with no safety impact.
EN 50657 therefore replaces SIL 0 with Basic Integrity (BI) for software that is not safety
related (Nordstrom, 2017). Although more previous work has been done on EN 50128
when compared to EN 50657, we focus on EN 50657 due to its importance for the industry
partner.

RTCA/DO-178C is a set of recommendations for compliance with regulations of civil
aviation authorities, such as the Federal Aviation Administration (FAA) and the European
Aviation Safety Agency (EASA). These guidelines are not derived from IEC 61508. The C-
version was released in 2011 as the successor of DO-178B and simultaneously introduced
DO-330 “Software Tool Qualification Considerations,” which provides guidance on
tool qualification. DO-330 is very similar to DO-178C but adapted with objectives and
requirements suitable to software tools (Rierson, 2017).

Thérn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 5/37

https://peerj.com
https://doi.org/10.7717/peerjcs.1131/fig-1
https://doi.org/10.7717/peerjcs.1131/fig-2
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

The safety standards use Safety Integrity Levelss (SILs) as a scale to classify risk and
criticality, and the required assurance against failure. The position on the scale determines
the integrity required to prevent failures and the mitigation measures required. The scales
and contents of the levels are different between standards, but used in a similar way. IEC
61508 defines, from low to high level, SIL 1 to 4, and ISO 26262 similarly uses ASIL A to
D (Ekman et al., 2014). EN 50128 defines SIL 0 to 4, a scale also used by EN 50657 but
with SIL 0 replaced by BI (Nordstrom, 2017; EN 50657:2017, 2017). Finally, DO-178C uses
Development Assurance Levels (DALs) E to A, a scale also used by DO-330 (Rierson, 2017).

According to Asplund (2014) and Notander, Host & Runeson (2013), safety standards
can be divided into two main groups based on their view on how trust in a tool shall be
ensured. The first group focuses on means, where trust is established by generic measures
such as thorough specifications and assessments during development of the tool, suggested
or enforced by the standard. IEC 61508 and standards derived from it belong to this group.
The second group focuses on objectives to be fulfilled, where trust in a tool is ensured by
the applied constraints on its development process. DO-178 and DO-330 belong to this
group but provides limited practical guidance on how that is to be achieved (Notander,
Host ¢~ Runeson, 2013).

Tool qualification
Tools may eliminate, reduce or automate processes in development of embedded systems.
Malfunctions in the tool may lead to introduction of errors, or failure to detect errors, in the
system. Therefore, tool qualifications or certifications are used to increase confidence in the
tools. Qualification is sometimes required by standards. A tool certification can be defined
as a complete set of activities to assert that an end product possesses a set of predefined
characteristics, whereas tool qualification is a subset of these activities, ensuring that the
confidence in the tool is at least equal to the confidence in the activities it eliminates,
reduces or automates (Asplund, 2014). Tools are categorized according to the SIL of the
tool or (sub-) system. The method of classification and different categories varies between
the standards. IEC 61508, EN 50128, and EN 50657 all divide tools into either being on-line
or off-line tools. On-line tools have a direct influence on the system during run-time and
off-line tools do not. Tools categorised as off-line are then further divided into the three
classes T1, T2, and T3, based on their potential impact on the system (e.g. a text editor is
T1 because its output does not directly impact running code, but compilers are T3 because
they do).

ISO 26262 instead classify according to Tool Confidence Level (TCL), based on
determined Tool Impact (TI) and Tool error Detection (TD). TI is the possibility that
a malfunction in the tool can introduce or fail to detect errors in the system and has two
levels based on whether or not it can be argued that such a risk exists. TD measures the
confidence in prevention from, or detection of, any shortcomings. If determination of TI
or TD is not clear, estimation should be performed conservatively.

Software testing
In an embedded system, software is a major component, making software testing an
important part of the development. The main purposes of software testing can be quality

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 6/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

assessment and reduction of risk for software failures. Other typical objectives of testing
are verification of specified requirements, validation of complete and correct functionality,
enabling informed decisions with confidence in the quality level, verification of compliance
with regulatory requirements or standards, or just feedback (ISTQB, 2011; Garousi et al.,
2018,ISTQB, 2015; EN 50657:2017, 2017; Strandberg, 2018). To achieve efficient and correct
testing many strategies, tools, and frameworks have been proposed over the years (Garousi
etal, 2018).

Besides the actual execution of predefined test cases, the testing process includes activities
such as planning, analysis, design and implementation of tests, reporting test results, and
quality assessing the tested object. When execution of the component or system is part
of the testing process it is referred to as dynamic testing, contrasted by static testing that
only involve reviews of work products such as source code and requirements. The concept
of quality assurance focuses on compliance with suitable processes to provide confidence
in the achieved level of quality, and should not be confused with testing which is one of
several inherent activities. Testing is a mean to achieve quality in different ways, while
quality assurance deals with the entire process and is the enabler of correct testing (ISTQB,
2011).

By automating test execution with software, available resources can be utilized more
efficiently, repeatability increases, costs decrease, and development efficiency improves.
Test automation is, therefore, an important factor in agile development that enables
fast feedback to developers and stakeholders, and it allows tests to be performed
by a diverse pool of employees (Wiklund et al., 2017). Common concepts in agile
development such as continuous integration (Stolberg, 2009) and automated acceptance
testing (Haugset ¢ Hanssen, 2008) heavily rely on test automation (Wiklund et al., 2017).
For the implementation of test cases, monitoring and control of execution, and reporting
and logging of results, it is necessary for test automation to involve the design of testware.
This should include software, documentation, test cases, test environments and test data.
The concept of test automation includes using purpose-built tools for control and setup,
test execution, and evaluating differences between required and actual results (ISTQB,
2016).

Test automation of embedded systems may require a number of tools and a non-trivial
flow of information (Strandberg et al., 2019). e.g., subtoolA may generate a test suite,
subtoolB may initialize test cases one after the other, subtoolC may allocate the required
subset of a test system, subtoolD communicates with each Device Under Test (DUT), test
results are reported to a test results database (subtoolE) using subtoolF, and subtoolG is
used to generate reports from the database (Strandberg, 2021). Based on the generic test
automation architecture provided by ISTQB (2016) and the architecture at the industry
partner (Strandberg, 2021), an example of a test automation architecture can be seen in
Fig. 3. This illustrates a Test Automation Framework (TAF), which can be seen as a set of
different tools with specific tasks that interact with each other.

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 7137

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

Test Automation

Test Generation
- requirements Test Definition

- test case design - suite building
- condition - setup

- procedures

/\ ,-\ Test Automation Framework
Test EXQCUtiOI:/\

Test Adaption

- execution - device interaction
- cases - logging - d;Vlce rpomtormg
- reporting - simulations

- test data
- test scripts - tear down

Figure 3 Illustration of a test automation architecture.
Full-size & DOI: 10.7717/peerjcs.1131/fig-3

PREVIOUS WORK

This section presents previous work related to the problem of quality assuring software
development tools, and position our work with respect to this. Also, approaches for
increased tool confidence are identified and summarized.

Overview of related work

Several publications study approaches, challenges, and impediments related to combining
plan-driven and agile methods. Notander, Host & Runeson (2013) conclude that agile
development can co-exist with plan-driven development provided that identified challenges
are addressed. Heeager (2014) identifies nine practice areas of meshing methods from the
different development processes. These areas are management strategy, customer relations,
people-issues, documentation, requirements, development strategy, communication and
knowledge sharing, testing, and culture. Documentation is determined to be the hardest,
while requirements, testing and customer relations is considered difficult to combine.
Development strategy, and communication and knowledge sharing were found to be
combinable without impeding challenges. Heeager ¢ Nielsen (2020) focuses on the four
areas of documentation, requirements, life-cycle, and testing. Challenges and proposed
approaches related to these areas are identified to enable understanding of possibilities
and difficulties in performing safety-critical software development using agile methods.
Hanssen, Wedzinga & Stuip (2017) outline an approach for extending agile methods, in
particular Scrum, to achieve the objectives of the safety standard DO-178C (presented in
‘Industry Standards for Functional Safety’). The main idea is a distribution of the DO-178C
process steps as sprints with the sequenced Scrum phases: preparation, development, and
closure. Hanssen, Stdlhane ¢» Myklebust (2018a) present SafeScrum, a variant of Scrum
which attempts to be a valid approach for development of safety-critical systems, based
in compliance with IEC 61508. This is achieved by mapping Scrum activites to applicable
steps in the V-model, while omitting system level risk and safety analysis, and validation,
from the sprints. Ghanbari (2016) suggest that accumulated technical debt can be identified

Thérn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 8/37

https://peerj.com
https://doi.org/10.7717/peerjcs.1131/fig-3
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

and managed, or even avoided, by utilizing agile practices in critical plan-driven software
development. The author identifies that debt caused by e.g., requirement ambiguity,
diversity of projects, inadequate knowledge management, and resource constraints may
be mitigated by applying common agile practices such as small releases with continuous
testing, iterative development, burndown charts and backlogs, and stand-up and review
meetings.

Conrad, Munier & Rauch (2010) analyze differences in tool qualification or certification
in transportation domain standards (we further evaluate this work in ‘Approaches for
Increased Tool Confidence’). The authors conclude DO-178 to be the most stringent among
the studied safety standards and emphasize the differentiation between development and
verification tools, and that verification tools are less demanding to qualify. Regarding IEC
61508, they conclude that confidence in tool output should be achieved by certification
when possible, but that the standard provides limited guidance on how to actually certify a
tool in practice. When comparing DO-178 with ISO 26262, there are significant differences
in how to conduct tool qualification. ISO 26262 has detailed guides on how to provide
evidence that a tool is suitable for safety-related development.

Ekman et al. (2014) analyze qualification of existing tools as an alternative to the regular
certification process provided by transportation domain standards (we further evaluate
this work in ‘Approaches for Increased Tool Confidence’). According to the authors, tools
used for development and test are commonly not developed according to the processes
depicted in safety standards meant for certification.

Asplund, El-khoury & Torngren (2012) propose a method for qualifying software tools as
part of tool-chains based on nine identified safety goals. The method is based on integration
of tools in a tool-chain by using a hierarchy of organisation levels where lower levels are
controlled by constraints from higher levels, thereby reducing complexity at lower levels.
Using the reference workflow of Conrad, Munier ¢ Rauch (2010) and the concept of Safety
Element out of Context from ISO 26262, Asplund, El-khoury ¢ Torngren suggest four steps
for guiding and limiting the qualification effort. These include pre-qualification of both
tools and tool-chain by representative use-cases and requirement deduction respectively.
In a later publication, Asplund (2015) studies the relation of software faults to weaknesses
in the support environments used, in relation to safety standards within the transportation
domain. The author argues that standards often only concern tools in isolation which may
lead to risks introduced by tool integration being ignored, a concern also raised by Conrad,
Munier ¢ Rauch (2010).

