
When Information Navigation Divorces File Systems –
Database Surface Prototype Results

Rikard Lindell
Mälardalen Real-Time Research Centre (MRTC)

St:a Ursulasv. 2A
722 23 VÄSTERÅS

Sweden
+46(0)21151759

rikard.lindell@mdh.se

Abstract
All PCs have file systems. The design of this most vital part of personal computers has
had the consequence that the design of user interfaces, for better or for worse, has
become wed to the file system. The file system can be traced in interfaces from today's
graphical user interfaces, for which the desktop metaphor helps explain to users how to
treat their documents and folders, to yesterday's command line user hostile DOS (Disk
Operating System) interfaces.

What if one was to exchange the spine of computer system from a file system to a
database? Imagine the unstructured stream of ones and zeros you normally put in a
location on a hard drive instead be put in a content aware database. Monolithic
applications are divided into components that are put in the database. All the different
content files are turned into objects that are put into the database and so forth. This
introduces a number of questions that include how to handle: information access;
information visualisation; user collaboration; multi modal interface usability; program
architecture; scalability over different platforms; to name a few.

This paper presents a design rationale for how to visualise the content of the database. I
have chosen a comprehensive approach to the zoom interface paradigm. All content is
presented on a flat and infinitely large two-dimensional database surface. There are no
windows. The information has only the state: open; there is no closed state for which an
application opens the content in a file. Users zoom in and out on the information as the
main navigation technique.

The application area first to be investigated was music creativity. I have interviewed
musicians, both young female novices and male experts in their 30s. Both groups agreed
as to what the problems with current tools are. With the interviews as inspiration I formed
the design rationale and constructed a prototype accordingly. Eventually this prototype
was evaluated with user studies based on the collaborative evaluation method. The users
felt mentally head over heels at first, but thought this dramatically different approach to
what they were used to was both usable and amusing.

Introduction
Today's design of the desktop metaphor interfaces found on various platforms is very
similar to the original design of the Star system at Xerox PARC in the late 70's. The
original design was for office applications and desktop publishing. However the same
interface paradigm appears in numerous application areas. The computational resources
available to the Star were weak with limited memory and storage space. Since then, the
flow and repositories of information that users have to handle has increased by an order
of magnitude.

The availability of the Internet created a new arena for people to meet, share information
and collaborate. Yet the tools and the interfaces of computers are still unsatisfactory. For
instance collaborating in the creation of a content rich document, such as music,
animations or movies, are still limited to sending files back an forth attached to emails or
on shared file servers. For software development there are version management systems,
for instance CVS, that are quite useful for program language skilled people, but these
systems are for experts and are not usable for the non program language knowledgeable
user.

Many of the most devastating user errors comes from the user not recognising the mode
of the system, errors are known as mode-errors [1]. There are other modes such as the
dialogue boxes that prevent users from further actions in an application until they has
completed the dialogue.

Some advocates one should yield to that it is impossible to create a modeless interface.
Even in guidelines such as the Macintosh Human Interface Guidelines [2] that supports
modelessness devotes the bigger part of the modelessness section to guide the correct use
of modes.

Instead of yielding to modes I believe one should get to the root of the problem. The root
in my opinion is the file. Files have two modes, open and closed. In the closed state users
have to navigate their files with a file management tool. Only a few attributes, most
commonly name and file extension, provides the user with a cue to the file's content.
Other attributes might be used; icon, creation date, modification date, preview, and note.
In fact application programs, known to users of Macintosh or Windows systems as
double-clickable files, are indeed in themselves modes [2].

The functionality or service, in other words the application programs, that extends the
computer's system abilities are distributed as files. Most of the time these applications
programs work with private formats, known only to the vendor that delivers the service.

It is the users task to appoint the application program to a file type. Even though
Macintosh have used file type and file creator identities since 1984, they work only under
the assumption that one file goes with only one application program. Some formats have
received more acceptance than others, but due to the design of desktop systems,
applications are in focus and not the document.

There are many situation where interaction designers used peoples' knowledge in world
outside the computer to explain the behaviour of an application program. In the case of
the desktop metaphor, peoples' knowledge about desktops, documents and folders were
utilised to explain the behaviour of file-trees. On the desktop you were able to put all the
files related to current activities, but if you did not put the files for completed projects
deeper into the hierarchy you eventually ended up with a mess. The trouble with
metaphors are that they might be too literal. The risk in this case is that the computers
power would be restrained by real world constraints. When you tidy the mess on your
real world desktop, you will later on have trouble recalling where you put things. As with
the computer desktop, the reason you had to tidy it was that there was no more room.

The desktop obeys real world constraints such as limited size, but the computer world is
virtual world and obeys the rules we make. What happens if we remove the size
constraint for the desktop?

Database
It is my conviction that the file-system should be replaced with a database. All contents
that users normally locate on a computer's file system volume should be put into this
database. The database should also contain all the service components for manipulation
of the contents. One way to categorise the information and data types for the service
components would be Bernsen's modality taxonomy [3]. A service component should
work only with services for a data type.

