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Abstract 
Models’ validation poses an interesting area of discussion in computer science and 
engineering as in other disciplines, which cannot easily be overlooked. 
No model of a complex system can be said to be absolutely correct, or a perfect description of 
the system, as such models are, and should be an abstraction of the actual system. 
This situation becomes even more glaring for real-time computer systems where stringent 
conditions are imposed on the system, for instance, timing and hence predictability 
constraints. 

In this thesis we shall explore different perspective on models’ validation and techniques in 
computer science and their attendant problems especially for complex real-time systems. 
Major open and philosophical issues on the correctness criteria for models validations that 
seek to answer such questions as: Can models be validated? Can ‘valid’ models yield 
information? Do correct models contain truth? and more shall be investigated as well. We 
will discuss the implications of our answers with respect to computer science and real-time 
systems in particular arguing vehemently that models can yield information. 

We shall briefly investigate validation of models in computational physics, and seek to draw 
some parallels between its techniques and methodologies with those in computer science. 
Finally, we will present results on our validation experiments for a robotic electric control 
motor running on VxWorks operating system and from our work deduce and propose 
guidelines for engineers and empirical scientists working on models. These guidelines suggest 
simple formats of determining the number of criteria and queries that could be used in 
validation, given different levels of abstraction and model confidence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
To the Third Person in the Trinity….The custodian of my dreams; 
And to my parents, for setting my feet firmly on the right foundation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Acknowledgements 
 
I am profoundly grateful to my supervisor Johan Andersson for his valuable 
help, advice and insights on this thesis, together with my examiner Anders Wall, 
whose PhD thesis gave me good inspiration to venture into this very interesting 
area of investigation.  
I remain thankful to Christer Norström for coming up with this thesis and giving 
me the opportunity to work with his research team in this area and to Hans 
Hansson for introducing me to this program in the department in the very first 
place. 
 
I would like to thank Gordana Dodig-Crnkovic  - for her great understanding and 
useful answers to some of my questions in Computational Physics and Gerhard 
Fohler for providing me with initial challenges and training in research work. 
Ivan Christoff (Uppsala University), Torsten Soderstrom (Uppsala University), 
Cedric Linder (Uppsala University), Jafar Mahmoudi, Corporate Research 
department at Outokumpu Västerås for their immense help and comments that 
have improved the quality of this work. 
 
I also wish to thank all members of my family especially Edward, Nkechi and 
Beulah for their support and goodwill during this period. 
Finally many thanks to the ABB Robotics in Västerås for kindly lending us a 
system running VxWorks for the experiments and all staff of computer science 
and engineering department in MdH, for being such a wonderful bunch of 
encouragement in everyway. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table of contents 
1 Introduction           7 
 
1.1 Defining Validation: Issues of terminology       8 
1.2 Real-Time Systems          8 
1.3 Problem domain          9  
1.4 Why Simulation?                         9 
 
 
2 Related works 
 
 2.1 The validation process         11 
 2.2 General Validation techniques                                              13 
 2.3 Common sources of errors in models       14 
 2.4 Model Robustness         15 
 
3 Philosophical perspectives on models’ validation      16 
 
3.1 Interesting views                        16 
3.2 Degrees of certainty         18 
3.3 Ultimately          20 
 
4 Validation of models of real-time systems         
 
4.1 Hybrid method          22 
4.2 Use of model equivalence         22 
 
 
5 Modelling tools and analyses methods 
 
5.1 Uppaal                         24 
5.2 TIMES          27 
5.2.1 The input language         28 
5.2.2 Tool overview          29 
5.3 The probabilistic modelling and analysis framework             31 
 
 
 



 
 
6 Validation in Computational Engineering 
 and Physics                           33 
 
6.1 Validation in Computational Physics                                   33   
6.2 Methodologies                                                                      34    
   
 
7 Experiments: Validation of a real-time system using VxWorks 
operating system 
 
7.1 Motivation       36 
7.2 Modelling on different levels of abstractions                       36 
7.3 System overview and description – profiling of 
      a small size real-time system                                                36 
7.4 Systems’ model creation                                                    39 
7.5 Metrics of validation      42 
7.6 Methodology and systems’ measurement     43 
7.7 Results            43 
7.7.1 Simulation models results and plots                                  46 
7.7.2 Simulation measurements                                                  47 
7.8 Analysis and Validation      49 
 
8 Proposed guidelines and recommendations    52 
 
9 Conclusions        55 
 
10 Future works       56 
 
References       57 
 
Appendix   58 
 
 
 
 
 
 
 



1 Introduction 
Simulation models have gained increasing grounds in being used in problem solving and as 
decision aids in several fields of study. It is the favorite tool of the engineer who intends to 
test and investigate new ideas while reducing industrial risks to the barest minimum; it is 
often a surrogate for experimentation with the actual system (whether it exists or still 
proposed), which is not cost-effective, disruptive, or just impossible. Simulation is used to 
evaluate the design of process components and separate unit operations. Model specifications 
are re-used in the design evaluation of large integrated processes and control systems.  
In addition, the models once made are used to support operator training. Computerized 
dynamic simulation models are useful for verification of both conceptual and detailed process 
designs. 
They make in-house pre-testing of automation systems, user interfaces, and operational 
procedures possible, as well. They are used for generic teaching and learning of basic 
principles, detailed pre-training of new personnel, and re-training of experienced operators. 
Simulation models are extensively used in a situation when the real system cannot be used for 
experiments. This is the case for example when: 

• The real system does not yet exist.  
• The experiments would involve high economic risks.  
• The experiments would be dangerous.  
• The experiments cannot be controlled or carried out.  
• The experimentation with the real system is expensive 

1.1 Defining validation: Issues of terminology 
 
There is a wide range of definitions and meanings given to verification and validation in 
different technical disciplines. For example, the meaning given to those terms by the Institute 
of Electrical and Electronics Engineers (IEEE) and the Software quality assurance community 
differ from that used in the Department of Defence Modelling and Simulation community 
(US), which has been the leader in the development of fundamental concepts and terminology 
for verification and validation. 

The validation of a model is referred to as a process of ensuring that a given model is 
adequately accurate for a given purpose [1]. It is defined as the substantiation that a 
computerized model within its domain of applicability possesses a satis factory range of 
accuracy consistent with the intended application of the model [2]. Generally, it is usually 
time consuming and expensive to establish absolute validity of a model over the complete 
domain in which it is applicable. Therefore tests and eva luations are conducted till a point of 
sufficient confidence is reached when the model could be considered valid for its intended 
application. 

This is usually done by comparing between observations of the system’s behavior and 
predictions made by analyzing the model when both the model and the system are driven 
under identical input conditions. Any model can only be validated with respect to the specific 
purpose for which it was made; therefore there is no such thing as a 100% accurate model. A 
model could be said to be valid for a particular set of conditions only when its accuracy 
parameters lie within a specified range. Hence, the aim of validation is to show that a given 
model is adequately accurate for its purpose, the conditions of which would normally be 
agreed upon right from the inception of the model development. 



In order to expedite future usage of a model, it should be relatively easy to keep the model 
and the system consistent as the system evolves. Also the effort needed to adjust the model to 
reflect the impact of, for instance, a maintenance operation, should not be the same as 
building the initial model. The change required to update the model should be intuitive and 
similar to the change in the system. 
Model validation provides a systematic framework to include model error and uncertainty in 
the decision-making process. Quite importantly, the inferences made in the validation domain 
need to be extrapolated to the untested region (area) where the actual application takes place. 
 
 
1.2 Real -time systems 
Our main thrust in considering validity for general models would be to consider validity 
criteria in particular for models of real-time software systems. 
 
A real-time system could be referred to as any system in which the time at which output is 
produced is significant. This is usually because the input corresponds to some movement in 
the physical world, and the output has to relate to the same movement. The lag from input 
time to output time must be sufficiently small for acceptable timeliness [3]. 
 
Real-time computing systems have different requirements from general computing systems. 
For correctness purposes, the general computing systems only have to be functionally correct, 
which implies a situation where if given a specific input, they should yield the desired output. 
In this case, the timeliness of the output relative to the input is important. 
In a multitasking environment, where more than one task is scheduled in the central 
processing unit (CPU), we could employ a scheduling algorithm in order to create a sequence 
in which the different tasks are run so as to achieve such timeliness. In that case one could 
consider factors like minimal average response times and maximum average system 
utilization to select an algorithm for use. 
 
Real time sys tems are characterized by their temporal requirement. Hence apart from being 
functionally correct, they must also exhibit temporal correctness (correct function provided at 
correct time). The timing requirements are expressed as a bound on the time taken to perform 
some computation, which is normally referred to as the deadline. Depending on how much 
interest we have on the timing requirements of such systems being met, we could have hard 
real-time systems – where we are very concerned if the system does no t respond to time 
correctly – for instance a car air-bag in the event of an accident. There are also those 
categorized as the soft real-time systems – where, with occasional misses of the timing 
requirements, there would be no need to worry. 
 
There exist some ways by which one can show the temporal correctness of a real-time system. 
This includes building a model of the system mathematically and using it to analyze the 
system’s behavior, which enables us to make good assertions as long as the model is good. 
However, this method could be quite difficult due to the some characteristic aspects of the 
real-time systems. For example, non-deterministic communication times, sharing of active 
system resources using different scheduling algorithms, tasks arrival patterns not adequately 
characterized prior to execution and may be probabilistic, making some details of 
simplification on the model to keep it tractable in such a way that one compromises the 
confidence level on the model. 
Another second way could be by running extensive tests on a constructed prototype of the 
system in question. This could be very expensive to carry out in practice. 



Irrespective of the system’s critically, (whether soft or hard), adequate provision needs to be 
made to analyze the system with respect to its temporal behaviour and resource utilization. 
 
 
1.3 Problem domain 
Large complex real time systems have gradually come to stay even with the advent in 
technology. Most times, functionalities of such systems could be altered and new features 
added thereby changing the temporal correctness of initial models of such systems (if they 
exist). Due to this alteration, the model of the system (without the newly added system 
features) becomes quite different from the new system and fast becomes useless. 
At first, this may not constitute a big issue but as time goes on and the system evolves, 
analysing it becomes increasingly an uphill task to the extent that the system may need to be 
re-engineered to permit analyzability. 
One of the major validation challenges for software models is that computer software has a 
non-continuous nature, which implies that there could be drastic changes encountered as a 
result of little variations in the system unlike what may be obtainable in models in other 
fields.  
It is very difficult if not impossible to explicitly and implicitly attribute validity to a software 
model for several reasons.  
Different techniques have been proposed and are in use for the validation of real-time system 
models (as would be shown in subsequent sections). For each of these techniques, we shall 
investigate their criteria for correctness and on what factors they are based. Even though 
computer software are not continuous (which affects is models), as is the case with other 
disciplines, it is our believe that useful deductions on other common grounds between these 
fields could be mapped and modified for use in computer science and real-time systems in 
particular. 
 