Positioning our work with respect to related work

Common for all identified publications on the subject of combining agile and plan-driven
methods is the perspective of utilizing agile practices into an already existing plan-driven
development process. Regarding studies of agile, traditional (plan-driven) or hybrid,
there seems to be three common types of related studies (illustrated in Fig. 4). First (A),
studying how to move development from a traditional approach towards a more agile
approach. An example of this is presented in Hanssen, Stdlhane ¢» Myklebust (2018b),
regarding development of safety critical software with the agile scrum approach. Another

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 9/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

<

Traditional
A

Figure 4 Illustration of a three types of related work (A, B and C), and our study (D).
Full-size Gl DOI: 10.7717/peerjcs.1131/fig-4

line of research (B) is to explore what agile software development is and how it is done; an
example is a survey by Diegmann et al. (2018), where they identified that previous research
on agile has focused on topics such as agile methods and practices; IT capability and
agility; project, team and knowledge management; risk control and success factors; social
interactions and behaviors; etc. A more recent line of research (C) is on hybrid methods,
e.g., research by Kuhrmann et al. (2017); Kuhrmann et al. (2018) and Tell et al. (2021) in
a large research project called Helena. They argue that most processes are hybrid, in the
sense that they are traditional with some agility plugged in, e.g., they observed that a typical
hybrid process is traditional in risk and configuration management, but agile in coding and
testing. Furthermore, they identified that “these initiatives aim to bring more flexibility
to processes...,” which implies that these methods somewhat overlap with research going
from the traditional to the agile (A). Also, Tell et al. (2021) argue that “Traditional models
are vanishing from researchers’ focus.” Related to these three strains of research, the article
at hand (D) starts in an agile context and strives to go “backwards” in the sense that we
try to explore what agilists could learn from traditionalists. We were unable to identify
previous work incorporating plan-driven practices into an agile development process in
order to increase confidence and quality in products and processes, which is the objective
of this study.

Approaches for increased tool confidence

Conrad, Munier & Rauch (2010) investigate standards to qualify two existing tools in
accordance with ISO 26262. A directly extracted approach is to use a reference workflow
from the existing tool (Ap.1). They identified the following steps for the qualification:
requirements, specification, the model for code generation, generated code, and object
code. Derived from this approach is the use of intermediate results in the chain of work steps
to apply appropriate checks. The reference workflow is used to describe and limit tool use
cases and lists available means for the detection of malfunctions and erroneous outputs.
The reference workflow shall also describe verification and validation methods for each
step in the workflow which may also identify means for error detection and prevention.

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 10/37

https://peerj.com
https://doi.org/10.7717/peerjcs.1131/fig-4
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

Wang et al. (2012) propose a semi-automated qualification method for verification
tools that include hardware-in-the-loop test benches, for qualification of a new system or
qualification after modifications. Their method is based on fault injection and monitoring
(Ap.2), where faults are injected and the test system monitored for detection of the fault.
According to the authors, applying the method on a new system requires the ability to
run all test-cases both with and without fault injection. Failure of detection can be used
to identify shortcomings in the testware of the verification tool. If no systematic faults are
present in the testware, then one ought to analyze requirements conformance in order to
identify design errors or insufficient requirements.

Ekman et al. (2014) propose approaches for tool qualification in the transportation
domain. They target a tool for dynamic instrumentation based on binary modification.
Several approaches were derived. First, to develop from scratch (Ap.3) by re-developing the
entire tool or by constructing a complete safety case for the existing tool. Second, to qualify
in accordance with a standard, e.g., by formally proving (Ap.4) that tool output conforms to
specification, by automated correctness checks (Ap.5) of the tool output, by implementing
a tool error detection system (Ap.6), or by applying design diagnostics (Ap.7) based on,
e.g., Failure Mode and Effect Analysis to detect identifiable failures in the output. Their
third approach is to design a protection harness (Ap.8) that detects and acts on errors in the
tool, preventing them from propagating to failures. To implement a protection harness
one has to consider the tool as a tool-chain of sub-tools (described in “The Test Tool as a
Tool-Chain’ below). The protection harness is based on evaluating all intermediate results
present in the tool-chain before letting the process proceed to the next step.

Hillebrand et al. (2011) propose a stepwise method tightly coupled to the V-model that
we generalize to fit the scope of this article (Ap.9): (i) Describe all essential workflow steps
with purpose and dependencies. (ii) Describe the used tool(s) and input/output for each
step. (iii) Create and use requirement based checklists for each step to detect or prevent
development errors. (iv) Break down the steps into use cases describing any user interaction,
as well as different input/output or tool sequence scenarios. (v) Continue with identifying
possible errors based on provided generic tool error types. (vi) Collect all previous steps in a
checklist that includes detection/prevention/mitigation measures. Finally, the authors propose
that the tool-chain structure (Ap.10) can be used to construct tests in a tool in order to
detect errors by another preceding tool(again, see “The Test Tool as a Tool-Chain’).

Krauss, Rejzek & Hilbes (2015) evaluate requirements for qualification of software tools
for hazard and risk analysis, that they compare with safety standards in the transportation
domain. The authors provide three approaches: They suggest that development according to
DO-330 life-cycle is a valid tool qualification method than can be used as guidance also in
other domains (Ap.11). Secondly, validation by requirements-based testing (Ap.12). Finally,
checks of completeness and correctness (Ap.13) of tool output should be achieved by a proper
verification process.

Lloyd ¢ Reeve (2009) report on their experience as assessors for certification according
to IEC 61508. Their focus was on complete systems, but they provide lessons learned
for both unsuccessful and successful cases that can be applied to tool development.
Experiences from unsuccessful cases show that showing coverage at acceptance testing

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 11/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

was not possible due to missing requirements specification or requirements that were not
traceable through the lifecycle. The authors argue that structuring, tagging, and handling
requirements can be made manageable by automating traceability (Ap.14) with a traceability
matrix generated from a requirements database, or by using a requirement tracking tool.
There was a lack of awareness and knowledge regarding static analysis techniques, with
development teams not being aware of the benefits. The authors argue static analysis to
be essential, with a need for several techniques such as i.a. control flow, data flow, range
checking and unsafe code detection, and shared resource analysis. The authors argue that
unit testing (Ap.15) should be preceded by static analysis and peer review, focusing on
assumptions of pre- and postconditions. Difficulties in integration were found to often
arise from defective or erroneously assumed module interfaces. They also emphasise the
importance of configuration management and change control (Ap.16), and that reviews and
issue tracking should be supported by workflow tools (Ap.17).

The main issue was legacy code, often developed over years without sufficient
documentation. Bringing this code up to standard in retrospect would not be economically
feasible. For small amounts of code, the authors recommend to re-develop from scratch in
accordance with IEC 61508 (Ap.18). For large amounts of legacy code, they recommended
to develop a monitoring and shut-down device for the main product (Ap.19), similar to the
safety-shell mentioned by Ekman et al. (2014).

One approach for successful assessments mentioned by Lloyd ¢ Reeve was to use a
sequence of “mini-waterfalls” (Ap.20) for software releases with increasing capability,
similar to combining plan-driven and agile development proposed by Hanssen, Wedzinga
& Stuip (2017). Another successful approach is to invest effort into understanding the
requirements (Ap.21) and knowledge-sharing by prototyping parts of the software. Other
successful approaches mentioned are to use reviews in all stages of development, conduct
research in tools and techniques and invest in training and development of good practices.

Asplund, El-khoury & Térngren (2012) and Asplund (2014) explore tool integration,
i.e., automation supporting interaction between software tools or between tools and users
in a tool-chain. They also survey four standards in the transportation domain. Asplund,
El-khoury & Torngren and Asplund defines two models that are combined to identify risks
and derive causal factors. First, the conceptual model, that consists of four levels focusing
on risks related to tools and support environments which define how higher levels control
lower levels. Second, the reference model (an extension of work by Wasserman (1990)),
that describes aspects of tool integration by identifying relationships and borders for tool
integration. The reference model covers five aspects of tool integration for supporting
interactions—platform, control, data, process, and presentation. By combining the
conceptual model and the reference model, and the risk analysis proposed by Asplund
we identify ten safety-related characteristics of tool-chains that should be managed to
mitigate risks (Ap.22). This approach includes: (i) Data integrity, to guard against internal
data corruption and safeguard users from choosing bad artifacts. (ii) Data mining, to extract
and present relevant information. (iii) Traceability, to know that the design supports the
requirements and also how faults relate to each other if they combine to create a failure. (iv)
Well defined data semantics, to allow users with different roles to understand each other. (v)

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 12/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

Process notifications, for the tool-chain to notify users. (vi) Process control, the tool-chain
shall provide automated process control, e.g., by checking for new versions and blocking or
highlighting when something has been found to be erroneous. (vii) Customizable GUIs, to
enable correct actions by users with different roles, knowledge, or expertise. (viii) Coherent
time information, to enable correct comparison of artifacts from different systems, a global
clock should be used. (ix) Automated tool usage, to avoid manual work when proceeding
between tools. (x) Automated transformations of data, to avoid manual involvement in
transforming data.

Notander, Host ¢ Runeson (2013) explore challenges in implementing agile methods in
plan-driven development of safety-critical systems. The authors conclude that some of
the main challenges are differences in documentation focus, tight collaboration with test-
teams contrasted with requirements of independent testers, and that many small releases
conflict with heavy certifications of each release. Complete requirements are central for
the development of both safety-critical and non-critical systems and should be elicited by
an iterative process. Traceability is mandated by safety standards and maintaining it may
come with a high cost. However, maintained traceability can support agile and flexible
development by identifying dependencies that need to be addressed during evolution.
Having a clear and layered architecture with a generic bottom and building up with specific
adaptions that cannot affect lower layers supports isolation of changes and minimizes
re-certification needs. Derived from these insights were the following two approaches.
(i) Construct requirements on tools used in the test framework that are elicited from,
and traceable back to, the tested software and top-level functional requirements (Ap.23).
(ii) Adopt a clear, dependency layered and continuously maintained architecture of the test
framework where the potential impact of changes can be easily derived (Ap.24).

