
Feature Encoding with Autoencoder and Differential Evolution
for Network Intrusion Detection using Machine Learning

Miguel Leon∗
miguel.leonortiz@mdu.se

School of Innovation, Design and
Engineering, Malardalen University

Vasteras, Sweden

Tijana Markovic∗
tijana.markovic@mdu.se

School of Innovation, Design and
Engineering, Malardalen University

Vasteras, Sweden

Sasikumar Punnekkat
sasikumar.punnekkat@mdu.se

School of Innovation, Design and
Engineering, Malardalen University

Vasteras, Sweden

ABSTRACT
With the increasing use of computer networks and distributed
systems, network security and data privacy are becoming major
concerns for our society. In this paper, we present an approach
based on an autoencoder trained with differential evolution for
feature encoding of network data with the goal of improving secu-
rity and reducing data transfers. One of the novel elements used in
differential evolution for intrusion detection is the enhancements
in the fitness function by adding the performance of a machine
learning algorithm. We conducted an extensive evaluation of six
machine learning algorithms for network intrusion detection using
encoded data from well-known publicly available network datasets
UNSW-NB15. The experiments clearly showed the supremacy of
random forest, support vector machine, and K-nearest neighbors
in terms of accuracy, and this was not affected to a high degree by
reducing the number of features. Furthermore, the machine learn-
ing algorithm that was used during training (Linear Discriminant
Analysis classifier) got a 14 percentage points increase in accuracy.
Our results also showed clear improvements in execution times in
addition to the obvious secure aspects of encoded data. Addition-
ally, the performance of the proposed method outperformed one
of the most commonly used feature reduction methods, Principal
Component Analysis.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; • Com-
puting methodologies → Neural networks; Bio-inspired ap-
proaches; Supervised learning; Unsupervised learning.

KEYWORDS
Differential Evolution, Neural Networks, Autoencoder, Machine
Learning, Intrusion Detection
ACM Reference Format:
Miguel Leon, Tijana Markovic, and Sasikumar Punnekkat. 2022. Feature En-
coding with Autoencoder and Differential Evolution for Network Intrusion
Detection usingMachine Learning. InGenetic and Evolutionary Computation
Conference Companion (GECCO ’22 Companion), July 9–13, 2022, Boston, MA,

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9268-6/22/07.
https://doi.org/10.1145/3520304.3534009

USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3520304.
3534009

1 INTRODUCTION
As our society is becoming increasingly dependent on the products
and services provided through connectivity to digital infrastruc-
tures, there is also an increase in the types, incidences, and complex-
ity of cyber-attacks on our networks. New and more sophisticated
cyber security threats are being discovered on a daily basis, and
security measures must be constantly updated and improved. Iden-
tifying these threats on time is one of the biggest challenges for
network security, and Intrusion Detection (ID) is one of commonly
used techniques. It aims to identify unauthorized use, misuse and
abuse of computer systems by internal and external threats [31].

Different Machine Learning (ML) algorithms have been success-
fully used in ID during recent years, resulting in high detection
rates and good overall performance [38]. ML is part of artificial
intelligence in which algorithms use data to automatically improve
through experience [28]. ML algorithms have the ability to learn
and the learning process can be supervised, unsupervised, and re-
inforcement. Supervised Learning (SL) and Unsupervised Learning
(UL) methods are used for ID. The difference between these two
learning technologies is the existence of labels in the training data
subset [6]. SL algorithms use input attributes and the desired output
to learn a function that maps from inputs to outputs, whereas UL
algorithms use only input attributes to learn patterns. From an ML
perspective, searching for intrusions can be seen as a classifica-
tion problem. Intrusion detection is a binary classification problem
in which the algorithm should learn to distinguish between nor-
mal and malicious activities. If there is a need not only to detect
malicious activity, but also to determine which malicious activity
occurred, then it is a multiclass classification problem. Various ML
algorithms have been evaluated on different ID datasets and have
proven to be very successful. Most commonly used ML algorithms
are Random Forest (RF), Decision Trees, Support Vector Machine
(SVM), K-Nearest Neighbor (K-NN), Linear Discriminant Analysis
classfier (LDA), Artificial Neural Networks (ANN), Naive Bayes
(NB), density-based clustering algorithms (e.g., DBSCAN), K-means,
etc. [12, 23].

Network datasets are collected by recording network traffic in
the form of packets that can have a large number of features. Some
of those features can be redundant or irrelevant for intrusion de-
tection. In addition, big datasets with a large number of features
can have a negative influence on detection speed and computa-
tional costs [32]. Usually, different feature reduction techniques are

https://orcid.org/0000-0002-3425-3837
https://orcid.org/0000-0002-4920-2012
https://orcid.org/0000-0001-5269-3900
https://doi.org/10.1145/3520304.3534009
https://doi.org/10.1145/3520304.3534009
https://doi.org/10.1145/3520304.3534009

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA M. Leon et al.

performed to improve learning capabilities and reduce the compu-
tational intensity of ML models [5, 8, 10].

