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Abstract—Automated vehicles connected through vehicle-to-
vehicle (V2V) communications can use onboard sensor infor-
mation from adjacent vehicles to provide higher traffic safety
or passenger comfort. In particular, automated vehicles forming
a platoon can enhance traffic safety by communicating before
braking hard. It can also improve fuel efficiency by enabling
reduced aerodynamic drag through short gaps. However, packet
losses may increase the delay between periodic beacons, especially
for the rear vehicles in a platoon. If the Lead Vehicle (LV) can
forecast link quality, it can assign different platoon performance
levels in terms of inter-vehicle distances and also facilitate the
designing of safer braking strategies. This paper proposes a
strategy for incorporating Machine Learning (ML) algorithms
into, e.g., the LV of a platoon to enable online training and real-
time prediction of communication delays incurred by connected
vehicles during runtime. The prediction accuracy and its suitabil-
ity for making safety-critical decisions during, e.g., emergency
braking have been evaluated through rigorous simulations.

I. INTRODUCTION

Automated driving in vehicle platoons can improve traffic
safety, fuel efficiency, and traffic flow by enabling the Fol-
lowing Vehicles (FVs) to react to the speed changes of the
Lead Vehicle (LV) through Vehicle-to-Vehicle (V2V) com-
munications. In platooning, the LV periodically broadcasts
its status and attributes, whereas event-driven messages are
disseminated when a situation of common interest, e.g., a
hazard, occurs. Automated vehicles can also use this pla-
tooning strategy in dense traffic situations. A vehicle in front
can broadcast its speed periodically to the vehicles behind
and also inform them about an intention to brake. In V2V,
communication delays are time-varying and can be very high
in dense data and road traffic scenarios [1]. In addition, since
the rear vehicles are further away from the LV, they may
experience more frequent outages and packet loss due to path
loss, shadowing, and fading effects. One solution to this is
to maintain short gaps between the vehicles, as this is also
good for fuel efficiency. However, even though the likelihood
reduces, packet losses may still occur and cause problems with
safety since there is less time to react in case, e.g., emergency
braking should be necessary. On the other hand, having longer
inter-vehicle distances can result in losing contact with the
LV and lead to reduced fuel efficiency. To this end, being
aware of the experienced communication quality, e.g., the
delay between periodic updates from the leading vehicle, is
an important factor in order to make suitable control decisions
that enables fuel efficiency while providing safety.

In this paper, we aim to find out whether or not such
communication delays predicted using machine learning (ML)
algorithms can be sufficient to keep a platoon safe also in
case of, e.g., emergency braking. The type of communication
delays we are considering in this paper is mainly affected by
the likelihood of the successful delivery of messages between
the transmitter and the receiver [2]. Being able to assess the
likelihood of successfully receiving packets or characterizing
the communication delay can facilitate assigning different
platoon performance levels in terms of inter-vehicle distances.
In addition, the forecast of link quality can help us design
better braking strategies and thereby safer platoons. To this
end, we employ ML algorithms in the LV of a platoon that
collects data from the FVs, trains the algorithms online, and
makes a real-time prediction of communication delays. The
predicted delays are then used to make safety-critical decisions
in platooning.

Aiming to predict the communication quality is not new.
The authors in [3], [4] focus on Quality of Service (QoS)
predictions in Cellular Vehicle-to-Everything (C-V2X) com-
munications, which is important for applications such as
teleoperated driving. Additionally, many previous works focus
on defining a framework installed in an external service with
information from a centralized network and ML algorithms
trained offline with historical data to capture trends, e.g., [4],
[5], and [6]. However, the network topology of a platoon may
frequently vary due to, e.g., communication outages, vehicle
joining, leaving, cut-in/cut-out, merge maneuvers, and more. In
addition, the communications delays experienced in platooning
vehicles may also vary due to the change in data and road
traffic density. Hence, offline training of ML algorithms cannot
facilitate the real-time prediction of communication delays
required for adapting to the change in network topology and
neighboring traffic density of a platoon. In contrast, online
training of ML algorithms and real-time predictions can enable
platooning vehicles to take appropriate measures for mitigating
the effects of communication delays on string stability during
cruising and safety during emergency braking.