Wiklund et al. (2017) identify impediments related to automated software testing in
general. They emphasize that development of a test tool is software development, and
should be treated as any other software project and involve adequate treatment of standards,
quality criteria, requirements, architecture, documentation, testability, and maintainability.
Insufficient considerations of these factors may lead to poor test tool quality, and failure
to detect defects. Low confidence in the test results may also lead to doubts whether failed
tests are caused by the test environment or the tested software. The authors further identify
the importance of ensuring that the environment is not difficult to use in a way that may
lead to difficulties or confusion in performing or managing configurations. Tests executed
on unknown or erroneous configurations can harm repeatability and impede detection of
defects caused by unstable or misinterpreted results. We derived the approach to: Develop
the test framework with at least the same rigour as the tested software (Ap.25), with special
regards taken to address potential problems with performing or managing configurations
(Ap.26).

In addition to approaches extracted directly, Hillebrand et al. (2011) also contained
an approach that could be derived: the potential generic use of the proposed tool error
types. They provide six basic error types for generic error classification (Ap.27) applicable
to software tools: input errors, processing errors, process configuration errors, operating
environment errors, misconceptions by user, and implementation errors by user. These

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 13/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

generic errors do not provide mitigation strategies on their own, but may be suitable for
use with the other proposed approaches to identify errors.

Common to the guidelines provided by IEC 61508:2010 (2010), EN 50128:2011 (2011),
and EN 50657:2017 (2017) is that offline support tools shall be categorized into one of the
three classes (discussed in ‘Tool Qualification’). For tools in the strictest class (T3), the
standards list different types of evidence that can be used to show that a tool conforms to
its specification or that failures in the output are detected. If a tool does not make direct or
indirect contributions to the software under test, it will never be in the strictest class, but
instead e.g., T2. According to these standards, “evidence listed for T3 may also be used for T2
tools in judging the correctness of their results.” Furthermore, tools shall be able to cooperate,
such that output from one tool can be input for another.

The three main aspects of requirements for software support tools in IEC 61508-3
are degree of support for production of software according to requirements, clarity of
operation and functionality, as well as repeatability and correctness of the output. Tools for
stricter systems (T2 and T3) should have a specification or product documentation (Ap.28).
Risks that these tools might affect executable software shall be determined by assessment,
identifying failure mechanisms and applying mitigation measures (Ap.29). Other mitigation
approaches are avoiding known bugs, restricted use of tool functionality, checking tool output,
and using diverse tools. For the strictest applications (T3 tools), IEC 61508 suggests, as
evidence for conformance: successful history of use (Ap.30) and validation (Ap.31). Or, if
evidence is not available: effective measures to control failures (Ap.32).

EN 50657(c 6.7.4) addresses requirements on support tools in order to reduce the
likelihood of introducing or not detecting faults during development. The standard
mentions identification of potential failures (Ap.33) in tool output and measures to avoid
or handle such failures. T2 and T3 tools shall have a manual or specification where
tool behaviour, instructions, and constraints of use is defined (Ap.34). As evidence of
conformance (for T3), EN 50657 provides more alternatives than IEC 61508, e.g.,: history of
successful use (Ap.35), diverse redundant code for detection and control of failures (Ap.36),
tool validation (Ap.37), compliance with SILs derived from risk analysis (Ap.38) of process
and procedures, and other appropriate measures for avoiding or handling failures (Ap.39).
If such evidence is not available, there shall be effective measures to control failures resulting
from faults in the tool.

ISO 26262:2018 (2018) (part 8, ch.11) handles confidence in the use of software
tools, with the objectives to determine the required level of confidence, and means
for qualification when applicable. The main goals are to minimize the risk of systematic
faults in the end product due to a tool introducing or failing to detect errors, and that
usage of software tools does not affect compliance with the standard. The term “software
tool” is deemed ambiguous, in the sense that it can vary from a single software package
to an integrated suite of tools in a tool-chain, and also be applied to a variety of tools,
such as commercial, open source, or in-house developed tools. As mentioned (in “Tool
Qualification’ and ‘Overview of Related Work’), there are no distinctions made regarding
how a tool is used or the possible effects on executable code as is the case for the previously
mentioned standards. ISO 26262 states that requirements on the tool (Ap.40) shall depend

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 14/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

on its role, related risks, and SIL. As internal prevention and detection measure (Ap.41)
monitoring is suggested, and as external measures (Ap.42), guidelines, tests, and reviews.
For verifying compliance to its evaluation, the standard suggests operating the tool with
measures for error detection or prevention in combination with, e.g., fault injection
(Ap.43) (similar to suggestions by Wang et al. (2012)). Also, verification of appropriate
tool functionality in the user environment can be conducted by running a tool validation
test suite (Ap.44). To ensure proper evaluation of usage, the standard suggests comparing
outputs of redundant tools, performing tests, static analysis or reviews, log file analysis, and
avoidance of problematic tool functionalities. The measures apply to both known and
potential errors in the tool output. For evaluating the tool by analysis, prevention or
detection can be achieved by redundant tasks or tools, or by rationality checks within a tool.
Additionally, a tool can be used to verify the output of another precedent tool, implying a
tool-chain structure.

If a tool is determined to have confidence level TCL 2 or 3, then qualification is
necessary according to ISO 26262. For this procedure, the standard provides four different
methods: (i) Validation, aimed at providing evidence for either absence of, or detection of
assessed errors. From the method of validation, stand-alone strategies could be extracted as
using a customized test-suite, and examination of reactions to anomalous operating conditions
(Ap.45) such as foreseeable misuse, incomplete input data, incomplete update, and use
of prohibited combinations of configuration settings. (ii) Increased confidence from use
(Ap.46), requiring i.a. unchanged specification, sufficient data obtained from accumulated
use, and malfunctions accumulated systematically. (iii) Evaluation of the tool development
process (Ap.47), which should be based on an appropriate standard. (iv) Development in
accordance with a safety standard (Ap.48), however “No standard is fully applicable to the
development of software tools. Instead, a relevant subset of requirements of the safety standard
can be selected.”

Summary of approaches from previous work

In this section, we have identified 48 approaches for increased tool confidence from previous
work, enumerated in ‘Approaches for Increased Tool Confidence’. Through analysis, in
order to identify similarities, we grouped them into 22 candidate solutions suitable for
test framework quality assurance. Further, we identified four main groups for clustering:
development, analysis, run-time measures, as well as validation and verification. These
candidate solutions are presented with traces back to the original identified approaches in
Table 1.

RESEARCH METHODOLOGY

This study was performed as an industrial case study (Runeson ¢» Host, 2009; Runeson et
al., 2012), and the purpose of this section is to describe the essential elements of the case
study design.

Rationale and purpose of the case study
The case study is being done to find and validate the candidate solutions, both from the
literature and an industrial viewpoint. The secondary rationale is to assess the applicability

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 15/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

of the candidate solutions with regards to quality assurance of frameworks for automated
software testing. The expected outcome of this case study is the confirmation that strategies
for increased confidence and quality regarding tools used for automated software testing

in non-safety development can be found or created from concepts and strategies related to
safety-critical development, while maintaining agile and efficient processes.

Case and units of analysis

The industrial partner in the case study, Westermo Network Technologies AB
(https:/mwww.westermo.com), specializes in industrial communication equipment for
domains with high demands on robustness and availability, such as train, oil and

gas, maritime, and water treatment. Thus, many customers have to comply with a
functional-safety standard, which imposes demands of high quality on products acquired.
Different devices for robust data communication are developed, e.g., robust Ethernet
switches. Each device is an embedded system, running the Westermo Operating System
(WeOS), developed at Westermo. While based on GNU (https:/www.gnu.org/) and Linux
(https:/www.kernel.org), WeOS also includes other open-source software libraries and
proprietary code. This accumulates to a source code base of millions of lines of code.

To ensure the quality of the products, Westermo applies automated testing, conducted
on several test systems each night. Further, there is risk-based testing, where identified risks
are used to conduct manual testing or to construct new test cases, as well as release testing
using third-party robustness and performance tools in combination with reviews.

A test framework has been developed, implemented and maintained over several years.
The framework consists of testware and different setups of devices into several physical test
systems with varying layouts, each containing four to 25 devices with hardware, firmware
and software. The in-house developed testware is used to configure and control the devices,
which are running some version of WeOS. Further, the testware contains all test scripts,
configurations and procedures, and is also used for activities surrounding the tests such
as test case selection, setup, tear-down, and logging. The framework allows for both
manual and automated testing, simulating installation scenarios and hardware/software
combinations to test e.g., a software feature, a physical device, or a customer-specific case
(Strandberg, 2021).

The studied case in the research is defined as the industrial partner and the products
developed. The unit of analysis is defined as the development and maintenance of the test
framework, utilized at the industrial partner for the execution of manual and automated
tests of produced products.

Case selection strategy
We use the rationale for single-case designs from Yin (2009) to motivate the case selection
strategy. According to Yin, a single-case design is justifiable “when the case represents (a)
a critical test of existing theory, (b) a rare or unique circumstance, or (c) a representative or
typical case or when the case serves a (d) revelatory or (e) longitudinal purpose”.

One rationale for the use of single case is that it is suitable for confirming, challenging
and extending the propositions derived from theory. The circumstances in which the

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 16/37

https://peerj.com
https://www.westermo.com
https://www.gnu.org/
https://www.kernel.org
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

propositions are applicable are met by our selected case, i.e., software development of
an operating system that is a key part of the embedded system. A second rationale for a
single case is when the case is an extreme or a unique case, however, this does not apply
in our context, rather our case is representative or typical (third rationale). The industrial
partner and the products developed are typical of many embedded system manufacturers,
both in the same domain of industrial communication equipment and in other similar
domains. Thus, the results taken from this case are assumed to be typical of the experiences
of an average embedded system manufacturer. The fourth rationale concerns if the case
is revelatory, meaning that it has previously been inaccessible to scientific investigation.
While our case is not completely revelatory, the context of the investigation nevertheless
makes the results interesting since we were not able to find research investigating lessons
to be learned from plan-driven safety critical development to agile software development.
The fifth rationale for a single-case study concerns the use of a longitudinal case, but this
is not applicable in our context.

Theory

This case study is based on the foundations of a rather extensive literature study, where
48 approaches for increased tool confidence from previous work have been identified.
We have grouped them into 22 candidate solutions suitable for test framework quality
assurance. This literature study forms the basis of answering the first research question,
while the second research question addresses the applicability of identified approaches for
test framework quality assurance.

