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Abstract—With the increasing use of the internet and reliance
on computer-based systems for our daily lives, any vulnerability
in those systems is one of the most important issues for the
community. For this reason, the need for intelligent models that
detect malicious intrusions is important to keep our personal
information safe. In this paper, we investigate several supervised
(Artificial Neural Network, Support Vector Machine, Random
Forest, Linear Discriminant Analysis, and K-Nearest Neighbors)
and unsupervised (K-means, Mean-shift, and DBSCAN) machine
learning algorithms, in the context of anomaly-based Intrusion
Detection Systems. We are using four different IDS benchmark
datasets (KDD99, NSL-KDD, UNSW-NB15, and CIC-IDS-2017)
to evaluate the performance of the selected machine learning
algorithms for both intrusion detection and attack classification.
The results have shown that Random Forest is the most suitable
algorithm regarding model accuracy and execution time.

Keywords: Machine Learning, Supervised Learning, Unsuper-
vised Learning, Intrusion Detection, Attack Classification

I. INTRODUCTION

The increasing use of the Internet, network applications,
and cloud services, makes systems more vulnerable to exter-
nal threats that can violate the main principles of security:
confidentiality, integrity, and availability. One of the biggest
challenges in the network security research area is identifying
malicious activities on time and mitigating them promptly.
The process of analyzing network traffic to identify signs of
malicious activity is called intrusion detection [1] and a system
that automates this process is called the Intrusion Detection
System (IDS) [2]. There are two common methodologies that
IDSs use to identify threats: signature-based and anomaly-
based [3]. A signature-based IDS monitors network packets
and searches for patterns that correspond to known network
attack types. Anomaly-based IDS learns the general behavior
of normal network traffic and raises an alarm when significant
deviations are detected.

In recent years, Machine Learning (ML) has become a
popular and effective method for developing new anomaly-
based IDS [4], [5], [6], [7], [8]. The majority of exper-
iments in the area of IDS were conducted using one or
more benchmark datasets [9]. Some of the well-known IDS
datasets are: KDD99, NSL-KDD, UNSW-NB 15, CIDDS-001,
CICIDS2017, CSE-CIC-IDS2018 etc. All of those datasets
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consist of a combination of normal and malicious traffic.
Data about network packets were preprocessed to create the
features, and every entry was labeled as normal activity, or as
some type of network attack. Various ML algorithms were ap-
plied to those datasets either to separate normal traffic for the
malicious one (binary classification problems) or to detect spe-
cific attack types (multiclass classification problems). Buczak
et al. [10] did a focused literature survey of ML methods
used in IDs and recognized some of the most commonly used
methods such as Random Forest (RF), Decision Trees, density-
based clustering algorithms (e.g. DBSCAN), Support Vector
Machine (SVM), Artificial Neural Networks (ANN), Naive
Bayes (NB), association rules, etc. Many studies in this area
analyze the accuracy of different ML algorithms on different
benchmark datasets. Revathi et al. [11] presented an evaluation
of supervised ML algorithms (RF, J48, SVM, Classification
and regression trees and NB) for multiclass classification on
one dataset (NSL-KDD) and derived the conclusion that RF
has the highest accuracy compared to all other algorithms.
Abedin et al. [12] worked on the same problem by applying
NB, J48, NBTree, Multilayer Perceptron (MLP), and RF and
their findings were that J48 and RF had the best performance.
Tuan et al. [13] evaluated SVM, ANN, NB, Decision Tree,
and unsupervised ML on the UNBS-NB 15 and KDD99
datasets. This paper considered only the Distributed Denial
of Service (DDoS) attacks and unsupervised ML was the best
at differentiating between DDoS and normal network traffic,
but it was not specified which unsupervised ML algorithms
were used. There are several papers that evaluate a single
ML algorithm on one or more benchmark datasets, such as
different types of neural networks [7], [14], [15], [16], [17],
RF [18], SVM [19], K-means [20] etc.

