
Models’ Validation for Complex
Real-Time Systems

Irobi Ijeoma Sandra

Masters’ Degree thesis
June 2004

Department of Computer Science and Engineering
Mälardalen University

Västerås Sweden

Abstract
Models’ validation poses an interesting area of discussion in computer science and
engineering as in other disciplines, which cannot easily be overlooked.
No model of a complex system can be said to be absolutely correct, or a perfect description of
the system, as such models are, and should be an abstraction of the actual system.
This situation becomes even more glaring for real-time computer systems where stringent
conditions are imposed on the system, for instance, timing and hence predictability
constraints.

In this thesis we shall explore different perspective on models’ validation and techniques in
computer science and their attendant problems especially for complex real-time systems.
Major open and philosophical issues on the correctness criteria for models validations that
seek to answer such questions as: Can models be validated? Can ‘valid’ models yield
information? Do correct models contain truth? and more shall be investigated as well. We
will discuss the implications of our answers with respect to computer science and real-time
systems in particular arguing vehemently that models can yield information.

We shall briefly investigate validation of models in computational physics, and seek to draw
some parallels between its techniques and methodologies with those in computer science.
Finally, we will present results on our validation experiments for a robotic electric control
motor running on VxWorks operating system and from our work deduce and propose
guidelines for engineers and empirical scientists working on models. These guidelines suggest
simple formats of determining the number of criteria and queries that could be used in
validation, given different levels of abstraction and model confidence.

To the Third Person in the Trinity….The custodian of my dreams;
And to my parents, for setting my feet firmly on the right foundation.

Acknowledgements

I am profoundly grateful to my supervisor Johan Andersson for his valuable
help, advice and insights on this thesis, together with my examiner Anders Wall,
whose PhD thesis gave me good inspiration to venture into this very interesting
area of investigation.
I remain thankful to Christer Norström for coming up with this thesis and giving
me the opportunity to work with his research team in this area and to Hans
Hansson for introducing me to this program in the department in the very first
place.

I would like to thank Gordana Dodig-Crnkovic - for her great understanding and
useful answers to some of my questions in Computational Physics and Gerhard
Fohler for providing me with initial challenges and training in research work.
Ivan Christoff (Uppsala University), Torsten Soderstrom (Uppsala University),
Cedric Linder (Uppsala University), Jafar Mahmoudi, Corporate Research
department at Outokumpu Västerås for their immense help and comments that
have improved the quality of this work.

I also wish to thank all members of my family especially Edward, Nkechi and
Beulah for their support and goodwill during this period.
Finally many thanks to the ABB Robotics in Västerås for kindly lending us a
system running VxWorks for the experiments and all staff of computer science
and engineering department in MdH, for being such a wonderful bunch of
encouragement in everyway.

Table of contents
1 Introduction 7

1.1 Defining Validation: Issues of terminology 8
1.2 Real-Time Systems 8
1.3 Problem domain 9
1.4 Why Simulation? 9

2 Related works

 2.1 The validation process 11
 2.2 General Validation techniques 13
 2.3 Common sources of errors in models 14
 2.4 Model Robustness 15

3 Philosophical perspectives on models’ validation 16

3.1 Interesting views 16
3.2 Degrees of certainty 18
3.3 Ultimately 20

4 Validation of models of real-time systems

4.1 Hybrid method 22
4.2 Use of model equivalence 22

5 Modelling tools and analyses methods

5.1 Uppaal 24
5.2 TIMES 27
5.2.1 The input language 28
5.2.2 Tool overview 29
5.3 The probabilistic modelling and analysis framework 31

6 Validation in Computational Engineering
 and Physics 33

6.1 Validation in Computational Physics 33
6.2 Methodologies 34

7 Experiments: Validation of a real-time system using VxWorks
operating system

7.1 Motivation 36
7.2 Modelling on different levels of abstractions 36
7.3 System overview and description – profiling of
 a small size real-time system 36
7.4 Systems’ model creation 39
7.5 Metrics of validation 42
7.6 Methodology and systems’ measurement 43
7.7 Results 43
7.7.1 Simulation models results and plots 46
7.7.2 Simulation measurements 47
7.8 Analysis and Validation 49

8 Proposed guidelines and recommendations 52

9 Conclusions 55

10 Future works 56

References 57

Appendix 58

1 Introduction
Simulation models have gained increasing grounds in being used in problem solving and as
decision aids in several fields of study. It is the favorite tool of the engineer who intends to
test and investigate new ideas while reducing industrial risks to the barest minimum; it is
often a surrogate for experimentation with the actual system (whether it exists or still
proposed), which is not cost-effective, disruptive, or just impossible. Simulation is used to
evaluate the design of process components and separate unit operations. Model specifications
are re-used in the design evaluation of large integrated processes and control systems.
In addition, the models once made are used to support operator training. Computerized
dynamic simulation models are useful for verification of both conceptual and detailed process
designs.
They make in-house pre-testing of automation systems, user interfaces, and operational
procedures possible, as well. They are used for generic teaching and learning of basic
principles, detailed pre-training of new personnel, and re-training of experienced operators.
Simulation models are extensively used in a situation when the real system cannot be used for
experiments. This is the case for example when:

• The real system does not yet exist.
• The experiments would involve high economic risks.
• The experiments would be dangerous.
• The experiments cannot be controlled or carried out.
• The experimentation with the real system is expensive

1.1 Defining validation: Issues of terminology

There is a wide range of definitions and meanings given to verification and validation in
different technical disciplines. For example, the meaning given to those terms by the Institute
of Electrical and Electronics Engineers (IEEE) and the Software quality assurance community
differ from that used in the Department of Defence Modelling and Simulation community
(US), which has been the leader in the development of fundamental concepts and terminology
for verification and validation.

The validation of a model is referred to as a process of ensuring that a given model is
adequately accurate for a given purpose [1]. It is defined as the substantiation that a
computerized model within its domain of applicability possesses a satis factory range of
accuracy consistent with the intended application of the model [2]. Generally, it is usually
time consuming and expensive to establish absolute validity of a model over the complete
domain in which it is applicable. Therefore tests and eva luations are conducted till a point of
sufficient confidence is reached when the model could be considered valid for its intended
application.

This is usually done by comparing between observations of the system’s behavior and
predictions made by analyzing the model when both the model and the system are driven
under identical input conditions. Any model can only be validated with respect to the specific
purpose for which it was made; therefore there is no such thing as a 100% accurate model. A
model could be said to be valid for a particular set of conditions only when its accuracy
parameters lie within a specified range. Hence, the aim of validation is to show that a given
model is adequately accurate for its purpose, the conditions of which would normally be
agreed upon right from the inception of the model development.

In order to expedite future usage of a model, it should be relatively easy to keep the model
and the system consistent as the system evolves. Also the effort needed to adjust the model to
reflect the impact of, for instance, a maintenance operation, should not be the same as
building the initial model. The change required to update the model should be intuitive and
similar to the change in the system.
Model validation provides a systematic framework to include model error and uncertainty in
the decision-making process. Quite importantly, the inferences made in the validation domain
need to be extrapolated to the untested region (area) where the actual application takes place.

1.2 Real -time systems
Our main thrust in considering validity for general models would be to consider validity
criteria in particular for models of real-time software systems.

A real-time system could be referred to as any system in which the time at which output is
produced is significant. This is usually because the input corresponds to some movement in
the physical world, and the output has to relate to the same movement. The lag from input
time to output time must be sufficiently small for acceptable timeliness [3].

Real-time computing systems have different requirements from general computing systems.
For correctness purposes, the general computing systems only have to be functionally correct,
which implies a situation where if given a specific input, they should yield the desired output.
In this case, the timeliness of the output relative to the input is important.
In a multitasking environment, where more than one task is scheduled in the central
processing unit (CPU), we could employ a scheduling algorithm in order to create a sequence
in which the different tasks are run so as to achieve such timeliness. In that case one could
consider factors like minimal average response times and maximum average system
utilization to select an algorithm for use.

Real time sys tems are characterized by their temporal requirement. Hence apart from being
functionally correct, they must also exhibit temporal correctness (correct function provided at
correct time). The timing requirements are expressed as a bound on the time taken to perform
some computation, which is normally referred to as the deadline. Depending on how much
interest we have on the timing requirements of such systems being met, we could have hard
real-time systems – where we are very concerned if the system does no t respond to time
correctly – for instance a car air-bag in the event of an accident. There are also those
categorized as the soft real-time systems – where, with occasional misses of the timing
requirements, there would be no need to worry.

There exist some ways by which one can show the temporal correctness of a real-time system.
This includes building a model of the system mathematically and using it to analyze the
system’s behavior, which enables us to make good assertions as long as the model is good.
However, this method could be quite difficult due to the some characteristic aspects of the
real-time systems. For example, non-deterministic communication times, sharing of active
system resources using different scheduling algorithms, tasks arrival patterns not adequately
characterized prior to execution and may be probabilistic, making some details of
simplification on the model to keep it tractable in such a way that one compromises the
confidence level on the model.
Another second way could be by running extensive tests on a constructed prototype of the
system in question. This could be very expensive to carry out in practice.

Irrespective of the system’s critically, (whether soft or hard), adequate provision needs to be
made to analyze the system with respect to its temporal behaviour and resource utilization.

1.3 Problem domain
Large complex real time systems have gradually come to stay even with the advent in
technology. Most times, functionalities of such systems could be altered and new features
added thereby changing the temporal correctness of initial models of such systems (if they
exist). Due to this alteration, the model of the system (without the newly added system
features) becomes quite different from the new system and fast becomes useless.
At first, this may not constitute a big issue but as time goes on and the system evolves,
analysing it becomes increasingly an uphill task to the extent that the system may need to be
re-engineered to permit analyzability.
One of the major validation challenges for software models is that computer software has a
non-continuous nature, which implies that there could be drastic changes encountered as a
result of little variations in the system unlike what may be obtainable in models in other
fields.
It is very difficult if not impossible to explicitly and implicitly attribute validity to a software
model for several reasons.
Different techniques have been proposed and are in use for the validation of real-time system
models (as would be shown in subsequent sections). For each of these techniques, we shall
investigate their criteria for correctness and on what factors they are based. Even though
computer software are not continuous (which affects is models), as is the case with other
disciplines, it is our believe that useful deductions on other common grounds between these
fields could be mapped and modified for use in computer science and real-time systems in
particular.

1.4 Why simulation?
Several models’ verification and validation analyses methods abound. Each of these
techniques has inherently good and poor points. Some of such methods of analysis include:

• Model checking methods (for instance Uppaal and TIMES tools): This method and
tools are discussed later in details. The main ideas are to check for reachability and
schedulability in the modelled states representing the real system. The major low point
of this method is the ‘state explosion problem’, which entails the inability to
effectively capture all possible states for large systems. This, presently is still a hot
area of research.

• Traditional Schedulability analyses methods (for instance the Rate monotonic
method): The major disadvantage of analysis with this method especially for complex
real-time systems lies with its limited modelling language, which does not capture the
entirety of intended domains for representation.