Research questions
Together with the industrial partner and for the case-specific test framework, we formulated
two research questions.

RQ1: Based on the approaches proposed in relation to relevant safety standards,
what strategies for increased confidence in software tools can be found or
constructed?

RQ2: Which of the above strategies are applicable regarding quality assurance of

frameworks for automated software testing?

Propositions

There are two propositions that underpin our case study. First, that certain strategies
for quality assurance of software tools could possibly be constructed from approaches
gathered through theory. Second, the practicality of such strategies could be established via
quality assurance of frameworks for automated software testing. These two propositions
are directly linked with the two research questions, RQ1 and RQ2.

Concepts and measures
The main concepts and measures were described as following.

Approaches: These are methods of quality assurance of software development tools in
functional safety development and agile development.

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 17/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

Candidate Solutions: These are refinements to the approaches found from theory to
establish test framework quality assurance.

Applicability of approaches: The applicability of approaches was measured both
qualitatively and quantitatively. Qualitative indicators included: good idea “:-)’, bad
idea :-(’ or indifferent opinion “:- |’, whereas quantitative indicators showed percentage of
effort the focus group would like to invest in the approaches.

Methods of data collection, data analysis and data selection strategy

Two methods of data collection (literature study and focus group) were used in this study.
The data collected from the literature study was analyzed qualitatively, while the data from
the focus group was analyzed both qualitatively and quantitatively. Further details on the
two data collection methods are presented in their dedicated sections below.

Literature study method

The literature study was based on guidelines on literature studies and snowballing
(Kitchenham & Charters, 2007; Wohlin, 2014). The process started using an initial set

of articles identified using Google Scholar or authors’ prior knowledge (Shahin, Babar
& Zhu, 2017; Asplund, 2014; Notander, Host ¢ Runeson, 2013; Ghanbari, 2016; Conrad,
Munier & Rauch, 2010; Garousi et al., 2018; Mdrtensson, Stdhl ¢ Bosch, 2016; Strandberg et
al., 2019; Wiklund et al., 2013; Zhi et al., 2015). Articles were included if they (i) discussed
tool qualification in relation to a safety standard, (ii) covers challenges related to test
automation, tools or frameworks, or (iii) covers challenges in combining safety-critical
plan-driven development with agile processes. For backward snowballing, the reference
list of an already included publication was studied to identify additional publications to be
included. For forward snowballing, citations were identified in the later publications back
to an already included publication. Citing and cited publications were then evaluated for
inclusion or exclusion. Further, to find missed clusters of publications, additional searches
were performed in parallel to the snowballing process. From the articles, we identified
approaches based on two criteria: (C1) approaches that could be extracted directly from
the article, or (C2) approaches that could be derived from the article. Based on the initial
set of articles, a total of 32 articles were processed, and nine included based on the inclusion
criteria—three of which were in the initial pool of articles.

The literature study further included the review of three standards used in the
transportation domain, specifically the sections/clauses addressing software development
tools, which gave a set of approaches additional to C1 and C2. The relevance of these
standards is motivated in ‘Industry Standards for Functional Safety’, and therefore no
further inclusion criteria were applied. The approaches were further analyzed to identify
similarities in concepts and to merge duplicates into candidate solutions. A candidate
solution is a principle or practice derived for increasing quality of and confidence in
an automated software test framework. Four main groups were identified: development,
analysis, validation and verification, as well as run-time measures ‘Summary of Approaches
from Previous Work’.

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 18/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

Focus group method

The method used for conducting the focus group was based on guidelines presented

by Morgan (1996) and a literature study on focus group methodologies by Hylander
(1998). The focus group was a self-contained activity containing both a qualitative and a
quantitative part. In order to prepare the participants, we first introduced the purpose and
structure of the focus group, the concept of a candidate solution, and the tool-chain concept
(see “The Test Tool as a Tool-Chain’). Qualitative data was collected through moderated
group discussions structured according to the four identified main aspects of candidates;
development, analysis, run-time measures, as well as validation and verification. Each
aspect was initiated with a short free discussion based on an open question on the subject
of the current aspect. The objective of this activity was to have the participants introduced to
the main subject and warmed up to get the correct mindset before presenting the candidates
for further discussions. A discussion guide to stimulate discussions, if needed, had been
prepared. The candidates in each group were then presented individually and accompanied
by more detailed examples and/or considerations regarding the specific candidate. As base
for discussions, the same three open questions were used for all candidates regardless of

group:
— What would this concept mean in the context of this company?
— Isita good idea?

— Why is it, or is it not, a good idea?

This process was iterated four times, once for each aspect, thereby covering all main
aspects and the candidates.

The objective of the quantitative part was to obtain an indication of the perceived value
of the candidates and create a perception of prioritization for further and future work. The
method used was inspired by Planning Poker (Grenning, 2002) and the Delphi-method
(Dalkey ¢ Helmer, 1963). The participants were asked to imagine having 200 man-hours to
invest in candidates of their choice. They could choose to invest all in only one candidate or
to distribute their investment over several candidates. All candidates were then collectively
presented and the participants were given time to reflect individually and write down their
answer. Finally, the participants presented their choices and motivations one by one, and
the results were simultaneously summarized and presented in a spreadsheet for all to see.
The idea with this procedure was to stimulate discussion over choices and motivations.
The focus group ended with a summarizing event, asking the participants if there were any
candidates they had expected to be presented but that were missing, and if they could share
any other thoughts or ideas regarding the material that had been presented to them. Due
to the Coronavirus outbreak, the focus group was executed as partly remote with some
participants on link. The presentation was simultaneously displayed physically and shared
over the tool used to host the remote meeting.

Participants: Aiming at diversity in terms of experience and specialization, we recruited
a stratified convenience sample of six individuals for the focus group: one manager for the
software test team who is responsible for the framework, one manager for the WeOS team,
three developers from the test team, as well as one developer from the WeOS team.

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 19/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

Execution Roles: The focus group was driven by three execution roles: (i) The first author
was responsible for preparing and running the presentation, and further to introduce
and explain presented activities, concepts, and candidates. (ii) The second author acted
as moderator during discussions, i.e., by keeping track of coverage regarding both topics
and speakers, and asking for further elaborations when necessary while trying to maintain
fluent and self-driven conversations. (iii) The third author acted as support of the execution
by clarifying the purpose, assisting in understanding the purpose, and step in if needed to
keep the activities in line with the goals.

Data Collection: All qualitative data collection was conducted by taking notes during
the discussions, instead of making recordings for later analysis. As suggested by Krueger
¢ Casey (2014), recordings are not mandatory for data collection, since analysis can be
performed on the basis of memory and/or notes alone. To mitigate risks of missed or
misunderstood discussions as well to ensure capture of relevant notes, three authors took
individual notes simultaneously. The notes were later shared to consolidate the findings by
comparing them against each other.

Data Analysis: The first step of analysis was to merge the handwritten notes taken by
all three execution roles. The merged notes were then further processed and summarized,
removing duplicates, clarifying expressed opinions by the collective notes on the same
subject, and identifying which participant had made what statements where such coding
was missing in some of the notes. The resulting merged and processed notes where then
analysed in the context of the group being the unit under analysis instead of the individuals
of which the group consisted. Group opinions were differentiated from individual opinions
by attempting to identify consensus reached within the group. Further analysis attempted
to identify and understand which comments were reactions to direct questions, and which
were spontaneous reactions to the ongoing discussion between participants. The results
of the analysis is presented in ‘Qualitative Results of Focus Group’. Notes regarding the
quantitative part where analyzed using the same process as described above to allow
comments and motivations during these activities provide for a deeper understanding of
the results, which are presented in ‘Focus Group Quantitative Appraisal’.

Quality assurance, validity and reliability

While there was no pilot study conducted to evaluate the case study design, it was reviewed
by three experienced researchers with several years of experience in conducting industrial
case studies, especially one of them having a split role in the case company and academia.
The design activities in the case study were performed together with these experienced
researchers, thus the activities were planned and discussed beforehand. In order to ensure
quality, validity and reliability of the focus group feedback, a discussion guide was prepared
and each aspect was explained with detailed examples. The same three questions were used
to get feedback for all the candidates and the process was iterated four times, once for each
aspect. Furthermore, the quantitative results of the focus group were summarized and
presented in a spreadsheet for all to see. Lastly, the focus group ended with a summarizing
event, with an opportunity given to the participants to confirm their feedback and to fill

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 20/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

any missing information. This yielded the identification of three additional candidates, as
presented in ‘Additional Candidates Identified by Focus Group’.

VALIDATION OF CANDIDATE SOLUTIONS WITH
FOCUS GROUP

In this section we describe the validation of the candidate solutions, i.e., preparing and
conducting a focus group. The results are presented as both qualitative and quantitative
outcomes, complemented by additional suggestions of candidates.

Focus group preparation

From previous work and standards, 48 approaches for increased tool confidence were
identified in ‘Approaches for Increased Tool Confidence’. These were groups into 22
candidate solutions suitable for test framework quality assurance, clustered into four main
groups: development, analysis, run-time measures, as well as validation and verification.
Table 1 lists these candidate solutions as presented during the focus group, with traces back
to the original identified approaches.