Most of the above-mentioned papers were focused on eval-
uating ML algorithms on a single dataset or on evaluating
single ML algorithm on one or more datasets. Also, most of
the papers focused only on binary or multiclass classification,
and the research goal of this paper is to address both.

The contributions of this work can be summarized as
follows:

• five supervised and three unsupervised ML algorithms
were evaluated and explained,



• four different datasets were used, including one of the
most recent IDS datasets CICIDS2017, and

• evaluation was conducted for both binary classification
(intrusion detection) and multiclass classification (attack
classification).

In the following, we first present the methodology used
in Section II. This section includes the details about the
used datasets, the explanation of the applied preprocessing
techniques, the overview of the evaluated machine learning
algorithms, and the presentation of the experimental setup. In
Section III we present experiments and results, followed by
a discussion IV. Finally, a summary of our findings and the
plans for future work are given in Section V.

II. METHODOLOGY

This section describes the methodology for evaluating the
performance of different ML algorithms for attack detection
and classification on four benchmark ID datasets, as well as
the details of experimentation and implementation.

A. Datasets

The experiments presented in this paper were conducted on
4 preexisting datasets that will be presented in this section.

KDD99 [21] is a dataset from a competition in intrusion
detection (KDD cup). This dataset was created in a simulated
environment, and it contains normal traffic and 22 types
of network attacks grouped in 4 attack families: Denial of
Service (DoS), Probe, User-to-Root (U2R), and Remote-to-
Local (R2L). KDD99 dataset has 41 features. The full training
set contains 4,898,431 entries. The distribution of attacks in
the KDD99 dataset is 80%. In this paper, we used the 10% of
the dataset, included in “kddcup.txt”.

NSL-KDD dataset [22] is a modified version of the original
KDD99 dataset created to solve some of the problems, such as
the number of duplicate entries [23]. This dataset contains 37
attack types and has the same number of attack families and
the same number of features as KDD99. NSL-KDD contains
125,973 entries in the training set and 22,544 entries in the
test set, and the distribution of attacks is 48%. In this paper,
we used the file: “KDDTrain+.txt”.

UNSW-NB15 dataset [24] [25] was generated in the Cyber
Range Lab of the Australian Centre for Cyber Security. This
dataset is a hybrid of real normal traffic and 9 families
of simulated attacks: Fuzzers, Analysis, Backdoors, DoS,
Exploits, Generic, Reconnaissance, Shellcode, and Worms.
UNSW-NB15 dataset has 42 features and 2,540,044 entries.
The distribution of attacks in the UNSW-NB15 dataset is
around 13%. A partition from this data set was configured
as a training set and a testing set. The training set has
175,341 records (attacks around 68%), and the testing set
has 82,332 (attacks around 55%). In this paper, we used
“UNSW NB15 training-set.csv”.

CIC-IDS-2017 dataset [26] was generated by the Canadian
Institute for Cybersecurity. This dataset was created in a
simulated environment, and it contains normal traffic and 15
types of network attacks grouped into 7 attack families: Brute

force, PortScan, Botnet, DoS, DDoS, Web Attack, and Infil-
tration. CIC-IDS-2017 dataset has 78 features and 2,830,743
entries. The distribution of attacks is 19.7%. Two features were
removed (flow of bytes and flow of packets per second), and
we used the following files:

• “Friday-WorkingHours-Afternoon-
DDos.pcap ISCX.csv”

• “Friday-WorkingHours-Afternoon-
PortScan.pcap ISCX.csv”

• “Friday-WorkingHours-Morning.pcap ISCX.csv”
• “Thursday-WorkingHours-Morning-

WebAttacks.pcap ISCX.csv”
• “Tuesday-WorkingHours.pcap ISCX.csv”
• “Wednesday-workingHours.pcap ISCX.csv”

All of the above-mentioned datasets were used for both
intrusion detection and attack classification problems. Tables
I and II present a summary for the whole datasets and for the
subsets that were used in this paper, respectively. Additionally,
we have removed instances that belong to classes with less
than 800 cases for all the subsets we have used, hence the
difference in instances and classes between tables I and II.

