
Towards supporting malleable architecture models
Robbert Jongeling

Mälardalen University
Västerås, Sweden

robbert.jongeling@mdu.se

Federico Ciccozzi
Mälardalen University

Västerås, Sweden
federico.ciccozzi@mdu.se

Abstract—Engineers commonly use informal diagrams for
sketching, brainstorming, and communicating initial system de-
signs. Diagramming is accessible, new concepts can be added
freely, and diagrams can be specifically adjusted to communicate
at the exact right level of abstraction depending on the audience.
However, the information carried by informal diagrams is most
often not precise enough for automation purposes, e.g. analysis.
Consequently, there is a risk that these diagrams and the knowl-
edge carried by them are lost in slide decks or buried somewhere
in a documentation space. Diagrammatic models, which, unlike
informal diagrams, have well-defined syntax and semantics, can
be used for automatic analysis of consistency, architectural
conformance, change impact, and others. Given the preference
for informal diagramming, complete adoption of modeling for
architectures seems unlikely in industrial settings that we have
studied so far. Therefore, we propose to support engineers to
benefit from both these seemingly opposites, as well as to ensure
that diagrams convey the right amount of information for the
particular task at hand. We envision more malleable models,
in which engineers can freely navigate along two orthogonal
spectra: (1) horizontal, from informal diagramming to modeling
and (2) vertical, from less to more details exposed by a diagram.
This paper describes our vision for working with such malleable
models, use cases for it, and research needed to make it possible.

I. INTRODUCTION

Since in Model-Driven Engineering (MDE) ’everything’ is
to be considered model [1], any sketches or informal diagrams
of software architectures may be seen as models of the
software system. However, for the purposes of this work, it
is necessary to distinguish between different types of models,
depending on the way by which they are captured. Specifically,
we differentiate between models that have a defined syntax and
semantics and conform to modeling languages and informal
diagrams that may have an agreed syntax and semantics in
the minds of the engineers creating them, but not explicitly
captured nor enforced. Models conform to metamodels and can
be automatically parsed and transformed, whereas informal
diagrams cannot be automatically processed in the same way.

A. Benefits of modeling and informal diagramming

Modeling provides unambiguous communication by enforc-
ing conformance to a (possibly domain-specific) modeling lan-
guage with agreed syntax and semantics. In addition, modeling
tools may provide support for model validation and model
management. Models can be transformed or used as input
in automated tasks for the purpose of analyzing aspects like
consistency, architectural conformance, or change impact.

Informal diagramming is trivial to adopt, users are not
bound to particular tools, nor any special knowledge is re-
quired. It is free-form; that is, concepts can be added at will
and it is not relevant whether or not these are formalized in a
language. This freedom makes it possible to include concepts
in a diagram that are not yet clear, or not so easy to model
when having to strictly conform to a modeling language.
Moreover, the scope of diagrams can be adjusted at will and
on a need basis to the target audience and use case for the
particular diagram. For these reasons, informal diagramming
is a popular means of communication in industry.

B. How much modeling is enough?

The title of this paragraph is taken from one of the “grand
challenges” for MDE, as described in a recent overview
paper [4]. The question reflects the desire to minimize the
amount of modeling and simultaneously maximize its use, for
instance, for formal analysis of a design.

We observe that modeling and diagramming serve multiple
purposes in architecting software: communication, design, and
documentation. In other MDE applications, models may also
be used for implementation but that is not our focus in this
work. To effectively reuse captured knowledge for all these
purposes, engineers shall be able (1) to include both informal
aspects and formal modeling aspects in artifacts and (2) to
adjust the amount of information and the level of detail by
which information is shown in a particular artifact.

Despite the advantages of informal diagramming, we expect
these diagrams to be of limited use in later development phases
because there is limited ability to automatically parse and
transform these diagrams. Moreover, the lack of formalized
syntax and semantics of these diagrams may lead to different
interpretations by different architects. Nevertheless, informal
diagramming may be desired to be kept, for example, to
support a common way of communicating within a domain
or a company. In addition, informal diagrams are not easily
replaced by more formal models since engineers may not be
willing to give up the freedom informal diagramming provides.