In this paper, we propose the use of an autoencoder trained by
differential evolution for feature reduction and encoding of network
data. Differential Evolution (DE) is a population-based optimization
algorithm that has been used in many different applications, rang-
ing from the optimization of harmonic filter design [25] to intrusion
detection [3]. The proposed approach not only reduces the number
of features, but also encodes the features, which is beneficial to
preserve the privacy of the data. Experiments were conducted on
the well-known ID dataset UNSW-NB15. We evaluated five super-
vised and one unsupervised ML algorithms and compared their
performance before and after the feature encoding process. Further-
more, we compared this method with one of the most widely used
techniques for feature reduction, Principal Component Analysis
(PCA) [2].

Multiple studies [4, 7, 14, 18, 22, 27] presented the use of autoen-
coders for ID, but the proposed autoencoders were trained using
traditional techniques (e.g. backpropagation algorithm). In addition,
the mentioned studies were conducted on older datasets (KDD [17]
and NSL-KDD [1]) and a single ML algorithm was evaluated (e.g.
SVM, ANN, K-means).

The contributions of the paper can be summarized as follows:

• The autoencoder was trained with differential evolution,
using the error of the autoencoder and the accuracy of the
ML algorithm (LDA classifier) as an evaluation measure to
improve ID performance.

• The evaluation was performed in a more recent ID dataset
UNSW-NB15.

• The analysis of the results based on the performance of six
different supervised and unsupervised ML algorithms on the
encoded data.

• The comparative analysis of the proposed method against
PCA.

The main goal of our research is to provide efficient ML-based
intrusion detection, but also to improve computational efficiency
and preserve data privacy.

This paper has been divided into the following sections. Section
2 explains the details of the proposed method and its main compo-
nents: autoencoder, differential evolution, and ML algorithms that
were used for classification. Section 3 contains the experimental
setup. Section 4 presents the results and the discussion of the con-
ducted experiments. Finally, conclusions and plans for future work
are given in Section 5.

2 METHOD
The goal of our method is to encode the features using an autoen-
coder and use the encoded features for intrusion detection with
different ML algorithms. The autoencoder is trained with differ-
ential evolution, using a combination of autoencoder’s error and
ML algorithm’s accuracy to achieve better performances. A general
overview of the method is shown in Figure 1, and all the different
parts will be explained in the following subsections.

2.1 Feature Encoding: Autoencoder
An autoencoder [15] is an artificial neural network widely used
for dimensionality reduction or feature learning. It maps the input
data into a lower-dimensional set of features (encoding phase) and
reconstructs the generated set back to the input data (decoding
phase). Artificial neural networks are composed of neurons that are
grouped into different layers: one input layer, one or more hidden
layers, and one output layer. The autoencoder has a special hidden
layer, called latent layer, which has fewer nodes than the input
layer and forces the network to develop a good representation of
the input data [20]. The autoencoder has three main parts:

• Encoder - maps the input into the latent vector.
• Decoder - maps the latent to a reconstructed input.
• Latent layer - contains compressed data (latent vector).

The number of neurons in the input layer and in the output
layer is the same and corresponds to the number of features in
the dataset. The number of nodes in the latent layer is one of the
autoencoder hyperparameters, and it defines how many features
the compressed data will have. Neurons are mutually connected
using edges, and the strength of each edge is expressed by its weight.
The architecture of the autoencoder is shown in Figure 2.

Encoder and decoder mappings, in the simple architecture with
one hidden layer, can be described as Eq. (1) and Eq. (2) respectively,
where 𝑥 represents the input data, ℎ the latent vector, 𝜎 the sigmoid
activation function (Eq. (3)),𝑊 /𝑊 ′ the weights, 𝑏/𝑏 ′ the biases and
𝑥 ′ the reconstructed input.

ℎ = 𝜎 (𝑊𝑥 + 𝑏) (1)

𝑥 ′ = 𝜎 (𝑊 ′ℎ + 𝑏 ′) (2)

𝜎 (𝑥) = 1
1 + 𝑒−𝑥 (3)

The similarity between the reconstructed data and the original
input data is a performance measure for autoencoders, and the goal
of the training process is to reduce the reconstruction error. The
autoencoder error can be calculated using the Mean Squared Error
(MSE) which measures the average squared difference between the
reconstructed input and the actual input (Eq. (4)).

𝑀𝑆𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑥 − 𝑥 ′)2 (4)

Weights and biases are initialized at random values and adjusted
during training. The autoencoder is an unsupervised learning al-
gorithm, and it can be trained using different training methods. In
this paper, we used the differential evolution described in the next
subsection.

