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†Department of Computer Systems, Tallinn University of Technology, Tallinn, Estonia
∗{mohammad.riazati, masoud.daneshtalab, mikael.sjodin, bjorn.lisper}@mdu.se

Abstract—Deep Neural Networks (DNNs) are now widely
adopted to solve various problems ranging from speech recogni-
tion to image classification. Since DNNs demand a large amount
of processing power, their implementation on hardware, i.e.,
FPGA or ASIC, has received much attention. High-level synthesis
is widely used since it significantly boosts productivity and
flexibility and requires minimal hardware knowledge. However,
when HLS transforms a C implementation to a Register-Transfer
Level one, the high parallelism capability of the FPGA is
not well-utilized. HLS tools provide a feature called directives
through which designers can guide the tool using some defined
C pragma statements to improve performance. Nevertheless,
finding appropriate directives is another challenge, which needs
considerable expertise and experience. This paper proposes
DeepFlexiHLS, a two-stage design space exploration flow to
find a set of directives to achieve minimal latency. In the first
stage, a partition-based method is used to find the directives
corresponding to each partition. Aggregating all these directives
leads to minimal latency. Experimental results show 54% more
speed-up than similar work on VGG neural network. In the
second stage, an estimator is implemented to find the latency
and resource utilization of various combinations of the found
directives. The results form a Pareto-frontier from which the
designer can choose if FPGA resources are limited or are not to
be entirely used by the DNN module.

Index Terms—Design Space Exploration, Deep Neural Net-
work, Accelerator, CNN, HLS

I. INTRODUCTION

Deep Neural Networks (DNN) are now used to solve various
problems in different domains. They are designed and trained
by neural network experts, usually through high-level libraries
and APIs like Tensorflow and Keras. After the architecture and
parameters are finalized, the network will be ready for the
execution phase (inference).

The design and training phase is usually performed on Graph-
ics Processing Units (GPU). However, the inference can be
executed on various platforms depending on the application,
and the performance is substantially dependent on the execution
platform. Traditionally, CPU platforms were used to execute
DNN models. Although they did not provide high performance,
they were more available and easier to program. GPUs, on the
other hand, offer a higher degree of parallelism. In addition to
their high power consumption, they have another drawback. Their
performance mainly relies on large batch sizes, which does not
apply to tasks where the processing latency of a single input is
considered, e.g., object detection in real-time applications [1].

The solution that has attracted significant attention for low-
latency and real-time applications is accelerating DNNs on plat-
forms like FPGA and ASIC. In addition to their power efficiency,
making them more fit for embedded environments, they flexibly
provide designers with varied parallelism levels. These platforms
allow thousands of different operations, if not interdependent, to
be performed simultaneously. The proposed method in this work
applies to both FPGA and ASIC platforms. However, we focus on
the FPGA and provide our results on it due to its reconfigurability
and fast development.

Flexibility in implementing a circuit on an FPGA means that
designers can allocate as many hardware resources as they desire,

of course, by considering its cost, to get lower latency. Although
the synthesis of a DNN on an FPGA seems very attractive,
in practice, it faces a serious challenge: neural network design
is performed by machine learning specialists using high-level
languages, whereas the hardware is implemented by low-level
hardware experts. To solve this problem and fill the gap between
these two groups, High-Level Synthesis (HLS) tools can be used.
HLS receives a high-level design and effortlessly converts it to
a hardware design on FPGA.

Despite the emergence of HLS, the problem is still not
completely solved. HLS is capable of creating a variety of archi-
tectures on the hardware. By default, it creates an architecture
with minimal parallelism and resource utilization and, therefore,
maximum latency. If the obtained latency is not as desired, users
can increase the parallelism level by applying directives. It makes
raising the parallelism level effortless. For instance, regarding a
loop construct, the user can determine the number of copies of
the loop body through the unroll directive [2]. Using this directive
makes the HLS tool utilize more hardware resources by creating
multiple instances of the loop body. Having multiple instances
of loop body on the hardware enables the HLS to increase the
parallelism, if not limited by other factors like data dependencies.