• Simulation based approach – This approach manages the state space explosion
problem much better than the model checking methods but on the other hand can
result in a low level of confidence on the results from analysing the model. The reason
is mainly because the simulator has the ability to only make predictions based on the
simulated instances and not on unsimulated ones. Hence, while one can confidently
simulate, for instance, 1000 cases and make predictions based on them, the predictions
for 1001th case is unknown since the simulation does not cover it. The simulation-
based approach was used in this thesis for our experiments.

We use simulations to determine the temporal properties of complex real- time systems, which
do not easily yield to deterministic analysis methods. One can view simulations as an
approach of compromise [4] where we can utilize higher fidelity models than would normally
be possible with mathematical analysis and can complete the validation with less cost than
would have been if testing and prototyping methods were used.
The down part about simulations is that the results that we get from them could be less certain
than those we can get by using mathematical techniques. Also, more simplifications by way
of levels of abstraction could be made in such a manner that the level of confidence on the
model may not be as high as that of a real prototype.
Simulation could allow execution times to be expressed as distributions rather than worst case
values. Analysis of the simulation results is done by defining properties of interests in the
target system. For instance, such interesting properties could include the probability of
missing a deadline requirement on a task. Simulation also gives one the liberty to define non-
temporal related properties, for example non- empty message queues.

Section 2 of this thesis deals with related work, and shall review how validation is done for
real-time systems in computer science. Section 3 handles the philosophical perspectives (open
questions) on models validation while Section 4 will takes on validation of models of real-
time systems.
We discuss modelling tools in Section 5 and in Section 6 we explore validation
methodologies in computational physics with a brief comparison to those in computer science
and engineering. Section 7 reports our experiments on validation of the model of a robotic
system running on VxWorks, results and inferences. The proposed guidelines on validation
for use by empirical scientists and engineers working on models’ validation are presented in
Section 8. We conclude in Section 9 and give hints of future works in Section 10.

2 Related Work
In this section, we shall explore works tha t have been done previously with respect to
validation. We shall discuss general approaches of validation and their procedures. Model
robustness and common sources of errors in models and how to avoid them would also be
highlighted.

2.1 The validation Process

There are many scientific grounds on which simulation models are constructed and even more
techniques on which their validation rests.

In his paper [2], Sargent explored three major general approaches used to ascertain whether a
model is valid or invalid. These three approaches are:

• Decision by the development team based on the results of the various tests and
evaluations conducted as part of the model process.

• The independent verification & validation approach, which uses a third independent
party to decide the validity of the model, often used for model accreditation.

• Use of a scoring model, where scores are given to different parts of the validation
process and a cumulative of such scores, if it supersedes a given passing overall and
category score, certifies the model valid. This approach seems to be rather too
objective than it really is and could pose the problem of over-confidence in the model.

A simplified version of the modelling process as shown in Figure1 is described. The problem
entity depic ts the real or proposed system or phenomenon to be modelled.
The conceptual model is the mathematical or logical representation, which is developed
through an analysis and modelling phase, while the computerized model is an implementation
of the conceptual model on a computer.

Figure 1: A simplified version of the modelling process [4].

Problem
Entity

Conceptual
model

Computerized
Model

Operational
Validity

Conceptual
model validity

Data
Validity

Experimentation Analysis and
Modelling

Computerized model
verifivation

Therefore, conceptual validity as defined by Sargent refers to the determination that the
theories and assumptions on which the conceptual model is based are correct and ensures
reasonableness in the model representation of the problem entity. Operational validity is the
substantiation that the output behavior of the model is adequately accurate in its applicable
area; while data validity is ensuring that the necessary data for model construction, testing,
experiments and evaluations are sufficient and correct.

In summary, Sargent recommended that as a minimum practice in model validation
procedure, the following steps should be carried out:

• Extensive testing of the assumptions and theories underlying the model

• A face validity (this means asking people who are knowledgeable about the
system if the structure of the model and behavior are reasonable or not) of the
conceptual model should be done

• Before developing the model, the model users, sponsors and developers must
agree on the basic validation approach and techniques to be used.

• Validation results should be presented in the model documentation

• An exploration of the behavior of the model should be made in each iteration of
the model using the computerized model.

• As extensively as possible, for at least two sets of experimental conditions,
comparison should be made between the model and system output behavior data

For large systems involving subsystems and components, the validation information at
component- level could be used to make inference at system-level where full-scale test data is
not available. In [5] we see a statistical approach to the validation of simulation models. Also
the author describes three basic approaches namely:

• Comparing graphs of the output data: Graphical plots of different sets of experiments
with the model and system’s output behavior data are compared so as to substantiate if
the model’s output behaviour has enough accuracy for its given purpose. The graphs
are utilized for validation in three ways:

- Experts could use them in face validity technique to make a subjective
judgment, as to whether or not the model has enough accuracy for its given
purpose.
- The developers in the development process to determine sufficient accuracy
for validation could use the graphs
- They can also be used in the Turing tests.

• Hypothesis Tests: this is used in comparing distributions, parameters and time series of
the output data of a model and a system for each set of experimental conditions to
ascertain whether the output behavior of the model is within an acceptable range of
accuracy.
However, two kinds of errors could be obtained here. The first type is rejecting the
validity of a valid model while the second is accepting the validity of an invalid
model. In validation, this second type of error is very important and must be kept as
low as possible.

• Confidence intervals: The authors state that confidence intervals, ci, joint confidence
interval jci and simultaneous confidence interval, sci, can be obtained. It is always
desirable to build the model range of accuracy with lengths of the ci and sci and the
sizes of the jcr as small as possible. The shorter the lengths or the smaller the sizes, the

more useful and meaningful the specification range of the model range of accuracy
will usually be.

Static system behaviors presents less surprises and therefore generally does not require
simulation, however, in view of dynamic process behaviors, that is, events occurring with the
passage of time, there are several interesting observations that need to be considered.

 Thus in their work [6], J. F. Hetet et al made strong points about the problems inherent in
continuous discretized models and digital simulations. It is their opinion that since the digital
computer is discontinuous in its operation mode, it will be unable to properly evaluate the
variables that must simulate natural phenomena, which are mainly continuous. Hence it can
only give periodic samples of these variables.
For a particular machine, the time needed to calculate these variables depends on how
complex the computation (activity) may be. For instance, if results are requested every 10ms,
the computer could require 2ms at some point and another 3ms at some other point (example
context switch time), such that the real-time essence or notion is lost! Therefore most times
digital simulations could run slower than the real process with no given possibility of
mastering the running speed. This is quite peculiar with real-time programs, where
computation of the worst-case execution time is often a nightmare.

They further observed that this distortion with respect to the continuous model could alter the
course of the simulation considerably, especially if the sampling is not properly done. For
instance in the case that simulation changes in each state is a different task for the digital
computer, and in order to simulate the model relation, the tasks have to continually
communicate with each other, which take place only at sampling times. In between two of
these times, the computer could consider that the variables are constant.
Several other interesting schools of thought abound concerning validation.

2.2 General validation techniques
In [7], Balci identifies the following general models’ validation techniques, which can be used
either subjectively or objectively. These techniques are used both to validate sub-models and
overall models and also used often in computerized verification. These include:

• Comparison with other models: Several outputs of the model that is being validated
are compared with results of the other ‘valid’ models.

• Degenerate tests: The degeneracy of the model is tested by removing portions of the
model or through appropriately selecting the values of the input parameters.

• Face validity: this means asking people who are knowledgeable about the system if
the structure of the model and behavior are reasonable or not.

• Event validity: The events of occurrences of the simulation model are compared with
those of the real system to determine if they are similar.

• Extreme conditions test: Here the structure of the model and output should be
plausible for any extreme and unlikely combination of levels of factors in the system.

• Historical data validation: If data are collected from the system before constructing
the model, some of this data will be used to build the model while the rest would be
used to ascertain if the model behaves as the system does.

• Internal validity: Various replicas of a stochastic model are made to ascertain the
quantity of stochastic variableness in the model. A high amount of variability (lack of
consistency) may make the model’s output to be questionable and, if typical of the

problem entity, may question the appropriateness of the policy or system being
investigated.

• Multistage validation: A proposal for combining the three historical methods of
rationalism, positive economics and empiricism into a multistage of validation was
brought to light by Naylor and Finger in 1967. This method deals with developing the
models assumptions on theory, observations and general knowledge and intuition. The
models are validated where possible, through empirical testing and testing the input-
output relations of the model with the real system.

• Parameter variability (sensitivity analysis): This has to do with varying the values of
the input and internal parameters of a model and its output. The same relations should
occur in the model as in the real system. The parameters which are sensitive (cause
noticeable changes in the behavior of the model) need special attention in the
parameter estimation phase.

• Predictive validation: Here the model is used to forecast the behavior of the system
and comparisons are carried out to know if the behavior of the system and the model’s
forecast are the same.

• Traces: The idea here is to determine if the necessary accuracy and model’s logic is
correct by tracing different types of specific model behaviors.

• Turing tests: Opinion of knowledgeable experts on the systems are asked to see if they
can discriminate between the system and model outputs.

However, in all the work mentioned above, neither specific techniques, nor processes have
been duly defined specifically for real-time systems or particular inference studies done in
line with the thrust of this thesis.

Conceptual model validation
The aim of conceptual model validation is ensuring that the assumptions and theories on
which the conceptual model is based are correct. It also deals with the fact that the problem
definition, structure of the model, logic and casual relationships are reasonable for the purpose
for which the model was created.
The frequently used validation method in this case is the face validation and traces methods.
In the event that errors are observed in the conceptual model, it is revised and conceptual
model validation is carried out again.

Operational validation
Here one is interested to know if the model’s output behavior has the accuracy required for
the model’s purpose over the domain of the model’s intended application. It is at this phase
that majority of the evaluation and testing are carried out. All the techniques above that have
been mentioned are applicable to operational validity.

2.3 Common sources of errors in a Model
Assumptions and approximations during modelling and simulation could induce errors in the
prediction made based on the model. In software system, model building involves several
activities and could be error prone at any of its stages. In [8], Johan Andersson et al discussed
four potential error sources:

• Understanding of the system: Poor understanding of the target system could introduce
modelling errors. Therefore there must be a good understanding of the structure and

behavior of the system by the modelling team, so that they can build a valid and robust
model. Errors could be avoid by due consultations with experts, who should review
the resulting model.

• The modelling language: The risks of misinterpretations and misapplication are
associated with poor knowledge of tools for modelling, analysis and semantics of the
modelling language. This error could be well avoided by appropriately documenting
and communicating tools and modelling languages.

• System’s observation: In order to ensure that the system behavior is captured as much
as possible, an observation-based model must have observations taken at several
representative situations. A good example would be comparing a static system to a
dynamic system’s observation.
Also factors like the addition of probe effects have to be given due considerations if
used for measurements. This is essentially so for real-time systems where probe could
affect the system’s temporal behavior and could cause or prevent exceptional events
such as a missed deadline.