To the best of our knowledge, this work is the first of its
kind that attempts to use ML as an onboard prediction tool to
facilitate online training of ML algorithms to predict commu-
nication delays in real-time. The motivation behind such real-
time predictions is that information regarding expected delays
can be used to, e.g., synchronize the actuation of vehicles to



achieve string stability [7], synchronize the braking of vehicles
to transition to a fail-safe state [8], and more. To achieve this,
the FVs in a platoon can send information regarding expe-
rienced communication delays to the LV during platooning
runtime. The LV uses these data to train the onboard ML
algorithms and make predictions. The predicted information,
e.g., expected maximum communication delay and relevant
instructions, can be encapsulated in the next packet from the
LV so that the FVs can use the predicted delay to follow the
instructions of the LV. This work aims to understand whether
or not the existing ML algorithms can predict the time-varying
communication delays in real-time with sufficient accuracy
required for making safety-critical decisions in platooning. To
this end, we have conducted rigorous simulation studies under
various neighboring traffic loads and beacon rates to evaluate
the performance of two different ML algorithms in predicting
communication delays. In order to demonstrate the benefits of
communication delay predictions, we evaluate an emergency
braking use case in which the predicted delays are used to
perform delay-aware emergency braking.

The rest of the paper is organized as follows: In Section II,
recent works employing ML algorithms in predicting different
communication, network, and traffic parameters are described.
Next, the system model is described in Section III. Two dif-
ferent ML algorithms used for prediction and their parameter
selection are explained in Section IV. After this, the simulation
settings and the evaluation results are presented in Sections V
and VI, respectively. Finally, Section VII concludes the paper.

II. RELATED WORKS

Moreira et al. employ several ML algorithms to predict
whether or not a packet of a specific size can be delivered
to a vehicle from the base station within a specific time
frame in C-V2X systems [5]. Torres-Figueroa et al. study
whether or not a particular QoS, e.g., 50 ms or 100 ms
delay, can be achieved when a previously trained ML model
is employed in a vehicle and predictions are made based on
certain Key Performance Indicators (KPIs) [3]. The authors
conclude that when end-to-end delays are predicted at a
vehicle without information from the base stations using ML
algorithms, the prediction accuracy is insufficient for making
decisions in safety-critical systems. The works in [3] and [5]
consider the delay predictions in a C-V2X network but do
not show how the ML models could perform in VANETs.
Zhang et al. propose a latency prediction framework for V2X
applications in [6] and show that Long Short-Term Memory
(LSTM) Recurrent Neural Network (RNN) can predict latency
with lower errors than other algorithms. Barmpounakis et al.
in [4] propose a PreQoS approach to predict QoS metrics,
e.g., data rate, packet error rate, and end-to-end delay, at
the 5G core network that is aware of the traffic and data
density. In [9], the authors analyze the performance of an
LSTM-based Multivariate Multistep Autoencoder to predict
the Uplink (UL) throughput in a teleoperated driving scenario.
The algorithm is trained and tested offline with the collected
data during the simulations, concluding that the LSTM model

can capture most UL throughput fluctuations. The works in the
literature proposing strategies for predicting communication
and network parameters mostly rely on the base station of
a centralized network, e.g., C-V2X, to collect data, or the
collected data are trained offline to make predictions.

Khan et al. propose an ML-based prediction model in which
a vehicle in a VANET learns the channel activity of the
neighboring vehicles for some time and uses LSTM RNN to
predict the neighboring vehicles’ transmissions in the next time
window [10]. The prediction of such channel activities can
be used for scheduling the periodic messages of the learning
vehicle. Sangare et al. in [11] use a Support Vector Machine
(SVM) algorithm to predict the probability of successful
reception of a transmission between a vehicle and a Roadside
Unit (RSU), given the transmission rate and the distance
between the vehicle and the RSU. For training the model,
the authors generate data using an analytical model to mimic
the transmissions in a vehicular network with IEEE 802.11p
MAC protocol [12]. Alarcon-Aquino and Barria propose a
Multiresolution Finite-impulse-response (FIR) NN algorithm
to predict network traffic [13]. The authors use real-world
ethernet traffic data to train the algorithm and predict future
traffic. The results show that the proposed approach is more
accurate in predicting time series compared to Multiresolution
NN or FIR NN.