Applying directives that increase parallelism seems so simple.
It might make a designer think of applying all directives to all
constructs to achieve maximal parallelism and minimal latency.
However, applying the directives does not necessarily lead to a
design with added performance in practice. There are cases where
the HLS fails synthesizing:

• if the directives applied by the user result in a huge circuit
that exceeds the processing capacity of the HLS tool for
scheduling

• if the required resources are more than the available re-
sources on the specified chip

• if the concurrent memory accesses needed as the result of
applying directives cannot be provided due to the limited
ports of the specified memory unit

Another challenge in determining a set of directives for a
specific design is the extra resource utilization caused by applying
it. Increasing the parallelism usually comes at the cost of utilizing
more hardware resources. However, two sets of directives with
the same performance effect might require a different amount of
resources.

For a small design, setting HLS directives is relatively simple
and can be handled manually, even through a trial-and-error
procedure. However, in the case of DNNs, it is significantly
challenging. DNNs usually consist of many loops. Besides, most
of the loops are deeply nested meaning that a directive on one
loop can affect another directive on another loop, either an inner
or outer one. Therefore, determining the proper directives is a
problem with a vast search space. This paper proposes Deep-
FlexiHLS as an automated two-stage design space exploration
(DSE) method for determining the appropriate HLS directives
for DNNs.

In summary, the main contributions of the proposed method
are as follows:
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• An effortless and automatic flow from a high-level descrip-
tion of a DNN to a high-performance hardware implemen-
tation is provided.

• A set of directives to achieve minimal latency is found (stage
one).

• An estimator to find an HLS result without running it is
configured and tested. Then, the synthesis results for many
possible directive sets are estimated, resulting in a Pareto-
frontier of their achieved latency and resource utilization to
enable designers to choose according to their requirements
and resource availabilities (stage two).

DeepFlexiHLS is tested on two well-known networks, LeNet
[3] and VGG [4], and the results are presented and compared
with similar recent previous work.

The rest of this paper is organized as follows. In Section II, we
review some related work on DNN acceleration. The proposed
method is elaborated in Section III, and the experimental results
are provided in Section IV. Then, Section V discusses some
possible challenges. Finally, Section VI concludes the paper.

II. RELATED WORK

The acceleration of DNNs on FPGA has recently received
much attention and has been covered in numerous articles.
Related work of the present article can be considered in different
categories, which we cover in this section.

A group of methods directly generate RTL code that can be
synthesized on the FPGA. Some, such as [5] and [6], introduce a
customized accelerator for the specific network presented in their
articles, to classify MNIST and ImageNet images respectively. In
[7], the hardware architecture of a computing unit is proposed,
and the steps to implement a convolutional neural network using
configured units are explained. In [8], hand-optimized design
templates are used to generate a synthesizable code for the
accelerator.

Another group is methods based on heterogeneous systems.
In these methods, predefined operations are designed and imple-
mented as hardware elements on the FPGA and are controlled
and scheduled on a CPU. They may use OpenCL [9], [10], Legup
Pthread [11] or heterogeneous synthesis tools such as Xilinx
SDAccell or Xilinx SDSoC [12], [13].

Both of these groups of methods require neural network
designers to be familiar with hardware details such as mem-
ory structure or component communication methods. They are
relatively complex for them to use [10]. Besides, they suffer
from the problem of inflexibility, i.e., the user must accept a
certain delay and utilization point. A user cannot sacrifice delay
for utilization or vice versa, considering their requirements and
FPGA resources.

Some others use HLS to synthesize DNNs on FPGAs. HLS
alone cannot provide adequate performance and only transforms
the high-level implementation (mostly in C, C++, or SystemC) to
a register-transfer level one (mostly in VHDL or Verilog). Thus,
each of these works strives to improve the results through their
proposed methods. [14] suggests using activation functions with
customized implementation. [15] implements a specific DNN
and synthesizes it using the HLS. It manually adds directives
to that network to improve its performance. In [16], unroll and
pipeline directives are used to improve loop parallelism. It puts
these directives in specific and predefined locations and does
not consider the properties of each individual DNN. In [17], an
LLVM-based approach is used to find appropriate directives. We
have adopted an approach similar to this group. We propose a
generic method that applies to any DNN. No predefined directive
locations exist, and different results are provided to enable the
user to choose a desirable latency-utilization point.

There are also some works that, although they are not still
applied to the DNNs, can be considered related to the present
work. Those are methods that suggest DSE to find appropriate
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Fig. 1. The overall view of DeepFlexiHLS.