2.2 Training Autoencoder: Differential
Evolution

Differential Evolution (DE) [36, 37] is a population-based optimiza-
tion algorithm, proposed by Storn and Price in 1995, that belongs
to the family of evolutionary algorithms [9]. The population will be
composed of many individuals (population size - 𝑃𝑆), where each
one of themwill be a combination of weights used in an autoencoder.

Feature Encoding with Autoencoder and DE for Network Intrusion Detection using ML GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA

Figure 1: Proposed method

Figure 2: Autoencoder architecture

The 𝑖-th individual can be defined as 𝑋𝑖 = {𝑥1, . . . , 𝑥 𝑗 , . . . , 𝑥𝑚}
where 𝑥 𝑗 is the weight matrix of the 𝑗-th layer in the autoencoder
and𝑚 is the number of layers. The dimension of the different weight
matrices will depend on the number of nodes used in the different
layers. For example, a layer with 100 neurons connected to a layer
with 10 neurons will have 100 × 10 as dimension.

At first, all different weights are randomly initialized in the range
[0, 1]. Then, all individuals will be transformed using three different
operators: mutation, crossover, and selection. All these operators
together will form a cycle and will be applied a number of times,
in other words, for a number of generations. These operators are
described as follows.

Mutation: The first step, called mutation, will calculate the
difference between different individuals to find a direction to
explore a new part of the search space (a new combination of
weights). There aremany different ways to perform themuta-
tion that were compared in [24] and we selected DE/current-
to-best/1 as it obtained the best performance among the
tested strategies. DE/current-to-best/1 is described as

𝑉𝑖,𝑔 = 𝑋𝑖,𝑔 + 𝐹 × (𝑋𝑏𝑒𝑠𝑡,𝑔 − 𝑋𝑖,𝑔 + 𝑋𝑟1,𝑔 − 𝑋𝑟2,𝑔) (5)

where 𝑉𝑖,𝑔 represents the 𝑖-th mutant vector in generation
𝑔, 𝑋𝑏𝑒𝑠𝑡,𝑔 stands for the best individual in the population,
𝑋𝑟1,𝑔 and 𝑋𝑟2,𝑔 represent two different randomly selected
individuals in the population, and 𝐹 ∈ [0, 2] is the mutation
factor. The total number of mutant vectors must be equal to
𝑃𝑆 .

Crossover: After calculating all the different mutant vectors,
the second step in DE is to create the same number of off-
spring as in the population. Every single weight of the 𝑖-th
offspring (𝑈𝑖) will be taken either from the 𝑖-th individual in
the population (𝑋𝑖) or the 𝑖-th mutant vector (𝑉𝑖) from the
current generation (𝑔). This selection will follow

𝑈𝑖,𝑔 [𝑗] [𝑟, 𝑐] =
{
𝑉𝑖,𝑔 [𝑗] [𝑟, 𝑐] if 𝑟𝑎𝑛𝑑 < 𝐶𝑅

𝑋𝑖,𝑔 [𝑗] [𝑟, 𝑐] otherwise (6)

where 𝑗 stands for the 𝑗-th layer in the autoencoder, 𝑟 and 𝑐
will give the specific weight inside the layer, 𝐶𝑅 ∈ [0, 1] is
the crossover rate, and 𝑟𝑎𝑛𝑑 is a random value following a
uniform distribution within the [0, 1] range.

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA M. Leon et al.

Selection: The final step in DE is called selection. The fitness
values of the 𝑖-th individual in the population (𝑓 (𝑋𝑖)) and
the fitness value of the 𝑖-th offspring (𝑓 (𝑈𝑖)) are compared,
and the best one will survive for the next generation while
discarding the other. This process is shown in Eq. (7).

𝑋𝑖,𝑔+1 =
{
𝑈𝑖,𝑔 if 𝑓 (𝑈𝑖,𝑔) > 𝑓 (𝑋𝑖,𝑔)
𝑋𝑖,𝑔 otherwise (7)

To calculate the fitness values of the individuals and offspring,
two metrics have been used: MSE of the autoencoder in the training
set and the accuracy of a ML algorithm in the validation set. A linear
combination of both values is used as the fitness value, that can be
calculated as in Eq. (8).

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 = (1 −𝑀𝑆𝐸) +𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (8)

2.3 Classification with Encoded Features:
Machine Learning Algorithms

In this paper, we address the binary classification problem (intrusion
detection). This section briefly explains theML algorithms that were
used. The first five algorithms are in the SL category, while the last
one is in the UL category.

Artificial Neural Network (ANN) [19] are inspired by the
human brain. ANNs are composed of artificial neurons that
are mutually connected and grouped in different layers. The
strengths of connections in ANNs are expressed by weights,
and the goal of training process is to reduce the prediction
error by adjusting those weights.

Linear Discriminant Analysis (LDA) [11] tries to find a hy-
perplane that separates the classes with minimized error
between the predicted class and the actual class. LDA has a
high accuracy for problems with linear separable data.