Previous studies show that statistical models such as Hid-
den Markov Models (HMMs) or ML algorithms such as
Convolutional Neural Networks (CNN) fail to consider long-
term dependencies for predicting sequential data [10]. LSTM
circumvents this issue by considering long-term data for
prediction, and it is widely used for predicting time sequences
[3], [14]. To this end, LSTM RNN is used in this paper to
predict communication delays in a platoon during runtime
using only the previously experienced delays. In addition, the
performance of Accurate Online Support Vector Regression
(AOSVR) presented by Ma et al. [15] is also evaluated in
predicting communication delays and compared with LSTM
RNN. The main rationale behind using the AOSVR algorithm
is that it can be trained online upon adding new data into the
dataset without having to do all the regressions from scratch
for each newly added sample, as done in traditional SVR.

III. SYSTEM MODEL

Without loss of generality, we assume that the LV broad-
casts beacons using the Cooperative Adaptive Cruise Control
(CACC) law proposed by Rajamani et al. in [16] as part of
the California PATH program. The PATH CACC controller
dictates that an FV receives control input both from the LV and
the preceding vehicle, as shown in Figure 1a, thus facilitating
lateral and longitudinal control.

Every time a vehicle receives a beacon from the LV through
V2V communications, it can compute the communication
delay by looking at the timestamps of the current beacon and
the previously received beacon. However, if all vehicles were
to inform about their experienced delays, we risk congesting
the channel. To this end, we assume that only the last vehicle
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Fig. 1: Communication topology for delay prediction.

broadcasts its delay value intended to be received by the LV;
see Figure 1b. The rationale behind this is that the last vehicle
in a platoon is likely to experience the highest communication
delay due to packet losses [1]. In addition, if emergency
braking is required, the last vehicle must brake earlier [17],
and thus adjusting the platoon actions to its experienced delay
provides a better safety margin. However, if another type
of safety application requires all delay values and additional
information, such as the gap to the vehicle ahead from all
the FVs, the communication model outlined in Figure 1b
can be modified without loss of generality. Once the last
vehicle computes its experienced delay, it is encapsulated in a
message called Delay Message and broadcasted. As the Delay
Message is triggered upon receiving a beacon from the LV,
it is not a periodic beacon; instead, a Delay Message can be
categorized as an event-driven message. The Delay Message
is also relayed by the middle vehicle in the platoon to achieve
better reliability. If the same Delay Message is received both
from the last vehicle directly and the middle vehicle through
relaying, the latest one is discarded by the LV. Every time the
LV receives a Delay Message, an ML algorithm can be used
to predict the maximum expected delay in the next beacon
period. The predicted delay value can then be included in the
next beacon so that all the vehicles are aware of the maximum
expected delay within the platoon, i.e., the one experienced by
the last vehicle. Note that the Delay Message may also be lost
despite relaying, and there is no way of guaranteeing that it
will always be successfully delivered to the LV.

IV. ML ALGORITHMS FOR REAL-TIME PREDICTION

The LSTM RNN and AOSVR algorithms are evaluated for
real-time prediction of communication delays in this paper.