1.4 Why simulation? 
Several models’ verification and validation analyses methods abound. Each of these 
techniques has inherently good and poor points. Some of such methods of analysis include: 
 

• Model checking methods (for instance Uppaal and TIMES tools): This method and 
tools are discussed later in details. The main ideas are to check for reachability and 
schedulability in the modelled states representing the real system. The major low point 
of this method is the ‘state explosion problem’, which entails the inability to 
effectively capture all possible states for large systems. This, presently is still a hot 
area of research. 

• Traditional Schedulability analyses methods (for instance the Rate monotonic 
method): The major disadvantage of analysis with this method especially for complex 
real-time systems lies with its limited modelling language, which does not capture the 
entirety of intended domains for representation. 

• Simulation based approach – This approach manages the state space explosion 
problem much better than the model checking methods but on the other hand can 
result in a low level of confidence on the results from analysing the model. The reason 
is mainly because the simulator has the ability to only make predictions based on the 
simulated instances and not on unsimulated ones. Hence, while one can confidently 
simulate, for instance, 1000 cases and make predictions based on them, the predictions 
for 1001th case is unknown since the simulation does not cover it. The simulation-
based approach was used in this thesis for our experiments. 

 



We use simulations to determine the temporal properties of complex real- time systems, which 
do not easily yield to deterministic analysis methods. One can view simulations as an 
approach of compromise [4] where we can utilize higher fidelity models than would normally 
be possible with mathematical analysis and can complete the validation with less cost than 
would have been if testing and prototyping methods were used. 
The down part about simulations is that the results that we get from them could be less certain 
than those we can get by using mathematical techniques. Also, more simplifications by way 
of levels of abstraction could be made in such a manner that the level of confidence on the 
model may not be as high as that of a real prototype.   
Simulation could allow execution times to be expressed as distributions rather than worst case 
values. Analysis of the simulation results is done by defining properties of interests in the 
target system. For instance, such interesting properties could include the probability of 
missing a deadline requirement on a task. Simulation also gives one the liberty to define non-
temporal related properties, for example non- empty message queues. 
 
Section 2 of this thesis deals with related work, and shall review how validation is done for 
real-time systems in computer science. Section 3 handles the philosophical perspectives (open 
questions) on models validation while Section 4 will takes on validation of models of real-
time systems. 
We discuss modelling tools in Section 5 and in Section 6 we explore validation 
methodologies in computational physics with a brief comparison to those in computer science 
and engineering. Section 7 reports our experiments on validation of the model of a robotic 
system running on VxWorks, results and inferences. The proposed guidelines on validation 
for use by empirical scientists and engineers working on models’ validation are presented in 
Section 8. We conclude in Section 9 and give hints of future works in Section 10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2 Related Work 
In this section, we shall explore works tha t have been done previously with respect to 
validation. We shall discuss general approaches of validation and their procedures.  Model 
robustness and common sources of errors in models and how to avoid them would also be 
highlighted. 

2.1 The validation Process 

There are many scientific grounds on which simulation models are constructed and even more 
techniques on which their validation rests. 

In his paper [2], Sargent explored three major general approaches used to ascertain whether a 
model is valid or invalid. These three approaches are: 

• Decision by the development team based on the results of the various tests and 
evaluations conducted as part of the model process. 

• The independent verification & validation approach, which uses a third independent 
party to decide the validity of the model, often used for model accreditation. 

• Use of a scoring model, where scores are given to different parts of the validation 
process and a cumulative of such scores, if it supersedes a given passing overall and 
category score, certifies the model valid. This approach seems to be rather too 
objective than it really is and could pose the problem of over-confidence in the model. 

A simplified version of the modelling process as shown in Figure1 is described. The problem 
entity depic ts the real or proposed system or phenomenon to be modelled. 
The conceptual model is the mathematical or logical representation, which is developed 
through an analysis and modelling phase, while the computerized model is an implementation 
of the conceptual model on a computer.                                              

 
 
Figure 1: A simplified version of the modelling process [4]. 
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Therefore, conceptual validity as defined by Sargent refers to the determination that the 
theories and assumptions on which the conceptual model is based are correct and ensures 
reasonableness in the model representation of the problem entity. Operational validity is the 
substantiation that the output behavior of the model is adequately accurate in its applicable 
area; while data validity is ensuring that the necessary data for model construction, testing, 
experiments and evaluations are sufficient and correct.  
 
In summary, Sargent recommended that as a minimum practice in model validation 
procedure, the following steps should be carried out: 

• Extensive testing of the assumptions and theories underlying the model 

• A face validity (this means asking people who are knowledgeable about the 
system if the structure of the model and behavior are reasonable or not) of the 
conceptual model should be done 

• Before developing the model, the model users, sponsors and developers must 
agree on the basic validation approach and techniques to be used. 

• Validation results should be presented in the model documentation 

• An exploration of the behavior of the model should be made in each iteration of 
the model using the computerized model. 

• As extensively as possible, for at least two sets of experimental conditions, 
comparison should be made between the model and system output behavior data 

For large systems involving subsystems and components, the validation information at 
component- level could be used to make inference at system-level where full-scale test data is 
not available. In [5] we see a statistical approach to the validation of simulation models. Also 
the author describes three basic approaches namely: 
 

• Comparing graphs of the output data: Graphical plots of different sets of experiments 
with the model and system’s output behavior data are compared so as to substantiate if 
the model’s output behaviour has enough accuracy for its given purpose. The graphs 
are utilized for validation in three ways:  

- Experts could use them in face validity technique to make a subjective 
judgment, as to whether or not the model has enough accuracy for its given 
purpose. 
- The developers in the development process to determine sufficient accuracy 
for validation could use the graphs 
- They can also be used in the Turing tests. 

• Hypothesis Tests: this is used in comparing distributions, parameters and time series of 
the output data of a model and a system for each set of experimental conditions to 
ascertain whether the output behavior of the model is within an acceptable range of 
accuracy. 
However, two kinds of errors could be obtained here. The first type is rejecting the 
validity of a valid model while the second is accepting the validity of an invalid 
model. In validation, this second type of error is very important and must be kept as 
low as possible. 

• Confidence intervals: The authors state that confidence intervals, ci, joint confidence 
interval jci and simultaneous confidence interval, sci, can be obtained. It is always 
desirable to build the model range of accuracy with lengths of the ci and sci and the 
sizes of the jcr as small as possible. The shorter the lengths or the smaller the sizes, the 



more useful and meaningful the specification range of the model range of accuracy 
will usually be. 

Static system behaviors presents less surprises and therefore generally does not require 
simulation, however, in view of dynamic process behaviors, that is, events occurring with the 
passage of time, there are several interesting observations that need to be considered. 

 Thus in their work [6], J. F. Hetet et al made strong points about the problems inherent in 
continuous discretized models and digital simulations. It is their opinion that since the digital 
computer is discontinuous in its operation mode, it will be unable to properly evaluate the 
variables that must simulate natural phenomena, which are mainly continuous. Hence it can 
only give periodic samples of these variables. 
For a particular machine, the time needed to calculate these variables depends on how 
complex the computation (activity) may be. For instance, if results are requested every 10ms, 
the computer could require 2ms at some point and another 3ms at some other point (example 
context switch time), such that the real-time essence or notion is lost! Therefore most times 
digital simulations could run slower than the real process with no given possibility of 
mastering the running speed. This is quite peculiar with real-time programs, where 
computation of the worst-case execution time is often a nightmare. 
 
They further observed that this distortion with respect to the continuous model could alter the 
course of the simulation considerably, especially if the sampling is not properly done. For 
instance in the case that simulation changes in each state is a different task for the digital 
computer, and in order to simulate the model relation, the tasks have to continually 
communicate with each other, which take place only at sampling times. In between two of 
these times, the computer could consider that the variables are constant. 
Several other interesting schools of thought abound concerning validation. 

 
2.2 General validation techniques 
In [7], Balci identifies the following general models’ validation techniques, which can be used 
either subjectively or objectively. These techniques are used both to validate sub-models and 
overall models and also used often in computerized verification. These include:  
 

• Comparison with other models: Several outputs of the model that is being validated 
are compared with results of the other ‘valid’ models. 

• Degenerate tests: The degeneracy of the model is tested by removing portions of the 
model or through appropriately selecting the values of the input parameters. 

• Face validity: this means asking people who are knowledgeable about the system if 
the structure of the model and behavior are reasonable or not. 

• Event validity:  The events of occurrences of the simulation model are compared with 
those of the real system to determine if they are similar. 

• Extreme conditions test: Here the structure of the model and output should be 
plausible for any extreme and unlikely combination of levels of factors in the system. 

• Historical data validation: If data are collected from the system before constructing 
the model, some of this data will be used to build the model while the rest would be 
used to ascertain if the model behaves as the system does. 

• Internal validity: Various replicas of a stochastic model are made to ascertain the 
quantity of stochastic variableness in the model. A high amount of variability (lack of 
consistency) may make the model’s output to be questionable and, if typical of the 



problem entity, may question the appropriateness of the policy or system being 
investigated. 

• Multistage validation: A proposal for combining the three historical methods of 
rationalism, positive economics and empiricism into a multistage of validation was 
brought to light by Naylor and Finger in 1967. This method deals with developing the 
models assumptions on theory, observations and general knowledge and intuition. The 
models are validated where possible, through empirical testing and testing the input-
output relations of the model with the real system. 

• Parameter variability (sensitivity analysis): This has to do with varying the values of 
the input and internal parameters of a model and its output. The same relations should 
occur in the model as in the real system. The parameters which are sensitive (cause 
noticeable changes in the behavior of the model) need special attention in the 
parameter estimation phase. 

• Predictive validation: Here the model is used to forecast the behavior of the system 
and comparisons are carried out to know if the behavior of the system and the model’s 
forecast are the same. 

• Traces: The idea here is to determine if the necessary accuracy and model’s logic is 
correct by tracing different types of specific model behaviors. 

• Turing tests: Opinion of knowledgeable experts on the systems are asked to see if they 
can discriminate between the system and model outputs. 

However, in all the work mentioned above, neither specific techniques, nor processes have 
been duly defined specifically for real-time systems or particular inference studies done in 
line with the thrust of this thesis. 
 