• Levels of abstraction: Robustness and accuracy would be greatly reduced if
information on relevant details about the system’s behavior were omitted. In this case,
a sensitivity analysis would be helpful.

2.4 Model Robustness
A model can be said to be robust regarding a given variation in the system’s implementation
if, in the event that this variation is applied to the model, it gives the same effect on the
predictions as it would with the observed system behavior.
This means that important system behaviors and semantics have been duly captured in the
right level of abstraction [9]. It could be verified using the sensitivity analysis.

A good illustrative example of the importance of robustness is to consider the scenario in
which, a system containing a binary semaphore is protecting a shared resource. Here, a
timeout would occur when a task has been on the waiting queue for a semaphore for a given
predefined time value. At the occurrence of the timeout, the task’s time of execution will be
increased as a result of error handling. This timeout previously has not had a reason to occur
in reality following previous versions. If however, when modelling this system, the timeout
possibility is omitted, the model could still seem to be accurate. But in the event that the
timeout occurs, one will observe a divergent system behavior from that which has been
predicted by the model.

3 Philosophical perspectives on models validation
Considering the questions: ‘what does it mean to validate concepts? Or what are the
criteria? Both philosophers and scientists have been unable to agree about the answers to
them [10]. Since a model is often taken to be an abstraction and simplification of reality (real
system being modelled), but reality (the nature of measured data, environmental and human
factors) in itself, has a nature of abstract complexity; a ‘correct’ model could at best be judged
as one which is ‘closest’ in representation to the real system, but the question are: just exactly
how close should ‘closest’ be to be correct? Are models true? Can truth emerge from a
‘truthless’ model? In essence, what do we need – a correct model or one that yields
information? [11]. In this Section, we shall examine these crucial questions arising from the
validation criteria of models that have been mentioned above.

3.1 Interesting views

Computer science is faced with the above difficulties more than other disciplines because of
its diverse constituents, ever-changing contextual environment (technology), and relatively
short life span. Validation assures that a model (or each construct in a conceptual model)
contains the features imputed to it in their individual definitions or description. In other
words, validity implies that it is well grounded, sound or capable of being justified.

The response of a computer science empiricist to the question "How do we validate?" could
be to design an experiment or build a prototype and test your concept or conceptual model.
But, a fundamental problem with this approach, notwithstanding the assumptions inherent in
statistical experimental design, is the presupposition of the "validity" of a concept or
conceptual model. That is, a belief in the notion that mere definition implies that a concept
has "face validity." If simply using a "term" made it acceptable to a discipline, one would
never reach an agreement on commonly held truisms or knowledge of that discipline.

Simulation models are believed across disciples to give information on the real system. In
[12], a 21st century philosopher Luciano Floridi defines information as basically comprising
‘meaningful content and truth’. In this thesis we argue that this definition to a large extent
does not apply to computer science.

In philosophy, there is a huge difference between truth and correctness. While truth is an
absolute, correctness is relative to the system. For example, if you read a book on the
philosophy of mathematics, "truth" is not the issue because mathematics does not deal in truth
but deals with provability. Maybe physics deals in truth, because the job of science and
engineering is to understand the world as it is. Thus the issue for consideration here is
correctness. Hence an important question to ask in this context would be: can simulation
models yield knowledge about the real world?

The epistemological importance of this question is such that if the answer is no, then what
many scientists are doing nowadays is just playing with computers, not creating new
knowledge! However, considering the practical importance of that question, if no is still the
answer, it means that the several policies, which are based on predictions from simulation
models, would grossly be misguided. It is interesting to note however that even in the field of
philosophy, varying opinions about towards whether verification and validation are possible
or not.

In [13], an interesting philosophical argument ensues between Oreskes et al and Fredrik
Suppe in trying to proffer solution to this seeming deadlock. Oreskes strongly argues that
simulation models cannot be verified and hence Scientists cannot obtain knowledge from
simulation modelling. On the contrary, Fredrik Suppe retorts that simulation models can be
verified in some sense and hence knowledge could be obtained from them. Some important
issues that readily comes to mind in this case would be a deep consideration of some
epistemological questions such as:

• What do we learn from experience?
• What is the correct way of learning from experience?

There are several traditional philosophical views to these, which include Inductivism
(enumerative induction, inference to the best explanation and Bayesianism) and
falsificationism.
However, Oreskes argues the above, utilizing traditional philosophical debate over
inductivism. Their criticism of the traditional view in 3 different areas stemmed from Hume’s
problem of induction, which says that:

1. All inductive reasonings are based on the assumption of uniformity:
What we have observed and what we haven't yet are basically similar. According to him, the
question would be: ‘why can we rely on such an assumption?’ Nothing we have observed
until today does not assure that the same regularity will hold tomorrow (unless we use
induction --- this is a circular argument).
2. Underdetermination: - Given any amount of evidence, there are mutually incompatible
theories, which would equally fit with the evidence, that is, when a prediction from a
theory contradicts with the observation; there are various mutually incompatible ways for
making the theory compatible with the evidence.
3. Theory-ladenness of observation:
 These philosophical views presuppose that our observation is somewhat independent from
our scientific theory. But what we see is strongly influenced by our background knowledge
and assumptions. A common example would be asking a zoologist and a computer scientist to
give interpretations to the diagram of a rabbit.

Why do we care about theory-ladenness of observation?
This is because a conflict between two incompatible theories is supposed to be settled by
conducting some experiments or making observations. However, theory- ladenness can cause
a serious problem with such a procedure.
Considering the Underdetermination vs. Theory- ladenness, the difference between the
underdetermination thesis and theory- ladenness can be summarized as follows:
a) Underdetermination
Same evidence -> Incompatible theories
b) Theory-ladenness:
Incompatible theories -> Different evidence.

In the actual sense, arguments by Oreskes are an application of these traditional criticisms of
induction to simulation models.

3.2 Degrees of certainty

An interesting categorization was projected by Oreskes in which the following distinctions
were made as various degrees of certainty:

• Absolutely true (logical truth) i.e. verification
• Plausible, probable (in terms of evidence) > confirmation
• Consistent (not contradictory) > validation

They conclude from their philosophical analogies given above and deduced that:
(a) Models cannot be verified in that there is no logical proof that a model is true.
(b) Models can be validated, this means that we can prove that a model does not contain a
detectable flaw and thus internally consistent. These can be evident in:

Comparisons of different solutions :
 If two totally different ways of solving a same problem give the same answer, these ways of
solution may be reliable.
Calibration:
Adjust initial values so that the model can accommodate known data. These procedures are
far from verifying the model.
Models may be confirmed
 Models may yield predictions that match with observation, but this means only that the
model is probable, not that the model is true.
Therefore from the above analysis, Oreskes further concludes:

- That the primary value of a simulation model is heuristic, that is to give evidence to
strengthen what may already have been partially established through other means for
instance, sensitivity analysis, or even challenging existing formulations.

- A simulation model is a `fiction'. It is never a `real thing'. (Cartwright).
However, in contrast to the above views, Suppe assumes a less strict philosophical stance as
follows:
(1) ‘It is true that we cannot logically prove that a model is true. But maybe their (Orseke’s)
way of defining 'verify' is too strict. Do we really want that absolute certainty? That makes all
empirical knowledge impossible’.

(2) Extra factors can affect the result. But still a simulation model is creating knowledge about
the real world when the system is isolated or other factors are negligible.

(3) Don't take underdetermination too seriously. Often it is hard to find even one reasonable
solution.

(4) Don't take assumption- ladenness of simulation models too seriously, either.

(5) An important aspect of modelling is the mapping relationship between three systems. As
far as this mapping relation holds, a simulation model is a representation of that aspect of the
real world, not just a heuristic tool.

With view to the above two major open and highly contestable areas, one could strike some
good balance by answering the following questions:

- What level of certainty do we want for scientific knowledge?
- Can simulation models provide that level of certainty?

In [14] Khazanchi attempts to integrate notions from the philosophy of social sciences, the
information systems (IS) field and its referent disciplines and sets forth a framework for the
validation of IS concepts. The proposed philosophical framework for validation of concepts
and conceptual models consists of a set of "criteria for validation" of concepts.
He asserts that as a concept fulfils each succeeding criteria its potential ability to have
inherent "truth content" with regard to its general acceptance in the field strengthens. After
all, "... concept formation and theory formation in science go hand in hand.... The better our
concepts, the better the theory we can formulate with them, and in turn, the better the concepts
available for the next improved theory." [15]. The following are his suggested criteria for such
validation:

1. Is it plausible? A concept or conceptual model is plausible if it has face validity.
Plausibility establishes that this model is more than just a belief. This criterion is useful to
assess the apparent reasonableness of an idea and could be demonstrated by deduction from
past research or theories, or, it could be developed on the basis of observation or induction.

2. Is it feasible? This criterion dictates that a concept or conceptual model, at the least, has the
quality of being workable. Added to plausibility, a feasible concept or conceptual model
would be operational in that it would be amenable to verbal, graphical, mathematical,
illustrative, prototypical characterization.

3. Is it effective? This criterion deals with the question: How effectively does the model
describe the phenomena under study? Also an effective concept or conceptual model has the
potential of serving our scientific purposes [16]. It also guides and stimulates other scientific
inquiries.

4. Is it pragmatic? The pragmatism criterion dictates that a concept or conceptual model
should not be restrictive to the extent of logically excluding previously valid models. Thus,
this criterion provides that concepts or conceptual models should subsume, for obviously
practical reasons, any conceptual structures that previously explained related phenomenon.
Hunt [1990] demonstrates this criterion with the example of Newton's law. He argues that
simple pragmatism would require that any new conceptual development could not preclude
Newton's laws (as in the case of Relativity, where these laws are a special case subsumed
within relativity). In effect this criterion emphasizes that concepts and conceptual models
should have some degree of abstract, logical self-consistency or coherence with other
concepts and conceptual models in the discipline.

5. Is it empirical? Empirical content implies that a concept or conceptual model must be
"empirically testable" [17]. In the same vein, Dewey affirms that although concepts can be
developed without reference to direct observation, and although this logical conceptual
development is indispensable to the growth of science, the ultimate test of a concept or
conceptual model lies in having the ability to empirically collect data to "corroborate" it.
According to Dewey [1933, p. 183], "Elaboration by reasoning may make a suggested idea
very rich and very plausible, but it will not settle the validity of that idea.

6. Is it predictive? Does it explain a phenomenon that is expected to occur? We can better
understand the meaning of this criterion through the words of Rashevsky (1954, p. 152-3): "A
theory or theoretical concept is considered the more convenient or useful, the better it enables
us to predict facts that hitherto have not been observed... The scientist constructs theories,
theoretical concepts or theoretical frames of reference that are isomorphic with the world of
observable phenomena. This isomorphism is never complete, never covers the whole range of
observable phenomena... wider the range of isomorphism, the greater predictive value of the
theory." Thus, a concept or conceptual model that is predictive would, at the least,
demonstrate that given certain antecedent conditions, the corresponding phenomena were
somehow expected to occur [Hunt, 1990].