The main characteristic of RNNs is that each cell of the
layer considers the previous output as a piece of extra infor-
mation in the current step. This allows capturing the sequence
or temporality of the data, as the cells consider historical
information and thread it together with the output. LSTM
networks are a particular type of RNN that can take long-
term dependencies into account to predict time series. Figure 2
shows the schematic representation of the LSTM network used

Fig. 2: Structure of the LSTM RNN.

in this work. This paper uses Keras1 on top of Tensorflow2 to
develop the LSTM RNN. Ten previous communication delays
are used as input for the LSTM RNN. The inputs are processed
using a single LSTM layer composed of 32 cells, as depicted
in Figure 2. The information obtained from the 32 cells is
combined using a dense layer that gives a single output value.
The training of the algorithm is done online at the LV of
a platoon, adjusting the weights of all the cells each time a
new delay message is received from the last vehicle and using
the Adam optimization algorithm [18] with a learning rate
of 0.001. The structure in Figure 2 has been kept simple to
minimize the number of layers and cells, thereby reducing the
inference time and ensuring real-time predictions.

Ma et al. propose the AOSVR algorithm in [15], which
aims to optimize online data training. In the case of an
SVR, it is necessary to calculate regressions from scratch
every time the training set changes. AOSVR, on the other
hand, allows updating SVR regressions each time a sample is
added or removed from the training set. Ma et al. proposed
an Incremental and a Decremental algorithm to adapt the
regression function while the samples of the training set are
changing. The Incremental algorithm updates the value of the
previous samples based on the new one, and the Decremental
(or “unlearning”) algorithm removes samples from the training
set and adjusts the regressions if necessary. In [19], Parrella
studied the AOSVR proposed by Ma et al. and made an
open-source implementation. With the AOSVR in [19], three
parameters are required to be specified, e.g., ϵ, which defines
an error margin in which predictions are not penalized, CSV R,
which is a regularisation parameter that determines the amount
of misclassification that shall be avoided and SizeLimit,
which limits the number of valuable samples that are taken
into consideration for making a new prediction. In this paper,
the AOSVR implemented by Parrella is employed at the LV in
the platoon to facilitate online training and to make predictions
of communication delays in real-time.

V. SIMULATION SETTINGS AND EVALUATION METRICS

We implemented the proposed delay communication strat-
egy and the ML algorithms in the PlatoonSAFE simulator3.
PlatoonSAFE is an extension of the platooning simulator

1https://keras.io/
2https://www.tensorflow.org/
3https://github.com/shahriarHasan09/PlatoonSAFE



TABLE I: Configuration parameters for simulations and analysis.

Parameter Value Parameter Value

Path loss model Free space (α = 2) Fading model Nakagami-m (m = 1.86)
PHY/MAC model 802.11p/1609.4 Frequency 5.89 GHz
Sensitivity -94 dBm Thermal noise -95 dBm
Packet size 200 B Tx power 100 mW
Platoon size 7 PATH CACC CDG 0.4 s
speed 100 kmh−1 Deceleration rate −8 ms−2

brakeAtTime 100 s simulation time limit 110 s

TABLE II: Different configurations for varying the channel load.

Configuration
no.

Neighbouring traffic Platoon beacon frequency (Hz)

vehicles vehicles/km
beacon

frequency (Hz)
packets

s−1km−1 periodic beacon event-driven

Config1 500 95 50 4750 10 10
Config2 400 95 50 4750 10 10
Config3 300 65 20 1300 15 15
Config4 50 36 10 360 10 10

PLEXE [20], which inherits the implementation of several
control algorithms, e.g., PATH CACC, realistic vehicle dynam-
ics, engine models, and simulation of platoons under mixed-
traffic scenarios from PLEXE. In addition, PLEXE extends the
Veins simulator [21], which facilitates bi-directional coupling
with the road traffic simulator SUMO [22] and provides
several PHY layer channel models. We integrated the AOSVR
algorithm, implemented by Parrella4, into PlatoonSAFE. To
incorporate the LSTM RNN, we established a User Datagram
Protocol (UDP) communication between PLEXE and a Python
module that utilizes Keras on top of TensorFlow to run the
neural network.