Support Vector Machine (SVM) [34] also has a goal to find
the hyperplane that separates different classes, but the hy-
perplane is placed with the maximum margin to the support
vectors (closer solutions to the hyperplane). SVM has good
generalization ability, and it transforms the dimensionality
of the data points by using a kernel function, which helps to
separate data that are not linearly separable.

Random Forest (RF) [26, 33] groups multiple decision trees
to achieve higher precision. Decision tree (DT) is based on
rules that are created by evaluating the importance of input
parameters from the dataset. Different DTs are created using
different parts of the dataset and then combined in RF using
boosting ensemble learning methods.

K-Nearest Neighbours (K-NN) [13, 34] is a simple ML algo-
rithm that does not have learning process, it only stores
entire training set. For each new example, K-NN calculates
the distance from that one to all training examples and se-
lects the majority class from the 𝐾 nearest neighbors as the
predicted class. Different distance measures can be used for
KNN, such as the Euclidean distance, Manhattan distance,
cosine similarity measure, etc.

K-means [21] is a clustering algorithm that belongs to the cat-
egory of unsupervised learning. K-means forms 𝐾 clusters
with random centers, assigns the training set examples to the

closest cluster and takes the middle point from the assigned
points as the new center. This process is repeated until the
centers remain unchanged between two iterations. In our ex-
periments, we used K-means for classification. After clusters
are formed, each cluster was linked with the predominant
class among the cases in that cluster. This means that one
class can have more than one cluster.

3 EXPERIMENTAL SETUP
3.1 Network Dataset Description
The experiments presented in this paper were conducted on the
well-known network dataset UNSW-NB15 [29] [30], that is widely
used in the ID research area. UNSW-NB15 contains a combination
of real normal and synthesized attack activities of network traffic.
Network traffic was captured in the form of packets, data was
preprocessed to create the features, and every entry was labeled
either as normal activity or as one of the simulated attacks.

UNSW-NB15 contains nine families of simulated attacks: Fuzzers,
Analysis, Backdoors, Denial of Service (DoS), Exploits, Generic,
Reconnaissance, Shellcode, and Worms. The dataset has 2,540,044
entries, with an attack distribution of around 13%. In this paper, we
use the preconfigured training set, provided in file UNSW_NB15_
training-set.csv, which has 82,332 records and an attack distribution
of around 55%.

The dataset has 49 features classified into six groups: flow fea-
tures (5), basic features (13), content features (8), time features (9),
additional generated features (12), and class labels (2). We used
all features except flow features and class labels, resulting in 42
features. There were three different data types: binary, real, and cat-
egorical. In the preprocessing phase, we normalized the real values
to a range between 0 and 1 and performed one-hot encoding for the
categorical values. The total number of features after preprocessing
was 190. From class labels, we used the "normal/attack" feature that
is provided for binary classification.

3.2 Experimental Settings
All experiments were performed on a HP Zbook with an Intel Core
i9-988H CPU @ 2.30GHz and Matlab 2019b was used to implement
all algorithms. The dataset was divided into three subsets: training
set, validation set, and testing set with a 70%-10%-20% distribution.
This procedure was performed three times, which means that all
experiments were also repeated three times, and the mean value
was used in all comparisons.

The autoencoder is composed of three layers:
(1) Input layer, where its dimension is equal to the total number

of features (190).
(2) Latent layer, where its dimension depends on the reduction

(Red.) that is selected (1, 2, 5, 10 or 20).
(3) Output layer, where its dimension is equal to the dimension

of the input layer (190).
After that, DE is executed using the following parameters:
• Population size (𝑃𝑆): 24
• Mutation factor (𝐹): 0.9
• Crossover rate (𝐶𝑅): 0.9
• Maximum number of generations: 2000

Feature Encoding with Autoencoder and DE for Network Intrusion Detection using ML GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA

• ML algorithm for fitness: LDA
Finally, the best autoencoder from the population is selected,

and different ML methods are tested on the encoded data. The
parameters for the different methods are:

• ANN : Epochs: 6, Batch size: 256 and Learning rate: 0.01. The
layers are:
– Input Layer : Number of neurons: number of features (1, 2,
5, 10, 20 or 190).

– Hidden Layer : Number of neurons: 50, Activation function:
Sigmoid.

– Output Layer : Number of neurons: number of classes, Ac-
tivation function: softmax.

• SVM: fitcsvm was used with the "gaussian" kernel function.
• LDA: fitcdiscr was used with "DiscimType" equal to "pseu-
doQuadratic".

• RF : fitcensemble was used with predefined parameters.
• K-NN : 𝐾 was set to 5 and the Euclidian distance was used
as the distance measure.

• K-means: The number of initial centroids (𝐾) was set to 100.
The centroid is removed if there are no cases assigned to it.