7. Is it intersubjectively certifiable? Hunt [1990], Nagel [1979], and several others are of the
opinion that all scientific knowledge, and in consequence, concepts or conceptual models
"must be objective in the sense of being intersubjectively certifiable." This criterion provides
that concepts or conceptual models must be "testable by different investigators (thus inter-
subject)." Investigators with differing philosophical stance must be able to verify the imputed
truth content of these concepts or conceptual structures through observation, logical
evaluation, or experimentation.

8. Is it intermethodologically certifiable? In addition to being intersubjectively certifiable, this
related criterion provides that investigators using different research methodologies must be
able to test the veracity of the concept or conceptual model and predict the occurrence of the
same phenomenon.

3.3 Ultimately?
Ultimately can we gain information from models?
The Cambridge Dictionary of Philosophy defines information as:

‘an objective (mind independent) entity. It can be generated or carried by messages
(words, sentences) or by other products or cognizers (interpreters). Information can be
encoded and transmitted, but information would exist independent of its encoding or
transmission.

Suffice it to say that computer scientists view and define information basically as meaningful
data. Meaningful in the sense that it can be read, sensed or perceived (physical and non-
physical data). This meaningfulness is contextual such that it makes sense to the informee
from the informer (any medium applied) and satisfies basic operating codes of understanding
within its domain of applicability.
The implication of this definition is such that, for instance, what constitutes data that makes
sense within the programming semantics of complex system domain and thus yields
information may not necessarily be informative in other domains.
Do we really want absolute certainty? This would imply that all empirical knowledge is
impossible. However since knowledge and information are essentially different in their basic
forms and definitions, with knowledge of necessity made up of truth, one can say that in as
much as knowledge deals with the absolute sense, we can gain information from models,
which does not necessarily need to be true, on which basic improvements to the systems in
question can be made.
Scientifically speaking, simulations models are instruments that yield information irrespective
of whether the information is true or false about the real system. It is our conviction that
though valid models could be ‘probable’ and not ‘true’ and therefore may not serve as sole
basis for decision making, valid simulation models contain adequate results and data on which

very meaningful conclusions and inferences could be drawn; hence they yield information
about the real system.

4 Validation of models of real-time systems
As have been mentioned in the sections 1.3 and 4 above, one of the major validation
challenges for software models is that computer software has a non-continuous nature, which
implies that there could be drastic changes encountered as a result of little variations in the
system unlike what may be obtainable in models in other fields. For real- time systems,
however, an even bigger challenge is the effective modelling and validation of the system’s
temporal properties, which assumes the centre stage especially for safety-critical real-time
systems.
In this Section, we shall review some works that have been done in this area with the aim of
validating models of real-time systems and useful properties that enhance time relatedness.

4.1 Hybrid method
In their work, Laurent Kaiser et al [18], presents a hybrid method of validation for real-time
systems. They propose a method based on a unique representation of the complete systems
that combines simulation with actual analysis restricted to critical parts. The underlying
formalism is an offshoot of Timed Automata called Timed Input Output State Machine
(TIOSM), (Kone et al, 1995).
For the above reason, they define four kinds of models namely:

• Complete models: The initial model of the whole system in terms of TIOSM.
• Partial models: This is a part of the complete model, which is assumed to represent a

critical part of the behavior of the whole system.
• Black box models: The abstraction of the partial model obtained after its validation
• Derived models: The result of the integration of all the black boxes in the complete

model.
The two main stages involved are the validation of the critical parts and then the validation of
the system as a whole.

4.2 Use of model equivalence
Another proposed method of validation has to do with using model equivalences. Andersson
et al present a notion of equivalence as a relation that enables the comparison between the
temporal behaviors predicted during model analysis and the temporal behavior observed when
executing the system. However, they argue that due to the known fact that models are
abstractions of the system, the predicted behavior will also be an abstraction of the system
behavior, and therefore direct comparison of the predicted behavior with observed behavior
will not be feasible.

Hence they insist that observable property equivalence could rather be attained, in which case
it is determined that the system and the model are equal in relation to a given set of system
properties characterizing the temporal behavior of the system.
In their experimental framework, they defined system property as a probabilistic statement in
relation to an aspect of the system behavior that could be directly observed or derived from
observations of the system, which may not explicitly be found in the system implementation
or configuration. This definition therefore excludes system properties such as tasks priority,
tasks execution times and even the rate of periodic tasks, some of which could be found in the
implementation and others calculated by tools. Therefore good examples of system properties
for instance whether a task response times is less than a specific deadline or probability of a
message queue being full or empty.

Using this method, an important task would be the selection of relevant properties for the
comparison. The properties should be both relevant and varied so as to capture different
aspects of the temporal behavior. Four types of timing related properties include:

• Response time properties: This depends both on the execution time of the task and on
the temporal behavior of the other tasks.

• Event pattern properties: It is often possible to recognize patterns in the execution of
tasks and arrival of events. This pattern of occurrence is a system property that can be
used for comparison.

• Synchronization properties: These are related to semaphores and their effects. These
kinds of properties could help state the absence of timeouts and deadlocks.

• Message buffer properties: Includes those properties related to message buffers, for
example, length of time a task waits for a message, how often a task reads or writes
messages from the buffer.

Caution should be taken such that too few types of these properties are not used, which could
breed the risk of accepting an invalid model.

5 Modelling tools and analyses methods
Whereas simulation methods have been widespread in its usage, unfortunately many tools that
are used for constructing simulators do not deal with real time issues. This has constituted a
major deterrent in acceptability of modern scheduling and resource management algorithms in
industry.
Very few simulation tools are designed for real- time systems and among these few, none
addresses adequately, the issues peculiar to complex real-time systems. In this Section,
therefore we shall investigate some of these existing tools.

5.1 UPPAAL
Uppaal is an integrated tool environment for modelling, simulation and verification of real-
time systems [19].
It is good for systems, which can be modelled as a collection of non-deterministic processes
with finite control structure and real-valued clocks that are communicating through channels
or shared variables [20].
Some major areas where this is applied include real- time controllers and communication
protocols especially those in which timing aspects are critical. The editor in Uppaal’s graphic
user interface is as shown in Figure 2.

Figure 2: The editor in Uppaal GUI

Uppaal has three major parts namely:

• A descriptive language

• A simulator

• A model checker
The descriptive language is a non-deterministic guarded command language with data types
such as arrays and bounded integers. This is the modelling or design language, which is used
in expressing the behavior of the system as networks of automata with clock extension and
data variables.
The simulator is a validation tool that enables the observation of possible dynamic executions
of a system at the design on-set or modelling stages. It provides a non-expensive way to fault
detection before verification by the model checker that covers a more exhaustive dynamic
behavior of the system.
The model checker is responsible for checking invariants and properties for reachability by an
exploration of the system state-space; this implies reachability analysis in terms of the
symbolic states denoted by constraints.

Figure 3: The simulator in the Uppaal GUI

For the Uppaal tool, there are two major design priorities namely:

• Efficiency

• Ease of usage

For efficiency, the incorporation of the on-the-fly searching technique has been important for
the model-checker. Efficiency is enhanced by the application of a symbolic technique, which
lowers the problems encountered in verification to that of efficient manipulation and solving
of the constraints [21, 22, 23, 24].
In order to model or debug, the Uppaal model-checker could generate a diagnostic trace,
which could interpret the reason for which a property is either satisfied or not satisfied
through the system description. These diagnostic traces that are produced by the model-
checker could be automatically loaded to the simulator, which could be done while
investigating or visualizing the trace.

Figure 4: the uppaal verifier GUI.

Over the years, there have been improvements on Uppaal’s versions, with various extended
features.
In a nutshell, the major features of Uppaal2K include:

• An editor where requirements are specified, which also has a graphical user interface
to the verifier.

• A graphical system editor that allows the description of the system graphically.

• A graphical simulator that provides graphical visualization and recording of the
possible dynamic behaviors of a system descriptor, that is, the sequences of symbolic
states of the system. This could also be used to visualize traces produced by the
model-checker.

• A model-checker for an automatic verification of safety and bounded- liveness
properties by reachability analysis of the symbolic state-space.

• The generation of traces in case the verification of a given real-time system fails. The
diagnostic traces may be automatically loaded and graphically visualized using the
simulator.

The major limitation with Uppaal is known as the state space explosion problem (inability to
adequately model and simulate all states of the target system especially for very large
systems).
At the moment, research works in this state explosion area are focused towards addressing the
memory capacity challenges faced in using Uppaal so as to effectively capture all possible
states of large systems. Also to study data properties, it becomes rather awkward (and
inefficient) to model complex data structures in Uppaal.

5.2 TIMES
The word Times is an abbreviation of Tool for Modelling and Implementation of Embedded
Systems.
Times is a modelling and schedulability analysis tool for embedded real-time systems.
It is appropriate for systems, which can be described as a set of pre-emptive (can be
interrupted) or non-preemptive (cannot be interrupted) tasks that are triggered periodically or
sporadically by time or external events. It provides a graphical interface for editing and
simulation, and an engine for schedulability analysis.
Times have many features, mainly:

• A graphical editor for timed automata extended with tasks [25]. This allows the user to
model a system and the abstract behavior of its environment.
Also, the user could specify a set of preemptive or non-preemptive tasks with
parameters like the relative deadline, execution time and priority.

• A simulator where the user could validate the dynamic system behavior to observe
how the tasks execute according to the task parameters and a specified scheduling
policy.
The simulator displays a graphical picture of the generated trace showing the time
points when the tasks are released, invoked, suspended, resumed and completed.

• A verifier for schedulability analysis, that is used to check if all reachable states of the
complete system are schedulable, that means, all task instances meet their deadlines.

• A code generator for automatic synthesis of code from the model. If the automata
model is schedulable according to the schedulability analyzer the execution of the
generated code will meet all timing constraints specified in the model and the tasks.

A representation of Times is shown in Figure 5 below:
In Times, the modelling language and theoretical foundation is based on the model of timed
automata with tasks.

Figure 5: A representation of TIMES tool

5.2.1 The input language
The center of the input language in Times is the timed automata with real time tasks (TAT),
with shared variables between the automata and the tasks.
A TAT is a timed automaton that is extended with tasks that are triggered by events. A task in
this case is just an executable program with priority, deadline and worst-case execution time.

A task could update a set of variables using assignments in the form x :=E where x is a
variable and E is an expression (the value of E is returned when the task is completed). These
variables could be changed and tested by the automaton.
An edge leading towards a location in the automaton shows an event triggering the task, and
the guard (clock constraints) on the transition specifies the possible arrival times of the event.
This then helps in the description of concurrency and synchronization, and real time tasks,
which may be periodic, sporadic, preemptive, and (or) non- preemptive.
Therefore, an automaton is schedulable if there exists a pre-emptive or non-preemptive
scheduling strategy such that all possible sequences of events accepted by the automaton are
schedulable, meaning that all associated tasks can be computed within their deadlines.