The test tool as a tool-chain

A meta-approach common in the literature is to see the test tool (e.g., a test framework),
not as one entity, but as a tool-chain built up of the tools of the framework, (see Fig. 5).
The reference workflow from Conrad, Munier ¢ Rauch (2010) and workflow steps from
Hillebrand et al. (2011) are based on a flow through a chain of tools, where use cases with
possible errors, validation and verification means, as well as failure mitigation measures are
applied to each step through the chain. This approach is also supported by, e.g., using the
tool-chain to detect errors (Hillebrand et al., 2011), the safety shell approach (Ekman et al.,
2014), the importance of tool integration emphasised by Asplund (2014), that tools shall be
able to cooperate (IEC 61508:2010, 2010; EN 50657:2017, 2017), and that a tool can be “a
suite of software tools integrated into a tool-chain” (ISO 26262:2018, 2018). In practice this
could be understood as an automated test tool-chain consisting of several different tools,
performing different tasks, that as a whole result in a complete test framework. For each
individual tool in the tool-chain, different approaches are suitable depending on the nature
of the tool and the task it performs and should be applied accordingly. Therefore, a basis
for interpreting, understanding and applying the proposed candidate solutions, presented
in Table 1, is to view them through a “tool-chain lens.” In particular, what is an individual
tool in a tool-chain at one level, can be seen as separate tool-chain when evaluated closer.
Different levels of tool-chains may exist depending on the complexity of the system. The
idea that a tool can be a tool-chain when looking at the inherent parts is supported by
the definition of a tool in DO-330, as quoted by Rierson (2017): “A software tool can be a
complete program, or a functional part of a program.” The tool-chain model also implies
that if classification based on the possibility to introduce errors or fail to detect them, is
to be performed in accordance with an applicable standard, the classification should be
applied to each individual tool in the chain based on analysis of the specific tool where
possible errors are identified. Analogously, determination of Tool Confidence Level could

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 21/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

Framework, i.e. the Tool

Sub-chain of Framework

Tool X intermediate Tool Y intermediate Tool Z
results results

Sub-chain of Tool Y

intermediate intermediate
Tool Y.1 results Tool Y.2 results Tool Y.3

Figure 5 Conceptual visualization of a framework tool-chain model.
Full-size Gl DOI: 10.7717/peerjcs.1131/fig-5

be performed on each individual tool. Assessment of the complete framework could then
be derived from motivations applied for the classification of each individual tool, aspects
considered for integrating the tools, and the results on framework level of failure mitigation
measures applied for each individual tool or interactions between tools. Thus, confidence
in the complete framework should be argued as the sum of measures applied to sub-tools,
and the confidence in their results and interactions.

Qualitative results of focus group

The qualitative results of the focus group are presented based on the main aspect of the
candidates (development, analysis, run-time measures as well as validation & verification).
Interpretation of qualitative results, based on discussion analysis, was performed by
applying a three-step scale: good idea with high value, indifferent or ambiguous opinion,
or unappreciated idea with little or no value, as presented in the Qual.-column in Table 1.

Development

The introductory discussion was based on the question “thinking back, do you know of
any events, positive or negative, that could be linked to the development process?”” The
answers tended to focus more on negative aspects, with mentions of a rapid development
pace leading to missed test results, or even no results at all, after updates or to the testware.
Adding tests in simulated environments and more extensive reviews was argued to be
potentially beneficial in this aspect. Extending the development process with added phases
was also mentioned with considerations of cost and productivity, and how to gain the
best effect. Developers experienced that sometimes tests were missing, requesting testing
of the tests. The focus group also emphasised differentiating between development and
production environments.

D.1 Apply measures to avoid development faults introduced by misconceptions. The focus
group found this to be a good idea, they suggested to clearly define what a review is, and
what is expected during the review. To emphasize the importance of documentation to be
understood by different people and after long periods of time. To use checklists as a mean to
achieve clarity. To have a clear architecture in order to easily see dependencies and the effect

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 22/37

https://peerj.com
https://doi.org/10.7717/peerjcs.1131/fig-5
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

of changes. To conduct analyses of errors to gain statistical data and derive the root cause to
avoid similar issues in the future. They also suggested that making complete predictions on
potential faults is difficult, and wondered whether FMEAs would be applicable to mitigate
this.

D.2 Apply restrictions on tool usage. The focus group had mixed opinions, and felt that
applying these types of measures initially had a low priority. However, benefits could be
seen regarding third-party software with known issues, and that a policy on what parts of
a tools to use for a specific purposes, and what functionalities to avoid, could be beneficial.

D.3 Apply measures to avoid potential errors introduced by users. The focus group found
this to be a good idea. It could be beneficial in the aspects of masking complexity for
the users, and also minimizing manual configurations to the greatest extent possible.
Complexity that grows over time can result in mistakes which could lead to lost test results.

D.4 Develop the test framework based on requirements. Here the focus group had a mixed
but mostly negative view. A higher focus on requirements is a reasonable approach from a
long-term perspective, since it could yield a more testable and correct product. However,
too high focus on requirements could have a negative effect if the requirements are
not complete, thus giving rise to missed aspects. Clarity in requirement elicitation and
ownership is important.

D.5 Apply measures of rigour to the development process. The focus group found it
reasonable and beneficial to apply the same test strategy on the test framework as what
is conducted regarding the software to be tested. They consider extending the framework
development process to include more unit tests. Also, they argued that one needs to
determine a reasonable level of quality assurance and rigour in the context of the test
framework and integrity of produced test results.

D.6 Re-develop the entire test framework in accordance with a suitable safety standard.
The focus group argued that this was not applicable due to e.g. the high amounts of waste
and significantly increased costs, and that this would not necessarily yield any increased
quality.

Analysis

The introductory activity based on the open question “what are your thoughts on analysis
to identify potential problems in advance?” was mainly positive. The focus group saw
benefits in focusing efforts in advance. They saw value in being able to determine effects of
changes in advance, and gave examples of difficulties with current tools that could benefit
from more analysis before deployment. They also mentioned difficulties in capturing all
possible events, in identifying events that may never actually occur, and the importance of
keeping analysis at a reasonable level. Further, they discussed the importance of performing
root-cause analysis when errors occur, in order to identify proper measures for avoiding
similar errors in the future.

A.1 Perform formal risk and impact analysis. The participants were positive to this
approach, in particular to risk-based testing. They also argued that by using the same
approach for test framework work as with any other development, this could also yield
enhanced cooperation, communication and understanding.

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 23/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

3DoD is an agile concept, a set of criteria to
define if a deliverable is done (Silva et al.,
2017).

4A linter is a static code analysis tool that
detects suspicious constructions, e.g.,
incorrect assignments, out of bounds
indexing, and dangerous data type
combinations Jornes (2018).

A.2 Analyze the tools using a tool error checklist. The focus group interpreted this as
Definition of Done (DoD),” with general aspects and measures to be assured. A benefit
could be to not miss relevant activities, but the focus group has a hard time imagining how
to create generic checklists from a risk analysis.

A.3 Perform analysis with regards to abnormal operating conditions. The participants saw
this approach as having great value, and made references to historical events where this
could have been useful. Errors of this kind should be analysed for similar potential events
to determine counteracting measures.

A.4 Analyze using detailed peer-reviews during development. The focus group were very
positive to this approach, and in the quantitative appraisal this was one of their favourites.
They saw it as highly important with potential to create a basis for many developing
benefits, such as, definitions of what to look for, knowledge sharing, the low cost compared
to the introduction of faults in the product, and decreased risk of potential errors in the
product. They saw great value in pair-design and pair-programming as review a method,
as well as presenting your solution to someone else. However, the phrase “detailed” should
be clarified, interpreted as the specification of review execution, included activities, and
expected outcomes. Also, this approach could potentially block development progression if
reviews are not prioritized, and there is a risk that reviews become just a “tick-in-the-box.”
A.5 Analyze the tools with static analysis. In general, the focus group saw static code analysis
as a good idea, but the value of analysis tools should be evaluated for each specific case.
They had positive experiences of linting* tools as a method of performing static code
analysis. They mentioned that false positives created by a tool could render a lack of trust

in produced results over time.

Run-time measures

The introducing discussion was based on the question “what is your spontaneous
interpretation of a run-time measure in the context of the test automation framework?”
The conversations mainly revolved around measures to avoid potential problems, such as
overloading a server, full disks, and no access to databases. Current implementations, such
as redundancy in writing to a database, were also mentioned.

R.1 Develop automated sanity checks of important tool actions. The focus group felt that
this was mostly redundant if risk-based testing is correctly introduced, except for dynamic
aspects of the framework. The group mentioned that it is important to verify the correctness
of the environment preconditions before testing. Historically, an error in one test-suite
has sometimes led to the failure of several sequential suites, which potentially could be
mitigated by ability to reset the system upon failures and then start at the next step.

R.2 Implement checks of output from a preceding tool conducted in a subsequent tool in the
tool-chain. The participants mentioned that this could be hard to implement, since many
things could potentially go wrong, but it should be possible to determine and exceed a
minimum level of appropriate checks. The discussions focused the value of assuring that
the correct conditions exist from the previous step in the current context. By having this
in place, a benefit could be to more easily distinguishing between errors in the software

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 24/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

under test and the testware, since incorrect conditions for a test could be misinterpreted as
an error in the tested software.

R.3 Develop a monitoring system for error detection and prevention. The focus group saw
this as a good approach, and discussed work on historic issues. If there is a lack of history
of the data-flow chain then this could impede troubleshooting of errors. The focus group
speculated about the benefits of visualisations in a global log management system to
which all tools/subsystems could report their status and problems, and compared this to
Lauterbach (https:/www.lauterbach.com) and Jeager (https:/www.jaegertracing.io). They
saw clear benefits to monitoring and notifications of test progression, especially during the
final testing at release-time.

R.4 Develop protection against identified abnormal operating conditions. The focus group
requested that test execution could be halted if errors were detected. Such that these could
be resolved before continuing, and that a failure in a test should not affect subsequent
testing. The group desired the ability to reconfigure a physical test system and the included
tests in the event of a lost part of a test system, and that the testware should automatically
restart certain services. The group also mentioned the potential use of Al to analyze
sequences and find problematic patterns and then trigger a reset, thereby allowing the suite
to continue without errors. The focus group were of the opinion that detected errors should
be cherished as a potential source of information and that it could lead to improvements.

R.5 Implement redundancy in tools and tool-chain. For the focus group it was unclear
how to interpret redundancy in the context of the test framework, e.g. does unequal
multiple test systems constitute redundancy, and is the purpose to have availability
or correctness? Also, work on redundancy was ongoing, e.g., implementations with
Kubernetes (https:/kubernetes.io) and Docker (https:/www.docker.com) with supervised
and distributed test resources that implies redundancy.

Verification & validation

The opening discussion on the question “what comes to mind when thinking about
achieving confidence in intended behaviour?” brought up that confidence is the outside
experience of the framework. Responsibilities to write sufficient tests lie on the software
developers, and to facilitate the tests lie on the test team developing and maintaining the
test framework. Trust in the produced test results is essential to avoid e.g., developers being
reluctant to question their implementation and instead argue for errors in the framework
when a test fails.

V.1 Utilize a suitable safety standard to validate the tool and related processes. The group
felt that being influenced by a safety standard may be good for some specific problems, but
utilizing a complete standard for the test framework is not relevant as long as the tested
software is not considered safety-critical.

