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Abstract—The complexity of modern software systems is con-
tinuously growing, as well as the amount of data that is produced
on a daily basis. This calls for sound and scalable approaches
that can be used to tame such an emerging complexity. This
tutorial aims at introducing the basic concepts of control theory
that can be used to design self-adaptive systems. The tutorial is
divided into two main parts. The first part discusses the modeling
of discrete-time systems, and the design of controllers in the
discrete-time domain. The second part presents a number of suc-
cessful examples of the application of control-based approaches
for the design of self-adaptive software systems.

Index Terms—self-adaptive systems, control theory, software
design

I. INTRODUCTION AND MOTIVATION

The number of Internet of Things (IoT) devices is increasing
exponentially, and it is expected to reach 31.4 billion by
2023 [1]. Digitalization and the Industrial IoT (IIoT) have
caused business models to change, and many companies
are increasingly becoming data companies, as they collect,
administer, and analyze massive amounts of data to support
their primary operations. IoT has gained a lot of attention in
several areas including smart houses, industrial automation,
and robotics, and applications are becoming more and more
distributed, posing a number of challenges for the manage-
ment of the computational resources needed for handling
such increasingly complex systems, and for the design of
scalable and efficient solutions.

The design of automated decision-making strategies for
computing systems is known in the literature as self-
adaptation, i.e., computing systems dynamically adapt to
changes. Several disciplines have been identified as poten-
tial contributors. Among these, machine learning provides
additional knowledge of the system [2], and control theory
provides a vast array of tools for designing robust adaptive
physical systems with formally assured behavior [3]. The
combination of knowledge, robustness and formal guarantees
has led to increased interest in developing control-based ap-
proaches to various computing system problems [4], [5].

Self-adaptation has a key role in the development of soft-
ware systems [3] and control theory has proven to be a useful
tool to introduce adaptation in such systems [5]–[10]. Self-
management techniques are also prominent in the cloud indus-
try. For example, companies like IBM (see projects like the
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IBM Touchpoint Simulator, the K42 Operating System [11]),
Oracle1, and Intel2.

The research area of applying control theory to computing
systems is becoming quite vast, as also analyzed in the
recent survey by Shevtsov et al. [12]. Developing accurate
system models for computing systems is in fact hard [13]–
[15]. Moreover, both expertise in the computing system to be
modeled, along with mathematical modeling skills are needed
to deal with real systems [16]. These difficulties usually lead
to the design of controllers focused on particular operating
regions or conditions and ad hoc solutions that address a
specific computing problem using control theory, but do not
generalize [17], [18]. For example, in [19] the specific problem
of building a controller for a .NET thread pool is addressed.

This line of research is motivated by the belief that safe,
reliable, and resource-efficient solutions will not be possible
without a firm mathematical foundation. Being able to program
and manage computing systems efficiently and autonomously,
while providing guarantees on the runtime behavior is of
fundamental importance. As a consequence, a deeper under-
standing of control theory, and how a control-based solution
can be designed can be beneficial to software designers to
build more efficient computing systems.

II. TUTORIAL STRUCTURE

A. Introduction to Discrete-time Control Systems

In the first part, the basic principles of linear control theory
for discrete-time systems are revised [20], [21], including

• The introduction of the basic notation used in control
systems, for the control input u(t), the measured output
y(t), and the state variable x(t). The variable t ∈ Z
counts the discrete time.

• The definition of a discrete-time linear time-invariant
system in the state-space form{

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

where the matrices have suitable sizes.

1Oracle Automatic Workload Repository: https://oracle-base.com/articles/
10g/automatic-workload-repository-10g

2Intel RAS Technologies for Enterprise: http://intel.ly/1TMzPKG



• An introduction of the discrete-time PID (Proportional
Integral Derivative) control law in the velocity form,

u(k) = u(k − 1)

+Kp (e(k)− e(k − 1))

+Kihe(k)

+Kd
e(k)− 2e(k − 1) + e(k − 2)

h

and a discussion on how this can be implemented as a
simple function in a software component.

• An introduction to more advanced control techniques,
such as the Model Predictive Control (MPC) (more
extensively presented in [21]).

B. Application Examples

The tutorial will also explore in more detail different re-
search results that have been developed over the years using
such kinds of techniques. In particular, the presented examples
are:

• Task scheduling in real-time systems [22], [23].
• Clock synchronization in wireless sensor networks [24]–

[27].
• Control of cloud-based applications [28]–[31].
• Elastic data streaming applications [14], [15].

C. Automating the design process

The tutorial concludes with the analysis of current trends
in the area of software engineering for the automated design
of control systems for self-adaptive software [32], [33], and
some remarks on future research directions.
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