B. Preprocessing

These datasets had 3 different types of variables: binary,
real, and categorical. These variables were preprocessed in
the following manner:

• Binary: The values remained unchanged.
• Real: The values were normalized on the [0, 1] range.
• Categorical: The values were one-hot encoded. If a vari-

able has 5 different possible alternatives, that variable was
transformed into a binary vector with 4 zeros and 1 one
indicating which alternative it is.

C. Machine Learning algorithms

Machine Learning (ML) is the part of Artificial Intelligence
where algorithms learn patterns from datasets without explicit
instructions [27]. It can be divided into the following areas:

• Supervised Learning (SL): Algorithms within the SL
category use input-output pairs to learn a function that
maps from inputs to outputs.

• Unsupervised Learning (UL): Algorithms within the UL
category learn patterns within the input data without any
output information given in the training phase.

• Reinforcement Learning (RL): Algorithms within the RL
category learn by trial and error. A specific “reward” or
“punishment” is given depending on their actions and
consequences.

For IDS, only the SL and UL methods were used. The rest
of the section will be used to give an insight into different
algorithms that were used in our experiments. Algorithms 1)
to 5) belong to the SL category, while 6) to 8) belong to the
UL category.



TABLE I: Information and the distribution of the instances for KDD99, NSL-KDD, UNSW-NB15, and CIC-IDS-2017 dataset,
considering the whole datasets. The number of classes in parenthesis is the subdivision of the attack families shown.

DATASET KDD99 NSL-KDD UNSW-NB15 CIC-IDS-2017
No. of Instances 4,898,431 148,517 2,540,044 2,830,743
Attacks (%) 80% 48% 13% 19.7%
No. of Classes 4 (22) 4 (37) 9 7
No. of Features 41 41 42 78
DoS 98.92% 74.70% 5.09% 45.31%
Probe 1.05% 19.70% - -
R2L 0.03% 5.40% - -
U2R 0.001% 0.20% - -
Fuzzers - - 7.55% -
Analysis - - 0.83% -
Backdoors - - 0.72% -
Exploits - - 13.86% -
Generic - - 67.07% -
Reconnaissance - - 4.35% -
Shell-code - - 0.47% -
Worms - - 0.05% -
Brute force - - - 2.48%
Botnet - - - 0.35%
DDoS - - - 22.96%
Web attack - - - 0.39%
Infiltration - - - 0.01%
PortScan - - - 28.50%

TABLE II: Information and distribution of the subsets of instances for the KDD99, NSL-KDD, UNSW-NB15, and CIC-IDS-
2017 datasets, used in this paper. The number of features in parentheses is the actual number of features used by the ML
algorithms after preprocessing.

DATASETS KDD99 NSL-KDD UNSW-NB15 CIC-IDS-2017
No. of Instances 493,347 125,597 80,650 2,011,539
Attacks (%) 80.28% 46.38% 54.12% 27.69%
No. of Classes 9 10 6 11
No. of Features 41 (118) 41 (122) 42 (190) 76

DoS

Smurf 56.92% 2.11%

5.07%

-
Teardrop 0.20% 0.71% -
Neptune 21.73% 32.81% -
Back 0.45% 0.76% -
Slowloris - - 0.29%
Slowhttptest - - 0.27%
Hulk - - 11.49%
Golden Eye - - 0.51%

Probe

Ipsweep 0.25% 2.87% - -
Portsweep 0.21% 2.33% - -
Nmap - 1.19% - -
Satan 0.32% 2.89% - -

R2L Warezclient 0.21% 0.71% - -
Fuzzers - - 7.52% -
Exploits - - 13.80% -
Generic - - 23.40% -
Reconnaisance - - 4.33% -

Brute Force FTP-Patator - - - 0.39%
SSH-Patator - - - 0.29%

DDoS - - - 6.36%
Web Attack Brute Force - - - 0.07%
Port Scan - - - 7.90%
BotNet - - - 0.10%



1) Artificial Neural Network (ANN): Inspired by the human
brain and the connections that exist between millions of
neurons, ANN simulates these connections between different
artificial neurons [28]. The values in the neurons will be
multiplied by a set of parameters, called weights, that will
indicate the strength of the specific connections. The power
of ANN relies on stacking many layers with neurons in order
to create a model that better differentiates the boundaries of
different non-linear separable classes.