Conceptual model validation 
The aim of conceptual model validation is ensuring that the assumptions and theories on 
which the conceptual model is based are correct. It also deals with the fact that the problem 
definition, structure of the model, logic and casual relationships are reasonable for the purpose 
for which the model was created. 
The frequently used validation method in this case is the face validation and traces methods. 
In the event that errors are observed in the conceptual model, it is revised and conceptual 
model validation is carried out again. 
 
Operational validation 
Here one is interested to know if the model’s output behavior has the accuracy required for 
the model’s purpose over the domain of the model’s intended application. It is at this phase 
that majority of the evaluation and testing are carried out. All the techniques above that have 
been mentioned are applicable to operational validity.  
 
 
2.3 Common sources of errors in a Model  
Assumptions and approximations during modelling and simulation could induce errors in the 
prediction made based on the model. In software system, model building involves several 
activities and could be error prone at any of its stages. In [8], Johan Andersson et al discussed 
four potential error sources: 
 

• Understanding of the system: Poor understanding of the target system could introduce 
modelling errors. Therefore there must be a good understanding of the structure and 



behavior of the system by the modelling team, so that they can build a valid and robust 
model. Errors could be avoid by due consultations with experts, who should review 
the resulting model. 

• The modelling language: The risks of misinterpretations and misapplication are 
associated with poor knowledge of tools for modelling, analysis and semantics of the 
modelling language. This error could be well avoided by appropriately documenting 
and communicating tools and modelling languages. 

• System’s observation: In order to ensure that the system behavior is captured as much 
as possible, an observation-based model must have observations taken at several 
representative situations. A good example would be comparing a static system to a 
dynamic system’s observation. 
Also factors like the addition of probe effects have to be given due considerations if 
used for measurements. This is essentially so for real-time systems where probe could 
affect the system’s temporal behavior and could cause or prevent exceptional events 
such as a missed deadline. 

• Levels of abstraction: Robustness and accuracy would be greatly reduced if 
information on relevant details about the system’s behavior were omitted. In this case, 
a sensitivity analysis would be helpful. 

 
 
2.4 Model Robustness 
A model can be said to be robust regarding a given variation in the system’s implementation 
if, in the event that this variation is applied to the model, it gives the same effect on the 
predictions as it would with the observed system behavior. 
This means that important system behaviors and semantics have been duly captured in the 
right level of abstraction [9]. It could be verified using the sensitivity analysis. 
 
A good illustrative example of the importance of robustness is to consider the scenario in 
which, a system containing a binary semaphore is protecting a shared resource. Here, a 
timeout would occur when a task has been on the waiting queue for a semaphore for a given 
predefined time value. At the occurrence of the timeout, the task’s time of execution will be 
increased as a result of error handling. This timeout previously has not had a reason to occur 
in reality following previous versions. If however, when modelling this system, the timeout 
possibility is omitted, the model could still seem to be accurate. But in the event that the 
timeout occurs, one will observe a divergent system behavior from that which has been 
predicted by the model. 
 
 
 
 
 
 
 
 
 
 



3 Philosophical perspectives on models validation  
Considering the questions: ‘what does it mean to validate concepts?  Or what are the 
criteria? Both philosophers and scientists have been unable to agree about the answers to 
them [10]. Since a model is often taken to be an abstraction and simplification of reality (real 
system being modelled), but reality (the nature of measured data, environmental and human 
factors) in itself, has a nature of abstract complexity; a ‘correct’ model could at best be judged 
as one which is ‘closest’ in representation to the real system, but the question are:  just exactly 
how close should ‘closest’ be to be correct? Are models true? Can truth emerge from a 
‘truthless’ model? In essence, what do we need – a correct model or one that yields 
information?  [11]. In this Section, we shall examine these crucial questions arising from the 
validation criteria of models that have been mentioned above. 

3.1 Interesting views 

Computer science is faced with the above difficulties more than other disciplines because of 
its diverse constituents, ever-changing contextual environment (technology), and relatively 
short life span. Validation assures that a model (or each construct in a conceptual model) 
contains the features imputed to it in their individual definitions or description. In other 
words, validity implies that it is well grounded, sound or capable of being justified.  

The response of a computer science empiricist to the question "How do we validate?" could 
be to design an experiment or build a prototype and test your concept or conceptual model. 
But, a fundamental problem with this approach, notwithstanding the assumptions inherent in 
statistical experimental design, is the presupposition of the "validity" of a concept or 
conceptual model. That is, a belief in the notion that mere definition implies that a concept 
has "face validity." If simply using a "term" made it acceptable to a discipline, one would 
never reach an agreement on commonly held truisms or knowledge of that discipline.  

Simulation models are believed across disciples to give information on the real system. In 
[12], a 21st century philosopher Luciano Floridi defines information as basically comprising 
‘meaningful content and truth’. In this thesis we argue that this definition to a large extent 
does not apply to computer science. 

In philosophy, there is a huge difference between truth and correctness. While truth is an 
absolute, correctness is relative to the system. For example, if you read a book on the 
philosophy of mathematics, "truth" is not the issue because mathematics does not deal in truth 
but deals with provability. Maybe physics deals in truth, because the job of science and 
engineering is to understand the world as it is. Thus the issue for consideration here is 
correctness. Hence an important question to ask in this context would be: can simulation 
models yield knowledge about the real world? 

The epistemological importance of this question is such that if the answer is no, then what 
many scientists are doing nowadays is just playing with computers, not creating new 
knowledge!  However, considering the practical importance of that question, if no is still the 
answer, it means that the several policies, which are based on predictions from simulation 
models, would grossly be misguided. It is interesting to note however that even in the field of 
philosophy, varying opinions about towards whether verification and validation are possible 
or not. 



In [13], an interesting philosophical argument ensues between Oreskes et al and Fredrik 
Suppe in trying to proffer solution to this seeming deadlock. Oreskes strongly argues that 
simulation models cannot be verified and hence Scientists cannot obtain knowledge from 
simulation modelling. On the contrary, Fredrik Suppe retorts that simulation models can be 
verified in some sense and hence knowledge could be obtained from them. Some important 
issues that readily comes to mind in this case would be a deep consideration of some 
epistemological questions such as:  

• What do we learn from experience?  
•  What is the correct way of learning from experience?  

There are several traditional philosophical views to these, which include Inductivism 
(enumerative induction, inference to the best explanation and Bayesianism) and 
falsificationism. 
However, Oreskes argues the above, utilizing traditional philosophical debate over 
inductivism. Their criticism of the traditional view in 3 different areas stemmed from Hume’s 
problem of induction, which says that: 
 
1. All inductive reasonings are based on the assumption of uniformity:  
What we have observed and what we haven't yet are basically similar. According to him, the 
question would be: ‘why can we rely on such an assumption?’ Nothing we have observed 
until today does not assure that the same regularity will hold tomorrow (unless we use 
induction --- this is a circular argument).  
2. Underdetermination: - Given any amount of evidence, there are mutually incompatible 
theories, which would equally fit with the evidence, that is, when a prediction from a  
theory contradicts with the observation; there are various mutually incompatible ways for 
making the theory compatible with the evidence. 
3. Theory-ladenness of observation:  
 These philosophical views presuppose that our observation is somewhat independent from 
our scientific theory. But what we see is strongly influenced by our background knowledge 
and assumptions. A common example would be asking a zoologist and a computer scientist to 
give interpretations to the diagram of a rabbit. 
 
Why do we care about theory-ladenness of observation?  
This is because a conflict between two incompatible theories is supposed to be settled by 
conducting some experiments or making observations. However, theory- ladenness can cause 
a serious problem with such a procedure.  
Considering the Underdetermination vs. Theory- ladenness, the difference between the 
underdetermination thesis and theory- ladenness can be summarized as follows:  
a) Underdetermination  
Same evidence -> Incompatible theories  
b) Theory-ladenness:  
Incompatible theories -> Different evidence. 

In the actual sense, arguments by Oreskes are an application of these traditional criticisms of 
induction to simulation models. 

 

 



3.2 Degrees of certainty   

An interesting categorization was projected by Oreskes in which the following distinctions 
were made as various degrees of certainty:  

• Absolutely true (logical truth) i.e. verification  
• Plausible, probable (in terms of evidence) > confirmation  
• Consistent (not contradictory) > validation  

They conclude from their philosophical analogies given above and deduced that:  
(a) Models cannot be verified in that there is no logical proof that a model is true.  
(b) Models can be validated, this means that we can prove that a model does not contain a 
detectable flaw and thus internally consistent. These can be evident in: 
 
Comparisons of different solutions :  
 If two totally different ways of solving a same problem give the same answer, these ways of 
solution may be reliable.  
Calibration:  
Adjust initial values so that the model can accommodate known data.  These procedures are 
far from verifying the model.  
Models may be confirmed 
 Models may yield predictions that match with observation, but this means only that the 
model is probable, not that the model is true.  
Therefore from the above analysis, Oreskes further concludes: 
 

- That the primary value of a simulation model is heuristic, that is to give evidence to 
strengthen what may already have been partially established through other means for 
instance, sensitivity analysis, or even challenging existing formulations. 

- A simulation model is a `fiction'. It is never a `real thing'. (Cartwright). 
However, in contrast to the above views, Suppe assumes a less strict philosophical stance as 
follows: 
(1) ‘It is true that we cannot logically prove that a model is true. But maybe their (Orseke’s) 
way of defining 'verify' is too strict. Do we really want that absolute certainty? That makes all 
empirical knowledge impossible’.  
 
(2) Extra factors can affect the result. But still a simulation model is creating knowledge about 
the real world when the system is isolated or other factors are negligible.  
 
(3) Don't take underdetermination too seriously. Often it is hard to find even one reasonable 
solution.  
 
(4) Don't take assumption- ladenness of simulation models too seriously, either.   
 
(5) An important aspect of modelling is the mapping relationship between three systems. As 
far as this mapping relation holds, a simulation model is a representation of that aspect of the 
real world, not just a heuristic tool.  
 
With view to the above two major open and highly contestable areas, one could strike some 
good balance by answering the following questions: 



 
- What level of certainty do we want for scientific knowledge?  
-  Can simulation models provide that level of certainty?  
 