The decision to select parameters for each algorithm was based
on the experiments performed in [35] and [16].

4 RESULTS AND DISCUSSION
4.1 Differential Evolution Convergence
The proposed fitness function ("MSE+Accuracy") was tested and
compared to a fitness function that only uses the MSE from the
autoencoder ("Only MSE"). The results can be found in Table 1. It
can be observed that the MSE is lower as we have a lower reduction,
meaning that we are able to better reproduce the original data as
the number of encoded features increases. The reason is that more
information can be retained. However, the accuracy does not have
any correlation with respect to the reduction of features. There is
one exception, with Red. 1 the accuracy is 4 percentage points less
than with other reductions. This is also observable in Figure 3.

Table 1: Comparison of DE performance with the two differ-
ent fitness functions. Accuracy is the performance of LDA.

Fitness MSE + Accuracy Only MSE
Accuracy MSE MSE

Red. 1 85.1 0.138433 0.025197
Red. 2 89.2 0.104367 0.027733
Red. 5 90 0.073994 0.024107
Red. 10 89.2 0.054438 0.015109
Red. 20 89.7 0.041123 0.010989

If the MSEs of both options of the fitness function are compared
with each other, we can observe that it is easier to further decrease
the MSE when the accuracy is not used. The reason is that DE with
"MSE+Accuracy" uses two different values which sometimes are in
conflict with each other. Furthermore, this behavior can be seen in
Figure 4. DE with the "Only MSE" fitness function obtains better
values faster than the proposed version.

The time expended by DE in order to find the weights of the
autoencoder is incremental, ranging from 73.9 minutes (reduction
to 1 feature) to 151.8 minutes (reduction to 20 features).

4.2 Performance of Machine Learning
Algorithms

The autoencoders obtained by using DE with two different fitness
functions ("MSE+Accuracy" and "Only MSE") are used to encode
the features and reduce the dimensionality of the problem. A total
of six ML algorithms: five SL algorithms (RF, SVM, LDA, ANN and
KNN) and one UL algorithm (K-means) have been tested on the
encoded and non-encoded data. Different reduction sizes were used
for the experiments: 1, 2, 5, 10, and 20 features. The results can be
found in Figure 5.

As can be observed, RF is the best ML algorithm on the non-
encoded data (No Red. in Figure 5) with 97.43%, followed by SVM
(94.41%) and K-NN (92.97%). On the other hand, ANN and LDA
obtained the worst results with 72.28% and 74.3%, respectively.

If the encoded data are considered, different interesting find-
ings can be pointed out. The first finding is an obvious difference
between the algorithms that had the best performances on the non-
encoded data (RF, SVM and KNN) and the others (ANN, LDA and
K-means). The first group increases performance as the number of
features increases. This is especially visible when the number of
features increases from 1 (Red. 1 in Figure 5) to a higher level, with
the largest difference for SVM. For the second group, there is no
clear trend between the different number of features, including the
option of only one feature. Only LDA has a clear difference between
using only one feature and the other options. The second finding is
that the group that had worse performance on non-encoded data
(LDA, ANN and K-means) increased the performance by reduc-
ing the number of features. This is especially visible with LDA,
where the increased performance is up to +14 percentage points.
The reason is that LDA was used to decide on the design of the
autoencoder.

On the other hand, if the "only MSE" fitness function is consid-
ered, a clear ascending performance can be observed when more
features are used.

If we compare the accuracy of ML algorithms that use encoded
data from autoencoders obtained by using the two different fitness
functions in DE, we can see that "MSE+Accuracy" helped five out of
six ML algorithms (SVM, LDS, ANN, KNN and K-means) to perform
better for all reduction options. Only in the case of RF accuracy,
using "Only MSE" was slightly better for 10 and 20 and worse for
the others.

4.3 Execution Time of Machine Learning
Algorithms

The execution time for training and testing of six evaluated ML
algorithms has been measured and the results can be found in Table
2 and Table 3.

When training time is compared (Table 2), the execution time
is always reduced when using encoded data compared to using all
features. If the comparison is made with Red.1, the improvement
goes from 2.14 times faster (for K-means) to 20 times faster (for RF

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA M. Leon et al.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Generations

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

A
c
c
u
ra

c
y

Red. 1

Red. 2

Red. 5

Red. 10

Red. 20

Figure 3: Mean value of accuracy in the validation set by LDA
for "MSE+Accuracy" fitness function in DE.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Generations

0

0.05

0.1

0.15

0.2

0.25

0.3

E
rr

o
r

MSE+Accuracy Red. 1

MSE+Accuracy Red. 2

MSE+Accuracy Red. 5

MSE+Accuracy Red. 10

MSE+Accuracy Red. 20

Only MSE Red. 1

Only MSE Red. 2

Only MSE Red. 5

Only MSE Red. 10

Only MSE Red. 20

Figure 4: Mean value of the error in autoencoder convergence
during the different generations of DE with two different
fitness functions "MSE+Accuracy" and "Only MSE".