In semantics, an extended automaton could do two kinds of transitions as a standard timed
automaton would, but the difference lies in the delay transitions, which corresponds to the
execution of running tasks with highest priorities or earliest deadlines, and idling for the other
tasks waiting to run. Discrete transitions tally with coming of new task instances. Whenever a

task is triggered, it is put in the task queue for execution (corresponding to the ready queue in
operating systems).

The scheduling problem of the TAT then is to verify that all released tasks are guaranteed to
always meet their deadlines when executed according to a given scheduling policy. In Times,
this analysis is performed by transforming a TAT system into ordinary timed automata
extended with subtraction operations on clocks, and encoding the schedulability problem to a
reachability problem.

5.2.2 Tool overview
The graphical layout of TIMES is represented in Figure 6.

Figure 6: An overview of Times tool simulator

This tool mainly consists of three parts, which are:

• System specification

• System analysis

• Code generation
The system specification area is further sub-divided into the control automata which is
modelled as a network of timed automata extended with tasks, a task table which bears

information about the released processes in the event that the control automata changes
location, and a scheduling policy.

The system editor tool is used for drawing the control automata of the system model. It shows
a table for defining the task parameters. The task parameters that are supported currently by
this tool include: relative deadline, execution time, period, priority, a reference to the task
code and a field indicating the task behavior. The currently supported scheduling policies are:
first-come first served; fixed priority, rate monotonic, deadline monotonic, and earliest
deadline first, which could all be preemptive or non-preemptive.

The outcome of the system editor is an XML representation of the control automata. The
information from the task table and the scheduling policy are used by the scheduling
generator to generate a scheduler automaton that is made in parallel with the controller
automata to ensure that the system behaves according to the scheduling policy and the task
parameters.

Figure 7: Times project editor

If the scheduling policy is non-preemptive, the scheduler automaton is an ordinary timed
automaton. However, in the event that the scheduling policy is preemptive, the scheduler
automaton is modelled as a variant of timed automata in which clock variables may be
updated by subtractions. This analysis too also suffers the same state explosion problem as is
in Uppaal.

5.3 The probabilistic Modelling and analysis Framework

In his work, Anders Wall described a probabilistic modelling and analysis framework, where
simulations are based on the analytical model of the system made in their probabilistic
modelling language ART-ML (Architecture and Real-Time Behavior Modelling Language).
In using simulations, other correctness criteria than just satisfying the deadlines are duly
defined. Also, execution time distributions could be used instead of assuming a worst-case
scenario. The ART-ML allows the modelling of the tasks behavior on a lower level than on
the software architecture. This gives rise to the creation of a more precise model as semantic
relations among components can be introduced.
In the above framework, the requirement language known as the Probabilistic Property
Language (PPL) is used so as to express statistical requirements, which are verified given the
simulation results. The advantage of this is that there is the possibility of getting more
feedback information from the analysis in probabilistic terms instead of the normal
schedulable (yes) or not schedulable (no) cases.

A major reason for the probabilistic property language is to analyze the impact of changes
made in a real-time system. The aim is its use to formulate probabilistic queries. Probabilistic
queries here could be seen as a relational operation on two probabilities.
 When modifications are made to a model and the model is run, large sizes of execution traces
are created and manually gathering any information from them becomes a futile effort.
Therefore the PPL comes handy with respect to the size of these traces.
Properties such as task and message queues can be extracted as probabilities of fulfilling some
requirements using the PPL. For example, to know whether a task, t, always meets its
deadline of 15 time units, would be ask whether the probability of the response time of task t,
being less than 15 is 1. This therefore can be simply checked from the traces (values collected
during simulation), whether the response time of all instances of task t, are actually less than
15.
The probability function, P (), forms the core of PPL. This is mainly the basis of all the
probabilistic queries because any query without P would only compare constants. The first
argument is the set, the task or probe, while the second argument is the condition of the query.
If the set is a task, then the returned result is the probability of some instance of the set
fulfilling the condition. However, if the set is a probe, then the result is the probability over
time. It is important to note that since this probability is based on the observations in a trace, it
is only an estimate of the true probability. It can be typified as follows:

 P(<set> , <condition>)

Additionally, PPL could contain bounded variables, which could be used in feeding back
values to the user. This variable could be part of the condition in a P function or as one
operand in the outer relational operation of the query.
For instance, an unbounded variable used in the condition of the query could be: what is the
deadline met with a probability of at least 0.7?

 P(t(i), t(i).resp < Y) > 0.7

The unbounded variable used as the probability of the task t missing a deadline of 12:

P(t(i), t(i).resp > 12) > Y

A major advantage of the PPL over other tools with just reachability functions like Uppaal is
that apart from giving a yes or no answer, it also makes available information in terms of
probability of the desired reachability. On the experiments carried out in this thesis, PPL was
used.

6 Validation in computational engineering and physics
As has been precisely pointed out above, validation cuts across disciplines. In this section we
shall investigate validation criteria and methods in computational engineering and physics
with regards to complex systems.
Note that the mention of computational physics here comprises fields of computational
engineering and physics such as computational fluid dynamics, computational solid
mechanics, structural dynamics, shock wave physics, and computational chemistry.

6.1 Validation in Computational Physics
To a large extent, there has been an increasing reliance on computer simulation of physical
processes for design, performance, reliability and safety of engineered systems. Verification
and validation of computational simulations are the primary methods of building users’
confidence in such models.
While verification is the assessment of the accuracy of the solution to a computational model,
validation is seen as the assessment of the accuracy of a computational simulation by
comparing it with data from experiments. In verification, the major issue is not the
relationship of the simulation to the real world, whereas in validation it is the core issue.
Implications and salient factors with respect to these definitions would include the fact that
both verification and validation are ‘processes of determining’ [26]. These could be described
as on-going activities, whose adequacy or completion is normally determined by practical
issues like budget, and the models’ intended use.
Also the above stated definitions have to do with an on-going pattern of the processes due to
the unavoidable and distressing fact that veracity, correctness and accuracy of a computerized,
or computational model cannot be demonstrated for all possible conditions and applications
except for trivial models. All encompassing proofs of correctness such as those developed in
mathematical analysis and logic; do not exist in complex modelling and simulation.
Actually, just as one cannot prove that computer codes that are complex have errors, so also
models of physics cannot be proven correct; they can only be disproved. Therefore
verification and validation activities can only assess the correctness or accuracy of the specific
cases that are tested.
Due to the emphasis laid on accuracy, it is assumed that a measure of correctness can be
determined. In validation activities, accuracy is measured in relation to experimental data,
which is the best assurance of reality. Based on the fact that all experimental data have
random (statistical) and bias (systematic) errors, the issue of ‘correctness’ in an absolute sense
therefore becomes impossible.
Hence from the point of view of engineering, ‘absolute truth’ is not required, but an
expectation of a meaningful statistical comparison of computational results and experimental
measurements.
As popularly pointed out by Roach [27] ‘verification deals with mathematics; validation deals
with physics’. Hence, validation handles issues of fidelity of the model to the specific
conditions of the real world.

In computational physics, the conceptual model is dominated by Partial Differential Equations
for mass conservation, momentum and energy. It also includes the auxiliary equations like
turbulence models and constitutive models for materials as well as the initial conditions and
boundary conditions of the Partial Differential Equations. The computerized model is an
operational computer program that implements the conceptual model.

6.2 Methodologies:
According to R. Rebba et al [28], validation under uncertainty involves quantifying the error
in the model prediction and effectively comparing the prediction with the results of the
experiment when both prediction and test data are stochastic.
The fundamental strategy or method of validation here deals with:

• Identifying and quantifying the error and uncertainty in the conceptual and computational

models.
• Quantifying the numerical error in the computational solution
• Making an estimate of the experimental uncertainty
• A comparison of the computational results with the experimental data

The above strategy insists that measurements in experiments are most trust-worthy reflections
of the real system in terms of validation. Thus this estimation process for error and
uncertainty should happen on both the mathematical physics and experiment.
With specific references to complex or larger systems, most times, a building-block approach
is adopted in Computational Physics and Engineering due to the infeasibility and
impracticality of carrying out true validation experiments on such systems [29, 30, 31, 32,
33].
In this approach, one divides the complex engineering system into a minimum of three tiers
namely the subsystem cases, the unit problems and the benchmark cases. The aim of this
division approach is to know how accurately the computational results compare with the
experimental data with the quantified uncertainty estimates at different degrees of physics
coupling and geometric complexity. Therefore one can see the above approach as being
constructive in the sense that it recognizes the existence of hierarchy in complex systems and
simulations and also recognizes that the amount and accuracy of information, which are
obtained through experiments, could differ over the range of tiers.
The above description also portrays the fact that validation activities could be done at several
different levels of Physics and system complexity, where each such comparisons yields
inferences of validation of the tiers both above and below the tier where the comparison is
made. It should be noted that the quality of the inference made at this point is dependent on
how complex the tiers are below and above the comparison tier, which could be seen as a
direct reflection of the strength of one’s scientific knowledge about the experiments and
calculations being made relative to more complex tiers.

This same problem of taking the whole system at a time (impracticability and infeasibility) is
also applicable to computer science. The approach of validation in tiers is comparable to the
concept of testing of computer systems where a large complex system could be divided into
component, units and sub-units for testing. In this case, the test results of each of the divisions
could be used to make reasonable inferences concerning the whole system.
However, this is as it concerns testing. Validation of models in Computer Science still
considers modelling of the whole system most times and validating all at once instead of
modelling sub-divisions of such systems and predicting overall system behaviours from them.
Thus one can ‘borrow’ this practise from Computational Physics to sub-divide target complex
systems into tiers, model each tier relative to the tiers above and below and then model the
interaction between the tiers in order to make intelligent and informed decisions. This process
would need that one possesses a good knowledge of the system and how it functions
especially as it concerns temporal correctness in real-time systems.

With regards to validation adequacy in computational physics, two issues are important:
1. Identifying the metrics (measure) of validation
2. A specification of the magnitude of the metrics to satisfy the application requirements.

The two (the metrics and criteria for success and failure should be made clear in order to
assess the expected adequacy of the outcomes of experimental-computational comparisons.
The choice of one or more metrics defines the means used to measure the disparity in
computational results and experimental data.
A metric should quantify both errors and uncertainties in the comparisons. The requirements
for the adequacy of all specified metrics are tied to the total application requirements
therefore the process of specification of the metrics for validation will work hand- in-hand
with the process of specifying the application requirements.