In [14] Khazanchi attempts to integrate notions from the philosophy of social sciences, the 
information systems (IS) field and its referent disciplines and sets forth a framework for the 
validation of IS concepts. The proposed philosophical framework for validation of concepts 
and conceptual models consists of a set of "criteria for validation" of concepts.    
He asserts that as a concept fulfils each succeeding criteria its potential ability to have 
inherent "truth content" with regard to its general acceptance in the field strengthens. After 
all, "... concept formation and theory formation in science go hand in hand.... The better our 
concepts, the better the theory we can formulate with them, and in turn, the better the concepts 
available for the next improved theory." [15]. The following are his suggested criteria for such 
validation: 

1. Is it plausible? A concept or conceptual model is plausible if it has face validity. 
Plausibility establishes that this model is more than just a belief. This criterion is useful to 
assess the apparent reasonableness of an idea and could be demonstrated by deduction from 
past research or theories, or, it could be developed on the basis of observation or induction.  

2. Is it feasible? This criterion dictates that a concept or conceptual model, at the least, has the 
quality of being workable. Added to plausibility, a feasible concept or conceptual model 
would be operational in that it would be amenable to verbal, graphical, mathematical, 
illustrative, prototypical characterization.  

3. Is it effective? This criterion deals with the question: How effectively does the model 
describe the phenomena under study? Also an effective concept or conceptual model has the 
potential of serving our scientific purposes [16]. It also guides and stimulates other scientific 
inquiries.  

4. Is it pragmatic? The pragmatism criterion dictates that a concept or conceptual model 
should not be restrictive to the extent of logically excluding previously valid models. Thus, 
this criterion provides that concepts or conceptual models should subsume, for obviously 
practical reasons, any conceptual structures that previously explained related phenomenon. 
Hunt [1990] demonstrates this criterion with the example of Newton's law. He argues that 
simple pragmatism would require that any new conceptual development could not preclude 
Newton's laws (as in the case of Relativity, where these laws are a special case subsumed 
within relativity). In effect this criterion emphasizes that concepts and conceptual models 
should have some degree of abstract, logical self-consistency or coherence with other 
concepts and conceptual models in the discipline.  

5. Is it empirical? Empirical content implies that a concept or conceptual model must be 
"empirically testable" [17]. In the same vein, Dewey affirms that although concepts can be 
developed without reference to direct observation, and although this logical conceptual 
development is indispensable to the growth of science, the ultimate test of a concept or 
conceptual model lies in having the ability to empirically collect data to "corroborate" it. 
According to Dewey [1933, p. 183], "Elaboration by reasoning may make a suggested idea 
very rich and very plausible, but it will not settle the validity of that idea.  



6. Is it predictive? Does it explain a phenomenon that is expected to occur? We can better 
understand the meaning of this criterion through the words of Rashevsky (1954, p. 152-3): "A 
theory or theoretical concept is considered the more convenient or useful, the better it enables 
us to predict facts that hitherto have not been observed... The scientist constructs theories, 
theoretical concepts or theoretical frames of reference that are isomorphic with the world of 
observable phenomena. This isomorphism is never complete, never covers the whole range of 
observable phenomena... wider the range of isomorphism, the greater predictive value of the 
theory." Thus, a concept or conceptual model that is predictive would, at the least, 
demonstrate that given certain antecedent conditions, the corresponding phenomena were 
somehow expected to occur [Hunt, 1990].  

7. Is it intersubjectively certifiable? Hunt [1990], Nagel [1979], and several others are of the 
opinion that all scientific knowledge, and in consequence, concepts or conceptual models 
"must be objective in the sense of being intersubjectively certifiable." This criterion provides 
that concepts or conceptual models must be "testable by different investigators (thus inter-
subject)." Investigators with differing philosophical stance must be able to verify the imputed 
truth content of these concepts or conceptual structures through observation, logical 
evaluation, or experimentation.  

8. Is it intermethodologically certifiable? In addition to being intersubjectively certifiable, this 
related criterion provides that investigators using different research methodologies must be 
able to test the veracity of the concept or conceptual model and predict the occurrence of the 
same phenomenon. 

3.3 Ultimately? 
Ultimately can we gain information from models? 
The Cambridge Dictionary of Philosophy defines information as: 

‘an objective (mind independent) entity. It can be generated or carried by messages 
(words, sentences) or by other products or cognizers (interpreters). Information can be 
encoded and transmitted, but information would exist independent of its encoding or 
transmission.  

Suffice it to say that computer scientists view and define information basically as meaningful 
data. Meaningful in the sense that it can be read, sensed or perceived (physical and non-
physical data). This meaningfulness is contextual such that it makes sense to the informee 
from the informer (any medium applied) and satisfies basic operating codes of understanding 
within its domain of applicability. 
The implication of this definition is such that, for instance, what constitutes data that makes 
sense within the programming semantics of complex system domain and thus yields 
information may not necessarily be informative in other domains. 
Do we really want absolute certainty? This would imply that all empirical knowledge is 
impossible. However since knowledge and information are essentially different in their basic 
forms and definitions, with knowledge of necessity made up of truth, one can say that in as 
much as knowledge deals with the absolute sense, we can gain information from models, 
which does not necessarily need to be true, on which basic improvements to the systems in 
question can be made. 
Scientifically speaking, simulations models are instruments that yield information irrespective 
of whether the information is true or false about the real system. It is our conviction that 
though valid models could be ‘probable’ and not ‘true’ and therefore may not serve as sole 
basis for decision making, valid simulation models contain adequate results and data on which 



very meaningful conclusions and inferences could be drawn; hence they yield information 
about the real system.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4 Validation of models of real-time systems 
As have been mentioned in the sections 1.3 and 4 above, one of the major validation 
challenges for software models is that computer software has a non-continuous nature, which 
implies that there could be drastic changes encountered as a result of little variations in the 
system unlike what may be obtainable in models in other fields. For real- time systems, 
however, an even bigger challenge is the effective modelling and validation of the system’s 
temporal properties, which assumes the centre stage especially for safety-critical real-time 
systems. 
In this Section, we shall review some works that have been done in this area with the aim of 
validating models of real-time systems and useful properties that enhance time relatedness.                          
 
4.1 Hybrid method 
In their work, Laurent Kaiser et al [18], presents a hybrid method of validation for real-time 
systems. They propose a method based on a unique representation of the complete systems 
that combines simulation with actual analysis restricted to critical parts. The underlying 
formalism is an offshoot of Timed Automata called Timed Input Output State Machine 
(TIOSM), (Kone et al, 1995). 
For the above reason, they define four kinds of models namely: 

• Complete models: The initial model of the whole system in terms of TIOSM.  
• Partial models: This is a part of the complete model, which is assumed to represent a 

critical part of the behavior of the whole system. 
• Black box models: The abstraction of the partial model obtained after its validation 
• Derived models: The result of the integration of all the black boxes in the complete 

model. 
The two main stages involved are the validation of the critical parts and then the validation of 
the system as a whole. 
 
4.2 Use of model equivalence 
Another proposed method of validation has to do with using model equivalences. Andersson 
et al present a notion of equivalence as a relation that enables the comparison between the 
temporal behaviors predicted during model analysis and the temporal behavior observed when 
executing the system. However, they argue that due to the known fact that models are 
abstractions of the system, the predicted behavior will also be an abstraction of the system 
behavior, and therefore direct comparison of the predicted behavior with observed behavior 
will not be feasible. 
 
Hence they insist that observable property equivalence could rather be attained, in which case 
it is determined that the system and the model are equal in relation to a given set of system 
properties characterizing the temporal behavior of the system. 
In their experimental framework, they defined system property as a probabilistic statement in 
relation to an aspect of the system behavior that could be directly observed or derived from 
observations of the system, which may not explicitly be found in the system implementation 
or configuration. This definition therefore excludes system properties such as tasks priority, 
tasks execution times and even the rate of periodic tasks, some of which could be found in the 
implementation and others calculated by tools. Therefore good examples of system properties 
for instance whether a task response times is less than a specific deadline or probability of a 
message queue being full or empty. 
 



Using this method, an important task would be the selection of relevant properties for the 
comparison. The properties should be both relevant and varied so as to capture different 
aspects of the temporal behavior. Four types of timing related properties include: 
 

• Response time properties: This depends both on the execution time of the task and on 
the temporal behavior of the other tasks. 

• Event pattern properties: It is often possible to recognize patterns in the execution of 
tasks and arrival of events. This pattern of occurrence is a system property that can be 
used for comparison. 

• Synchronization properties: These are related to semaphores and their effects. These 
kinds of properties could help state the absence of timeouts and deadlocks. 

• Message buffer properties: Includes those properties related to message buffers, for 
example, length of time a task waits for a message, how often a task reads or writes 
messages from the buffer. 

Caution should be taken such that too few types of these properties are not used, which could 
breed the risk of accepting an invalid model. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

5 Modelling tools and analyses methods 
Whereas simulation methods have been widespread in its usage, unfortunately many tools that 
are used for constructing simulators do not deal with real time issues. This has constituted a 
major deterrent in acceptability of modern scheduling and resource management algorithms in 
industry. 
Very few simulation tools are designed for real- time systems and among these few, none 
addresses adequately, the issues peculiar to complex real-time systems. In this Section, 
therefore we shall investigate some of these existing tools. 
 
5.1 UPPAAL 
Uppaal is an integrated tool environment for modelling, simulation and verification of real-
time systems [19].  
It is good for systems, which can be modelled as a collection of non-deterministic processes 
with finite control structure and real-valued clocks that are communicating through channels 
or shared variables [20]. 
Some major areas where this is applied include real- time controllers and communication 
protocols especially those in which timing aspects are critical. The editor in Uppaal’s graphic 
user interface is as shown in Figure 2. 
 
 

 
 
Figure 2: The editor in Uppaal GUI 
 
 
 



Uppaal has three major parts namely: 

• A descriptive language 

• A simulator 

• A model checker 
The descriptive language is a non-deterministic guarded command language with data types 
such as arrays and bounded integers. This is the modelling or design language, which is used 
in expressing the behavior of the system as networks of automata with clock extension and 
data variables. 
The simulator is a validation tool that enables the observation of possible dynamic executions 
of a system at the design on-set or modelling stages. It provides a non-expensive way to fault 
detection before verification by the model checker that covers a more exhaustive dynamic 
behavior of the system. 
The model checker is responsible for checking invariants and properties for reachability by an 
exploration of the system state-space; this implies reachability analysis in terms of the 
symbolic states denoted by constraints.  
 
 

 
 
Figure 3: The simulator in the Uppaal GUI 
 
For the Uppaal tool, there are two major design priorities namely: 

• Efficiency 

• Ease of usage 



For efficiency, the incorporation of the on-the-fly searching technique has been important for 
the model-checker. Efficiency is enhanced by the application of a symbolic technique, which 
lowers the problems encountered in verification to that of efficient manipulation and solving 
of the constraints [21, 22, 23, 24]. 
In order to model or debug, the Uppaal model-checker could generate a diagnostic trace, 
which could interpret the reason for which a property is either satisfied or not satisfied 
through the system description. These diagnostic traces that are produced by the model-
checker could be automatically loaded to the simulator, which could be done while 
investigating or visualizing the trace. 
 