2) Linear Discriminant Analysis (LDA): Similarly to ANN,
LDA tries to find a hyperplane (w) that separates the classes
[29]. This hyperplane is used to minimize the error between
the predicted class and the actual class by using y = w× x,
where y is the class and x is the input data. LDA will achieve
high accuracy for problems that have linearly separable data.

3) Support Vector Machine (SVM): In a similar way, the
goal of SVM is to find the hyperplane that separates the
different classes [27]. The difference lies in the position of the
hyperplane. This will be placed with the maximum margin to
the support vectors (closer solutions to the hyperplane). With
this property, SVM is able to generalize better than LDA, for
example. Additionally, SVM will transform the dimensionality
of the data points using a kernel function. This dimensionality
will depend on the number of training cases and will help to
separate data that contain non-linearities.

4) Random Forest (RF): Differently from the other tech-
niques, RF groups different versions of the same machine
learning algorithm, called Decision Tree (DT) [30]. DT is a
predictive model based on rules that are created by evaluating
the importance of input parameters from the dataset, using
methods such as entropy or information gain. RF is formed
by a number of DTs. The difference among all DTs is that the
models are created using different subsets of the dataset.

5) K-Nearest Neighbour (K-NN): K-NN is one of the sim-
pler machine learning algorithms [27], [31]. A non-parametric
model is built with all training examples. To classify a new
example, a value d is calculated using some distance measure,
such as the Euclidean distance. Distance (d) is calculated
between the new example and all the cases that form the
model. The majority class from the K nearest examples will
be chosen as the predicted class.

6) K-means: K-means belongs to the UL category [20].
This means, that in theory, no specific desired output is given
to the algorithm. K-means is a clustering algorithm, where
K clusters are formed. To find the centroids of the clusters,
the examples of the training set are assigned to the closest
cluster. Then, the middle point of the assigned points is
calculated as the new center. This process is repeated until the
centroids do not change from one iteration to the next. For
our experiments, after finding all the centers of the different
clusters, the predominant class among the cases linked to the
specific center is assigned to that cluster. This means that one
class can have more than one cluster.

7) Mean-shift: Similarly to K-means, Mean-shift is a clus-
tering algorithm. Mean-shift creates the centers of the clusters
that cover the whole surface [32]. Then, the points assigned

to the cluster, within a specified distance R, are selected to
calculate the center of the cluster as the middle point of all of
them. To finalize, clusters with the same points are removed,
and the predominant class is assigned to the specific cluster.

8) Density-Based Spatial Clustering of Applications with
Noise (DBSCAN): Differently from the previous unsupervised
learning methods, DBSCAN is a density-based method [33].
Clusters are formed by neighboring points, starting from a
minimal number of cases, m, within a radius R. Then, if the
neighboring points to a cluster are within a distance R, they
are added to the cluster. Once a point is added to one cluster,
it will not be able to belong to a different cluster. The same as
the other two UL methods, the predominant class is assigned
as the class of the cluster.

D. Experimental Settings

Two different problems were solved: Intrusion Detection
(ID) and Attack Classification. All experiments were per-
formed in an HP Zbook with an Intel Core i9-988H CPU
@ 2.30GHz and Matlab 2019b was used to implement the
algorithms. The experiments were performed once per algo-
rithm, dataset and problem with a distribution 70%-10%-20%
for training, validation, and testing datasets, respectively. The
final parameters for all the machine learning algorithms are:
• ANN: Epochs: 3, Batch size: 256 and Learning rate: 0.01

– Hidden Layer: Number of neurons: 50, Activation
function: Sigmoid

– Output Layer: Number of neurons: number of
classes, Activation function: softmax

• SVM: The function fitcsvm was used with ’gaussian’ as
the kernel function.