We simulated a platoon of seven vehicles cruising at 100
kmh−1 using the PATH CACC controller with 5 m gaps.
During cruising, either AOSVR or LSTM RNN is used to
predict the communication delays at the LV upon receiving a
packet from the last vehicle containing its experienced delay
value. In order to estimate the values of the AOSVR algorithm
parameters, we have conducted rigorous simulations by vary-
ing the traffic and data density of the neighboring vehicles in
a platoon. The AOSVR algorithm is then tested by varying the
ϵ, CSV R, and SizeLimit parameters and using the obtained
simulation results to understand which combination of the
parameter values demonstrates better prediction accuracy. Our
results suggest ϵ, CSV R, and SizeLimit values 0.0001, 0.03,
and 5.0, respectively. The PHY and MAC layer parameters
used for simulation analysis are listed in Table I.

In order to model the neighboring traffic, we consider four
simulation configurations as depicted in Table II. Configs 1 and
2 are intended to generate high data and road traffic in simula-
tions. Configs 1 and 2 only differ by the number of neighboring
vehicles to understand their effects on communication delays.
Config 3 is intended to generate a moderate level of delay,
and it has a significantly lower traffic density (vehicles/km)
and packet density (s−1km−1) compared to Configs 1 and
2. Finally, Config 4 represents a sparse traffic scenario. We
evaluated the ML algorithms for each configuration in Table II,
and ten simulation runs were carried out for each combination.
In the following list of metrics, the first two metrics are
used to evaluate the performance of the ML algorithms in

4https://github.com/fp2556/onlinesvr

TABLE III: RMSE of the last vehicle’s predicted delay with
respect to the LV. The results of four different simulation
configurations are presented.

Root Mean Square Error (RMSE)
Algorithms Config 1 Config 2 Config 3 Config 4
LSTM RNN 0.477 0.430 0.072 0.026

AOSVR 0.325 0.322 0.0850 0.027
Avg. delay 0.552 0.496 0.075 0.026

predicting communication delays. Moreover, metrics three and
four evaluate a braking scenario in which the predicted delays
are used for emergency braking.

1) Root Mean Square Error (RMSE) of predicted delays:

The RMSE is calculated as

√
n∑

i=1

( (yi−ŷi)2

n , where yi is

the actual delay and ŷi is the predicted delay of the last
vehicle with respect to the LV using ML algorithms.

2) RMSE of average delays: To provide a baseline for
comparison, we include a benchmark case where the
RMSE is calculated between the actual communication
delay and the average of previously experienced actual
delays by the last vehicle.

3) Inter-vehicle collisions: The inter-vehicle gaps between
any two vehicles in a platoon at a complete standstill
must be greater than zero to avoid collisions.

4) Stopping distance of the LV (m): The stopping distance of
the LV is calculated as the time between hazard detection
until the LV reaches zero speed.

Note that metrics three and four represent the fail-safe condi-
tions, which dictate that a platoon must avoid collisions and
minimize the stopping distance of the LV to avoid the hazard
that caused the emergency braking [1].

VI. EVALUATION OF PREDICTION ERRORS AND
EMERGENCY BRAKING USING PREDICTED DELAYS

In this section, we first evaluate the ML algorithms in terms
of RMSE. Then we evaluate the emergency braking use case
to understand the extent to which the predicted delays can be
used to make safety-critical decisions.

A. Evaluation of LSTM RNN and AOSVR in Predicting Com-
munication Delays

Table III presents the RMSE for different configurations
using the ML algorithms. The results demonstrate that Configs
1 and 2, representing dense data and road traffic scenarios,
exhibit higher RMSE than Configs 3 and 4. The reason is that
the experienced communication delays vary more frequently
in dense scenarios as the vehicles contend to gain access to
the same channel, and a vehicle refrains from transmitting for
a random amount of time if the channel is found busy. In more
sparse scenarios, e.g., Configs 3 and 4, the LV can predict the
delays with much higher accuracy using the ML algorithms.
Another possible reason for higher RMSE with Configs 1 and
2 is that the LV does not successfully receive all the Delay
Messages sent by the last vehicle or relayed by the middle
vehicle due to packet losses.