HLS directives for a high-level design, not necessarily DNNs.
They propose heuristic methods to explore the possible directives
for the HLS. Some of them, such as [18], propose the division
of a design and perform a complete DSE on each part. None
of these methods can be used for DNNs with deeply nested
loop structures (e.g., six levels). The directives applied to the
nested loops are not independent and affect each other’s results.
Besides, the full exploration, or even exploration using methods
such as Genetic Algorithm (GA), will fail due to the extremely
large number of possibilities, e.g., billions of combinations for a
single convolutional layer. Some others, such as [19] and [20],
use machine learning methods. These methods fail, too, for this
gigantic search space. Therefore, we propose a directed search
method to ensure that the complexities of a DNN implementation
are taken into account.

III. PROPOSED EXPLORATION METHOD

The primary input of the proposed method is the DNN
implementation. This source is then used both in the exploration
and the HLS runs. In the end, a directive set (called a cumulative
directive set) is created that results in minimal latency. Besides, a
set of Pareto-optimal points are created to help designers choose a
latency-utilization point based on their requirements and resource
limits. Figure 1 shows an overview of DeepFlexiHLS.

The input DNN implementation must be provided in C. It can
be created manually by an expert familiar with the functionality
of network layers or automatically, using the tools to convert
high-level DNN descriptions into C. It should be noted that the
conversion tool should be HLS aware in order to generate syn-
thesizable C implementation, e.g., [21]–[23]. We used DeepHLS
tool introduced in [22]. This tool receives the implementation of
a DNN in Keras [24] and generates a C code to be synthesized by
HLS and a corresponding testbench to test the C implementation.

A. Partitioning

A DNN implementation in C consists of a large number of loop
statements, and various HLS directives can be applied to each of
them. This makes the exploration space extremely large. One
solution is partitioning the design into less independent sections
and exploring each section separately. Each loop, together with
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Fig. 2. A pseudo code of partitioning two example DNN layers.

its inner nested loops, is a proper candidate for being a separate
partition; the loops in each partition significantly interact to
calculate the values for the output matrices, and two consecutive
partitions only depend on the output matrix of the first one of
them.

In order to create the list of partitions, we first determine the
parent loop for each loop. A loop without a parent together with
all the loops embodied in it is tagged as a separate partition.

It should be noted that the partitioning does not change the
C code but configures the DSE to perform the exploration on
each partition separately and find the corresponding directives.
In other words, every run of the HLS is executed on the entire C
implementation, including all partitions, while the corresponding
directives of only one partition are applied. Figure 2, as an
example, shows the result of partitioning two popular DNN layers
(a convolutional layer and a pooling layer).

B. Design Space Exploration
Now that the C implementation is ready and partitioned, the

first stage of the exploration can begin. The objective of the first
stage is to explore a set of HLS directives to achieve minimal
latency. Another possible objective (or constraint) can be resource
utilization which is covered in the second stage (Section III-C).

A DNN implementation consists of several layers. The number
of loops may vary depending on the layer type. For example,
convolutional, pooling, or fully connected layers consist of 6, 5,
and 2 loops. It is possible for each of the loops to pipeline, unroll,
or both. When the pipeline directive is applied to a specific loop,
the next iteration of the loop is executed as soon as the required
data is ready and does not wait for the current iteration to finish.
By applying the unroll directive, instead of implementing only
one copy of the loop content and using it for all iterations, several
copies of the loop content are created to run in parallel.

Each loop can be pipelined or not. However, in the case of the
unroll directive, the number of possibilities is much higher. In
fact, for a loop with n iterations, any unroll factor between two
and n is possible. After several tests on layers of various sizes, we
noticed that most of the time, the lowest latency occurs on one
of the divisors of n. Besides, when the unroll factor is one of the
divisors, the HLS will not need to implement the exit condition
test between iterations. Therefore, in the proposed method, we
consider only the divisors of the n. Note that, regarding pipeline
directives, there is an extra parameter known as Initiation Interval
(II). In this work, we always used the default value (one).

Table I lists possible parameters for each for-loop of a small ex-
ample convolutional layer. For each row, the number of possible
directive sets is mentioned in the last column. For example, for
the first row, there are two possible options for the pipeline, and
seven for the unroll, which results in 14 possible combinations.
Note that an unroll factor of one denotes not applying it.