V.2 Formally prove that tool outputs conforms to specification. The focus group argued
that it is crucial to provide evidence of correct functionality for company-specific tools.
e.g., the performance of the case company’s regression test selection tool (Strandberg et al.,
2016), an in-house solution anchored in years of research and crucial to the applied test
strategy.

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 25/37

https://peerj.com
https://www.lauterbach.com
https://www.jaegertracing.io
https://kubernetes.io
https://www.docker.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

V.3 Base tool confidence on history of successful use. At first, the focus group argued that
this was not applicable given the frequent code changes of their internal testware. However,
this approach was seen as applicable to third-party solutions as a mean of resource
management, spending less time on tools where confidence already exist. The group
emphasised that this is a valuable approach when selecting new third-party solutions to
build into the testware.

V.4 Create a customized tool validation test suite for all use cases. The focus group saw
it as valuable to identify a subset of critical use cases to validate intended behaviour, but
objected to the phrase “all”, since they saw it as unreasonable to identify and test all possible
use cases.

V.5 Perform tests based on fault injection. The participants saw this as a small, and
relatively easy approach to implement, with potential to generate significant value—and
that this could help developers in understanding how robust the system actually is.

V.6 Perform unit tests on all modules and tools in tool-chain(s). The focus group saw this
as a very valuable approach, and this was also one of the most liked approaches in the
quantitative appraisal. However, the focus group also objected to the phrasing “all”’; as it
is not reasonable and also potentially costly to perform.

Focus group quantitative appraisal

During the focus group, the members could vote for the candidates they preferred (as
described in ‘Focus Group Method’). The development candidates received the least
interest with 13% of votes, whereas the other three groups were about as popular with
between 25 and 33%.

Derived from comments and motivations during the quantitative activity were the
following primary insights. Establish a baseline to define a lowest bar of acceptance where
guidelines and checklists for reviews are important means to achieve a unified view of how
reviews are conducted; what is included in a review, and what development artifacts should
be reviewed. One suggestion concerning checklists was to create a proposal for a DoD. Unit
tests are important, especially combining unit tests with Continuous Integration and possible
implementations in staging environments. Monitoring is important to help derive where an
error has occurred and enable alerts of errors to provide awareness. Root cause investigations
were emphasised with proposals for error investigation commissions, extended root-cause
analysis and issue tracking. Further, the group expressed an expectation for requirement-
based testing to be explicitly stated as a candidate. The importance of durability over time
and scalability were also emphasised.

Additional candidates identified by focus group

From the final summarizing event, it could be determined that overall, the candidates were
perceived as valuable and a suitable base for further discussions. During these discussions
three additional candidates were identified: First, to implement requirement-based testing.
This candidate was found in the literature study, but had, by mistake, been overlooked.
Without the focus group, the mistake would probably not have been discovered (V.7 in
Table 1). Second, to perform sufficient root-cause analysis on detected errors. The focus

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 26/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

group suggested to, e.g., initiate error investigation commission, perform post-hoc analysis
on occurred failures, or to utilize a tool for issue tracking (A.6 in Table 1). Third, to
halt execution on detection of errors or erroneous conditions. Sometimes it was deemed
relevant to pause the test execution instead of continuing with the next test-case in current
suite (R.6 in Table 1).

Summary of results and final candidates

Table 1 contains the final refined candidates and summarizes the associated results from
the activities of the focus group in the right columns. Due to its design, the quantitative
part did not further address any of the unappreciated candidates or other negative aspects.
Therefore, all candidates included in the result of the quantitative part can be considered
perceived as good with value bringing aspects. Additional candidates derived from the
summarizing discussion were added and treated equally to the qualitative results. The
candidates have been rephrased in accordance with the focus group results.

From analysis of the collected data, aspects and concepts that were repeatedly mentioned
in different contexts during discussions were identified. These can be summarized as
follows: (i) Measures intended for increased safety does not necessarily entail increased
quality. (ii) Quality assurance and rigour applied regarding the test framework has to be
reasonable in relation to the tested software. (iii) Confidence in results created by the
framework from all stakeholders is very important from several perspectives. (iv) The
required cost and effort have to be in balance with the expected gained effect. (v) A baseline
should be established by setting a lowest bar of acceptance. On the more practical side,
there were also reoccurring discussions, summarized as: (i) The expected content and
execution of reviews, documentation, and similar activities has to be clearly defined. (ii)
The environmental and other conditions regarding the execution of the test framework
must be sufficiently ensured. (iii) Errors related to execution of a test-case cannot be
allowed to have any effect on subsequent test-cases or test suites. (iv) It is important to be
able to distinguish errors in testware from errors in the tested software.

Also, comprehensive root-cause analysis upon detection of occurred errors were
repeatedly discussed as important to identify other similar possible errors. In ‘Approaches
for Increased Tool Confidence’, only chapters related to tool qualification/certification
were included. These chapters did not reveal any similar concepts.

DISCUSSION, THREATS AND FUTURE WORK

In this section, we summarize and discuss the results of the research questions. Later, we
also discuss the threats to the validity of the study as well as the future work.

Strategies for increased confidence in software development tools (RQ1)
Through a literature study targeting both safety standards and related work, we identified

48 approaches for test framework quality assurance ‘Approaches for Increased Tool
Confidence’, which after refinement and validation resulted in 25 candidate solutions

(three of which were added as a result of the focus group) (Table 1). The analysis of

the literature identified that, as a basis for interpreting the candidates, the tool or the

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 27137

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

framework should be seen as a tool-chain build up of sub-tools and tasks—a point of view
highlighted by e.g., Asplund, El-khoury ¢ Torngren (2012); Asplund (2015) and Ekman et
al. (2014). Depending on the nature of the sub-tool/tool-chain and the task it performs,
different approaches may be suitable. Identifying interaction sequences enables for tests to
be written at an early stage, as soon as there is access to intermediate results, instead of later
testing the entire framework from a black-box perspective. When applying a standard, the
inherent sub-tools and tool-chains can be classified on an individual basis and confidence
argued as the sum of applied measures to individual parts and the integration between
them. By proposing to do separate classifications of sub-tools, we extend the findings of
Ekman et al. (2014) and Conrad, Munier ¢ Rauch (2010). However, this is not aimed at
dressed up classifications, but rather to enable a more efficient resource management and
focus of efforts.

Combined with this insight, the candidates constitute a list of general measures, in four
aspects: development, analysis, validation and verification, and run-time measures. For
industrial practitioners, the candidates may provide guidance by proposing activities for
quality assurance of in-house tools. It is also possible that subcontractors to companies in the
safety-critical domain may find the results valuable, e.g. through facilitated communication
and understanding concerning audits, etc.

Applicability and practicality of identified strategies (RQ2)
The implications and perceived industrial value of the refined candidates were evaluated
in a focus group, conducted in collaboration with the industry partner. The focus group
perceived that measures applied for increased safety do not necessarily lead to higher
quality, and that the level of rigour applied on a development tool has to be reasonable
in relation to that of the tested product—there has to be a balance between cost, effort
and gained effect. The focus group highlighted that it is important to set a lowest bar of
acceptance, and that the expected content in reviews and documentation has to be clearly
defined. Also, it is important to ensure correct conditions in the tool environment, and
to have the ability to differentiate between errors in testware and tested software. Finally,
errors in one test case cannot be allowed to affect subsequent tests or suites. These insights
can be considered to complement research on shifting plan-driven development towards
agile processes, e.g. previous work performed by Notander, Host ¢» Runeson (2013); Heeager
(2014) and Heeager ¢ Nielsen (2020), by providing aspects from the opposite perspective.

The candidates were evaluated qualitatively and quantitatively (Table 1). The
unappreciated candidates were those entailing the most effort where little or no gain
could be seen. For several of the candidates considered as high value the discussion
involved historical or current events. This result also provides information that indicate
where initial efforts should be placed, which could be potentially be utilized in other
industrial contexts than the case-specific. In addition to validation of identified candidates,
the focus group also proposed additional candidates perceived as missing(which led to the
rediscovery of a candidate lost in the process).

In the first appendix of the supplementary material that we attach with this article,
we suggest a possible application of the results as an augmented agile process inspired by

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 28/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

mini-waterfalls: development in isolated entities with added rigour through mini V-models
controlled by DoDs. This is intended to be applicable, not only for development of software
tools in particular, but to any software development in general. This process was made
case-specific by defining the content of the DoDs which control the transition between
phases.

Threats and limitations

The process of extracting data in the literature study was performed in a subjective way
and may have been biased by prior education and existing knowledge. The size of the
initial set of included publications could be perceived as inadequate. This was partially
addressed during the study by performing searches for new publications in parallel with
the snowballing process. It can also be argued that the extraction of data led to concepts
being taken out of their contexts and presented in a subjective way. First, in the process of
merging concepts during the analysis of the literature, we increased the level of abstraction
of the candidates and applied a context specific for the industry partner. Also, candidates
presented in different main aspects often have a sequential dependency where they build
on each other, making it unfeasible to cherry-pick candidates perceived as adding the most
value. Finally, the identified candidates depend on the relation to the presented perspective
of tool-chains, meaning that existing and future tool-chains in the framework has to be
identified to derive practical implications.

One threat related to the focus group is that we only used one group, and only performed
one session. Having only one group eliminates the possibility to compare results and detect
anomalies or misconceptions. However, it could be argued that the participants’ perception
of the candidates was to some extent validated by the quantitative part at the end of the
focus group session, where any major misconceptions would have been picked up and
rectified. Involving a larger number of participants would most likely have given a greater
sample size and more diverse feedback. But in terms of diversity of roles participating in
the focus group, only a few relevant ones were omitted, e.g., no software architects were
present but they typically have similar competences as senior developers. Performing only
one session also eliminated the possibility to alter the questions and the structure of the
focus group if shortcomings had been discovered. Having an on-line session may have
affected the discussions since most non-verbal communication is presumed to have been
lost. Furthermore, one participant had to leave before the session was completed. Overall,
it was sometimes hard for the participants to stay on the specific subject of a presented
candidate during the discussions.

Case studies do not often claim strong generalizability. This study is no exception as
it is possible that our findings may not be completely applicable in different contexts.
e.g., the candidate A.4 Analyze using well defined peer-reviews during development, was one
of the most favored among our participants. However, in another context where there
could be very few developers, or developers who are inexperienced, it might be difficult
or impossible to conduct reviews due to lack of system understanding. However, despite
this limitation, other researchers like (Briand et al., 2017; Hevner et al., 2008), have found
industrial case studies as being valuable. A concern regarding the suggested DoDs (see

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 29/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

first appendix), is the influence from already existing DoDs related to WeOS development
on e.g., the identified phases. Also, the validity of the DoD activities is dependent on the

quality of support documentation that may not yet exist.