Furthermore, the results in Table III indicate that the
RMSE is lower when using ML compared to the benchmark
case of using average delays, validating that ML provides
added benefits in approximating the communication delays.
In particular, the RMSE with average delay is significantly
higher than that with AOSVR in dense data traffic scenarios.
However, in sparse scenarios, such as Config 4, the RMSE
of predicted delays and average delays are similar, as the
variation in experienced communication delays is lower in this
case. In addition, the LSTM RNN algorithm performs slightly
better than AOSVR in sparse scenarios, e.g., Configs 3 and 4.
However, the prediction accuracy with AOSVR is better than
LSTM RNN in dense scenarios, e.g., Configs 1 and 2. The
rationale behind this performance difference in different traffic
densities is mainly due to the process of online training with
LSTM RNN and AOSVR algorithms. When a new sample,
i.e., delay value, arrives at the LV, AOSVR removes the oldest
sample from its list of valuable samples to include the new one
and adapts the regressions. Recall that the SizeLimit value used
in our simulations is five, i.e., the predictions with AOSVR are
made based on the latest five delay values. As a result, AOSVR
focuses on a more short-term prediction, which is useful when
the communication delays vary more frequently, e.g., in dense
data and road traffic scenarios. On the other hand, LSTM RNN
slightly adjusts its weights for every new sample and considers
long-term dependencies. As a result, LSTM RNN is a more
conservative algorithm that shows better performance when
the variation in communication delays is less frequent or less
arbitrary, e.g., in sparse data and road traffic scenarios such as
Configs 3 and 4.

B. Evaluation of an Emergency Braking Use Case using
Predicted Communication Delays

In order to evaluate whether or not the prediction accuracy
is adequate for transitioning a platoon to a fail-safe state
through emergency braking upon encountering a road hazard,
we consider the braking strategy proposed in [8] called the
Synchronized Braking (SB). In SB, the braking actions of all
the platooning vehicles are delayed for a period τwait before
the entire platoon performs emergency braking synchronously.
The rationale is that if, e.g., the last vehicle in a platoon is
experiencing a higher delay than its predecessor, the platoon
vehicles start braking at different times upon receiving a bea-
con, which can lead to inter-vehicle collisions when braking
with a strong deceleration rate [8]. The τwait period in [8]
is calculated by averaging the previously experienced delays,
which can be problematic if the experienced communication
delay during braking is significantly higher than the average
value. To this end, we instead propose that the adopted τwait

is obtained by predicting the delay using the delay prediction
approach proposed in this paper. The emergency braking
maneuver is evaluated in terms of collision avoidance and the
stopping distance of the LV, which are considered conditions
for transitioning a platoon to a fail-safe state [1].

The same simulation settings as in Table III are used to eval-
uate the emergency braking using the predicted delays. In this

TABLE IV: No. of collisions out of 10 simulation runs.

No. of collisions out of 10 runs.
Algorithms Config 1 Config 2 Config 3 Config 4
SB-LSTM 0 0 0 0

SB-AOSVR 1 0 0 0
SB-AvgDelay 0 1 0 0

NB 7 4 0 0

TABLE V: Average stopping distance of the LV (m)

Stopping distance of the LV (m).
Algorithms Config 1 Config 2 Config 3 Config 4
SB-LSTM 77.536 72.535 63.869 64.009

SB-AOSVR 72.341 70.009 63.510 63.702
SB-AvgDelay 77.612 75.536 63.814 64.037

NB 60.81 60.81 60.81 60.81

case also, the platoon cruises using the PATH CACC controller
with 5 m CDG at 100 kmh−1. The LV starts broadcasting
event-driven messages at 100 s into the simulation time upon
encountering an imaginary road hazard. The platoon performs
braking using the SB strategy or the Normal Braking (NB)
strategy; the deceleration rate is –8 ms−2. The NB strategy
implies that the platooning vehicles start braking as soon as
they receive an event-driven message, i.e., no waiting before
braking as in the SB strategy. In SB, the LV computes the
τwait period that all the vehicles should pursue before braking
by using the delay predicted by either LSTM RNN or AOSVR
algorithm. Furthermore, for the sake of comparing, we evaluate
the case in which the LV computes τwait by taking the average
of previously experienced communication delays.