 

 
 
Figure 4: the uppaal verifier GUI. 
 
Over the years, there have been improvements on Uppaal’s versions, with various extended 
features. 
In a nutshell, the major features of Uppaal2K include: 

• An editor where requirements are specified, which also has a graphical user interface 
to the verifier. 

• A graphical system editor that allows the description of the system graphically. 

• A graphical simulator that provides graphical visualization and recording of the 
possible dynamic behaviors of a system descriptor, that is, the sequences of symbolic 
states of the system. This could also be used to visualize traces produced by the 
model-checker.  



• A model-checker for an automatic verification of safety and bounded- liveness 
properties by reachability analysis of the symbolic state-space. 

• The generation of traces in case the verification of a given real-time system fails. The 
diagnostic traces may be automatically loaded and graphically visualized using the 
simulator. 

The major limitation with Uppaal is known as the state space explosion problem (inability to 
adequately model and simulate all states of the target system especially for very large 
systems). 
At the moment, research works in this state explosion area are focused towards addressing the 
memory capacity challenges faced in using Uppaal so as to effectively capture all possible 
states of large systems. Also to study data properties, it becomes rather awkward (and 
inefficient) to model complex data structures in Uppaal.  
 
5.2 TIMES 
The word Times is an abbreviation of Tool for Modelling and Implementation of Embedded 
Systems. 
Times is a modelling and schedulability analysis tool for embedded real-time systems. 
It is appropriate for systems, which can be described as a set of pre-emptive (can be 
interrupted) or non-preemptive (cannot be interrupted) tasks that are triggered periodically or 
sporadically by time or external events. It provides a graphical interface for editing and 
simulation, and an engine for schedulability analysis. 
Times have many features, mainly: 

• A graphical editor for timed automata extended with tasks [25]. This allows the user to 
model a system and the abstract behavior of its environment. 
Also, the user could specify a set of preemptive or non-preemptive tasks with 
parameters like the relative deadline, execution time and priority. 

• A simulator where the user could validate the dynamic system behavior to observe 
how the tasks execute according to the task parameters and a specified scheduling 
policy. 
The simulator displays a graphical picture of the generated trace showing the time 
points when the tasks are released, invoked, suspended, resumed and completed. 

• A verifier for schedulability analysis, that is used to check if all reachable states of the 
complete system are schedulable, that means, all task instances meet their deadlines. 

• A code generator for automatic synthesis of code from the model. If the automata 
model is schedulable according to the schedulability analyzer the execution of the 
generated code will meet all timing constraints specified in the model and the tasks. 

A representation of Times is shown in Figure 5 below: 
In Times, the modelling language and theoretical foundation is based on the model of timed 
automata with tasks. 
 



 
 
Figure 5: A representation of TIMES tool 
 
 
5.2.1 The input language 
The center of the input language in Times is the timed automata with real time tasks (TAT), 
with shared variables between the automata and the tasks. 
A TAT is a timed automaton that is extended with tasks that are triggered by events. A task in 
this case is just an executable program with priority, deadline and worst-case execution time. 
 
A task could update a set of variables using assignments in the form x :=E where x is a 
variable and E is an expression (the value of E is returned when the task is completed). These 
variables could be changed and tested by the automaton.  
An edge leading towards a location in the automaton shows an event triggering the task, and 
the guard (clock constraints) on the transition specifies the possible arrival times of the event. 
This then helps in the description of concurrency and synchronization, and real time tasks, 
which may be periodic, sporadic, preemptive, and (or) non- preemptive. 
Therefore, an automaton is schedulable if there exists a pre-emptive or non-preemptive 
scheduling strategy such that all possible sequences of events accepted by the automaton are 
schedulable, meaning that all associated tasks can be computed within their deadlines. 
 
In semantics, an extended automaton could do two kinds of transitions as a standard timed 
automaton would, but the difference lies in the delay transitions, which corresponds to the 
execution of running tasks with highest priorities or earliest deadlines, and idling for the other 
tasks waiting to run. Discrete transitions tally with coming of new task instances. Whenever a 



task is triggered, it is put in the task queue for execution (corresponding to the ready queue in 
operating systems). 
 
The scheduling problem of the TAT then is to verify that all released tasks are guaranteed to 
always meet their deadlines when executed according to a given scheduling policy. In Times, 
this analysis is performed by transforming a TAT system into ordinary timed automata 
extended with subtraction operations on clocks, and encoding the schedulability problem to a 
reachability problem. 
 
 
5.2.2 Tool overview 
The graphical layout of TIMES is represented in Figure 6. 
 

 
 
Figure 6: An overview of Times tool simulator 
 
This tool mainly consists of three parts, which are: 

• System specification 

• System analysis 

• Code generation 
The system specification area is further sub-divided into the control automata which is 
modelled as a network of timed automata extended with tasks, a task table which bears 



information about the released processes in the event that the control automata changes 
location, and a scheduling policy. 
 
The system editor tool is used for drawing the control automata of the system model. It shows 
a table for defining the task parameters. The task parameters that are supported currently by 
this tool include: relative deadline, execution time, period, priority, a reference to the task 
code and a field indicating the task behavior.  The currently supported scheduling policies are: 
first-come first served; fixed priority, rate monotonic, deadline monotonic, and earliest 
deadline first, which could all be preemptive or non-preemptive. 
 
The outcome of the system editor is an XML representation of the control automata. The 
information from the task table and the scheduling policy are used by the scheduling 
generator to generate a scheduler automaton that is made in parallel with the controller 
automata to ensure that the system behaves according to the scheduling policy and the task 
parameters.  
 

 
 
Figure 7: Times project editor 
 
If the scheduling policy is non-preemptive, the scheduler automaton is an ordinary timed 
automaton. However, in the event that the scheduling policy is preemptive, the scheduler 
automaton is modelled as a variant of timed automata in which clock variables may be 
updated by subtractions. This analysis too also suffers the same state explosion problem as is 
in Uppaal. 
 
 



 
5.3 The probabilistic Modelling and analysis Framework 
 
In his work, Anders Wall described a probabilistic modelling and analysis framework, where 
simulations are based on the analytical model of the system made in their probabilistic 
modelling language ART-ML (Architecture and Real-Time Behavior Modelling Language). 
In using simulations, other correctness criteria than just satisfying the deadlines are duly 
defined.  Also, execution time distributions could be used instead of assuming a worst-case 
scenario. The ART-ML allows the modelling of the tasks behavior on a lower level than on 
the software architecture. This gives rise to the creation of a more precise model as semantic 
relations among components can be introduced. 
In the above framework, the requirement language known as the Probabilistic Property 
Language (PPL) is used so as to express statistical requirements, which are verified given the 
simulation results. The advantage of this is that there is the possibility of getting more 
feedback information from the analysis in probabilistic terms instead of the normal 
schedulable (yes) or not schedulable (no) cases.  
 
A major reason for the probabilistic property language is to analyze the impact of changes 
made in a real-time system. The aim is its use to formulate probabilistic queries. Probabilistic 
queries here could be seen as a relational operation on two probabilities. 
 When modifications are made to a model and the model is run, large sizes of execution traces 
are created and manually gathering any information from them becomes a futile effort. 
Therefore the PPL comes handy with respect to the size of these traces. 
Properties such as task and message queues can be extracted as probabilities of fulfilling some 
requirements using the PPL. For example, to know whether a task, t, always meets its 
deadline of 15 time units, would be ask whether the probability of the response time of task t, 
being less than 15 is 1. This therefore can be simply checked from the traces (values collected 
during simulation), whether the response time of all instances of task t, are actually less than 
15. 
The probability function, P ( ), forms the core of PPL. This is mainly the basis of all the 
probabilistic queries because any query without P would only compare constants. The first 
argument is the set, the task or probe, while the second argument is the condition of the query. 
If the set is a task, then the returned result is the probability of some instance of the set 
fulfilling the condition. However, if the set is a probe, then the result is the probability over 
time. It is important to note that since this probability is based on the observations in a trace, it 
is only an estimate of the true probability. It can be typified as follows:  
 
 P(<set> , <condition>) 
 
Additionally, PPL could contain bounded variables, which could be used in feeding back 
values to the user. This variable could be part of the condition in a P function or as one 
operand in the outer relational operation of the query.  
For instance, an unbounded variable used in the condition of the query could be: what is the 
deadline met with a probability of at least 0.7? 
 
 P(t(i), t(i).resp < Y) > 0.7 
 
The unbounded variable used as the probability of the task t missing a deadline of 12:  
  

P(t(i), t(i).resp > 12) > Y 



 
A major advantage of the PPL over other tools with just reachability functions like Uppaal is 
that apart from giving a yes or no answer, it also makes available information in terms of 
probability of the desired reachability. On the experiments carried out in this thesis, PPL was 
used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6 Validation in computational engineering and physics 
As has been precisely pointed out above, validation cuts across disciplines. In this section we 
shall investigate validation criteria and methods in computational engineering and physics 
with regards to complex systems. 
Note that the mention of computational physics here comprises fields of computational 
engineering and physics such as computational fluid dynamics, computational solid 
mechanics, structural dynamics, shock wave physics, and computational chemistry. 

 
6.1 Validation in Computational Physics 
To a large extent, there has been an increasing reliance on computer simulation of physical 
processes for design, performance, reliability and safety of engineered systems. Verification 
and validation of computational simulations are the primary methods of building users’ 
confidence in such models. 
While verification is the assessment of the accuracy of the solution to a computational model, 
validation is seen as the assessment of the accuracy of a computational simulation by 
comparing it with data from experiments. In verification, the major issue is not the 
relationship of the simulation to the real world, whereas in validation it is the core issue. 
Implications and salient factors with respect to these definitions would include the fact that 
both verification and validation are ‘processes of determining’ [26]. These could be described 
as on-going activities, whose adequacy or completion is normally determined by practical 
issues like budget, and the models’ intended use. 
Also the above stated definitions have to do with an on-going pattern of the processes due to 
the unavoidable and distressing fact that veracity, correctness and accuracy of a computerized, 
or computational model cannot be demonstrated for all possible conditions and applications 
except for trivial models. All encompassing proofs of correctness such as those developed in 
mathematical analysis and logic; do not exist in complex modelling and simulation. 
Actually, just as one cannot prove that computer codes that are complex have errors, so also 
models of physics cannot be proven correct; they can only be disproved. Therefore 
verification and validation activities can only assess the correctness or accuracy of the specific 
cases that are tested. 
Due to the emphasis laid on accuracy, it is assumed that a measure of correctness can be 
determined. In validation activities, accuracy is measured in relation to experimental data, 
which is the best assurance of reality. Based on the fact that all experimental data have 
random (statistical) and bias (systematic) errors, the issue of ‘correctness’ in an absolute sense 
therefore becomes impossible. 
Hence from the point of view of engineering, ‘absolute truth’ is not required, but an 
expectation of a meaningful statistical comparison of computational results and experimental 
measurements. 
As popularly pointed out by Roach [27] ‘verification deals with mathematics; validation deals 
with physics’. Hence, validation handles issues of fidelity of the model to the specific 
conditions of the real world. 
 
