
Designing Self-Adaptive Software Systems with
Control Theory: An Overview

Alessandro V. Papadopoulos
Mälardalen University

Västerås, Sweden
alessandro.papadopoulos@mdu.se

Abstract—The complexity of modern software systems is con-
tinuously growing, as well as the amount of data that is produced
on a daily basis. This calls for sound and scalable approaches
that can be used to tame such an emerging complexity. This
tutorial aims at introducing the basic concepts of control theory
that can be used to design self-adaptive systems. The tutorial is
divided into two main parts. The first part discusses the modeling
of discrete-time systems, and the design of controllers in the
discrete-time domain. The second part presents a number of suc-
cessful examples of the application of control-based approaches
for the design of self-adaptive software systems.

Index Terms—self-adaptive systems, control theory, software
design

I. INTRODUCTION AND MOTIVATION

The number of Internet of Things (IoT) devices is increasing
exponentially, and it is expected to reach 31.4 billion by
2023 [1]. Digitalization and the Industrial IoT (IIoT) have
caused business models to change, and many companies
are increasingly becoming data companies, as they collect,
administer, and analyze massive amounts of data to support
their primary operations. IoT has gained a lot of attention in
several areas including smart houses, industrial automation,
and robotics, and applications are becoming more and more
distributed, posing a number of challenges for the manage-
ment of the computational resources needed for handling
such increasingly complex systems, and for the design of
scalable and efficient solutions.

The design of automated decision-making strategies for
computing systems is known in the literature as self-
adaptation, i.e., computing systems dynamically adapt to
changes. Several disciplines have been identified as poten-
tial contributors. Among these, machine learning provides
additional knowledge of the system [2], and control theory
provides a vast array of tools for designing robust adaptive
physical systems with formally assured behavior [3]. The
combination of knowledge, robustness and formal guarantees
has led to increased interest in developing control-based ap-
proaches to various computing system problems [4], [5].

Self-adaptation has a key role in the development of soft-
ware systems [3] and control theory has proven to be a useful
tool to introduce adaptation in such systems [5]–[10]. Self-
management techniques are also prominent in the cloud indus-
try. For example, companies like IBM (see projects like the

This work has been partially funded by the Swedish Research Council
(VR), under the “PSI” project.

IBM Touchpoint Simulator, the K42 Operating System [11]),
Oracle1, and Intel2.

The research area of applying control theory to computing
systems is becoming quite vast, as also analyzed in the
recent survey by Shevtsov et al. [12]. Developing accurate
system models for computing systems is in fact hard [13]–
[15]. Moreover, both expertise in the computing system to be
modeled, along with mathematical modeling skills are needed
to deal with real systems [16]. These difficulties usually lead
to the design of controllers focused on particular operating
regions or conditions and ad hoc solutions that address a
specific computing problem using control theory, but do not
generalize [17], [18]. For example, in [19] the specific problem
of building a controller for a .NET thread pool is addressed.

This line of research is motivated by the belief that safe,
reliable, and resource-efficient solutions will not be possible
without a firm mathematical foundation. Being able to program
and manage computing systems efficiently and autonomously,
while providing guarantees on the runtime behavior is of
fundamental importance. As a consequence, a deeper under-
standing of control theory, and how a control-based solution
can be designed can be beneficial to software designers to
build more efficient computing systems.

II. TUTORIAL STRUCTURE

A. Introduction to Discrete-time Control Systems

In the first part, the basic principles of linear control theory
for discrete-time systems are revised [20], [21], including

• The introduction of the basic notation used in control
systems, for the control input u(t), the measured output
y(t), and the state variable x(t). The variable t ∈ Z
counts the discrete time.

• The definition of a discrete-time linear time-invariant
system in the state-space form{

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

where the matrices have suitable sizes.

1Oracle Automatic Workload Repository: https://oracle-base.com/articles/
10g/automatic-workload-repository-10g

2Intel RAS Technologies for Enterprise: http://intel.ly/1TMzPKG



• An introduction of the discrete-time PID (Proportional
Integral Derivative) control law in the velocity form,

u(k) = u(k − 1)

+Kp (e(k)− e(k − 1))

+Kihe(k)

+Kd
e(k)− 2e(k − 1) + e(k − 2)

h

and a discussion on how this can be implemented as a
simple function in a software component.