It is noteworthy that there are more directives that affect the
performance of the implementation. In addition to the unroll and

pipeline directives that are automatically inserted, we manually
inserted array-partitioning directives. Automating the insertion of
them and considering some other directives is considered future
work. There are also some directives that are irrelevant. For ex-
ample, some HLS tools support function pipelining, which could
not be used in this work since the design is fully flat (i.e., only
containing for-loops but no functions). It should also be noted
that, in addition to the directives, there are some global HLS run
configurations, such as target device and clock frequency, that
were manually set and presented in the experimental setup.

TABLE I
POSSIBLE DIRECTIVES FOR AN EXAMPLE CONVOLUTIONAL LAYER

Nesting
level Iterations Pipeline

options Unroll options Directive set
possibilities

1 64 No, Yes 1, 2, 4, 8, 16, 32, 64 14
2 16 No, Yes 1, 2, 4, 8, 16 10
3 16 No, Yes 1, 2, 4, 8, 16 10
4 64 No, Yes 1, 2, 4, 8, 16, 32, 64 14
5 5 No, Yes 1, 5 4
6 5 No, Yes 1, 5 4

By multiplying the “possibilities” values, it is concluded that
more than 300 thousand combinations exist for a single layer
(14×10×10×14×4×4). It means that neither an exhaustive nor
a random algorithm, like the Genetic Algorithm (GA), can handle
such a vast search space.

In this work, we adopted a controlled algorithm to traverse
through possible combinations. The algorithm begins with choos-
ing a single directive among all possible directives and continues
by gradually increasing the number of active directives and
forming a directive set. Algorithm 1 lists the steps of the DSE
execution procedure.

The algorithm begins with running HLS on the base design
without including any pipeline or unroll directives. This is
equivalent to setting the pipeline options to ”No” and unroll
options to one for all of the for-loops. The resulting report of
the HLS is then parsed and analyzed to extract the latency of
the resulting circuit. Then, the possible directive sets for each
partition are explored. The following paragraph explains how
DSE is performed on a specific partition.

Starting from a current directive set, which in the beginning is
an empty set, a group of neighbor sets are created. A neighbor
set is formed by adding just one directive to the current set. Note
that all the neighbors are within the partition under process. The
result of the HLS for each of these neighbors is obtained. Then,
the one with minimum latency will be chosen as the winner of
the current round. The iteration continues until no improvement
is made by adding directives. The last directive set is stored for
the current partition and will be used later to form directive sets
for the entire design.

In order to obtain the latency when a directive set is applied,
HLS is needed to be executed. HLS is considered a black box
that synthesizes a design according to specified directives and
then reports the latency and resource utilization. In order to
save on the number of HLS executions, which is the most
time-consuming part of the algorithm, the following facts are
considered. They lead to finding the result of applying a directive
set without executing the HLS. In fact, before running the HLS
for a specific directive set, the directive set is simplified. If one of
the previous directive sets matches this simplified one, its result
is used without running the HLS.

• If a loop is pipelined, HLS completely unrolls all the loops
inside it (at any level). Therefore, unroll directives on the
inner loops are all ignored by HLS.

• When a loop is completely unrolled, pipelining it will be
ineffective and ignored by HLS.

• If a for loop has only one iteration, e.g., in implementing a
convolutional layer with one input feature map, pipelining
and unrolling are irrelevant and ignored by HLS.
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Due to the particular structure of the DNN implementation,
these simplifications result in a significant saving in the number
of the HLS runs. For instance, 32.76% fewer HLS runs were
required for the exploration of the LeNet network.

As mentioned earlier, after the DSE for each partition is
performed, the winning directive set is stored for the following
stages. However, at this point, the first result of the flow can
be produced: Cumulative Directive Set (CDS). CDS is created
by combining all the directive sets. It includes all the directives
related to all partitions and results in the minimal latency of the
design (Full optimization in Figure 1).

The problem that might occur is that the result might not
fit on the specified target FPGA if the neural network under
process is very large. Improving the latency is achieved through
increasing the parallelism, and parallelism comes at the cost of
extra resource utilization. Therefore, it is possible that the extra
required resources are not available on the target chip or are
not supposed to be used due to some considerations. In the
second stage of the DSE, we will present a method that finds
an aggregate directive set that can fulfill the resource constraints.