In computational physics, the conceptual model is dominated by Partial Differential Equations 
for mass conservation, momentum and energy. It also includes the auxiliary equations like 
turbulence models and constitutive models for materials as well as the initial conditions and 
boundary conditions of the Partial Differential Equations. The computerized model is an 
operational computer program that implements the conceptual model. 
 
 



6.2 Methodologies: 
According to R. Rebba et al [28], validation under uncertainty involves quantifying the error 
in the model prediction and effectively comparing the prediction with the results of the 
experiment when both prediction and test data are stochastic. 
The fundamental strategy or method of validation here deals with: 
 
• Identifying and quantifying the error and uncertainty in the conceptual and computational 

models. 
• Quantifying the numerical error in the computational solution 
• Making an estimate of the experimental uncertainty 
• A comparison of the computational results with the experimental data 
 
The above strategy insists that measurements in experiments are most trust-worthy reflections 
of the real system in terms of validation. Thus this estimation process for error and 
uncertainty should happen on both the mathematical physics and experiment. 
With specific references to complex or larger systems, most times, a building-block approach 
is adopted in Computational Physics and Engineering due to the infeasibility and 
impracticality of carrying out true validation experiments on such systems [29, 30, 31, 32, 
33].  
In this approach, one divides the complex engineering system into a minimum of three tiers 
namely the subsystem cases, the unit problems and the benchmark cases. The aim of this 
division approach is to know how accurately the computational results compare with the 
experimental data with the quantified uncertainty estimates at different degrees of physics 
coupling and geometric complexity. Therefore one can see the above approach as being 
constructive in the sense that it recognizes the existence of hierarchy in complex systems and 
simulations and also recognizes that the amount and accuracy of information, which are 
obtained through experiments, could differ over the range of tiers.  
The above description also portrays the fact that validation activities could be done at several 
different levels of Physics and system complexity, where each such comparisons yields 
inferences of validation of the tiers both above and below the tier where the comparison is 
made. It should be noted that the quality of the inference made at this point is dependent on 
how complex the tiers are below and above the comparison tier, which could be seen as a 
direct reflection of the strength of one’s scientific knowledge about the experiments and 
calculations being made relative to more complex tiers. 
 
This same problem of taking the whole system at a time (impracticability and infeasibility) is 
also applicable to computer science. The approach of validation in tiers is comparable to the 
concept of testing of computer systems where a large complex system could be divided into 
component, units and sub-units for testing. In this case, the test results of each of the divisions 
could be used to make reasonable inferences concerning the whole system.  
However, this is as it concerns testing. Validation of models in Computer Science still 
considers modelling of the whole system most times and validating all at once instead of 
modelling sub-divisions of such systems and predicting overall system behaviours from them. 
Thus one can ‘borrow’ this practise from Computational Physics to sub-divide target complex 
systems into tiers, model each tier relative to the tiers above and below and then model the 
interaction between the tiers in order to make intelligent and informed decisions. This process 
would need that one possesses a good knowledge of the system and how it functions 
especially as it concerns temporal correctness in real-time systems.  
 
 



With regards to validation adequacy in computational physics, two issues are important: 
1. Identifying the metrics (measure) of validation 
2. A specification of the magnitude of the metrics to satisfy the application requirements. 

The two (the metrics and criteria for success and failure should be made clear in order to 
assess the expected adequacy of the outcomes of experimental-computational comparisons. 
The choice of one or more metrics defines the means used to measure the disparity in 
computational results and experimental data.  
A metric should quantify both errors and uncertainties in the comparisons. The requirements 
for the adequacy of all specified metrics are tied to the total application requirements 
therefore the process of specification of the metrics for validation will work hand- in-hand 
with the process of specifying the application requirements.  
 
In comparison with practises in Computer Science, choices of initial validation metrics and 
their magnitude specifications are obtainable. But in terms of error quantification and 
uncertainties, it becomes excessively difficult due to the discontinuous nature of software 
codes. This is because it is not easy to attribute error quantities to software codes, which 
should either be wrong or right. Therefore, since exhaustive testing of codes of computer 
systems especially for large complex systems could mean testing for several years, one cannot 
absolutely make certainty statements (or give safety margins) as to the percentage error 
inherent in a software code especially for non-tested case instances.  
Potentials of systems’ design with high testability in computer science, which is the 
probability of failures to be observed during testing when errors are present could produce 
more reliable systems, {34} are similar to that discussed here and thus could be applied to 
modelling too but not absolutely. Even while using the PIE model (determining when a bug or 
error causes a failure), to find the smallest error inherent in the code, which happens if and 
only if the location of the error is executed in the program, the execution of the error leads to 
an erroneous state and the erroneous state is propagated to the output; one can only determine 
the minimum number of test cases to find the smallest error for a certain confidence level and 
not the maximum and so would only yield probable instances in models as well. Moreover, 
testing explores the real system and not an abstraction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7 Experiments 
In this section we shall discuss the major motivation for our work. We will report our 
experiments, observations, comparison our validation process and technique and make useful 
conclusions on the created model’s validity. 
Large and complex real-time (both distributed and non-distributed) computer systems always 
evolve as time goes on. 
During their evolving period, it is likely that increasing the functionality and hence 
maintaining the system becomes absolutely necessary. In cases where models of the original 
system have been made, it will be noticed that the temporal model of the system becomes 
inconsistent with the system’s current implementation, in which case, one looses the 
possibility to analyze the effect created by the added features as they relate to the temporal 
behavior. 
Obviously, this may not be an issue for small systems but for complex and large systems, the 
resulting consequences may not be foreseen immediately. It becomes important therefore not 
only to update existing models of the system but also to adopt feasible, flexible and realistic 
analyses methods that could readily validate such models.  
In our experiments, the major tasks were to create a system, and to make an abstraction of the 
system (a model) based on some criteria. We then simulated and validated the resulting model 
with respect to the criteria that have been specified using the PPL. 
We used the VxWorks, which is a real-time operating system and then evaluated the 
correctness of the model by performing a sensitivity analysis. 
 
7.2 Modelling on different levels of abstractions 
During model creation, a level of abstraction (defining and selecting relevant parameters with 
which to validate against) is normally chosen. It is this level of abstraction that defines, after 
comparisons, the accuracy and correctness of the model. 
A very high level of abstraction, which entails choosing too few out of the essential properties 
or characteristics of the target system could result in a model not being accurate hence being 
of limited use in its domain of application. On the other hand, choosing a very low level of 
abstraction would literally mean recreating the target system, in which case there would be no 
need for the model. 
Therefore, a good situation would be a choice in between these two levels that properly 
characterizes the essential properties of the system from which analysis and possible 
predictions could be made. Hence the model should be as simple as possible and yet a good 
description of the system.  
 
7.3 System description and overview 
The system we created is a control system, which is as shown in the Figure 8. 
It controls an electric motor based on the data from a sensor. There are three critical tasks in 
the system namely, the sensor task, the control task and the drive task, depending on data sent 
through message buffers. The buffers are as small as possible so as to avoid using old sensor 
data, which could occur if a large sized buffer were used. 
 
The sensor task:   

• a time critical task, time triggered taking readings from the sensor every 2ms, 
• it stores the value of its reading in the message buffer called CTRL Data Queue, 

 



• when the buffer is full (that is, contains the maximum data readings), the oldest data is 
removed and,  

• it has the highest priority (1). 
 

Figure 8: System overview 
 
The CTRL task: 

• Only executed when the number of sensor readings produced and stored in the 
message buffer is five.  

• If 5 data entries are available, the CTRL consumes these five readings and calculates a 
motor reference, which it sends to the Drive Queue message buffer.  

• Has a low priority of 4. 
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Figure 9: system with the NET task 
 
 
The DRIVE task: 

• Carries out periodic executions and sends data to the motor control every 10th ms 
(since each reading is taking periodically every 2ms).  

• Reads entries from the Drive Queue and based on that, it updates the signals to the 
engine control electronics. 

• It has a priority of 3. 
• If the Drive Queue is empty when the drive task wants to read data, it is a system 

failure. 
In the system, there are some less critical tasks, which also communicate with the CTRL task, 
but through the message buffer called CTRLCMDQ. 
When such messages are processed, the motor references calculation is delayed. This would 
likely not be a problem in the sense that such messages in essence only delays the CTRL for a 
relatively short time and there are enough buffered motor references in the DRIVEQ so as to 
avoid it being empty (starvation). At this point the CTRL is BUSY. 
 
As can be seen from the diagrams above, two versions of the system were considered in our 
experiment, the first being the platform, which consists of the SENSOR, CTRL and DRIVE 
tasks as shown in the system overview diagram, Figure 8 above. 
In the second version, a NET task was added. The NET task is used to denote ‘environmental’ 
variations that could form part of the input to our system. These may not directly be under 
specific periodic control as shown in the system overview diagram, Figure 9. 
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The NET task: 
• Reacts to commands from the network 
• Has a priority of 2 
• Inter-arrival time is stochastic (between 5 – 25) ms 

 
In order to analyze the temporal behavior of the two versions of the system, the Probabilistic 
property language (PPL) is used. For complex real-time systems, traditional methods used in 
the basic real-time systems’ analyses could prove unrealistic in the sense that lots of 
assumptions and stringent constraints are built into them, that may not fit into real life 
situations. Hence tools like Uppaal with limitations as have been discussed above, may not 
give the best results. 
However, PPL gives a probabilistic outlook. Even though it is no silver bullet, it gives good 
realistic information about the problem as against some of its contemporaries, especially with 
regards to the state space explosion problems, which could occur in complex systems. 
 