• An introduction to more advanced control techniques,
such as the Model Predictive Control (MPC) (more
extensively presented in [21]).

B. Application Examples

The tutorial will also explore in more detail different re-
search results that have been developed over the years using
such kinds of techniques. In particular, the presented examples
are:

• Task scheduling in real-time systems [22], [23].
• Clock synchronization in wireless sensor networks [24]–

[27].
• Control of cloud-based applications [28]–[31].
• Elastic data streaming applications [14], [15].

C. Automating the design process

The tutorial concludes with the analysis of current trends
in the area of software engineering for the automated design
of control systems for self-adaptive software [32], [33], and
some remarks on future research directions.

REFERENCES

[1] Ericsson. (2018, June) Ericsson mobility report. [Online].
Available: https://www.ericsson.com/491e17/assets/local/reports-papers/
mobility-report/documents/2018/ericsson-mobility-report-june-2018.
pdf

[2] N. Esfahani, A. Elkhodary, and S. Malek, “A learning-based framework
for engineering feature-oriented self-adaptive software systems,” IEEE
Trans. on Software Engineering, vol. 39, no. 11, 2013.

[3] B. H. C. Cheng et al., Software Engineering for Self-Adaptive Systems,
2009, ch. Software Engineering for Self-Adaptive Systems: A Research
Roadmap.

[4] T. Patikirikorala, A. Colman, J. Han, and L. Wang, “A systematic survey
on the design of self-adaptive software systems using control engineering
approaches,” in SEAMS, 2012.

[5] E. C. Kerrigan, “Feedback and time are essential for the optimal control
of computing systems,” IFAC-PapersOnLine, vol. 48, no. 23, 2015.

[6] G. A. Moreno, A. V. Papadopoulos, K. Angelopoulos, J. Cámara, and
B. Schmerl, “Comparing model-based predictive approaches to self-
adaptation: CobRA and PLA,” in Int. Symp. on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), 2017.

[7] S. Shevtsov and D. Weyns, “Keep it simplex: Satisfying multiple goals
with guarantees in control-based self-adaptive systems,” in FSE, 2016.

[8] M. Maggio, T. Abdelzaher, L. Esterle, H. Giese, J. O. Kephart, O. J.
Mengshoel, A. V. Papadopoulos, A. Robertsson, and K. Wolter, Self-
adaptation for Individual Self-aware Computing Systems, 2017.

[9] S. Cerf, M. Berekmeri, B. Robu, N. Marchand, and S. Bouchenak, “Cost
function based event triggered model predictive controllers application
to big data cloud services,” in CDC, Dec 2016.

[10] K. Angelopoulos, A. V. Papadopoulos, V. E. S. Souza, and J. Mylopou-
los, “Engineering self-adaptive software systems: From requirements to
model predictive control,” ACM Trans. Aut. and Adapt. Sys., vol. 13,
no. 1, 2018.

[11] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wisniewski, J. Xenidis,
D. Da Silva, M. Ostrowski, J. Appavoo, M. Butrico, M. Mergen,
A. Waterland, and V. Uhlig, “K42: Building a complete operating
system,” SIGOPS Oper. Syst. Rev., 2006.

[12] S. Shevtsov, M. Berekmeri, D. Weyns, and M. Maggio, “Control-
theoretical software adaptation: A systematic literature review,” IEEE
Transactions on Software Engineering, vol. 44, no. 8, pp. 784–810, 2018.

[13] A. V. Papadopoulos, M. Maggio, F. Terraneo, and A. Leva, “A dynamic
modelling framework for control-based computing system design,”
Mathematical and Computer Modelling of Dynamical Systems, 2015.

[14] V. Gulisano, A. V. Papadopoulos, Y. Nikolakopoulos, M. Papatri-
antafilou, and P. Tsigas, “Performance modeling of stream joins,” in
ACM Int. Conf. on Distr. and Event-based Syst. (DEBS), 2017.

[15] V. Gulisano, H. Najdataei, Y. Nikolakopoulos, A. V. Papadopoulos,
M. Papatriantafilou, and P. Tsigas, “STRETCH: Virtual shared-nothing
parallelism for scalable and elastic stream processing,” IEEE Transac-
tions on Parallel and Distributed Systems, pp. 1–18, 2022.