Diagrams (be them informal or concrete model represen-
tations) are created both for early communication and for
documentation to be referenced during system development
and maintenance. Therefore, it should be possible to create dia-
grams that capture ’exactly’ the right amount of information at
the right level of abstraction for the target audience. The same
diagram can then be “filtered” to show the appropriate amount



of detail for a specific stakeholder or task at hand. When we
want to consider the created diagrams as real development
artifacts, that is, we want to trust that the implementation
reflects them or that they accurately document what is imple-
mented, we need to keep the two synchronized. This requires
formalized models rather than informal diagrams. Conversely,
enforcing strict conformance of models to modeling languages
limits engineers in expressing informal aspects, such as parts
of the system that are not easily expressed in the modeling
language. In addition, it may be difficult to define how a model
may contain exactly the right amount of information needed
for a particular communication task.

C. Malleable models

Hence, both extremes of diagramming and modeling are,
in their way, too strict to adequately capture architecture
knowledge and design throughout the development process;
what is required for models is to be more malleable, like a
metal that can be bent without breaking. Therefore, we propose
malleable models that allow engineers to benefit both from the
advantages of informal diagramming and from the benefits of
strict modeling, while also supporting the adjustment of the
level of detail by which models are visualized for specific uses.

Ideally, a malleable combination of informal diagramming
and modeling would allow communication, design, and doc-
umentation at the right levels of abstraction, strictness, and
granularity. “Flexible modeling”, proposed by Guerra et al.,
shares some of the arguments for benefiting from both model-
ing and informal diagramming [6]. We describe in Section II
how we can build on it. Moreover, in this paper we aim to
show a vision that extends our previously published work [7]
on flexible and blended [5] modeling.

II. MALLEABLE ARCHITECTURE MODELS

In this section, we detail the two orthogonal spectra com-
prising malleable models. An overview is shown in Figure 1,
which includes examples of artifacts at different extremes
along the horizontal and the vertical spectra.

A. The two spectra

The horizontal spectrum goes from informal diagramming
to modeling. We purposefully do not include sketching on
pen and paper or whiteboards in this spectrum, since these
sketches are clearly only used for communication and are less
likely to be reused in later development stages to serve as
design or documentation. On the diagramming end, we can
imagine tools such as Microsoft Visio, DrawIO, and others
that may support a modeling syntax, e.g. for UML models,
but do not enforce it. On the other end, we can imagine tools
such as Enterprise Architect, IBM Rational Rhapsody, and
others. Both types of tools are useful for specific architecting
and engineering tasks, but, as we will argue, neither of them
provides sufficient support for malleable models.

The orthogonal vertical spectrum shows the level of abstrac-
tion of the diagrams, ranging from showing less to more detail.
For different communication, design, or documentation tasks,

Diagramming Modeling

Less detail

More detail

Informal
deployment-like

diagram

High-level
decomposition in

system model

State machine of
part of system

Informal
sequence-like

diagram

Fig. 1. Spectra of malleable modeling with example artifacts along them.

different levels of detail may be needed. To communicate
effectively and take the most out of the knowledge that is
captured in diagrams, we envision supporting engineers to
move freely along this spectrum and thereby adjust a diagram
to include exactly the type and amount of information needed
for a particular use. To realise this vision, we aim to study
how to bring model slicing and semantic zooming approaches
such as [2] to malleable modeling.

The horizontal spectrum can be considered from both di-
rections. When starting from diagramming, we can consider
settings in which informal diagrams are not used optimally for
the reuse of information. By modeling parts of the information
contained in the informal diagrams, this information becomes
accessible for automation. The amount of information captured
in models can vary between none (as in a completely informal
diagram) to all (as in a model). Our horizontal spectrum
represents any amount of modeling in between these extremes
would contribute to malleable models. Conversely, when start-
ing from modeling, we can consider settings in which models
can be enhanced with informal information to strengthen their
understandability and flexible use.