Algorithm 1: Partitioned DSE Algorithm (Stage 1)
I: Initial directive set (an empty set)
LI: the latency if directive set I is applied
DS: a Directive Set
SDS: a Simplified Directive Set
PMLi: the minimum found latency for a partition
PDSi: the directive set corresponding to a PMLi

neighborj of PDSi: a DS which contains only directives of partitioni and has
one more active directive than PDSi

Simplify(X): The simplified version of the directive set X
HLS(X): Runs HLS while applying the directive set X and returns the Latency
Output: PDSi for each partitioni.

LI ← HLS(I);

foreach partitioni do
MinLatency ← LI;
DS ← I;
repeat

PMLi ← MinLatency;
PDSi ← DS;
foreach neighborj of PDSi in partitioni do

SDS ← Simplify(neighborj );
if HLS is executed on SDS before then

Latency for SDS ← existing result of SDS;
else

Latency for SDS ← HLS(SDS);

MinLatency ← Min(Latencies of all SDSs) ;
DS ← neighborj which resulted in MinLatency;

until PMLi < MinLatency

C. Handling resource constraints
In the previous stage, the required directives to improve the

latency of each partition were found. If all the available resources
of the FPGA are to be consumed by the implemented DNN, all
the found directive sets of all the partitions will be accumulated
and applied to the implementation. However, if some FPGA
resources are needed for other system components or a smaller
FPGA is going to be used, then the designer might decide not
to apply the found directives of all the partitions but a subset
of them. In that case, an important question will be raised:
which subset of the found directives should be applied to achieve
minimal latency while considering the constraints?

Each combination of selected partitions results in a different la-
tency and resource overhead. The number of combinations might
be significant, e.g., 1,048,576, for a twenty-partition design, equal
to the number of possible subsets of a set of size 20. It is not
practical to collect the HLS result for all these combinations
This section implements an estimator to find the latency and
resource utilization if a specific directive set is applied without
running HLS. Then, the estimator is used to find the latency and
resource utilization for each of the combinations. Note that this
stage solves neither an optimization nor a constraint satisfaction
problem. Instead, it finds the latency and resource utilization

of all possible combinations with the help of an estimator and
provides the designer with the result (as a Pareto-frontier) to
choose the desired latency-utilization point.

An Aggregate Directive Set (ADS) for a combination of
partitions is created by merging all the directives found for each
of the partitions. Applying the found directive set for Partitioni
will cause Li decrease in the overall latency and Ri increase
in the utilization of a specific resource. Through examining the
synthesis result for various ADSs, we observed that, as was
expected because of the structure of the C code of DNNs, the total
decrease in latency and the total increase in resource utilization
for an ADS can be roughly calculated as the sum of all Lis and
Ris of all included partition in that ADS. However, there was an
exception to that. The synthesis result could differ more if there
were adjacent partitions included in an ADS. In this case, HLS
could perform more optimizations. Therefore, in order to have a
more accurate estimator, it is also beneficial to collect the HLS
results for some additional ADSs (Selected ADSs in Figure 1).

An Adjacent Partitions List (APL) is a set of partitions that
appear consecutively in the design. For instance, assuming a
design with four partitions (1, 2, 3, 4), there can be two APLs of
size 3: {1, 2, 3}, {2, 3, 4}. Formally, APLi,j is defined as an APL
starting from partition i having a size of j. Accordingly, APL2,3

≡ {2, 3, 4}. For example, for a twenty-partition design, there are
19, 18, and 2 APLs that contain two, three, and 19 consecutive
partitions, respectively. Therefore, for a twenty-partition design,
another 189 (19 + 18 + ...+ 3 + 2) Selected ADS runs (out of
1,048,576 possible combinations) are needed. In the experimental
results section, it will be shown how this enhances the estimator’s
accuracy.

An ADS for a Partitions List (PL), noted as ADS(PL), is
created by merging all the directives found for each of the
partitions in PL. Note that, unlike an APL, the partitions in a
PL are not necessarily adjacent.

The estimator calculates the latency and utilization of the
implementation when ADS(PL) is applied by finding the set of
largest APLs included in the PL, called LAPL (Largest APL
List). Formally:

LAPL(PL) = {APLi,j | ∄ x such that APLx,j+1 ⊆ PL} (1)

For example, in the case that PL = {1, 2, 4, 5, 6}, in which
partition 3 is not in the PL, then LAPL(PL) = {{1, 2}, {4, 5, 6}}.