In comparison with practises in Computer Science, choices of initial validation metrics and
their magnitude specifications are obtainable. But in terms of error quantification and
uncertainties, it becomes excessively difficult due to the discontinuous nature of software
codes. This is because it is not easy to attribute error quantities to software codes, which
should either be wrong or right. Therefore, since exhaustive testing of codes of computer
systems especially for large complex systems could mean testing for several years, one cannot
absolutely make certainty statements (or give safety margins) as to the percentage error
inherent in a software code especially for non-tested case instances.
Potentials of systems’ design with high testability in computer science, which is the
probability of failures to be observed during testing when errors are present could produce
more reliable systems, {34} are similar to that discussed here and thus could be applied to
modelling too but not absolutely. Even while using the PIE model (determining when a bug or
error causes a failure), to find the smallest error inherent in the code, which happens if and
only if the location of the error is executed in the program, the execution of the error leads to
an erroneous state and the erroneous state is propagated to the output; one can only determine
the minimum number of test cases to find the smallest error for a certain confidence level and
not the maximum and so would only yield probable instances in models as well. Moreover,
testing explores the real system and not an abstraction.

7 Experiments
In this section we shall discuss the major motivation for our work. We will report our
experiments, observations, comparison our validation process and technique and make useful
conclusions on the created model’s validity.
Large and complex real-time (both distributed and non-distributed) computer systems always
evolve as time goes on.
During their evolving period, it is likely that increasing the functionality and hence
maintaining the system becomes absolutely necessary. In cases where models of the original
system have been made, it will be noticed that the temporal model of the system becomes
inconsistent with the system’s current implementation, in which case, one looses the
possibility to analyze the effect created by the added features as they relate to the temporal
behavior.
Obviously, this may not be an issue for small systems but for complex and large systems, the
resulting consequences may not be foreseen immediately. It becomes important therefore not
only to update existing models of the system but also to adopt feasible, flexible and realistic
analyses methods that could readily validate such models.
In our experiments, the major tasks were to create a system, and to make an abstraction of the
system (a model) based on some criteria. We then simulated and validated the resulting model
with respect to the criteria that have been specified using the PPL.
We used the VxWorks, which is a real-time operating system and then evaluated the
correctness of the model by performing a sensitivity analysis.

7.2 Modelling on different levels of abstractions
During model creation, a level of abstraction (defining and selecting relevant parameters with
which to validate against) is normally chosen. It is this level of abstraction that defines, after
comparisons, the accuracy and correctness of the model.
A very high level of abstraction, which entails choosing too few out of the essential properties
or characteristics of the target system could result in a model not being accurate hence being
of limited use in its domain of application. On the other hand, choosing a very low level of
abstraction would literally mean recreating the target system, in which case there would be no
need for the model.
Therefore, a good situation would be a choice in between these two levels that properly
characterizes the essential properties of the system from which analysis and possible
predictions could be made. Hence the model should be as simple as possible and yet a good
description of the system.

7.3 System description and overview
The system we created is a control system, which is as shown in the Figure 8.
It controls an electric motor based on the data from a sensor. There are three critical tasks in
the system namely, the sensor task, the control task and the drive task, depending on data sent
through message buffers. The buffers are as small as possible so as to avoid using old sensor
data, which could occur if a large sized buffer were used.

The sensor task:

• a time critical task, time triggered taking readings from the sensor every 2ms,
• it stores the value of its reading in the message buffer called CTRL Data Queue,

• when the buffer is full (that is, contains the maximum data readings), the oldest data is
removed and,

• it has the highest priority (1).

Figure 8: System overview

The CTRL task:

• Only executed when the number of sensor readings produced and stored in the
message buffer is five.

• If 5 data entries are available, the CTRL consumes these five readings and calculates a
motor reference, which it sends to the Drive Queue message buffer.

• Has a low priority of 4.

Motor

Net

Sen
sor CT

RL
Dri
ve

DRIVEQ

Periodic
2 ms

Periodic
10 ms

CTRLQ

Figure 9: system with the NET task

The DRIVE task:

• Carries out periodic executions and sends data to the motor control every 10th ms
(since each reading is taking periodically every 2ms).

• Reads entries from the Drive Queue and based on that, it updates the signals to the
engine control electronics.

• It has a priority of 3.
• If the Drive Queue is empty when the drive task wants to read data, it is a system

failure.
In the system, there are some less critical tasks, which also communicate with the CTRL task,
but through the message buffer called CTRLCMDQ.
When such messages are processed, the motor references calculation is delayed. This would
likely not be a problem in the sense that such messages in essence only delays the CTRL for a
relatively short time and there are enough buffered motor references in the DRIVEQ so as to
avoid it being empty (starvation). At this point the CTRL is BUSY.

As can be seen from the diagrams above, two versions of the system were considered in our
experiment, the first being the platform, which consists of the SENSOR, CTRL and DRIVE
tasks as shown in the system overview diagram, Figure 8 above.
In the second version, a NET task was added. The NET task is used to denote ‘environmental’
variations that could form part of the input to our system. These may not directly be under
specific periodic control as shown in the system overview diagram, Figure 9.

Motor

Net

Sen
sor CT

RL
Dri
ve

DRIVEQ

Periodic
2 ms

Periodic
10 ms

CTRLQ

The NET task:
• Reacts to commands from the network
• Has a priority of 2
• Inter-arrival time is stochastic (between 5 – 25) ms

In order to analyze the temporal behavior of the two versions of the system, the Probabilistic
property language (PPL) is used. For complex real-time systems, traditional methods used in
the basic real-time systems’ analyses could prove unrealistic in the sense that lots of
assumptions and stringent constraints are built into them, that may not fit into real life
situations. Hence tools like Uppaal with limitations as have been discussed above, may not
give the best results.
However, PPL gives a probabilistic outlook. Even though it is no silver bullet, it gives good
realistic information about the problem as against some of its contemporaries, especially with
regards to the state space explosion problems, which could occur in complex systems.

A technique that is employed in the field of control theory is system identification. From
measurements and observations of the relationship between the input and output of the signals
in a process, one can determine a model in terms of a transfer function.
Outputs that are produced by a simulation of the model is considered to be correct if the
physical processes and the simulations produce the same output data.
On models of continuous systems, one can apply residual methods, which is an observation of
whether or not the residual (prediction errors) and the input signal are independent. If it
happens that the errors depend on the input, it indicates that there are dynamics in the systems
that are not in the model. Therefore, testing the model with different input signals and
comparing the prediction with the signals produced by the actual system is good if the process
is a continuous one.
However, computer systems are discontinuous in nature, which implies that the pattern of
behavior could change dramatically as a result of small changes in the system.
The approach used in our experiment for validation is close to that used in system
identification. The idea is that irregularities would be detected if we introduce changes in the
system and corresponding changes in the model. Therefore when we compare the simulation
results with the data that has been measured in the system, we would be able to ascertain the
models’ validity. We describe the different steps in the model creation below.

7.4 System model creation
In creating our initial model, we carried out the following activities as shown in Figure10
below:
1. Structural modelling: Here we identified and modelled the structure of the target system.
This has to do with modelling the tasks, synchronization, communication and interactions
among them in the system.
2. System measurement and population:
We measure the system and populate the structural model with data about the temporal
behavior. Also information that would be required for the phase of validation is collected at
this point, for instance the response times.
3. Tuning of the model:
In this step, we first of all simulate the initially created model with the aim of comparing them
with the validation data that were collected in step 2 above. We watched to see whether the
target systems’ behavior has been well represented by the model accurately and if not,
introduce more relevant details into the model.

A major risk that is inherent in this step is the temptation to introduce too many fine-details
into the model, which only reflects the complexity of the system in question.
4. Sensitivity analysis:
In order to validate our model, we carried out sensitivity analysis. This is normally based on
the foreseen potential changes in the system. When sensitivity analysis was carried out on our
system, we observed:

• A change in the existing behavior of the tasks

• We added the net task to see what effect this would have

• We changed the priority of the NET task so that it has a higher priority than the CTRL
task.

Figure 10: Process of model construction

At this point, it is important to note that the model accuracy relies on the quality of the
measured data. The data measurement should affect the system as little as possible. If the
probe effect on the system is too big, one could have an erroneous model, which consequently
would lead to wrong predictions from the model results.
Comparison of the target system with the behavior of the model is done in a simplified
manner so as to improve the model iteratively to a desired level [34]. See Figure 11 below.

Step

1

Step

2

Step

3

Step

4

Step

5

Sensitivity
analysis

Tune the
model

Populate the
model

Structural
modelling

Figure 11: workflow of making an analytical model

Probe and

measure the
system

Process

Measurements

Build a model
and simulate

Specify probabilistic
Properties and

Analyze simulation

 results.

7.5 Metrics for validation

Validation metrics could be viewed as yardsticks for comparison between measurements
taken on the real system and those run by simulation.
For our system, several metrics could be used. These include:

• response time,
• scheduling properties on inter-arrival time: This deals with how the inter-arrival times

differ between the tasks,
• shared resources: How resources are shared among the tasks - whether independently

or involving semaphores,
• message buffers: Deals with instances of average numbers of messages in the message

queue, for instance, their minimum or maximum numbers,
• communication: Here we consider instances of tasks sending and receiving messages;

for instance, if one sends, does the other receive?
• execution times of the tasks: How long the tasks take to execute.

However, in the experiment, two of the above metrics were considered namely, the tasks’
execution times and response times. The Figure 12 below shows the system attributes as
described.

Figure 12: System’s attributes

7.6 Methodologies and Systems’ Measurement

Motor

N
et

Sen
sor CT

RL
Dri
ve

DRIVEQ

Priority 1 (best)
C = 240-290 us

Priority 4
C = 3000-4200 us

Priority 3
C = 350-500 us

Priority 2
C = 1200-1350 us

Stochastic
5-25 ms

Periodic
2 ms

Periodic
10 ms

CTRLQ

Our target system runs VxWorks real-time operating system; an Intel Pentium 200MHZ from
ABB Robotics. Timing was measured using a probe that is executed on each task switch. The
probe was not removed but was left in the code. Constraint s that could be obtained in
inserting the probe include memory size and probe effect (slower running of the system,
which could give an effect with negative consequences).

Test-cases:
There were two test cases in our experiment. These are:

1 Case 1 – 1: For this test case, there is no NET task. We have only the sensor, the control

and the drive tasks.
2 Case 3 – 1: In this case, we introduced the NET tasks, which arrived stochastically, 5 to

25 milliseconds between instances.

In the first case, the sensor task’s measured execution time was 240 – 290 microseconds. The
CTRL task measured execution time was 3000 – 4200 microseconds, while that of the DRIVE
task was 350 – 500 microseconds.
On the second case, the execution times of the three tasks were maintained and that of the
NET task was 1200 – 1350, with an inter-arrival time of between 5 and 25 milliseconds.

7.7 Results
In showing and discussing the results, we shall first consider the target systems’
measurements and then those of the model from the simulator.
A good scenario for the comparison between our model and the target system occurred with
the control task as shall be shown later.

Case 1 -1
The Sensor task: Part of the measured data is given in the Table 1 in Appendix B1 that shows
the measurements with respect to the execution and response times’ metrics. Each plotted dot
represents an instance of execution.
A plotted Excel chart of the measured values is as shown in Figure 13.