Revisiting related work from the perspective of the focus group

Most hybrid development models are either combinations of different agile practices, or
start as traditional models with agility plugged in. The models are based on experience
collected over time and changes are typically not, as one could perhaps expect, driven
by company size, domain or external standards (Kuhrmann et al., 2017; Kuhrmann et al.,
2018). In their 2018 book, Hanssen, Stilhane ¢» Myklebust (2018b) propose an incremental
safety critical software development process. At the core are two parallel backlogs, one
functional product backlog and another one for safety; as well as rigorous traceability
between artifacts, and separation of roles into teams and a dedicated team for safety.
One obvious advantage is, of course, that feature growth can be incremental (instead of
specifying all of the system before implementing the first line of code). An important
difference is that their model is used for developing safety-critical systems, and moves from
the traditional towards the agile, whereas there are no strict requirements on safety for our
model, and we move “backwards” from agile to traditional.

The most important candidate for the development aspect with 13% of the quantitative
appraisal was D.1: to apply measures to avoid development faults by misconceptions, in
particular through reviews. Similarly, Tell et al. (2021), found that design reviews are a key
ingredient among practitioners in most hybrid approaches.

Previous work on hybrid methods place a lot of emphasis on back-log management.
e.g., a generic hybrid model would have backlog management and three of the following
four methods: code review, coding standards, refactoring, and release planning; whereas
a “water-scrum-fall” method would involve prototyping, and iteration/sprint review as
well as two or the following three methods: code review, coding standards and release
planning (Tell et al., 2021). A notable difference is that our candidates do not include
backlog management since our candidates have an origin in traditional development
processes. There are also similarities in that the previous work calls for code reviews and
coding standards, which overlaps with candidates A.4 and A.5 on peer-reviews during
development and static code analysis. These two candidates got 23% of the quantitative
appraisal by the reference group.

The two run-time candidates that both had a positive qualitative attitude from the focus
group, as well as a non-zero investment in the quantitative appraisal, were R.3 and R.4
on monitoring for error detection and prevention, as well as protection against abnormal
operating conditions. The focus group would have invested 20% of their budget in these
two candidates.

A tool validation test suite (candidate V.4) could be a dynamic part of the stable
framework solution, supposed to grow and shrink in coherence with its increments.
The suite can ensure that the framework still complies with requirements of the already
implemented features when changes or new features are to be introduced by unit testing
(V.6) and testing with fault-injection (V.5) can be used. These three candidates were all

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 30/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

favored by the reference group, and got a total of 29% of their quantitative appraisal
(details in Table 1). The importance of testing is well anchored in previous work on agile
and hybrid methods.

FUTURE WORK

The findings of this study could be extended in several ways. First, the literature study could
be extended to include a larger set of standards and a wider range of publications, to capture
industrial perspectives from several different safety-related domains. For example, one
future extension is to study how to validate a build tool-chain according to IEC 61508 and
other relevant safety-related standards (https:/iwww.iar.com/svknowledge/learn/functional-
safetyhow-to-validate-a-build-toolchain/). For more generalizable results, the focus group
could be expanded to capture several different industrial contexts. Further refinement of
candidates based on input from a diverse set of groups and industrial contexts would likely
increase the general applicability.

Future work could also investigate dynamic validation of the general solution, the
candidates, as well as both positive (e.g., reduced amounts of errors or invalid results),
and negative (e.g., increased lead-times or reduced innovations) outcomes of the proposed
DoDs.

CONCLUSIONS

The quality of embedded systems is often demonstrated by test results. Test framework
risks are related to masking of problems from detection, erroneous test-system hardware
configurations, and omitted feedback on failed tests. These risks may be mitigated with
approaches from safety-critial development. However, safety-critical development is often
in conflict with agile development. In this case study, we explore how quality assurance
for a test framework in an agile non-safety development context could be enhanced by
strategies found in safety-critical development. By processing the results of a literature
study, candidate solutions to quality assuring the quality assurance tool were identified and
divided into four aspects. We also identified the importance of perceiving a test framework,
not as a single tool, but as a tool-chain. The interaction sequences through sub-tools can
be utilized for analysis and identification of applicable measures. In relation to standards,
sub-tools can be classified on an individual basis and confidence argued as the sum of
applied measures throughout the tool-chain that is the framework.

A focus group provided insights on implications and perceived industrial value of the
proposed candidates. Qualitative data from the focus group identified considerations from
an agile industrial perspective: measures for safety do not always entail quality, the level of
rigour regarding a tool must be reasonable, effort and gained value must be balanced, and
a lowest bar of acceptance—a minimal set of quality assurance activities—should be set.
More practical aspects to consider were: the content of reviews and documentation should
be clearly defined, the tool environmental conditions should be ensured, it should be
possible to distinguish between errors in testware from errors in software, and errors in one
test case should not affect subsequent tests or suites. Candidates considered as high value

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 31/37

https://peerj.com
https://www.iar.com/sv/knowledge/learn/functional-safety/how-to-validate-a-build-toolchain/
https://www.iar.com/sv/knowledge/learn/functional-safety/how-to-validate-a-build-toolchain/
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

were often related to historical events, for example beneficial candidate solutions included
« . » o« . .« >
peer-reviews”, “measures to avoid faults originating as a result of misconceptions”,

<<

“performing formal risk and impact analysis”, “developing a monitoring system for error
detection and prevention”, “perform tests based on fault injection” and “perform unit
tests”. The rejected candidates were perceived as having high effort without apparent gain.
Examples of such candidates are “re-develop the entire test framework” and “utilize a
safety standard to validate the tool and related processes”. The unified interpretation of
qualitative and quantitative results gives a clear indication of what aspects were considered

the most important, and where initial efforts should be placed.

ACKNOWLEDGEMENTS

The work is based on the Master’s thesis (Thdrn, 2020) of the first author, where the second
and third authors were his supervisors and the fourth author was his examiner.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This research was funded by Westermo Network Technologies AB, the Knowledge
Foundation grant 20150277 (ITS ESS-H), and the European Union’s Horizon 2020
research and innovation program under grant agreement nos. 871319 & 957212. There was
no additional external funding received for this study. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

Westermo Network Technologies AB, the Knowledge Foundation grant: 20150277.

The European Union’s Horizon 2020 research and innovation program: 871319 & 957212.

Competing Interests
Jonathan Thorn and Per Erik Strandberg are employed by Westermo Network
Technologies. Wasif Afzal is an Academic Editor for Peer] Computer Science.

Author Contributions

e Jonathan Thorn conceived and designed the case study, performed the case study,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

e Per Erik Strandberg conceived and designed the case study, performed the case study,
prepared figures and/or tables, authored or reviewed drafts of the article, and approved
the final draft.

e Daniel Sundmark conceived and designed the case study, performed the case study,
authored or reviewed drafts of the article, and approved the final draft.

e Wasif Afzal conceived and designed the case study, authored or reviewed drafts of the
article, and approved the final draft.

Thérn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 32/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

Data Availability
The following information was supplied regarding data availability:

The COREQ checklist is available in the Supplemental File in lieu of raw data which
could not be made public as the participants’ consent was not obtained at the time it was
collected.

Supplemental Information
Supplemental information for this article can be found online at http:/dx.doi.org/10.7717/
peerj-cs.1131#supplemental-information.

REFERENCES

Asplund F. 2014. Risks related to the use of software tools when developing cyber-
physical systems: a critical perspective on the future of developing complex, safety-
critical systems. PhD thesis, KTH Royal Institute of Technology.

Asplund F. 2015. The future of software tool chain safety qualification. Safety Science
74:37—-43 DOI 10.1016/j.s5¢1.2014.11.023.

Asplund F, El-khoury J, Torngren M. 2012. Qualifying software tools, a systems
approach. In: International conference on computer safety, reliability, and security.
Cham: Springer.

Boehm B, Turner R. 2004. Balancing agility and discipline: evaluating and integrating
agile and plan-driven methods. In: The 26th international conference on software
engineering. Piscataway: IEEE.

Briand L, Bianculli D, Nejati S, Pastore F, Sabetzadeh M. 2017. The case for context-
driven software engineering research: generalizability is overrated. IEEE Software
34(5):72-75.

Conrad M, Munier P, Rauch F. 2010. Qualifying software tools according to ISO
26262. In: Giese H, Huhn M, Phillips J, Schatz B, eds. Dagstuhl-Workshop MBEES:
Modellbasierte Entwicklung eingebetteter Systeme V1, Schloss Dagstuhl, Germany, 2010,
Tagungsband Modellbasierte Entwicklung eingebetteter Systeme. Munich, Germany:
fortiss GmbH.

Dalkey N, Helmer O. 1963. An experimental application of the Delphi method to the use
of experts. Management Science 9(3):458—467 DOI 10.1287/mnsc.9.3.458.

Diegmann P, Dreesen T, Binzer B, Rosenkranz C. 2018. Journey towards agility: three
decades of research on agile information systems development. In: Proceedings of
the 39th international conference on information systems (ICIS) 2018. Association for
Information Systems (AIS).

Dingseyr T, Nerur S, Balijepally V, Moe NB. 2012. A decade of agile methodologies:
towards explaining agile software development. Journal of Systems and Software
85(6):1213-1221.

Ekman M, Thane H, Sundmark D, Larsson S. 2014. Tool qualification for safety related
systems. ADA User Journal 35(1):47-54.

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 33/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1131#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1131#supplemental-information
http://dx.doi.org/10.1016/j.ssci.2014.11.023
http://dx.doi.org/10.1287/mnsc.9.3.458
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

EN 50128:2011. 2011. Railway applications -Communication, signalling and processing
systems - Software for railway control and protection systems. Standard, CENELEC,
European Committe for Electrotechnical Standardization.

EN 50657:2017. 2017. Railway applications - rolling stock applications - software on
board rolling stock. Standard, CENELEC, European Committe for Electrotechnical
Standardization.

Fowler M, Highsmith J. 2001. The agile manifesto. Software Development 9(8):28-35.

Garousi V, Felderer M, Karapicak CM, Yilmaz U. 2018. What we know about testing
embedded software. IEEE Software 35(4):62—69.

Ghanbari H. 2016. Seeking technical debt in critical software development projects: an
exploratory field study. In: The 2016 49th Hawaii international conference on system
sciences (HICSS). Piscataway: IEEE.