A technique that is employed in the field of control theory is system identification. From 
measurements and observations of the relationship between the input and output of the signals 
in a process, one can determine a model in terms of a transfer function. 
Outputs that are produced by a simulation of the model is considered to be correct if the 
physical processes and the simulations produce the same output data. 
On models of continuous systems, one can apply residual methods, which is an observation of 
whether or not the residual (prediction errors) and the input signal are independent. If it 
happens that the errors depend on the input, it indicates that there are dynamics in the systems 
that are not in the model. Therefore, testing the model with different input signals and 
comparing the prediction with the signals produced by the actual system is good if the process 
is a continuous one.  
However, computer systems are discontinuous in nature, which implies that the pattern of 
behavior could change dramatically as a result of small changes in the system. 
The approach used in our experiment for validation is close to that used in system 
identification. The idea is that irregularities would be detected if we introduce changes in the 
system and corresponding changes in the model. Therefore when we compare the simulation 
results with the data that has been measured in the system, we would be able to ascertain the 
models’ validity. We describe the different steps in the model creation below.  
 
 
7.4 System model creation 
In creating our initial model, we carried out the following activities as shown in Figure10 
below: 
1. Structural modelling: Here we identified and modelled the structure of the target system. 
This has to do with modelling the tasks, synchronization, communication and interactions 
among them in the system. 
2. System measurement and population: 
We measure the system and populate the structural model with data about the temporal 
behavior. Also information that would be required for the phase of validation is collected at 
this point, for instance the response times. 
3. Tuning of the model: 
In this step, we first of all simulate the initially created model with the aim of comparing them 
with the validation data that were collected in step 2 above. We watched to see whether the 
target systems’ behavior has been well represented by the model accurately and if not, 
introduce more relevant details into the model.  



A major risk that is inherent in this step is the temptation to introduce too many fine-details 
into the model, which only reflects the complexity of the system in question. 
4. Sensitivity analysis: 
In order to validate our model, we carried out sensitivity analysis. This is normally based on 
the foreseen potential changes in the system. When sensitivity analysis was carried out on our 
system, we observed: 

• A change in the existing behavior of the tasks 

• We added the net task to see what effect this would have 

• We changed the priority of the NET task so that it has a higher priority than the CTRL 
task. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 10:  Process of model construction 
 
At this point, it is important to note that the model accuracy relies on the quality of the 
measured data. The data measurement should affect the system as little as possible. If the 
probe effect on the system is too big, one could have an erroneous model, which consequently 
would lead to wrong predictions from the model results. 
Comparison of the target system with the behavior of the model is done in a simplified 
manner so as to improve the model iteratively to a desired level [34]. See Figure 11 below. 
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Figure 11: workflow of making an analytical model 
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7.5 Metrics for validation 
 
Validation metrics could be viewed as yardsticks for comparison between measurements 
taken on the real system and those run by simulation. 
For our system, several metrics could be used. These include: 
 

• response time, 
• scheduling properties on inter-arrival time: This deals with how the inter-arrival times 

differ between the tasks, 
• shared resources: How resources are shared among the tasks - whether independently 

or involving semaphores, 
• message buffers: Deals with instances of average numbers of messages in the message 

queue, for instance, their minimum or maximum numbers, 
• communication: Here we consider instances of tasks sending and receiving messages; 

for instance, if one sends, does the other receive? 
• execution times of the tasks: How long the tasks take to execute. 

 
However, in the experiment, two of the above metrics were considered namely, the tasks’ 
execution times and response times. The Figure 12 below shows the system attributes as 
described. 
 

 
Figure 12: System’s attributes 
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Our target system runs VxWorks real-time operating system; an Intel Pentium 200MHZ from 
ABB Robotics. Timing was measured using a probe that is executed on each task switch. The 
probe was not removed but was left in the code. Constraint s that could be obtained in 
inserting the probe include memory size and probe effect (slower running of the system, 
which could give an effect with negative consequences). 
 
Test-cases:  
There were two test cases in our experiment. These are: 
 
1 Case 1 – 1: For this test case, there is no NET task. We have only the sensor, the control 

and the drive tasks. 
2 Case 3 – 1: In this case, we introduced the NET tasks, which arrived stochastically, 5 to 

25 milliseconds between instances. 
 
In the first case, the sensor task’s measured execution time was 240 – 290 microseconds. The 
CTRL task measured execution time was 3000 – 4200 microseconds, while that of the DRIVE 
task was 350 – 500 microseconds. 
On the second case, the execution times of the three tasks were maintained and that of the 
NET task was 1200 – 1350, with an inter-arrival time of between 5 and 25 milliseconds. 
 
 
7.7 Results 
In showing and discussing the results, we shall first consider the target systems’ 
measurements and then those of the model from the simulator. 
A good scenario for the comparison between our model and the target system occurred with 
the control task as shall be shown later. 
 
Case 1 -1 
The Sensor task: Part of the measured data is given in the Table 1 in Appendix B1 that shows 
the measurements with respect to the execution and response times’ metrics. Each plotted dot 
represents an instance of execution. 
A plotted Excel chart of the measured values is as shown in Figure 13. 
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Figure 13: Execution time plot for case 1 -1 (sensor task) 
 
Also, an Excel chart plot of the above measured response time is shown below in Figure 14: 
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Figure 14: Excel plotted response time for case 1–1 (sensor task) 
 
 



Case 3 -1 (with the NET task added) 
 
The control task:  
A cross section of the measurements for the control task’s execution and response times are 
shown in the Table 2 in Appendix B2. 
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Figure 15: Execution time plot for case 3 -1 (control task) 
 
 

Response Time, ctrl, case3-1
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Figure 16: Response time plot for case 3 -1 (control task) 



7. 7.1 Simulation models results and plots 
Now we shall consider the results and data from our simulations. 
 
Case 1-1 
Sensor task: From the simulation results, a cross section of the measurement is as shown in 
the table 3 in the appendix B3 below. 
A plotted Excel chat of the above table for the simulated execution and response times are as 
shown below in Figure 17. 
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Figure 17: Excel plotted Simulation execution time for sensor task  
 



Simulated sensor, response time
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Figure 18: Excel plotted simulated response time for sensor task 
 
 
7.7.2 Simulation measurements for Case 3-1 
A cross section of our measured data for the execution and response times of the CTRL task 
from the simulator for case 3-1 is as shown in table 4 in Appendix B4. 
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Figure 19: Simulated plots of the CTRL task execution time for case3-1 
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Figure 20: Simulated plots of the CTRL task response time for case3-1 
 
 
7.8 Analyses and validation 
For the analyses, a trace analyser and a PPL ‘expert-rules’ system were used.  
According to what is allowed by PPL, one can specify probabilistic maximum and minimum 
levels of acceptance based on apriori knowledge of the system. However, we did not specify 
such maximum nor minimum values. 
As can be seen in the chart in figure 8k, we specified PPL queries based on our chosen 
criteria, namely the response times and execution times of the tasks. Details of further PPL 
queries are displayed in Appendix A. 
 
Observations and results:  

• It is our observation that the number of queries used could be proportional to the level 
of confidence gained in the model. This is because, as the number of queries increases, 
so also there is an increase in the depth of the coverage of the criteria being queried. 

 
• The number of queries introduced into the analyser determines to a large extent how 

much information that were obtained from the system and hence offered greater depth 
of comparison. 

 
• The exact number of queries needed to extensively investigate a criterion could be 

dependent on the complexity of the system being investigated. This is to say that if 
one has a system of low complexity; it would take less number of queries to exhaust a 
criterion than it would in a highly complex system. 



 
 
Figure 21: A snapshot of the ‘expertRules’ graphical user interface 
 
Hence to boost the level of confidence in a model, the number of queries introduced into 
investigating a criterion is a key factor. The more relevant queries that are introduced, the 
more the level of confidence rise. 
 
On comparing our target system’s measurements to those of our model, for case 1-1 we 
observed that the model gave a good representation of the target system. In Appendix A 
below, we show some examples of the reports compiled and used for the comparisons using 
the Expertrules Tracer. 
However, in case 3-1, when the NET task was introduced into the system, the simulated 
results from the ‘Expertrules’ analyser showed that two instances of failure occurred, which 
means that there were major deviations between our model and the target system’s values. 
When these values were plotted as shown in figures 19 and 20, they produced excessively 
random values inconsistent with those in figures 15 and 16. 
 
Reason: This was because we had stochastically chosen the inter-arrival times of the NET 
tasks, which were not appropriately represented in our model, hence the occurrence of this 
variation. This would have been different if the missed detail in abstraction level was rightly 
considered while creating our model. This presented us with a typical instance of an invalid 
model. 
 
 



 
 
Figure 22: A snapshot of the trace analyser  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8 Proposed guidelines and recommendations 
From our investigations and experiments, we present two useful proposals that would help 
engineers and empirical scientists who work on validation of models. These proposals are 
explained and demonstrated below. 
 

• Proposal 1: The validation criteria probes into the functionality of the system 
 

Consider a scenario where one has a system, named system 1, with n number of tasks 
and n random tasks, which could denote some environmental variation input source 
(optional) – random in the sense that the inter-arrival times of this task may or may not 
exactly be known.  
The above proposal suggests that if we have a second system, system 2, whose 
number of tasks is greater than those of the tasks in system 1, but both systems have 
the same functionality, then the same number of criteria as have been used for system 
1,could be used to adequately probe system 2 to the same level of confidence that has 
been attained by system 1. 
Thus,  

Let number of tasks in system 1= n 
and Number of tasks in system 2 = N 
Such that: number of tasks in system 2 / tasks in system 1 = P (a whole number) 

 
Let the total number of validation criteria for system 1 = V1  
and the total number validation criteria for system 2 = V2 

 
           Also let the attained confidence level for system 1 = C1 

And the desired confidence level for system 2 = C2 
 
          Our proposal 1 implies that: 
 

Iff C1 = C2 
and  
N / n = P, 

 
Then, VI = V2. 

  
• Proposal 2: The validation queries probe into the complexity of the system 

 
Still consider the above given scenario of a system, system 3 with n number of tasks 
and n random (optional) tasks, which are greater than those of system 1. 
Proposal two suggests that if there exists a system 3, which differs from system 1 in 
terms of complexity and not functionality, that is, if the functionality of both systems 
remains the same, then one can analyse and validate the model of system 3using the 
same number of criteria as were used in system 1, but with a total number of queries 
equal to the multiple of the magnitude of the ratio of the tasks in system 3 to those in 
system 1. 