[16] X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, P. Padala, and
K. Shin, “What does control theory bring to systems research?” SIGOPS
Oper. Syst. Rev., vol. 43, no. 1, 2009.

[17] C. Lu, Y. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son, “Feedback
control architecture and design methodology for service delay guarantees
in web servers,” IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 9, 2006.

[18] M. Tanelli, D. Ardagna, and M. Lovera, “LPV model identification for
power management of web service systems,” in IEEE Conf. on Control
Applications (CCA), 2008.

[19] J. L. Hellerstein, V. Morrison, and E. Eilebrecht, “Applying control
theory in the real world: Experience with building a controller for the
.net thread pool,” SIGMETRICS Perform. Eval. Rev., vol. 37, no. 3, 2010.

[20] B. Wittenmark, K. J. Åström, and K.-E. Årzén, “Computer control: An
overview,” IFAC Professional Brief, 2002.

[21] A. Leva, M. Maggio, A. V. Papadopoulos, and F. Terraneo, Control-
based operating system design. IET, 2013.

[22] A. V. Papadopoulos, M. Maggio, A. Leva, and E. Bini, “Hard real-time
guarantees in feedback-based resource reservations,” Real-Time Systems,
vol. 51, no. 3, 2015.

[23] A. V. Papadopoulos, E. Bini, S. Baruah, and A. Burns, “AdaptMC: A
control-theoretic approach for achieving resilience in mixed-criticality
systems,” in Euromicro Conf. on Real-Time Systems (ECRTS), 2018.

[24] F. Terraneo, L. Rinaldi, M. Maggio, A. V. Papadopoulos, and A. Leva,
“FLOPSYNC-2: efficient monotonic clock synchronisation,” in IEEE
Real-Time Systems Symp. (RTSS), 2014.

[25] F. Terraneo, A. Leva, S. Seva, M. Maggio, and A. V. Papadopoulos,
“Reverse flooding: exploiting radio interference for efficient propagation
delay compensation in wsn clock synchronization,” in IEEE Real-Time
Systems Symp. (RTSS), 2015.

[26] A. V. Papadopoulos, F. Terraneo, A. Leva, and M. Prandini, “Switched
control for quantized feedback systems: invariance and limit cycles
analysis,” IEEE Trans. Aut. Contr., vol. 63, no. 11, 2018.

[27] F. Terraneo, A. V. Papadopoulos, A. Leva, and M. Prandini, “Flopsync-
qacs: Quantization-aware clock synchronization for wireless sensor
networks,” Journal of Systems Architecture, vol. 80, 2017.

[28] C. Klein, M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez,
“Brownout: Building more robust cloud applications,” in International
Conference on Software Engineering (ICSE), 2014, p. 700–711.

[29] C. Klein, A. V. Papadopoulos, M. Dellkrantz, J. Dürango, M. Maggio,
K.-E. Årzén, F. Hernández-Rodriguez, and E. Elmroth, “Improving
cloud service resilience using brownout-aware load-balancing,” in IEEE
Int. Symp. on Reliable Distributed Systems (SRDS), 2014.

[30] A. V. Papadopoulos, C. Klein, M. Maggio, J. Dürango, M. Dellkrantz,
F. Hernández-Rodriguez, E. Elmroth, and K.-E. Årzén, “Control-based
load-balancing techniques: Analysis and performance evaluation via
a randomized optimization approach,” Control Engineering Practice,
vol. 52, 2016.

[31] E. B. Lakew, A. V. Papadopoulos, M. Maggio, C. Klein, and E. Elmroth,
“KPI-agnostic control for fine-grained vertical elasticity,” in IEEE/ACM
Int. Symp. on Cluster, Cloud and Grid Comp., ser. CCGrid, 2017.

[32] M. Maggio, A. V. Papadopoulos, A. Filieri, and H. Hoffmann, “Auto-
mated control of multiple software goals using multiple actuators,” in
ACM SIGSOFT Symp. on the Foundations of Soft. Eng., ser. FSE, 2017.

[33] A. Filieri, H. Hoffmann, and M. Maggio, “Automated multi-objective
control for self-adaptive software design,” in Foundations of Software
Engineering (FSE), 2015, p. 13–24.