Grenning J. 2002. Planning poker or how to avoid analysis paralysis while release
planning. Hawthorn Woods: Renaissance Software Consulting 3:22-23.

Hanssen GK, Stalhane T, Myklebust T. 2018a. Placing agile in a safety context. In:
SafeScrum®—agile development of safety-critical software. Cham: Springer, 3164
DOI 10.1007/978-3-319-99334-8_4.

Hanssen GK, Stalhane T, Myklebust T. 2018b. SafeScrum®-Agile development of safety-
critical software. Cham: Springer.

Hanssen GK, Wedzinga G, Stuip M. 2017. An assessment of avionics software devel-
opment practice: justifications for an agile development process. In: International
conference on agile software development. Cham: Springer.

Haugset B, Hanssen GK. 2008. Automated acceptance testing: a literature review and an
industrial case study. In: 2008 agile conference. Piscataway: IEEE.

Heeager LT. 2014. How can agile and documentation-driven methods be meshed in
practice? In: International conference on agile software development. Cham: Springer.

Heeager LT, Nielsen PA. 2020. Meshing agile and plan-driven development in safety-
critical software: a case study. Empirical Software Engineering 25:1035-1062
DOI10.1007/s10664-020-09804-z.

Hevner AR, March ST, Park J, Ram S. 2004. Design science in information sys-
tems research. Management Information Systems Quarterly 28(1):75-105
DOI 10.2307/25148625.

Hillebrand J, Reichenpfader P, Mandic I, Siegl H, Peer C. 2011. Establishing confidence
in the usage of software tools in context of ISO 26262. In: International conference on
computer safety, reliability, and security. Springer.

Hirsch M. 2005. Moving from a plan driven culture to agile development. In: Interna-
tional conference on software engineering.

Hylander I. 1998. Fokusgrupper som kvalitativ datainsamlingsmetod. Linkoping: FOG-
Rapporter Institutionen for beteendevetenskap Linkopings Universitet.

IEC 61508:2010. 2010. Functional safety of electrical/electronic/programmable electronic
safety-related systems. Standard, International Electrotechnical Comission.

ISO 26262:2011. 2011. Road vehicles - Functional safety. Standard, International
Organization for Standardization.

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 34/37

https://peerj.com
http://dx.doi.org/10.1007/978-3-319-99334-8_4
http://dx.doi.org/10.1007/s10664-020-09804-z
http://dx.doi.org/10.2307/25148625
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

ISO 26262:2018. 2018. Road vehicles - Functional safety. Standard, International
Organization for Standardization.

ISTQB. 2011. Foundation level syllabus version 2011. Technical report. International
Software Testing Qualifications Board.

ISTQB. 2015. Glossary of testing terms. International Software Testing Qualifications
Board.

ISTQB. 2016. Advanced level syllabus - Test Automation Engineer version 2016.
Technical report. International Software Testing Qualifications Board.

Jones N. 2018. How to use lint for static code analysis. Barr group. Available at https:
//barrgroup.com/embedded- systems/how- to/lint-static-analysis-tool (accessed on 15
May 2020).

Jonsson H, Larsson S, Punnekkat S. 2012. Agile practices in regulated railway software
development. In: The 23rd IEEE international symposium on software reliability
engineering workshops. Piscataway: IEEE.

Kitchenham B, Charters S. 2007. Guidelines for performing systematic literature reviews
in software engineering. EBSE Technical Report EBSE-2007-01. Keele, Stafts, and
Durham, UK.

Krauss SS, Rejzek M, Hilbes C. 2015. Tool qualification considerations for tools support-
ing STPA. Procedia Engineering 128:15-24 DOI 10.1016/j.proeng.2015.11.500.

Krueger RA, Casey MA. 2014. Focus groups: a practical guide for applied research.
Thousand Oaks, CA, USA: Sage publications Inc.

Kuhrmann M, Diebold P, Miinch J, Tell P, Garousi V, Felderer M, Trektere K, Mc-
CafferyF, Linssen O, Hanser E. 2017. Hybrid software and system development
in practice: waterfall, scrum, and beyond. In: Proceedings of the 2017 international
conference on software and system process. 30-39.

Kuhrmann M, Diebold P, Munch J, Tell P, Trektere K, McCaffery F, Garousi V,
Felderer M, Linssen O, Hanser E. 2018. Hybrid software development approaches
in practice: a European perspective. IEEE Software 36(4):20-31.

Linz T. 2014. Testing in scrum: a guide for software quality assurance in the agile world.
Santa Barbara, CA, USA: Rocky Nook, Inc.

Lloyd M, Reeve P. 2009. IEC 61508 and IEC 61511 assessments —some lessons learned.
In: 4th IET international conference on system safety. IET.

Martensson T, Stahl D, Bosch J. 2016. Continuous integration applied to software-
intensive embedded systems—problems and experiences. In: The international
conference on product-focused software process improvement. Cham: Springer.

Matharu GS, Mishra A, Singh H, Upadhyay P. 2015. Empirical study of agile software
development methodologies: a comparative analysis. ACM SIGSOFT Software
Engineering Notes 40(1):1-6.

Morgan DL. 1996. Focus groups. Annual Review of Sociology 22(1):129-152
DOI 10.1146/annurev.soc.22.1.129.

Nerur S, Balijepally V. 2007. Theoretical reflections on agile development methodolo-
gies. Communications of the ACM 50(3):79-83.

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 35/37

https://peerj.com
https://barrgroup.com/embedded-systems/how-to/lint-static-analysis-tool
https://barrgroup.com/embedded-systems/how-to/lint-static-analysis-tool
http://dx.doi.org/10.1016/j.proeng.2015.11.500
http://dx.doi.org/10.1146/annurev.soc.22.1.129
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

Nordstrém A. 2017. The effect of the update of the European standard EN 50128 - The
management of the safety of the software applications for railway applications.
Master’s thesis, Uppsala University.

Notander JP, Host M, Runeson P. 2013. Challenges in flexible safety-critical software
development—an industrial qualitative survey. In: International conference on product
focused software process improvement. Cham: Springer.

Rierson L. 2017. Developing safety-critical software: a practical guide for aviation software
and DO-178C compliance. Boca Raton, FL: CRC Press.

Runeson P, Host M. 2009. Guidelines for conducting and reporting case study re-
search in software engineering. Empirical Software Engineering 14(2):131-164
DOI 10.1007/5s10664-008-9102-8.

Runeson P, Host M, Rainer A, Regnell B. 2012. Case study research in software
engineering. In: Guidelines and examples. Hoboken, NY, USA: John Wiley and Sons.

Saleh SM, Rahman A, Asgor KA. 2017. Comparative study on the software method-
ologies for effective software development. International Journal of Scientific &
Engineering Research 8(4):7-11.

Shahin M, Babar MA, Zhu L. 2017. Continuous integration, delivery and deployment:

a systematic review on approaches, tools, challenges and practices. IEEE Access
5:3909-3943 DOI 10.1109/ACCESS.2017.2685629.

Silva A, Aradjo T, Nunes J, Perkusich M, Dilorenzo E, Almeida H, Perkusich A. 2017. A
systematic review on the use of Definition of Done on agile software development
projects. In: International conference on evaluation and assessment in software
engineering.

Smith D, Simpson K. 2004. Functional safety. London, UK: Routledge.

Stolberg S. 2009. Enabling agile testing through continuous integration. In: 2009 agile
conference. Piscataway: IEEE.

Strandberg PE. 2018. Automated system level software testing of networked embedded
systems. PhD thesis, Milardalen University.

Strandberg PE. 2021. Automated system-level software testing of industrial networked
embedded systems. PhD thesis, Milardalen University.

Strandberg PE, Enoiu EP, Afzal W, Sundmark D, Feldt R. 2019. Information flow in
software testing—an interview study with embedded software engineering practition-
ers. IEEE Access 7:46434—46453 DOI 10.1109/ACCESS.2019.2909093.

Strandberg PE, Sundmark D, Afzal W, Ostrand T], Weyuker EJ. 2016. Experience
report: automated system level regression test prioritization using multiple factors.
In: 2016 IEEE 27th international symposium on software reliability engineering.
Piscataway: IEEE.

Tell P, Kliinder J, Kiipper S, Raffo D, MacDonell S, Miinch J, Pfahl D, Linssen O,
Kuhrmann M. 2021. Towards the statistical construction of hybrid development
methods. Journal of Software: Evolution and Process 33(1):e2315.

ThornJ. 2020. Test framework quality assurance: augmenting agile processes with safety
standards. Master’s thesis, Milardalen University.

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 36/37

https://peerj.com
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1109/ACCESS.2017.2685629
http://dx.doi.org/10.1109/ACCESS.2019.2909093
http://dx.doi.org/10.7717/peerj-cs.1131

PeerJ Computer Science

Wang Q, Wallin A, Izosimov V, Ingelsson U, Peng Z. 2012. Test tool qualification
through fault injection. In: The 2012 17th IEEE european test symposium. Piscataway:
IEEE.

Wasserman Al 1990. Tool integration in software engineering environments. In:
Software engineering environments. Berlin, Heidelberg: Springer Berlin Heidelberg.

Wiklund K, Eldh S, Sundmark D, Lundqvist K. 2017. Impediments for software
test automation: a systematic literature review. Software Testing, Verification and
Reliability 27(8):1639 DOI 10.1002/stvr.1639.

Wiklund K, Sundmark D, Eldh S, Lundqgvist K. 2013. Impediments in agile software
development: an empirical investigation. In: The international conference on product
focused software process improvement. Cham: Springer, 35—49.

Wohlin C. 2014. Guidelines for snowballing in systematic literature studies and a replica-
tion in software engineering. In: The 18th international conference on evaluation and
assessment in software engineering.

Yin R. 2009. Case study research: design and methods. Applied social research methods,
Thousand Oaks, CA, USA: SAGE Publications Inc.

Zhi], Garousi-Yusifoglu V, Sun B, Garousi G, Shahnewaz S, Ruhe G. 2015. Cost,
benefits and quality of software development documentation: a systematic mapping.
Journal of Systems and Software 99:175-198 DOI 10.1016/j.jss.2014.09.042.

Thorn et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1131 37/37

https://peerj.com
http://dx.doi.org/10.1002/stvr.1639
http://dx.doi.org/10.1016/j.jss.2014.09.042
http://dx.doi.org/10.7717/peerj-cs.1131