Today more and more services are database driven, for instance web-news pages and
corporate business systems have been using databases. Database technology does also
have a number of features that in itself would be very valuable for the backbone of
personalised computation powers.

Concurrency
Database concurrency would allow many users to access the same data. This feature
enables collaborativity, sharing and communication to be embedded in the system. For
instance users would simultaneously be able to work on a document across networks. It is
today the responsibility for the application program developer to coerce a collaborative
mechanism on top of network protocols and file servers.

Persistence
An immediate consequence of database persistence is the modelessness of the contents;
the users do not have to transform data from different states. Contents become
immediately persistent at creation time. The user does not have to invoking open, close or
save commands. One objection that would be expected to be raised against this design, is
that the save action confirms that the user wants to keep the data. However, for this to be
truly usable, people actually have to learn about primary and secondary memory of the
computer. An explicit save action made sense in the era of floppy disk, today it is
obsolete. Very important in my case is that users should feel safe: data representation that
supports unlimited amount of undo reduces user anxiety.

Queries
With the enormous storage capacity of the current systems the need for powerful search
utilities are immense. Information query mechanisms are ubiquitous in database servers,
thus database systems are well suited for information access tools and search tools.
However, in users perspective search must preserve the context of the content for which
the search condition was satisfied. In other words it is not useful to present the result to
the user as a long list of labels. It would also be unfruitful to leave users with a language
such as Structured Query Language to control the content of a database.

Zoom Interface Paradigm
The big issue and the one that I had to approach was to find a suitable way to visualise
the content of this comprehensive database. With such vast range of different types of
objects and information a general visualisation technique had to be found. Turning to the
theory of cognitive maps [4] and cognitive collage [5], it seems that spatial semantics
would be a usable for the visualisation of data. A cognitive map is a metaphor for the
mental model of a persons environment. It is not a precise map, it consists of landmarks
and their relations. However most people rely on multiple maps, a cognitive collage,
where land marks and their relations can mismatch.

Fig 1. Screen-shot of a graphic designers business
management system, based entirely on spatial semantics.

Barreau and Nardi showed that people rely on spatial semantics and context when
organising their documents [6]. Dourish et. al. have successfully enhanced file navigation
by enabling the users to depend on attribute spatial semantics to locate files in the Presto
Document System [7], however the files are still modal and attached to specific
application programs. To open a file it need its associated application program.

In user observations I have found support for use of spatial semantics with an ordinary
desktop. For instance one user I observed, a graphic designer, had created a project
management system with a desktop image serving as a background created a rule context
were files and folders were organised manually for each project. See fig 1. As each
project progressed the files and folders were moved closer to the finish line. A completed

project was moved from the desktop into an archive folder. Contacts with customers and
other agencies were also included in this system.

Another fellow at the same office also used spatial semantics, though at the first glance it
looked more like chaos see fig 2. The user had no trouble locating information:
everything is on the desktop. Also each customer has a region for which files and folders
are located. A completed project is put into a folder while the folder is left on the
desktop. The user explains: "I may need to reuse some of the stuff for this [the users
pointed at a location of the desktop] customer, it may be a logo or a photograph. If I
remove it [the folder] from the desktop I forget where I put it".

Fig 2. A picture of the contents of graphic designer's desktop.
All the information is present, different project are

located in different regions.

Also what can be found in current visualisation techniques? Zooming Interface Paradigm
Bedersen’s Pad++ [8] looked promising, as did Kay's Squeak [9]. But instead of a local
scope of zoom such as in Pad++ or discrete mode switchers and browsing such as in
Squeak. I propose a global zoom interface paradigm for the entire database. The database
is visualised as a infinitely large two-dimensional surface.

The cognitive psychology aspect of this approach is that the layout of the contents
provides spatial semantics. The users know the kind of the information elements from
their position. For instance, songs that the users have created themselves could be located
in a region to the top right of the database surface, songs that the user ripped from CD:s
could be located to the right-hand side, and songs shared with some friend could be on
the bottom right-hand side. Note that the entire right area is devoted to music, but
different subareas have different attributes to it.

There are no size restrictions to the database surface; hence the information space can
grow indefinitely. For instance the user might have created a video that goes with one of
the songs. The user puts the video in the region that holds the song, the system makes
sure that the surface is grown and that other information content is pushed aside to make
room for the video.

An illustration of how users share a part of each database surface is displayed in fig 3.
User one's database surface encoded in light grey, the text documents to the left and right
are private, but the document in the middle, with the background encoded in white, is
shared with user two. User two's database surface is encoded in dark grey, the two text
documents to the right are private, but the white encoded document to the left is the exact
replicate of user one's document. Actions are echoed to each other to guarantee that the
shared space is identical. There is an application area for which this design is already
used: games. Multiuser games such as Black & White™ [10] and Galactic
Battlegrounds™ [11] are entertaining examples of this approach.

Fig 3. User 1 and user 2 shares the surface in white,
whereas the light respectively dark grey

regions are private to each user.