Figure 5: Heatmap with accuracy of six ML algorithms on the encoded (five different reduction sizes) and non-encoded features
for two different DE fitness functions. Darker blue means better performance, while white represent the worse performance
per ML algorithm. Values in boldface indicate the best reduction option per ML algorithm.

and LDA). On the other hand, for Red. 20 the improvement range
goes from 1.8 times faster (for RF) to 9.5 times faster (for LDA).

When the testing time is considered (Table 3), there is an im-
provement for all algorithms except RF, which takes the same time
independently of the number of features. ANN has the smallest
improvement and is already 2 times faster. The biggest difference
is achieved for KNN which is 10 times faster with 20 features and
67 times with 1 feature.

4.4 Autoencoders vs Principal Component
Analysis

In this subsection, we will compare the proposed method with
Principal Component Analysis (PCA) and the results can be found
in Table 4.

It can be observed how the proposed method is able to improve
the performance of LDA, ANN and K-means for all reduction op-
tions. The improvement varies from 7 to 16 percentage points de-
pending on which algorithm is selected. Only for ANN with Red.
20 the results are similar. On the other hand, when RF, SVM and

K-means are considered, the results also improve for Red. 1 and
Red. 2, while obtaining a similar performance on Red. 5, 10 and 20.

This proves that the proposed method brings a benefit, since if
the results are compared with the autoencoder where "only MSE"
is considered, PCA outperforms the autoencoder for almost all
reduction options.

5 CONCLUSION
This paper presented the feature encoding approach based on au-
toencoder and differential evolution for the network intrusion de-
tection application. When training the autoencoder with DE, we
used an extended fitness function that considers the error of the
autoencoder and the accuracy of one ML algorithm during the au-
toencoder training process. For the experiments presented in this
paper, we selected LDA as the ML algorithm to drive the search in
DE. The final autoencoders were used in the UNSW-NB15 dataset.
The feature set (total of 190 after preprocessing) was encoded into
new feature sets with different sizes (1, 2, 5, 10, and 20 features).
Six different ML techniques were then evaluated on the encoded
feature sets.

Feature Encoding with Autoencoder and DE for Network Intrusion Detection using ML GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA

Table 2: Training time for six ML algorithms with different
number of features (in seconds)

Red. | ML RF SVM LDA ANN KNN K-means
Red. 1 7.21 253.71 0.17 41.8 0 27.15
Red. 2 14.97 240.17 0.17 42.39 0 80.37
Red. 5 16.96 199.46 0.31 41.4 0 22.04
Red. 10 38.61 175.84 0.26 41.57 0 19.31
Red. 20 80.64 162.83 0.37 41.43 0 29.46
No Red. 144.52 593.25 3.53 360.23 0 58.06

Table 3: Testing time for one example for six ML algorithms
with different number of features (in miliseconds)

Red. | ML RF SVM LDA ANN KNN K-means
Red. 1 0.114 0.373 0.003 0.055 2.844 0.008
Red. 2 0.117 0.598 0.001 0.055 3.647 0.008
Red. 5 0.086 0.587 0.000 0.053 6.404 0.008
Red. 10 0.111 0.507 0.001 0.053 10.257 0.013
Red. 20 0.117 0.499 0.008 0.053 18.405 0.019
No Red. 0.108 2.657 0.026 0.101 188.437 0.057

Table 4: Results of six ML algorithms after feature encoding with two methods: the proposed method (Autoencoder with DE
MSE+Accuracy) and Principal component Analysis. Values in boldface indicate which encoding method is better for a specific
reduction option and ML method.

Encoding method Autoencoder with DE MSE+Accuracy PCA
Red. | ML RF SVM LDA ANN KNN K-means RF SVM LDA ANN KNN K-means
Red. 1 85.8 81.91 84.95 79.11 85.51 83.58 79.34 74.59 68.42 68.07 78.23 74.26
Red. 2 90.24 87.19 89.15 80.55 90.1 87.74 84.74 79.18 61.9 68.07 84.15 78.78
Red. 5 92.92 86.64 89.3 75.98 92.16 83.41 91.33 85.52 78.45 68.46 90.82 78.28
Red. 10 91.96 88.42 88.59 72.58 91.89 84.45 92.17 89.29 77.98 69.89 91.38 77.74
Red. 20 92.73 92.06 89.13 74.3 92.88 84.52 92.98 90.37 80.18 74.75 91.74 77.47

The results showed that with much less features, the accuracy
was not affected to a high degree. For some of the algorithms,
as LDA, ANN and K-means, it is even increasing. Furthermore,
reducing the number of features brought a benefit in terms of
time consumption (making algorithms up to 20 times faster for
training and 67 times faster for testing) and data privacy (since the
ML algorithms do not use actual network data). Additionally, we
showed that the proposed approach is better for feature reduction
than PCA.