• LDA: The function fitcdiscr was used with ’pseudo-
Quadratic’ as the ’DiscimType’.

• RF: The function fitcensemble was used with the standard
parameters.

• K-NN: K was set to 5 and the Euclidian distance was
used as the measure to find the most similar K cases.

• K-means: K was set to 200. If no cases are assigned to a
centroid, the centroid is removed.

• Mean-Shift: The dimensionality for Mean-shift was re-
duced to 2, using Principal Component Analysis [34]
since the algorithm will be unmanageable otherwise. The
starting number of centroids was 100 and the radius R
was set to 0.1.

• DBSCAN: The minimum number of points to create a
cluster (m) was set to 2 and the radius (R) was set to 1.
When a cluster is formed, the average point is calculated
and used as a centroid in the same way as in K-means.

The decision to select these parameters was based on the
experiments performed in [35] and [36].

III. RESULTS

In this section, the findings of our experiments are pre-
sented. The results of intrusion detection are shown in Section
III-A, while the results of attack classification are presented
in Section III-B.



A. Intrusion Detection

A total of 8 different machine learning methods (5 SL
methods and 3 UL methods) have been tested on 4 different
datasets (KDD99, NLS-KDD, UNSW-NB15 and CIC-IDS-
2017). The results for Intrusion Detection are presented in
Table III.

For KDD99 dataset, the results can be obviated due to the
similarity in the performance that all the ML methods obtained
with a difference of 1% between RF and K-means, the best
and the worst algorithm respectively.

In the NSL-KDD dataset, RF, K-NN and SVM obtained
similar performance with a difference of 0.7% between each
other. In the UNSW-NB15 dataset, RF emerges as the best
algorithm with 97%, a 3% improvement with respect to
SVM and a 5% with respect to K-NN, the second and third
algorithm, respectively.

Following the performances of RF, SVM and K-NN, the
second best group of algorithms was the one formed by the
3 unsupervised learning algorithms (K-means, Mean-shift and
DBSCAN). Those 3 algorithms obtain a similar performance
among them. In NSL-KDD, the performance was close to
that obtained by the best algorithm with a difference of
3-5%, depending on the algorithm, while for the UNSW-
NB15 dataset, the difference increases to 18%. The worst
performance was obtained by ANN and LDA. For example,
LDA obtained 74% and 65% in UNSW-NB15 and NSL-KDD
respectively.

Finally, the results for CIC-IDS-2017 show that RF and
K-NN were the best algrotihms with almost the same perfor-
mance (99.8%). Closely to them, SVM obtained 97.7%. Then,
the rest of the algorithms appear with an accuracy ranging
from 86.6% for the best of them (ANN) to 78.72% for the
worst of them (DBSCAN). When performing ID, CIC-IDS-
2017 was the only data set in which LDA was not the worst
algorithm.

B. Attack Classification

The same 8 ML algorithms, as for intrusion detection, have
been tested on the same datasets, but in this section, the results
for Attack Classification are presented.

Similarly to ID, the results of all algorithms for the KDD99
dataset (Table IV) were similar to each other with a difference
of 2% between the best and the worst algorithm. The only
interesting remark is that RF, SVM and K-NN were the only
algorithms that properly recognized all the 9 different classes
(more than 90% of the examples per class).

Regarding the second dataset, NSL-KDD (Table V), RF,
K-NN and SVM obtained the best results, this time with a
difference of 0.5% between the best and the worst one. The
rest of the algorithms obtained similar performance to each
other, and DBSCAN and LDA were the best options among
them.

A similar conclusion can be drawn for UNSW-NB15 dataset
(Table VI), where the results show that RF was the best
algorithm, obtaining 85% accuracy, closely followed by K-
NN with 83.22% and SVM with 82.44%. A second group,

formed by UL methods and ANN obtained results ranging
from 72.44% (DBSCAN) to 68% (ANN). LDA achieved poor
performance (41%) compared to their counterparts.