Execution time, sensor, case1-1

0

100

200

300

400

500

600

700

800

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000

Instance Start Time (ms)

In
st

an
ce

 E
xe

cu
ti

o
n

 T
im

e
(m

s)

Figure 13: Execution time plot for case 1 -1 (sensor task)

Also, an Excel chart plot of the above measured response time is shown below in Figure 14:

Response Time, sensor, case1-1

0

100

200

300

400

500

600

700

800

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000

Instance Start Time (ms)

In
st

an
ce

 R
es

po
ns

e
Ti

m
e

(m
s)

Figure 14: Excel plotted response time for case 1–1 (sensor task)

Case 3 -1 (with the NET task added)

The control task:
A cross section of the measurements for the control task’s execution and response times are
shown in the Table 2 in Appendix B2.

Execution Time, Ctrl, case3-1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000

Instance Start Time (ms)

In
st

an
ce

 R
es

po
ns

e
Ti

m
e

(m
s)

Figure 15: Execution time plot for case 3 -1 (control task)

Response Time, ctrl, case3-1

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000

Instance Start Time

In
st

an
ce

 R
es

p
o

n
se

 T
im

e

Figure 16: Response time plot for case 3 -1 (control task)

7. 7.1 Simulation models results and plots
Now we shall consider the results and data from our simulations.

Case 1-1
Sensor task: From the simulation results, a cross section of the measurement is as shown in
the table 3 in the appendix B3 below.
A plotted Excel chat of the above table for the simulated execution and response times are as
shown below in Figure 17.

Simulated sensor, execution time

0

50

100

150

200

250

300

350

0 1000000 2000000 3000000 4000000 5000000 6000000

Figure 17: Excel plotted Simulation execution time for sensor task

Simulated sensor, response time

0

50

100

150

200

250

300

350

0 1000000 2000000 3000000 4000000 5000000 6000000

Figure 18: Excel plotted simulated response time for sensor task

7.7.2 Simulation measurements for Case 3-1
A cross section of our measured data for the execution and response times of the CTRL task
from the simulator for case 3-1 is as shown in table 4 in Appendix B4.

Simulated ctrl, execution time

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1000000 2000000 3000000 4000000 5000000 6000000

Figure 19: Simulated plots of the CTRL task execution time for case3-1

Simulated ctrl, response time

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 1000000 2000000 3000000 4000000 5000000 6000000

Figure 20: Simulated plots of the CTRL task response time for case3-1

7.8 Analyses and validation
For the analyses, a trace analyser and a PPL ‘expert-rules’ system were used.
According to what is allowed by PPL, one can specify probabilistic maximum and minimum
levels of acceptance based on apriori knowledge of the system. However, we did not specify
such maximum nor minimum values.
As can be seen in the chart in figure 8k, we specified PPL queries based on our chosen
criteria, namely the response times and execution times of the tasks. Details of further PPL
queries are displayed in Appendix A.

Observations and results:

• It is our observation that the number of queries used could be proportional to the level
of confidence gained in the model. This is because, as the number of queries increases,
so also there is an increase in the depth of the coverage of the criteria being queried.

• The number of queries introduced into the analyser determines to a large extent how

much information that were obtained from the system and hence offered greater depth
of comparison.

• The exact number of queries needed to extensively investigate a criterion could be

dependent on the complexity of the system being investigated. This is to say that if
one has a system of low complexity; it would take less number of queries to exhaust a
criterion than it would in a highly complex system.

Figure 21: A snapshot of the ‘expertRules’ graphical user interface

Hence to boost the level of confidence in a model, the number of queries introduced into
investigating a criterion is a key factor. The more relevant queries that are introduced, the
more the level of confidence rise.

On comparing our target system’s measurements to those of our model, for case 1-1 we
observed that the model gave a good representation of the target system. In Appendix A
below, we show some examples of the reports compiled and used for the comparisons using
the Expertrules Tracer.
However, in case 3-1, when the NET task was introduced into the system, the simulated
results from the ‘Expertrules’ analyser showed that two instances of failure occurred, which
means that there were major deviations between our model and the target system’s values.
When these values were plotted as shown in figures 19 and 20, they produced excessively
random values inconsistent with those in figures 15 and 16.

Reason: This was because we had stochastically chosen the inter-arrival times of the NET
tasks, which were not appropriately represented in our model, hence the occurrence of this
variation. This would have been different if the missed detail in abstraction level was rightly
considered while creating our model. This presented us with a typical instance of an invalid
model.

Figure 22: A snapshot of the trace analyser

8 Proposed guidelines and recommendations
From our investigations and experiments, we present two useful proposals that would help
engineers and empirical scientists who work on validation of models. These proposals are
explained and demonstrated below.

• Proposal 1: The validation criteria probes into the functionality of the system

Consider a scenario where one has a system, named system 1, with n number of tasks
and n random tasks, which could denote some environmental variation input source
(optional) – random in the sense that the inter-arrival times of this task may or may not
exactly be known.
The above proposal suggests that if we have a second system, system 2, whose
number of tasks is greater than those of the tasks in system 1, but both systems have
the same functionality, then the same number of criteria as have been used for system
1,could be used to adequately probe system 2 to the same level of confidence that has
been attained by system 1.
Thus,

Let number of tasks in system 1= n
and Number of tasks in system 2 = N
Such that: number of tasks in system 2 / tasks in system 1 = P (a whole number)

Let the total number of validation criteria for system 1 = V1
and the total number validation criteria for system 2 = V2

 Also let the attained confidence level for system 1 = C1

And the desired confidence level for system 2 = C2

 Our proposal 1 implies that:

Iff C1 = C2
and
N / n = P,

Then, VI = V2.

• Proposal 2: The validation queries probe into the complexity of the system

Still consider the above given scenario of a system, system 3 with n number of tasks
and n random (optional) tasks, which are greater than those of system 1.
Proposal two suggests that if there exists a system 3, which differs from system 1 in
terms of complexity and not functionality, that is, if the functionality of both systems
remains the same, then one can analyse and validate the model of system 3using the
same number of criteria as were used in system 1, but with a total number of queries
equal to the multiple of the magnitude of the ratio of the tasks in system 3 to those in
system 1.

 Thus,
Let number of tasks in system 1= n
and Number of tasks in system 3 = N

 Such that: number of tasks in system 3 / tasks in system 1 = P (a whole number)

Let the total number of validation criteria for system 1 = V1
and the total number validation criteria for system 3 = V3

Also let the attained confidence level of system 1 = C1
and desired confidence level of system 3 = C3

If the total number of queries used for system 1 = Q1
And the required total number of queries for system 3 = Q3

Then, proposal 2 implies that:

Iff C1 = C3
and
N / n = P,

Then, VI = V3 and:

Q3 = PQ1

Basic assumptions on proposal 1 and 2:

• All tasks access the message queues by way of communication
• Communication here implies reading from or reading to a message queue and not

necessarily sharing the CPU as in interleaved tasks.
• The systems have the same functionalities but different complexities.

It is very important to note that complexity increases with functionality but functionality does
not necessarily increase with complexity. This can be better understood by looking at
complexity as a matter of design and implementation and not of functionality.
Therefore a simple hot-water heating system produced by two different companies could have
different levels of complexities but obviously have the same functionality. Consider the
design of a simple swing example as shown in Figures 23 & 24 below. Both have the same
functionalities but different design complexities.

Figure 23 & 24: Design 1 & 2

9 Conclusions
In this thesis, we have discussed open and burning issues on models validation. It is our
opinion that valid models, which have been proven to be correct within their domains of
applicability, contain truth and hence do yield information about the real world.

We have explored different types of validation, tools and techniques employed in validation,
when and why especially with regards to complex real-time systems. Comparisons have been
made between validation in computational physics and that which is carried out in computer
science field while exploring their areas of differences and similarities.

Most importantly, we carried out experiments to validate a model of a VxWorks system,
which has led to a discovery and hence our proposal of two helpful guidelines to empirical
scientists and engineers working in the field of validation.

10 Future Works
In future, we hope to further consider in greater details, well- fitted semantic definitions of
information and knowledge especially as it affects computer science, engineering and other
empirical sciences in order to portray the empirical scientists’ view of how experimental data
is understood and convey information as may be different from several other existing schools
of thought on what constitutes information.
We also hope to do further research and experiments to further diversify the guidelines we
have proposed in order to deduce more relations for tasks in more scenarios for instance tasks
that are interleaved in nature and tasks that employ various communication paradigms
different from the ones that have been considered.

References

[1] Averil M. Law, Michael G. McComas. How to build valid and credible simulation
models: Proceedings of the 2001 Winter Simulation Conference.
[2] Robert G. Sarget. Verification and Validation of simulation models. A modified version of
Sargent 1996b.
[3] Hans Hansson. Real-time systems Manual
[4] Anders Wall. Architectural modelling and analysis of complex real-time systems:
Doctoral dissertation ISBN 91-88834-05-0 MRTC.
[5] ED. Derek P. Atheron, Pierre Borne. Concise encyclopaedia of modelling and simulations:
Pergamon press.
[6] J. F. Hetet and R. Mezencev Mezencev. An Implementation of the Method of
Characteristics Using ACSL Software
 [7] Balci O, Sargent R.G 1984. A bibliography on credibility, assessment and validation of
simulation and mathematical models. ACM Simuletter 15(3), 15-27.
[8] Johan Andersson, Anders Wall and Christer Nordström: Technical report (MRTC. www.
mrtc.se)
[9] Anders Wall, Johan Andersson and Christer Nordström. Probabilistic simulation-based
analysis of complex real-time systems
[10] Adapted from Shannon, 1975, p. 211.
[11] Ijeoma Sandra Irobi, Johan Andersson and Anders Wall. Correctness Criteria for
Models’ Validation. www.mrtc.mdh.se, MRTC Report, Mälardalen Real-Time Research Centre,
Mälardalen University. ISSN 1404-3041 ISRN MDH-MRTC-163/2004-1-SE, May 2004.
[12] Blackwell’s Guide to the Philosophy of Information. Edited by Luciano Floridi.
[13] Suppe vs. Oreskes et al. Verification, Validation, and Confirmation of Simulation
Models: May 7, 1998 PHIL 250
[14] Deepak Khazanki, A Philosophical Framework for the Validation of Info rmation
Systems Concepts.
[15] Citation Paraphrased from Kaplan, 1964, p. 52-54. Kaplan, A. The conduct of inquiry,
Scranton, PA: Chandler Publ. Co., 1964.
[16] Hunt, S., Marketing theory: The philosophy of marketing science, Homewood, IL:
Richard D. Irwin, Inc, 1990.
[17] Dewey, J. How We Think, Boston: D. C. Heath & Co., 1910 (1933 reprint).
[18] Laurent Kaiser, Francoise Simonot-Lion. An Hybrid method for the Validation of Real-
Time Systems.
[19] About Uppaal. www.uppaal.com
[20] Uppaal in a Nutshell. Kim G. Larsen, Paul Pettersson and Wang Yi. In Springer
International Journal of Software Tools for Technology Transfer 1(1+2), 1997
[21] Automatic Verification of Real-Time Communicating Systems by Constraint Solving.
Wang Yi, Paul Pettersson and Mats Daniels. In Proceedings of the 7th International
Conference on Formal Description Techniques, Berne, Switzerland, 4-7 October, 1994
[22] Compositional and Symbolic Model-Checking of Real-Time Systems. Kim G. Larsen,
Paul Pettersson and Wang Yi. In Proceedings of the 16th IEEE Real-Time Systems
Symposium, Pisa, Italy, 5-7 December, 1995.
[23] Efficient Verification of Real-Time Systems: Compact Data Structure and State-Space
Reduction. Kim G. Larsen, Fredrik Larsson, Paul Pettersson and Wang Yi. In Proceedings of
the 18th IEEE Real-Time Systems Symposium, pages 14-24. San Francisco, California, USA,
3-5 December 1997.