Now, LAPL(PL), which is the list of the APLs included in
PL, is ready, and the estimated effect of PL on latency and
utilization can be calculated. EOL(ADS)/EOU(ADS) is the Effect
On the Latency/Utilization of the implementation as a result of
applying ADS. The effect is the amount of decrease/increase
when compared with a design with no directives. Note that
EOL(x) and EOU(x) in the following relations are already found
through executing HLS on Selected ADSs, and no more HLS
execution will be needed.

EOL(PL) =
∑

x∈APPL(PL)

EOL(x) (2)

EOU(PL) =
∑

x∈APPL(PL)

EOU(x) (3)

The final step will be the calculation of the latency and
utilization. For a specific PL, the latency/utilization is calculated
by adding EOL(PL)/EOU(PL) to the latency/utilization of the
base implementation. The base implementation is the HLS result
when no directive is supplied.

There are some points to be considered before concluding this
section.
• The order of complexity of the estimator algorithm is O(n2),

in which n is the number of partitions in the design (i.e.,
the number of network layers).
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• In this section, the term (resource) utilization was generi-
cally used for any of the FPGA resources, including DSP,
LUT, or FF.

• The proposed exploration method has no effect on the
accuracy of the DNN since the source design, i.e., the C
implementation, is fixed all through the process.

• Some HLS tools also support directives such as dataflow,
which greedily analyze the implementation (after applying
other directives) and perform some more latency optimiza-
tions. In this work, we have not considered these directives.
If they are also to be added, then the proposed estimation
method needs modifications.

IV. EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of DeepFlexiHLS, we
first compare its results with previous work. Then we investigate
how the proposed estimator and its result Pareto-frontier are
formed to handle resource constraints.

The first stage is to create a synthesizable C implementation
for the DNN in question. For this, we used the tool presented in
[22]. There are many options to specify for the tool before gen-
erating the C implementation, e.g., storage location for network
parameters, i.e., BRAM (default) or external RAM, order of the
for-loops in each layer, and label formats for the for-loops. For all
of them, we chose the default settings. Note that it is just about
the input design, and the exploration flow will not be affected.

A. Full optimization results
When all the found directives for all partitions are accumulated

and applied to the design, the full optimization result is achieved.
We examined our proposed method on both a small and a large
network: LeNet [4] and VGG [3]. These convolutional networks
are frequently used in the literature to evaluate various methods.

We found two previous works using HLS to synthesize LeNet.
[15], [16]. Both of them apply pipeline and unroll directives
to some specific, predetermined loops. The obtained latency for
each of them is 410,758 and 913,516 clock cycles, respectively.
In contrast, DeepFlexiHLS reaches 902 clock cycles.

In a recent work [17], a similar directive-based HLS opti-
mization method is adopted. It uses an LLVM-based approach,
connects various third-party tools to create a C code, and finally
finds the appropriate directives. To the best of our knowledge,
it is the only work that uses pure HLS to implement a large
network, such as VGG. We used the same experimental setup
as theirs: Xilinx Vivado HLS, Xilinx VU9P FPGA, the clock
frequency of 200 MHz, and eight-bit quantization. In order to
create the C implementation of VGG, we used the method
proposed in [22]. As demonstrated in Table II, the proposed
method provides 54% improvement in the latency. Although the
DSE enabled us to increase the parallelism and therefore decrease
the latency, higher parallelism comes at the cost of more resource
utilization. Therefore, as we expected, the resource utilization of
our implementation, i.e., DSP and LUT, is higher.

TABLE II
OPTIMIZATION RESULT COMPARISON WITH [17]

[17] DeepFlexiHLS
Speedup 1505.3x 2325.6x

DSP Utilization 38.50% 49.65%
LUT Utilization 22.40% 31.75%
FF Utilization Not Reported 25.76%

BRAM Utilization Not Reported 3.38%

B. Configuring the estimator
As explained in section III-C, in order to handle resource

constraints, we need to have the synthesis results of various
aggregate directive sets (ADS). An ADS consists of the found
directives of a selected set of layers. For instance, for a ten-layer
DNN, 210 different ADSs exist. Each execution of HLS can take
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Fig. 3. Configuring the estimator.