Finally, the results of the algorithms for the CIC-IDS-
2017 dataset are presented in Table VII. K-NN was the
best algorithm with 99.86%, closely followed by RF with
0.6% lower accuracy. Also, SVM and LDA obtained decent
performance with an accuracy of around 96%. In this dataset,
the UL methods obtained the worse performance among all
algorithms with a performance lower than 82%, with K-means
obtaining the best results among the 3.

From the results for the 3 last datasets, the same conclusion
can be derived regarding the recognition of the different
classes: RF, K-NN and SVM were the only algorithms that
could recognize all classes. Only one exception was detected,
for the CIC-IDS-2017 dataset Web Attack Brute Force attacks
were not recognized by RF. All the other algorithms fail to
classify many of the attacks properly.

IV. DISCUSSION

In this section, three different aspects will be discussed
when comparing the different algorithms. Section IV-A dis-
cusses the performance of the algorithms. The execution time
is discussed in Section IV-B, while the relation between the
accuracy for different classes and the percentage of cases
per class for the attack classification problem is analyzed in
Section IV-C.

A. Performance

A summary of the results can be found on Fig. 1 (Fig. 1a
for ID and Fig. 1b for Attack Classification). As previously
mentioned, RF had the highest accuracy. The reason for this is
that it uses more than one model at the same time. This allows
RF to create a better approximation of the perfect model. In
CIC-IDS-2017, K-NN yielded the best results among all the
algorithms. This happens due to the number of cases. CIC-
IDS-2017 has over 2 million cases creating a huge model and
allowing K-NN to have a better representation of the dataset.

With respect to the UL methods, it is important to mention
that no specific information about the class was given when
they form the clusters. Classes were used only at the end, to
decide the class that the cluster will belong to. This means that
the information that we take from the features is relevant when
distinguishing between the different classes. Additionally, we
can observe how the results were more or less consistent.
Comparing results for the same dataset we can notice that
if one UL algorithm is better than another UL algorithm for
ID then the same is happening for attack classification. This
means that the information from the dataset is relevant either
for ID or attack classification.

The performance of LDA should also be discussed. LDA
is a linear classifier which is not good when the classes were
not linearly separable. In ID, LDA was not able to properly
separate between two different classes, obtaining the worst
results among all the classifiers. However, when the problem is
attack classification, the performance of LDA improves due to



TABLE III: Accuracy of 8 ML algorithms for 4 different datasets for Intrusion Detection. Global stands for the Global Accuracy
of the algorithm for a certain dataset. Boldface values represent the highest accuracy per dataset.

KDD99 NSL-KDD UNSW-NB15 CIC-IDS-2017
Algorithm Global Normal Attack Global Normal Attack Global Normal Attack Global Normal Attack

SL

ANN 98.85 98.66 98.89 90.93 96.65 84.34 72.28 77.34 68.13 86.59 93.36 68.88
SVM 99.94 99.89 99.95 99.14 99.55 98.67 94.41 95.20 93.77 97.68 99.19 93.72
RF 99.95 99.92 99.95 99.87 99.89 99.85 97.43 97.76 97.16 99.81 99.90 99.57
LDA 99.26 99.95 99.09 65.38 35.85 99.39 74.30 43.40 99.64 81.78 75.05 99.36
KNN 99.94 99.89 99.95 99.54 99.63 99.43 92.97 95.55 90.86 99.88 99.91 99.81

UL
K-means 98.92 99.40 98.81 95.21 99.03 90.82 81.13 82.45 80.05 85.85 94.00 64.53
Mean-Shift 98.93 99.21 98.86 94.03 95.91 91.85 79.07 91.08 69.23 83.45 82.33 86.36
DBSCAN 99.02 99.67 98.86 96.96 97.54 96.28 79.64 85.75 74.62 78.72 98.26 27.57

TABLE IV: Accuracy of 8 ML algorithms for the KDD99 dataset for attack classification. Boldface values represent the highest
global accuracy and the highest accuracy for each class.