B. Envisioned way of working

To communicate adequately the right amount of information
in models, while still allowing engineers to interact with them
as if they were informal diagrams, we propose malleable
modeling, which allows them both as well as fluid movement
along and across the two spectra.

a) Fluidly navigating the spectra: We need to support
fluid navigation along both axes of malleable modeling. Fluid
navigation implies that models can, without hindrance, be
supplemented with informal artifacts, and conversely, that parts
of informal diagrams can be modeled while allowing engineers
to continue informal diagramming, too. Moreover, we envision
a slider-like approach to decreasing or increasing the level of
detail shown in a model.

b) Partial modeling: In malleable modeling, we also
envision the need to support partial and domain-specific
modeling. By this, we mean that informal diagrams can be
partially captured as domain-specific models without the need



to include all aspects of them. This will provide opportunities,
e.g., for bottom-up meta-modeling of an existing graphical
notation. The final goal is not necessarily to end up with a
model but rather to optimally work with diagrams as views of
malleable models.

c) Generating synchronization mechanisms: To support
the continued work on diagrams along the spectrum, it is nec-
essary to automatically generate synchronization mechanisms
to keep an informal diagram consistent with its respective
underlying model. An example of such a synchronization
mechanism is shown in our earlier work [7].

d) Analysis: Malleable models can be used for auto-
mated analysis, since we provide an underlying model for parts
of the informal diagrams.

e) Start from existing tools: To increase relevance and
opportunities for adoption, we propose to focus on implement-
ing an approach that enhances existing tools for modeling and
informal diagramming of software architectures.

III. USAGE SCENARIOS FOR MALLEABLE MODELING

In this section, we describe scenarios in which architects and
engineers involved in the development of complex software-
intensive systems may benefit from malleable modeling.

a) Scenario 1: Starting from system modeling: Here, we
consider a setting at one of our industrial partners in which
a system model is designed and a software implementation
related to the system is manually created. Parts of the system
model prescribe the structure and intended behavior of the
software and simultaneously serve as documentation for the
implementation, to be consulted for tasks such as analyzing
the reusability of components across products. The system
model itself is too complex for software engineers to navigate.
For effective communication with software engineers about
new functionalities to be implemented, system engineers make
derivations of the system model in the form of screenshots.

In this setting, it would be beneficial for engineers to
navigate fluidly across levels of abstraction to eventually end
up with simplified models that carry exactly the information
they need. In addition, the company works at various confiden-
tiality levels and engineers may have different access rights to
models. Consequently, the reuse of components and communi-
cation between engineers may be hampered and would benefit
from simple means to limit the information shown in the
model to those portions needed for communication, excluding
other potentially confidential parts. Finally, allowing informal
elements inside models could serve as documentation that is
now only carried by the presentations (documents) created
when work is handed over from system to software engineers.

b) Scenario 2: Informal diagramming and C4 levels:
In this scenario, we consider a different industrial partner that
has adopted the C4 model [3] to describe other parts of the
architecture. To document the code, PlantUML diagrams are
embedded in markdown files that are included in the same
folders as the implementation. Synchronization is manual, but
more easily enforced since both artifacts reside in the same
version control system; for example, during code reviews, it

can be checked whether the diagrams are updated accord-
ing to the reviews if needed. Additional diagrams show the
“container” level view of the C4 model, where containers and
contained components are shown. This view is needed to show
the product line setup that the company has. In parallel to
the C4 diagrams, the company uses and maintains informal
diagrams, similar to deployment diagrams, that specify which
components are available in each product and for the platform.
Engineers could benefit more from the knowledge captured
in these informal diagrams if they were malleable models
so that they could be used to analyze, e.g., completeness of
implementation or reuse possibilities across products.