Fig. 4. Pareto-frontier of all aggregate directive sets.

from a few minutes to a few hours. Therefore, collecting the HLS
results for all of them by running HLS is impractical. To find the
HLS results of all possibilities, we implemented the estimator
discussed in III-C, including adjacent partitions. As stated earlier,
the reason for collecting the HLS results for adjacent partitions
is that when directives are added to two (or more) consecutive
layers, HLS applies some additional improvements. Figure 3
shows some randomly selected ADSs to test the accuracy of the
estimator. For each of them, HLS was executed (the blue curve)
to check how accurate the estimator result is. As can be seen,
the configuration that uses consecutive partitions as the source
of estimation, i.e., the black curve, is closer to the actual HLS
results and overlaps the blue curve most of the time. Through
this, the average accuracy error of the latency estimator decreased
from 9.74% to 3.86%. A similar result was obtained for the
accuracy of the LUT and FF utilization estimator: 8.31% and
6.45% improvement, respectively.

C. Latency versus resource utilization Pareto frontier
Using the configured estimator, the latency and resource uti-

lization of various ADSs can be obtained. Obviously, the two
objectives are contradictory. Therefore, the (full) exploration has
no optimal point but forms a Pareto frontier. Figure 4 shows the
latency and LUT utilization of different ADSs. The maximum
latency is for the ADS that utilizes the minimum number of
LUTs, and vice versa. Each point is associated with an ADS
and specifies the partitions that their related directives should
be applied. The points on the Pareto frontier, the orange curve,
are the points that are reasonable to be chosen by a designer
considering the acceptable latency and the resource constraints.

V. DISCUSSIONS

While implementing the DSE, we considered the HLS as a
black box. It means that we neither had access to nor needed the
internal data structure of the HLS. However, there are some points
that a change in the HLS can affect our DSE implementation,

Authorized licensed use limited to: Malardalen University. Downloaded on November 09,2022 at 07:47:06 UTC from IEEE Xplore.  Restrictions apply. 



not its overall flow. Firstly, supplying the generated directive set
might differ between various HLS tools. It is usually possible
through the directive files or the pragma directives. Directive
files are separate files supplied to the HLS along with the main
design. The directives are assigned to each language construct,
e.g., for-loops, using their labels. It means adding the labels to
the source files, though they might be optional for executions on
other platforms, is mandatory. Another alternative to supply the
directives is through some pragmas embedded in the source code
just below or above a specific language construct. Some HLS
tools might support one or both of these alternatives. Besides,
there is no specific standard for these directives’ syntax, and
each HLS tool uses its own defined format. Another point is
the generated report. Each HLS tool provides the report in its
specific format. It means that the DSE module responsible for
reading the latency from the generated report might be different
from one HLS tool to another.

Another aspect of the proposed method that might be argued
is its execution time. There are many combinations of directives
that are expected to work but do not due to some internal
HLS processing limits. Besides, even if a synthesis can run
successfully, the result might be different from the expectation.
Running HLS for the exploration has an important advantage: the
exploration is performed based on the real behavior of the tool.
However, it comes at the cost of exploration time. In this work,
there were many HLS runs that could be performed in parallel,
and thanks to a server with multiple CPUs, we managed to collect
the results much faster. However, we still admit that the method
will take some time and should probably be performed at the
final stages of a design lifetime.

The last thing worth mentioning is the simplicity of using the
tool, e.g., the learning curve of using the toolchain or the setup
time. Considering the automatic generation of C implementation,
e.g., through using [22], the whole flow will be automatic and
minimal setup is required to collect the result. The most important
settings are the target FPGA, the expected FPGA logic frequency,
and settings related to the C code generation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed DeepFlexiHLS, a partition-based
DSE method to explore possible HLS directives to improve
the performance of running the DNN on the FPGA. The main
advantage of using HLS to implement a DNN is being straight-
forward and easy to use for high-level DNN designers. Besides,
it allows designers simply switch from one implementation to
another based on the requirements and constraints. Its primary
disadvantage is that the generated circuit may have higher latency
than other methods. In this work, we targeted and solved this
issue. The method was tested on the VGG network, which is
among the largest DNNs benchmarked in the literature. The
proposed method first found the design with minimal latency
disregarding the resource utilization overhead, and then, through
configuring an estimator, explored all possible combinations
of layer optimization directives to provide a Pareto-frontier of
latency and resource utilization.

We considered pipeline and unroll directives in the present
work. Most HLS tools support more directives, especially to
tweak the memory access performance, e.g., through array parti-
tioning. In our future work, we are going to analyze and automate
the insertion of more HLS directives.
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