Table IV depicts the number of collisions out of ten simu-
lation runs using SB and NB strategies. There are no collision
cases when prediction is done using LSTM RNN for any of
the configurations. However, there is one collision case with
the AOSVR algorithm and Config 1. In order to understand
the reason for collisions, let us look at the corresponding
stopping distances of the LV with Configs 1 and 2 and SB-
LSTM and SB-AOSVR in Table V. The stopping distances
with the SB-LSTM case are higher than the SB-AOSVR case
because the predicted delay, i.e., τwait, with the LSTM RNN
algorithm is higher than the AOSVR algorithm. This is also the
reason why LSTM RNN shows higher RMSEs than AOSVR
in Table III with Configs 1 and 2. The LSTM RNN algorithm
overestimates the τwait period by a small margin, which helps
avoid collisions during emergency braking but causes the LV
to traverse a longer distance. On the other hand, SB with the
AOSVR algorithm minimizes the stopping distance of the LV
but causes a collision in one out of 40 simulation runs, which
is due to underestimating the τwait period. Looking at the
average delay scenario, where τwait is calculated by taking the
average of previously experienced delays, there is one collision
case with Config 2. Moreover, the average stopping distance
of the LV is higher than the SB-LSTM and SB-AOSVR cases.
Finally, Table IV shows that the platoon undergoes collisions
for seven and four simulation runs out of ten with Configs 1
and 2, respectively, when NB is used. Although the stopping



distance is shorter with the NB strategy due to no waiting
before emergency braking, it is unsuitable for transitioning a
platoon to a fail-safe state because of inter-vehicle collisions.
Note that the platoon would require to decelerate much slower
to avoid collisions with the NB strategy, which would lead to a
higher stopping distance of the LV compared to the SB strategy
[8]. However, in sparse data and road traffic scenarios, e.g.,
Configs 3 and 4, the NB strategy performs better than the SB
strategy in terms of the stopping distance of the LV.

In summary, the simulation results show that AOSVR out-
performs LSTM RNN and average delay in terms of lower
RMSEs in dense data and road traffic scenarios. However,
LSTM RNN performs better in emergency braking scenarios
by avoiding all collisions due to its more conservative delay
estimations. While both algorithms have their strengths and
weaknesses, LSTM RNN is better suited for emergency brak-
ing scenarios as it prioritizes safety over accuracy.

VII. CONCLUSIONS

In this paper, we propose a strategy of incorporating
Machine Learning (ML) algorithms into the Lead Vehicle
(LV) of a platoon to enable online training and real-time
prediction of communication delays. The simulation results
show that the proposed communication approach allows the
LV to collect data during runtime and use it to train ML
algorithms online. Our simulations also demonstrate that the
prediction of communication delays using ML algorithms
in dense traffic scenarios exhibits significantly lower errors
compared to the benchmark case of averaging the previously
experienced delays. Furthermore, collisions are avoided for all
simulation runs conducted in this paper when communication
delays are predicted using the LSTM RNN algorithm and
used in an emergency braking scenario. In contrast, a collision
occurs when emergency braking is performed using average
communication delays. Moreover, collisions occur in most
cases when a platoon performs emergency braking in a dense
traffic scenario with the normal braking strategy, and no
measures are taken to mitigate the effects of communication
delays. The findings of this paper highlight the importance
of considering communication delays in platooning safety,
particularly in dense traffic scenarios. The results show that
averaging the previous delays or using normal braking is in-
sufficient to assure platoon safety. However, a platoon exhibits
safe behavior during emergency braking by predicting com-
munication delays using ML and the communication strategy
proposed in this paper. Therefore, we can conclude that ML-
based real-time predictions of communication, network, and
traffic parameters hold great potential for facilitating safety-
critical decisions in platooning.
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