As a future work, we would like to use a multi-objective opti-
mization algorithm to consider the trade-off between the different
objectives without a linear combination of them, as well as to use
another ML method to drive the search. In addition to this, we plan
to test the proposed method for attack classification, as well as on
different ID datasets.

ACKNOWLEDGMENT
This work has been partially supported by the H2020 ECSEL EU
Project Intelligent Secure Trustable Things (InSecTT). InSecTT
(www.insectt.eu) has received funding from the ECSEL Joint Un-
dertaking (JU) under grant agreement No 876038. The JU receives
support from the European Union’s Horizon 2020 research and
innovation programme and Austria, Sweden, Spain, Italy, France,
Portugal, Ireland, Finland, Slovenia, Poland, Netherlands, Turkey.

The document reflects only the author’s view and the Com-
mission is not responsible for any use that may be made of the
information it contains.

REFERENCES
[1] 2009. NSL-KDD. [https://www.unb.ca/cic/datasets/nsl.html].
[2] Hervé Abdi and Lynne J Williams. 2010. Principal component analysis. Wiley

interdisciplinary reviews: computational statistics 2, 4 (2010), 433–459.
[3] Abdulla Amin Aburomman and Mamun Bin Ibne Reaz. 2017. A novel weighted

support vector machines multiclass classifier based on differential evolution for
intrusion detection systems. Information Sciences 414 (2017), 225–246.

[4] Majjed Al-Qatf, Yu Lasheng, Mohammed Al-Habib, and Kamal Al-Sabahi. 2018.
Deep learning approach combining sparse autoencoder with SVM for network
intrusion detection. Ieee Access 6 (2018), 52843–52856.

[5] Ammar Alazab, Michael Hobbs, Jemal Abawajy, and Moutaz Alazab. 2012. Using
feature selection for intrusion detection system. In 2012 international symposium
on communications and information technologies (ISCIT). IEEE, 296–301.

[6] Mohamed Alloghani, Dhiya Al-Jumeily, Jamila Mustafina, Abir Hussain, and
Ahmed J Aljaaf. 2020. A systematic review on supervised and unsupervised
machine learning algorithms for data science. Supervised and unsupervised
learning for data science (2020), 3–21.

[7] Md Zahangir Alom and Tarek M Taha. 2017. Network intrusion detection for
cyber security using unsupervised deep learning approaches. In 2017 IEEE national
aerospace and electronics conference (NAECON). IEEE, 63–69.

[8] MeghaAggarwal Amrita. 2013. Performance analysis of different feature selection
methods in intrusion detection. (2013).

[9] T Back and H P Schwefel. 1993. An overview of evolutionary algorithms for
parameter optimization. Evolutionary computation 1, 1 (1993), 1–23.

[10] M Bahrololum, E Salahi, and M Khaleghi. 2009. Machine learning techniques for
feature reduction in intrusion detection systems: a comparison. In 2009 Fourth
International Conference on Computer Sciences and Convergence Information Tech-
nology. IEEE, 1091–1095.

[11] S Balakrishnama and A Ganapathiraju. 1998. Linear Discriminant Analisys - a
brief tutorial. Institute for signal and information processing 18 (1998), 1–8.

[12] Anna L Buczak and Erhan Guven. 2015. A survey of data mining and machine
learning methods for cyber security intrusion detection. IEEE Communications
surveys & tutorials 18, 2 (2015), 1153–1176.

[13] T.M. Cover and P. Hart. 1967. Nearest neighbor pattern classification. IEEE
transactions on information theory 13, 1 (1967), 21–27.

[14] Fahimeh Farahnakian and Jukka Heikkonen. 2018. A deep auto-encoder based
approach for intrusion detection system. In 2018 20th International Conference on
Advanced Communication Technology (ICACT). IEEE, 178–183.

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[16] Jesper Hautsalo. 2021. Using Supervised Learning and Data Fusion to Detect
Network Attacks. [urn:nbn:se:mdh:diva-54957].

https://www.unb.ca/cic/datasets/nsl.html
http://www.deeplearningbook.org
urn:nbn:se:mdh:diva-54957

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA M. Leon et al.

[17] S. Hettich and S. D. Bay. 1999. The UCI KDD Archive. [http://kdd.ics.uci.edu].
Irvine, CA: University of California, Department of Information and Computer
Science..

[18] Cosimo Ieracitano, Ahsan Adeel, Francesco Carlo Morabito, and Amir Hussain.
2020. A novel statistical analysis and autoencoder driven intelligent intrusion
detection approach. Neurocomputing 387 (2020), 51–62.

[19] A.K. Jain, J. Mao, and K.M. Mohiuddin. 1996. Artificial neural networks: A tutorial.
Computer 3 (1996), 31–44.