c) Scenario 3: From informal diagramming to modeling:
We consider a scenario similar to Scenario 2, where engineers
start from informal diagramming but want to analyze or exe-
cute their informal models as soon as possible to get insights
into their designs. This cannot be done with entirely informal
diagrams. If they were, on the other hand, partially formalized
models, we could run early executions of those formalized
portions (e.g., state machines). A realistic workflow is one
in which engineers start with whiteboard drawings that are
later refined via informal diagramming tools (due to remaining
uncertainties and unknowns) and eventually refined partly
and formalized in SysML for analysis purposes. This current
scenario is initially one-way, and the information contained in
the diagrams is reused minimally. Our proposal emphasizes
the need to alternate diagramming and modeling perspectives
and thus it is not limited to, e.g., creating a domain-specific
modeling language by example.

d) Scenario 4: Domain-specific informal diagramming:
Here, we consider a scenario where a graphical notation exists
in informal diagramming tools and we want to support partial
bottom-up metamodeling. This notation may be based on as-
pects that are not easily captured in most modeling languages,
such as the placement of model elements or the distances
between them. Our approach can assist engineers who work
with informal diagrams by migrating them to malleable models
that can be used as input for automated analysis tasks. At
the same time, engineers are free to continue to modify the
informal diagrams and add other informal aspects or extend
the graphical notation without impacting the models.

e) Scenario 5: From modeling to drawing: The previous
scenarios depicted the transition from informal diagramming
to modeling. Now, we consider instead a scenario where
formalized models, e.g. state machines, are created strictly
conforming to their metamodel. Imagine that the vendor of
the modeling tool wanted to extend it to support users to
include more informal elements in the diagrams. The parts
of the diagram that conform to the metamodel shall still be
executable, and the other elements should not hinder or break
executability. One of the potential added values of allowing
informal modeling in this scenario is if the tool helps users
migrate informal elements to formal elements that become
part of the model. That is to say, the point is not simply to
add a drawing palette to the tool, but to assist engineers in
migrating informal elements to formalized elements, thereby



conforming to the metamodel. This scenario is of interest to
users of the tool. For example, we consider a customer that
has created a large number of state machines in the vendor’s
tool and wants to more easily describe things that are not
yet clear, not yet finalized, concepts that are left as to-be-
done, or perhaps elements for more detailed documentation of
design choices. We have noticed that for companies that have
adopted modeling quite largely, this transition (from modeling
to drawing) is more interesting than the opposite along the
same spectrum.

IV. RESEARCH DIRECTIONS

We discuss research directions for both spectra and for
both directions along the horizontal spectrum, from informal
diagramming to modeling and from modeling to informal
diagramming. In the first direction, we can study how to gener-
alize approaches for creating malleable models from informal
diagrams, as well as how to help engineers create “better”
diagrams so that they can be partially considered models. In
the opposite direction, we can consider, for example, how
to boost modeling tools with informal diagramming abilities
and how to help engineers in migrating informal concepts to
concepts conforming to the metamodel. Moreover, we can
study whether it is possible to discover which model views
the engineers would like to have when they add informal
concepts and whether that indicates if they are missing certain
capabilities in the modeling language.

Furthermore, we can study how to help engineers com-
municate the right information by adjusting the level of
detail shown in their diagrams (be them informal or concrete
model representations). We can study how to allow modelers
to specify in a simple way what information to show and
what to hide. Alternatively, we could consider automatically
summarizing or abstracting parts of models for simplified
communication. Moreover, we can study how to enhance
modeling environments so that engineers can leverage ad-hoc
sliders to navigate the spectrum fluidly.

V. TECHNICAL PERSPECTIVE

To support fluid movement along the horizontal spectrum,
we propose a generalized version of the approach shown in [7],
in the following directions:
1) generalizing the generation of transformations between

informal diagrams and underlying textual models repre-
senting parts of these informal diagrams,

2) generalizing the generation of those transformations for
multiple informal diagramming tools, and

3) simplifying the definition of the legend by allowing anno-
tation or modifying the meta-information of elements.