Algorithm Global Acc. No attack Back Ipsweep Neptune Portsweep Satan Smurf Teardrop Warezclient

SL

ANN 98.13 98.74 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00
SVM 99.95 99.90 99.54 98.75 100.00 99.49 97.56 100.00 100.00 91.30
RF 99.99 99.99 100.00 99.17 99.99 99.49 97.87 100.00 100.00 100.00
LDA 98.68 99.42 9.98 97.08 98.27 98.46 93.29 99.86 9.85 32.85
K-NN 99.95 99.89 98.61 98.75 100.00 98.97 97.87 100.00 100.00 96.62

UL
K-means 99.00 99.93 0.00 5.83 100.00 76.92 87.50 99.99 90.15 0.00
Mean-Shift 98.93 99.11 0.00 97.92 99.95 30.77 81.10 100.00 20.20 62.80
DBSCAN 98.99 99.97 3.48 69.17 100.00 91.28 79.27 99.99 0.00 0.00

TABLE V: Accuracy of 8 ML algorithms for the NSL-KDD dataset for attack classification. Boldface values represent the
highest global accuracy and the highest accuracy for each class.

Algorithm Global Acc. No attack Back Ipsweep Neptune nmap Portsweep Satan Smurf Teardrop Warezclient

SL

ANN 86.40 99.64 0.00 0.00 99.99 0.00 0.00 0.00 0.00 0.00 0.00
SVM 99.18 99.47 78.13 98.76 100.00 94.01 99.47 95.85 100.00 98.80 82.14
RF 99.68 99.90 100.00 98.06 99.99 94.01 99.30 97.99 100.00 100.00 91.07
LDA 91.66 96.15 12.50 91.42 91.60 81.70 78.07 95.56 78.61 5.42 0.60
K-NN 99.50 99.77 95.31 98.20 100.00 96.21 95.79 96.70 99.81 98.80 93.45

UL
K-means 90.08 98.73 0.00 86.45 99.47 16.09 72.81 0.00 0.00 0.00 0.00
Mean-Shift 89.36 97.04 0.00 84.23 98.82 15.46 55.09 31.23 0.00 0.00 0.00
DBSCAN 94.12 97.82 8.85 98.34 100.00 16.09 79.12 60.32 99.81 0.00 0.00

TABLE VI: Accuracy of 8 ML algorithms for the UNSW-NB15 dataset for attack classification. Boldface values represent the
highest global accuracy and the highest accuracy for each class.

Algorithm Global Acc. No attack DoS Exploits Fuzzers Generic Reconnaissance

SL

ANN 68.02 99.85 0.00 0.00 0.00 96.16 0.00
SVM 82.44 96.69 20.83 68.98 38.44 96.16 51.64
RF 84.99 98.07 36.03 76.93 28.77 96.13 68.99
LDA 40.86 31.29 36.64 81.98 54.02 39.77 0.14
K-NN 83.22 96.20 39.83 65.85 42.95 96.43 53.28

UL
K-means 70.87 95.34 0.00 35.54 0.00 96.16 0.00
Mean-Shift 71.18 89.34 1.35 56.95 0.00 96.16 0.55
DBSCAN 72.44 98.20 13.85 32.05 0.08 96.19 0.55

the fact that more than one classifier is being used to separate
the classes.

B. Execution time

In Table VIII, the time expended by the algorithms during
the training and testing phase is shown. It is obvious that the
improvement in performance for the K-NN algorithm for CIC-
IDS-2017 comes with a cost. We can observe how K-NN takes
a huge amount of time compared to SVM or RF.

Additionally, we can see how SVM was faster than ANN,
except for CIC-IDS-2017. The reason for this is the dimen-
sionality change that SVM does, since it is directly dependent

on the number of training cases. The dimensionality is equal
to the number of cases.

It is also important to mention that LDA, K-means and
Mean-shift take a really low amount of time in comparison to
other algorithms, without forgetting that the dimensionality of
Mean-shift was 2, otherwise the algorithm will be impossible
to handle. The problem with these 3 algorithms is the low
accuracy, especially in the case of LDA which was the worse
algorithm among all.