[20] Mark A Kramer. 1991. Nonlinear principal component analysis using autoasso-
ciative neural networks. AIChE journal 37, 2 (1991), 233–243.

[21] Vipin Kumar, Himadri Chauhan, and Dheeraj Panwar. 2013. K-means clustering
approach to analyze NSL-KDD intrusion detection dataset. International Journal
of Soft Computing and Engineering (IJSCE) ISSN (2013), 2231–2307.

[22] Yesi Novaria Kunang, Siti Nurmaini, Deris Stiawan, Ahmad Zarkasi, et al. 2018.
Automatic features extraction using autoencoder in intrusion detection system.
In 2018 International Conference on Electrical Engineering and Computer Science
(ICECOS). IEEE, 219–224.

[23] Miguel Leon, Tijana Markovic, and Sasikumar Punnekkat. 2022. Comparative
Evaluation of Machine Learning Algorithms for Network Intrusion Detection and
Attack Classification (in-press). In 2022 international joint conference on neural
networks (IJCNN). IEEE.

[24] M Leon and N Xiong. 2014. Investigation of Mutation Strategies in Differential
Evolution for Solving Global Optimization Problems. In Artificial Intelligence and
Soft Computing. springer, 372–383.

[25] M Leon, Zenlanter Y., N Xiong, and F Herrera. 2016. Design Optimal Harmonic
Filters in Power Systems Using Greedy Adaptive Differential Evolution. In IEEE
21st International conference on Emerging Technologies and Factory Automation
(ETFA). 1–7.

[26] Tijana Markovic, Miguel Leon, David Buffoni, and Sasikumar Punnekkat. 2022.
Random Forest based on Federated Learning for Intrusion Detection (in-press). In
IFIP International Conference on Artificial Intelligence Applications and Innovations.
Springer.

[27] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. 2018. Kitsune:
an ensemble of autoencoders for online network intrusion detection. arXiv
preprint arXiv:1802.09089 (2018).

[28] Tom M Mitchell. 1999. Machine learning and data mining. Commun. ACM 42, 11
(1999), 30–36.

[29] Nour Moustafa and Jill Slay. 2015. UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set). In 2015
military communications and information systems conference (MilCIS). IEEE, 1–6.

[30] Nour Moustafa and Jill Slay. 2016. The evaluation of Network Anomaly Detection
Systems: Statistical analysis of the UNSW-NB15 data set and the comparison
with the KDD99 data set. Information Security Journal: A Global Perspective 25,
1-3 (2016), 18–31.

[31] Biswanath Mukherjee, L Todd Heberlein, and Karl N Levitt. 1994. Network
intrusion detection. IEEE network 8, 3 (1994), 26–41.

[32] Shafigh Parsazad, Ehsan Saboori, and Amin Allahyar. 2012. Fast feature reduction
in intrusion detection datasets. In 2012 Proceedings of the 35th International
Convention MIPRO. IEEE, 1023–1029.

[33] Paulo Angelo Alves Resende and André Costa Drummond. 2018. A survey of
random forest based methods for intrusion detection systems. Comput. Surveys
51, 3 (2018). https://doi.org/10.1145/3178582

[34] S Russell and P Norvig. 2016. Artificial Intelligence: A Modern Approach. In
Malaysia: Pearson Education Limited.

[35] George Sarossy. 2021. Anomaly detection in Network data with unsupervised
learning methods. [urn:nbn:se:mdh:diva-55096].

[36] R Storn and K Price. 1995. Differential evolution - a simple and efficient adaptive
scheme for global optimization over continuous spaces. Tech Rep. TR-95-012.
Comput. Sci. Inst., Berkeley, CA, USA.

[37] Rainer Storn and Kenneth Price. 1997. Differential Evolution –A Simple and Effi-
cient Heuristic for global Optimization over Continuous Spaces. Journal of Global
Optimization 11, 4 (1997), 341–359. https://doi.org/10.1023/A:1008202821328

[38] Mahdi Zamani and Mahnush Movahedi. 2013. Machine learning techniques for
intrusion detection. arXiv preprint arXiv:1312.2177 (2013).

http://kdd.ics.uci.edu
https://doi.org/10.1145/3178582
urn:nbn:se:mdh:diva-55096
https://doi.org/10.1023/A:1008202821328

	Abstract
	1 Introduction
	2 Method
	2.1 Feature Encoding: Autoencoder
	2.2 Training Autoencoder: Differential Evolution
	2.3 Classification with Encoded Features: Machine Learning Algorithms

	3 Experimental setup
	3.1 Network Dataset Description
	3.2 Experimental Settings

	4 Results and Discussion
	4.1 Differential Evolution Convergence
	4.2 Performance of Machine Learning Algorithms
	4.3 Execution Time of Machine Learning Algorithms
	4.4 Autoencoders vs Principal Component Analysis

	5 Conclusion
	References