            Thus,  
Let number of tasks in system 1= n 
and Number of tasks in system 3 = N 
 

            Such that: number of tasks in system 3 / tasks in system 1 = P (a whole number) 



 
Let the total number of validation criteria for system 1 = V1  
and the total number validation criteria for system 3 = V3 

 
Also let the attained confidence level of system 1 = C1 
and desired confidence level of system 3 = C3 

 
If the total number of queries used for system 1 = Q1 
And the required total number of queries for system 3 = Q3 

Then, proposal 2 implies that: 
 

Iff C1 = C3 
and  
N / n = P, 

 
Then, VI = V3 and: 
 

Q3 = PQ1 
 
Basic assumptions on proposal 1 and 2: 
 

• All tasks access the message queues by way of communication 
• Communication here implies reading from or reading to a message queue and not 

necessarily sharing the CPU as in interleaved tasks. 
• The systems have the same functionalities but different complexities. 

 
It is very important to note that complexity increases with functionality but functionality does 
not necessarily increase with complexity. This can be better understood by looking at 
complexity as a matter of design and implementation and not of functionality. 
Therefore a simple hot-water heating system produced by two different companies could have 
different levels of complexities but obviously have the same functionality. Consider the 
design of a simple swing example as shown in Figures 23 & 24 below. Both have the same 
functionalities but different design complexities. 
 

             
Figure 23 & 24: Design 1 & 2 
                                                                   
 
 
 



 
9 Conclusions 
In this thesis, we have discussed open and burning issues on models validation. It is our 
opinion that valid models, which have been proven to be correct within their domains of 
applicability, contain truth and hence do yield information about the real world. 
 
We have explored different types of validation, tools and techniques employed in validation, 
when and why especially with regards to complex real-time systems. Comparisons have been 
made between validation in computational physics and that which is carried out in computer 
science field while exploring their areas of differences and similarities. 
 
Most importantly, we carried out experiments to validate a model of a VxWorks system, 
which has led to a discovery and hence our proposal of two helpful guidelines to empirical 
scientists and engineers working in the field of validation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



10 Future Works 
In future, we hope to further consider in greater details, well- fitted semantic definitions of 
information and knowledge especially as it affects computer science, engineering and other 
empirical sciences in order to portray the empirical scientists’ view of how experimental data 
is understood and convey information as may be different from several other existing schools 
of thought on what constitutes information. 
We also hope to do further research and experiments to further diversify the guidelines we 
have proposed in order to deduce more relations for tasks in more scenarios for instance tasks 
that are interleaved in nature and tasks that employ various communication paradigms 
different from the ones that have been considered.  
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Appendix A 
 
ExpertRules Trace Comparison Report 
 ----------------------------------- 
 Comparison Specification File: C:\ART-FW\toyexample \simulation\toy.ppl 
 Trace1: C:\ART-FW\toyexample\simulation\sim1.trc 
 Trace2: C:\ART-FW\toyexample\case1-1.trc 
 
Property: max(ctrl(i).exec) 
Result1: 4320 
Result2: 4244 
Guard: reldiff 0.05 
Guard status: Ok 
 
Property: P(ctrl(i), ctrl(i).exec < X) >= 0.98 
Result1: 4310 
Result2: 4213 
Guard: reldiff 0.05 



Guard status: Ok 
 
Property: P(ctrl(i), ctrl(i).exec < X) >= 0.90 
Result1: 4205 
Result2: 4108 
Guard: reldiff 0.05 
Guard status: Ok 
 
Property: P(ctrl(i), ctrl(i).exec < X) >= 0.80 
Result1: 4015 
Result2: 3964 
Guard: reldiff 0.05 
Guard status: Ok 
 
Property: P(ctrl(i), ctrl(i).exec > X) >= 0.80 
Result1: 3310 
Result2: 3317 
Guard: reldiff 0.05 
Guard status: Ok 
 
Property: P(ctrl(i), ctrl(i).exec > X) >= 0.90 
Result1: 3205 
Result2: 3209 
Guard: reldiff 0.05 
Guard status: Ok 
 
Property: P(ctrl(i), ctrl(i).exec > X) >= 0.98 
Result1: 3105 
Result2: 3098 
Guard: reldiff 0.05 
Guard status: Ok 
 
Property: max(ctrl(i).resp) 
Result1: 5480 
Result2: 5304 
Guard: reldiff 0.05 
Guard status: Ok 
 
Property: P(ctrl(i), ctrl(i).resp < X) >= 0.98 
Result1: 5370 
Result2: 5243 
Guard: reldiff 0.05 
Guard status: Ok 
 
Property: P(ctrl(i), ctrl(i).resp < X) >= 0.90 
Result1: 5245 
Result2: 5098 
Guard: reldiff 0.05 
Guard status: Ok 
 



Property: P(ctrl(i), ctrl(i).resp < X) >= 0.80 
Result1: 5115 
Result2: 4956 
Guard: reldiff 0.05 
Guard status: Ok 
 
Property: P(ctrl(i), ctrl(i).resp > X) >= 0.80 
Result1: 4365 
Result2: 4297 
Guard: reldiff 0.05 
Guard status: Ok 
 
Property: P(ctrl(i), ctrl(i).resp > X) >= 0.90 
Result1: 4245 
Result2: 4183 
Guard: reldiff 0.05 
Guard status: Ok 
 
Property: P(ctrl(i), ctrl(i).resp > X) >= 0.98 
Result1: 4115 
Result2: 4067 
Guard: reldiff 0.05 
Guard status: Ok 
 
 
Appendix B1 
 

Sensor 
task 

Execution 
(ms)  Sensor task Response (ms) 

5986 735  5986 758 
8009 257  8009 257 

10010 263  10010 263 
12026 234  12026 234 
14010 264  14010 264 
16012 253  16012 253 
18011 274  18011 274 
20017 287  20017 287 
22010 262  22010 262 
24011 269  24011 269 
26010 251  26010 251 
28010 243  28010 243 
30015 263  30015 263 
32010 256  32010 256 
34010 261  34010 261 
36011 260  36011 260 
38012 267  38012 267 
40015 281  40015 281 
42011 233  42011 233 
44010 259  44010 259 
46011 267  46011 267 
48010 255  48010 255 



50014 276  50014 276 
52011 259  52011 259 
54010 238  54010 238 
56013 250  56013 250 
58011 265  58011 265 
60015 265  60015 265 
62010 244  62010 244 
64011 249  64011 249 
66011 256  66011 256 
68011 253  68011 253 
70015 276  70015 276 
72011 247  72011 247 
74011 241  74011 241 
76011 241  76011 241 
78012 241  78012 241 
80015 259  80015 259 
82011 255  82011 255 

 
Table 1: Execution time of sensor task (only a cross section of the data represented here) 
 
 
Appendix B2 
 
   ctrl           Execution time  (ms)                           ctrl                   Response time (ms) 

64 23  64 23 
8294 3765  8294 4310 

18327 3806  18327 4774 
28306 3255  28306 4250 
38322 3737  38322 4744 
48326 3895  48326 4911 
58293 3631  58293 4644 
69610 3518  69610 4800 
78297 3165  78297 4201 
88326 3991  88326 4978 
98297 3192  98297 4193 

108316 3769  108316 6250 
118310 3182  118310 4162 
128318 3608  128318 4600 
138328 3852  138328 4875 
148553 3859  148553 4895 
158306 3994  158306 4998 
168327 4028  168327 5083 
178299 4107  178299 6613 
188296 3127  188296 4106 
198303 3964  198303 4932 
208301 3607  208301 4586 
218313 3708  218313 4731 
228308 3112  228308 5393 
238318 3475  238318 4397 
248306 4137  248306 5091 
258319 3238  258319 4189 
268327 3428  268327 6012 



278307 3889  278307 6393 
288321 3878  288321 6461 
298310 4036  298310 5005 
308323 4163  308323 6649 
318323 4184  318323 6722 
328322 3956  328322 4939 
338310 3190  338310 4202 
348325 3921  348325 4966 
358323 3183  358323 4182 
369564 3792  369564 5024 
378566 4127  378566 5056 

 
Table 2: Execution time of control task (only a cross section of the data represented here) 
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0 275  0 275 
2000 250  2000 250 
4000 275  4000 275 
6000 285  6000 285 
8000 250  8000 250 

10000 260  10000 260 
12000 240  12000 240 
14000 290  14000 290 
16000 239  16000 239 
18000 265  18000 265 
20000 260  20000 260 
22000 275  22000 275 
24000 290  24000 290 
26000 265  26000 265 
28000 250  28000 250 
30000 260  30000 260 
32000 259  32000 259 
34000 275  34000 275 
36000 250  36000 250 
38000 265  38000 265 
40000 265  40000 265 
42000 265  42000 265 
44000 240  44000 240 
46000 290  46000 290 
48000 285  48000 285 
50000 265  50000 265 
52000 260  52000 260 
54000 265  54000 265 
56000 260  56000 260 
58000 290  58000 290 
60000 250  60000 250 
62000 265  62000 265 
64000 265  64000 265 



66000 265  66000 265 
68000 275  68000 275 
70000 275  70000 275 
72000 240  72000 240 
74000 260  74000 260 
76000 290  76000 290 
78000 265  78000 265 

 
Table 3: Simulated results of Execution and response times the of sensor task (only a cross 
section of the data represented here) 
 
 
Appendix B4 
 

Ctrl Task 
Execution time 

(ms)  Ctrl Task Execution time (ms) 
8360 3810  8360 7240 

18365 4010  18365 7485 
28375 4220  28375 6430 
38375 3210  38375 4265 
48365 3310  48365 4315 
58365 3715  58365 6320 
68365 3110  68365 5425 
78385 3715  78385 6205 
88385 3710  88385 4685 
98375 3805  98375 4830 

108375 3310  108375 5565 
118340 3615  118340 4705 
128384 4011  128384 5101 
138350 3115  138350 4065 
149560 3415  149560 4830 
158360 3405  158360 4460 
168365 3310  168365 4455 
178340 3615  178340 4605 
188385 3710  188385 4735 
198375 3220  198375 5900 
208385 3410  208385 4535 
218365 3105  218365 5370 
228365 3805  228365 4930 
238635 3505  238635 4445 
248390 3515  248390 4515 
259550 3115  259550 5740 
269465 4315  269465 5695 
278375 3405  278375 4510 
288350 3910  288350 5015 
299540 3510  299540 4785 
308390 3620  308390 4650 
318360 3710  318360 4760 
328365 3805  328365 4830 
338385 3105  338385 4165 
348360 3105  348360 4180 
358375 3510  358375 4615 



368350 4105  368350 5155 
378385 3915  378385 5015 
388360 3110  388360 4090 
398375 4115  398375 5240 

 
Table 4: Simulated results of Execution and response times the of CTRL task (only a cross 
section of the data represented here). 
 