Finally, DBSCAN was the slowest algorithm due to the fact
that it has to calculate many more Euclidean distances than K-
means for instance.



TABLE VII: Accuracy of 8 ML algorithms for the CIC-IDS-2017 dataset for attack classification. The bold-face values represent
the highest global accuracy and the highest accuracy for each class.

Algorithm Global Acc. No Att. Bot DDoS GoldenEye Hulk Slowhttptest Slowloris FTP-Patator PortScan SSH-Patator WA Brute F.

SL

ANN 85.94 99.33 0.00 48.43 0.00 61.13 0.00 0.00 0.00 50.16 0.00 0.00
SVM 96.66 99.35 0.00 94.23 87.52 86.64 83.01 51.36 49.42 99.23 0.42 0.00
RF 99.28 99.75 0.00 99.73 86.03 99.13 73.45 79.10 99.55 99.43 99.33 0.00
LDA 95.97 94.70 99.19 99.73 99.01 99.00 96.90 98.07 98.96 99.56 97.99 98.12
K-NN 99.86 99.92 70.19 99.73 99.30 99.85 98.67 98.95 99.81 99.97 99.33 98.43

UL
K-means 81.87 99.35 0.00 46.25 0.00 61.09 0.00 0.00 0.00 0.00 0.00 0.00
Mean-Shift 80.22 97.26 0.00 46.75 0.00 59.30 12.30 0.00 0.00 0.00 0.00 0.00
DBSCAN 78.46 99.99 0.00 0.00 8.95 52.58 0.00 0.00 0.00 0.00 0.00 0.00
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Fig. 1: Accuracy of 8 ML algorithms for 4 different datasets for (a) Intrusion Detection and (b) Attack classification.

TABLE VIII: Average time of Machine Learning algorithms
for training and testing. All values are represented in seconds.

Algorithm KDD99 NSL-KDD UNSW-NB15 CIC-IDS-2017
ANN 7,668 554 361 25,826
SVM 395 171 637 61,685
RF 489 138 146 12,551
LDA 12 4 4 37
KNN 71,915 4737 3103 835,852
K-means 324 110 59 1,172
Mean-Shift 40 24 6 358
DBSCAN 78,128 7550 4610 1,065,102

C. Relation between accuracy and number of training cases

A final reflection is made on the relation between the
number of training classes and the accuracy obtained by the
ML algorithms. This relation is presented in Fig. 2. We can
observe that as the number of cases of a class increases,
the accuracy obtained by the ML algorithms increases. This
figure shows the importance of having all classes with a good
representation so that the ML algorithms are able to represent
that information within the model.

Some algorithms such as RF, SVM or K-NN were less
affected, since they were able to represent every class as a
different problem. However, some other algorithms, such as
ANN or UL methods, fail to represent a big number of classes.
ANN has a problem with backpropagation and the way in
which the weights are updated. In the case of UL methods,
when the clusters were formed and the final class was decided,
having a low number of cases affects in the voting to select
an underrepresented class.
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Fig. 2: Relation between the percentage of cases within a class
with respect to the average accuracy obtained by the Machine
Learning algorithms on that same class.

V. CONCLUSIONS AND FUTURE WORK

In this paper, 8 different ML algorithms (5 SL methods
and 3 UL methods) have been tested on 4 different datasets
containing network attacks. Two different problems have been
investigated: intrusion detection and attack classification.

From the experiments, it can be concluded that the best
option regarding accuracy and time consumption was RF. K-
NN yielded similar accuracy, but the biggest drawback was the
time needed to classify new cases, especially when the size of



the dataset increases. Additionally, RF, K-NN and SVM were
able to detect all attack types included in the used datasets.

As future directions, we can mention the usage of RF as
a distributed learning algorithm when we have a distributed
environment, or the usage of unsupervised learning methods
for extracting new features or reducing the features. Also, we
would like to investigate the possibility of using similarity
among instances to apply structured ML models.
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