To support the orthogonal spectrum of showing the right
amount of detail in diagrams, we see two parallel approaches
of interest. The first is to define, at the metamodel level,
which elements are shown at what “zoom-level”. Consider a
class diagram. We could zoom out, and see only class names
and associations, or zoom in to see attributes and operations.
Alternatively, in cases where we are diagramming, we can

imagine automated support that attempts to summarize/cluster
model elements when the engineer zooms out.

VI. XM, FLEXMDE, AND OTHER RELATED WORK

At past instances of the MODELS conference, there have
been workshops on extreme modeling (XM) and flexible
modeling (FlexMDE) that are of high relevance for this topic.
Research has been done in both directions, from drawing to
modeling and from modeling to drawing. For instance, bottom-
up metamodeling has similarities with our proposal, but does
not allow the flexibility we aim for, and it is only for one
direction, from diagramming to modeling. Flexisketch [8] is
a tool resulting from one of the previous research efforts,
although it focused only on bottom-up metamodeling and is a
standalone tool instead of starting from existing tools.

The paper on “On the Quest for Flexible Modeling” [6],
explicitly considers adding more capabilities for informal
aspects in modeling tools. Our proposals share arguments on
the importance of combining informal and formal aspects, but
our proposal differs in two crucial places: (1) we want not
only to support the direction from informality to modeling
but also the other way around, and, moreover, facilitate back-
and-forward moving along this spectrum, and (2) we include
the orthogonal vertical spectrum of showing more and less
information in the diagrams.

VII. CONCLUSION

Malleable models can be bent and worked with without
breaking them. In this paper, we aim to enhance model-
based software architecture by balancing the informality of
diagramming and the strictness of modeling to maximize the
effectiveness of software architecting by benefiting from (1)
informal diagramming, for quick design and communication,
and (2) modeling for automated validation and analysis. In this
vision paper, we have shown use cases in which it is relevant to
allow engineers to fluidly navigate along both of these spectra.
Furthermore, we have outlined relevant research directions that
would be necessary to be able to enhance engineering activities
with malleable models.

REFERENCES

[1] J. Bézivin. In search of a basic principle for model driven engineering.
Novatica Journal, Special Issue, 5(2):21–24, 2004.

[2] A. Blouin, B. Combemale, B Baudry, and O. Beaudoux. Kompren:
modeling and generating model slicers. Software & Systems Modeling,
14(1):321–337, 2015.

[3] S. Brown. The C4 model for visualising software architecture. https:
//c4model.com/. Accessed: 2022-12-06.

[4] A. Bucchiarone, J. Cabot, R. Paige, and A. Pierantonio. Grand challenges
in model-driven engineering: an analysis of the state of the research.
Software and Systems Modeling, pages 1–9, 2020.

[5] F. Ciccozzi, M. Tichy, H. Vangheluwe, and D. Weyns. Blended Modelling
– What, Why and How. In Procs of MPM4CPS workshop, 2019.

[6] E. Guerra and J. de Lara. On the quest for flexible modelling. In
Proceedings of the 21th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, pages 23–33, 2018.

[7] R. Jongeling, F. Ciccozzi, A. Cicchetti, and J. Carlson. From informal
architecture diagrams to flexible blended models. In European Conference
on Software Architecture, pages 143–158. Springer, 2022.

[8] D. Wüest, N. Seyff, and M. Glinz. Flexisketch: a lightweight sketching
and metamodeling approach for end-users. Software & Systems Modeling,
18(2):1513–1541, 2019.

https://c4model.com/
https://c4model.com/

	Introduction
	Benefits of modeling and informal diagramming
	How much modeling is enough?
	Malleable models

	Malleable architecture models
	The two spectra
	Envisioned way of working

	Usage scenarios for malleable modeling
	Research directions
	Technical perspective
	XM, FlexMDE, and other related work
	Conclusion
	References