[24] Efficient Timed Reachability Analysis Using Clock Difference Diagrams. Gerd
Behrmann, Kim G. Larsen, Justin Pearson, Carsten Weise, and Wang Yi. Accepted for
presentation at CAV99.
[25] Christer Norstrom, Anders Wall and Wang Yi. Timed Automata as Task Models for
Event-Driven Systems. In proceedings of RTCSA’99, 1999.
[26] William L. Oberkampf, Timothy G. Trucano and Charles Hirsch. Verification,
Validation and Predictive Capability in Computational Engineering and Physics, 2002.
[27] Roach P. J. Verification and validation in Computational Science and Engineering,
Hermosa Publishers, Albuquerque, NM, 1998.
[28] R. Rebba and S. Mahadevan. Verification and Validation under uncertainty. Submitted to
SAMO 2004 conference, Santa Fe, NM.
[29] AIAA. Guide for the Verification and Validation of Computational Fluid Dynamics
Simulations, American Institute of Aeronautics and Astronautics, AIAA-G-077-1998, Reston,
VA, 1998.
[30] Cosner, R. R. CFD Validation requirements for Technology Transition, AIAA Paper No.
95-2227, 26th AIAA Fluid Dymanics Conference, San Diego, CA, 1995.
[31] Lin S. J., Barson, S. L., and Sindir, M.M. Development of Evaluation Criteria and a
Procedure for Assessing Predictive Capability and Code Performance, Advanced Earth-to-
Orbit Propulsion Technology Conference, Marshall Space Flight Centre, Huntsville, AL,
1992.
[32] Marvin, J. G. Perspective on Computational Fluid Dynamics Validation, AIAA Journal,
Vol. 33, No. 10, 1995; 1778 – 1787.
[33] Sindir, M. M., Barson S. L., Chan, D. C., and Lin, W. H. On the Development and
Demonstration of a Code Validation Process for Industrial Applications, AIAA Paper No. 96-
2032, 27th AIAA Fluid Dynamics Conference, New Orleans, L.A. 1996.
{34}Henrik Thane. Monitoring, Testing and Debugging of Distributed Real-Time Systems.
Doctoral thesis, Mechatronics Laboratory, Royal Institute of Technology, Stockholm Sweden.
[35] Christer Nordström, Anders Wall, Johan Andersson and Kristian Sandström. Increasing
maintainability in complex industrial real-time systems by employing a non- intrusive method

Appendix A

ExpertRules Trace Comparison Report

 Comparison Specification File: C:\ART-FW\toyexample \simulation\toy.ppl
 Trace1: C:\ART-FW\toyexample\simulation\sim1.trc
 Trace2: C:\ART-FW\toyexample\case1-1.trc

Property: max(ctrl(i).exec)
Result1: 4320
Result2: 4244
Guard: reldiff 0.05
Guard status: Ok

Property: P(ctrl(i), ctrl(i).exec < X) >= 0.98
Result1: 4310
Result2: 4213
Guard: reldiff 0.05

Guard status: Ok

Property: P(ctrl(i), ctrl(i).exec < X) >= 0.90
Result1: 4205
Result2: 4108
Guard: reldiff 0.05
Guard status: Ok

Property: P(ctrl(i), ctrl(i).exec < X) >= 0.80
Result1: 4015
Result2: 3964
Guard: reldiff 0.05
Guard status: Ok

Property: P(ctrl(i), ctrl(i).exec > X) >= 0.80
Result1: 3310
Result2: 3317
Guard: reldiff 0.05
Guard status: Ok

Property: P(ctrl(i), ctrl(i).exec > X) >= 0.90
Result1: 3205
Result2: 3209
Guard: reldiff 0.05
Guard status: Ok

Property: P(ctrl(i), ctrl(i).exec > X) >= 0.98
Result1: 3105
Result2: 3098
Guard: reldiff 0.05
Guard status: Ok

Property: max(ctrl(i).resp)
Result1: 5480
Result2: 5304
Guard: reldiff 0.05
Guard status: Ok

Property: P(ctrl(i), ctrl(i).resp < X) >= 0.98
Result1: 5370
Result2: 5243
Guard: reldiff 0.05
Guard status: Ok

Property: P(ctrl(i), ctrl(i).resp < X) >= 0.90
Result1: 5245
Result2: 5098
Guard: reldiff 0.05
Guard status: Ok

Property: P(ctrl(i), ctrl(i).resp < X) >= 0.80
Result1: 5115
Result2: 4956
Guard: reldiff 0.05
Guard status: Ok

Property: P(ctrl(i), ctrl(i).resp > X) >= 0.80
Result1: 4365
Result2: 4297
Guard: reldiff 0.05
Guard status: Ok

Property: P(ctrl(i), ctrl(i).resp > X) >= 0.90
Result1: 4245
Result2: 4183
Guard: reldiff 0.05
Guard status: Ok

Property: P(ctrl(i), ctrl(i).resp > X) >= 0.98
Result1: 4115
Result2: 4067
Guard: reldiff 0.05
Guard status: Ok

Appendix B1

Sensor
task

Execution
(ms) Sensor task Response (ms)

5986 735 5986 758
8009 257 8009 257

10010 263 10010 263
12026 234 12026 234
14010 264 14010 264
16012 253 16012 253
18011 274 18011 274
20017 287 20017 287
22010 262 22010 262
24011 269 24011 269
26010 251 26010 251
28010 243 28010 243
30015 263 30015 263
32010 256 32010 256
34010 261 34010 261
36011 260 36011 260
38012 267 38012 267
40015 281 40015 281
42011 233 42011 233
44010 259 44010 259
46011 267 46011 267
48010 255 48010 255

50014 276 50014 276
52011 259 52011 259
54010 238 54010 238
56013 250 56013 250
58011 265 58011 265
60015 265 60015 265
62010 244 62010 244
64011 249 64011 249
66011 256 66011 256
68011 253 68011 253
70015 276 70015 276
72011 247 72011 247
74011 241 74011 241
76011 241 76011 241
78012 241 78012 241
80015 259 80015 259
82011 255 82011 255

Table 1: Execution time of sensor task (only a cross section of the data represented here)

Appendix B2

 ctrl Execution time (ms) ctrl Response time (ms)

64 23 64 23
8294 3765 8294 4310

18327 3806 18327 4774
28306 3255 28306 4250
38322 3737 38322 4744
48326 3895 48326 4911
58293 3631 58293 4644
69610 3518 69610 4800
78297 3165 78297 4201
88326 3991 88326 4978
98297 3192 98297 4193

108316 3769 108316 6250
118310 3182 118310 4162
128318 3608 128318 4600
138328 3852 138328 4875
148553 3859 148553 4895
158306 3994 158306 4998
168327 4028 168327 5083
178299 4107 178299 6613
188296 3127 188296 4106
198303 3964 198303 4932
208301 3607 208301 4586
218313 3708 218313 4731
228308 3112 228308 5393
238318 3475 238318 4397
248306 4137 248306 5091
258319 3238 258319 4189
268327 3428 268327 6012

278307 3889 278307 6393
288321 3878 288321 6461
298310 4036 298310 5005
308323 4163 308323 6649
318323 4184 318323 6722
328322 3956 328322 4939
338310 3190 338310 4202
348325 3921 348325 4966
358323 3183 358323 4182
369564 3792 369564 5024
378566 4127 378566 5056

Table 2: Execution time of control task (only a cross section of the data represented here)

Appendix B3

0 275 0 275
2000 250 2000 250
4000 275 4000 275
6000 285 6000 285
8000 250 8000 250

10000 260 10000 260
12000 240 12000 240
14000 290 14000 290
16000 239 16000 239
18000 265 18000 265
20000 260 20000 260
22000 275 22000 275
24000 290 24000 290
26000 265 26000 265
28000 250 28000 250
30000 260 30000 260
32000 259 32000 259
34000 275 34000 275
36000 250 36000 250
38000 265 38000 265
40000 265 40000 265
42000 265 42000 265
44000 240 44000 240
46000 290 46000 290
48000 285 48000 285
50000 265 50000 265
52000 260 52000 260
54000 265 54000 265
56000 260 56000 260
58000 290 58000 290
60000 250 60000 250
62000 265 62000 265
64000 265 64000 265

66000 265 66000 265
68000 275 68000 275
70000 275 70000 275
72000 240 72000 240
74000 260 74000 260
76000 290 76000 290
78000 265 78000 265

Table 3: Simulated results of Execution and response times the of sensor task (only a cross
section of the data represented here)

Appendix B4

Ctrl Task
Execution time

(ms) Ctrl Task Execution time (ms)
8360 3810 8360 7240

18365 4010 18365 7485
28375 4220 28375 6430
38375 3210 38375 4265
48365 3310 48365 4315
58365 3715 58365 6320
68365 3110 68365 5425
78385 3715 78385 6205
88385 3710 88385 4685
98375 3805 98375 4830

108375 3310 108375 5565
118340 3615 118340 4705
128384 4011 128384 5101
138350 3115 138350 4065
149560 3415 149560 4830
158360 3405 158360 4460
168365 3310 168365 4455
178340 3615 178340 4605
188385 3710 188385 4735
198375 3220 198375 5900
208385 3410 208385 4535
218365 3105 218365 5370
228365 3805 228365 4930
238635 3505 238635 4445
248390 3515 248390 4515
259550 3115 259550 5740
269465 4315 269465 5695
278375 3405 278375 4510
288350 3910 288350 5015
299540 3510 299540 4785
308390 3620 308390 4650
318360 3710 318360 4760
328365 3805 328365 4830
338385 3105 338385 4165
348360 3105 348360 4180
358375 3510 358375 4615

368350 4105 368350 5155
378385 3915 378385 5015
388360 3110 388360 4090
398375 4115 398375 5240

Table 4: Simulated results of Execution and response times the of CTRL task (only a cross
section of the data represented here).