To test the idea of using the zoom interface paradigm to visualise the contents of database
I constructed a couple of prototypes. In the quest to find better interfaces for computers it
is more or less obvious to use a database. Also in my opinion it is apparent that there
should be an incremental and interactive search tool included with the design. The idea
could not only rely on theory of information visualisation and cognitive psychology, it
had to be evaluated by few experiments. I constructed a few prototypes to test some of
the aspects. The application area selected for examination was music creativity. There are
a number of interesting questions regarding music creativity applications.

1. Music creation has many modalities, mainly temporal and acoustic. But in order to
organise sound, this attributes have to be visualised. Also a song can be visualised as an
organisation of sound elements.

2. Music creation is often a social activity. People get together to create music, however
the current trend of software emulation and the design of desktop computers interfaces
for one on one interaction impedes collaboration. How could an interface be designed to
reintroduce collaborativity and communication to music creation?

3. Music creativity is a creative process with focus on experience and enjoyment as
attributes for usability. The challenge here is to create aesthetically pleasing as well as
usable interfaces that encourage creativity.

The first prototype was designed to test how musicians responded to the zoom interface
paradigm for visualisation of a song and sound database. The song part displays all the
detailed elements of a song.

The First Prototype
The first concept prototype was designed to test how musicians responded to the zoom
interface paradigm for visualisation and navigation of a songs and sounds database of
music creation tool. The concept prototype was developed with Macromedia Flash® [12].
RSC Technologies WebPAL® [13] tablet hardware was used to run the Flash prototype,
the screen size was only 640 (width) times 480 (height) pixels. The hardware was too
slow to run fluently, but the small tablet with touch screen was better suited to the users
vision of portable music creation tool.

The fig 4 displays the inverted contrast image of the prototype tested by the users. The
display shows the most out zoomed state, or the overview state, of the prototype.
The bottom of the fig holds all the song and sounds content. Three songs were visualised:
"Beatnic", "Famous", and "Licker". To the bottom left the observant reader may also see
that the content; the sound, the tracks, and the score, is visible for each song. The
shrunken view of the content served as its icon.

To the bottom right lies the sound library. It is hierarchically organised with a big label
for each category. All the sounds in each category is displayed in a shrunken view. Some
categories, for instance "drums", have sub-categories.

Fig 4. The inverted contrast image of the most out
 zoomed state for the prototype displayed to the users.

To the top left is a spatial semantic two-dimensional label visualisation tool called "Sens-
a-Patch" (SAP) designed by Jonas Löwgren [14]. The initial idea was that the users

needed some kind of navigation tool or site-map to quickly navigate the database surface.
This site-map should preserve spatial semantics yet allow labels of all the contents be
visualised in limited space. SAP has that quality, however, this design concept was
abandoned in future designs for the reason that it brought back many of the file-system's
bad traits. Also to rely on label clusters was not consistent with the idea of a big surface
for all information. The site-map's behaviour while it was unused was that it was
shrunken to a small thumbnail in the top right corner. When it was invoked by the users
for navigation it was enlarged on top of the database surface with a degree of
transparency as seen in fig 4.
The entire top half of the screen for the overview state has a logo image for tool suite and
content in this region of the database surface. At a first glance the image's size seems
unproportionally large and a waste of space, however this is not the case due to the
infinite size of the database surface.

Fig 5. The zoomed state for the score of the song "Licker"

Navigation by Zoom
In this prototype navigation was done by zooming: the user taps on the content to zoom
in. In fig 5 the user has tapped on the song "Licker". The database surface is zoomed to
display the contents of the song’s score. The time line runs from left to right. To the left
there is a list with all the sound labels for each track. Between the label and the track's
score is a shrunken view of the sound parameters and source code. The tracks holds the
score note values. All note values are displayed at once, users do not have to open an
extra window to inspect the notes values for a track.

The top left of the fig 5 has a row of three (3) thumbnail icons. These icons represent the
previous zoom state for the database surface. Fig 6a, 6b and 6c, displays these
thumbnails in detail. Fig 6a. displays the shrunken site-map, the second thumbnail in fig
6b. and 6c. and the third thumbnail in 6c. displays the previous zoom states. Tapping one
of these zooms out from the database surface. Notice also the rectangle into the
thumbnail displaying where in the previous zoom state the current view is located.

Fig 6a. Fig 6b. Fig 6c.
Each step of the zoom state is displayed as

thumbnail icon of the previous screen. Here
from the overview state (4a) to the zoom of

the score of the song "Licker" (4c).

Prototype Evaluation
The prototype was shown to five (5) subject users who all were skilled music tool users
and professional music producers. They were instructed to complete five (5) navigation
tasks. The evaluation method used was the collaborative evaluation, a less restricted
variant of the think aloud method in which the subject and the evaluator may
communicate. The evaluation was debriefed with an interview. A tape recorder and
manual was used for protocol.

The tasks were:
1. Find the song “licker”. A simple navigation task to find a song. The purpose for the
task was that the subject users should get acquainted to zoom navigation, and to the
prototype's database surface layout.

2. Edit the sound “clp xlr8”. The layout of the database surface was divided into songs
and sounds, this and the state in which the subject users were predicted to leave the
prototype in from the previous task, coerced the subject users to find the zoom out
method; the zoom out thumbnails in the top left region of the display.

3. Find the sound “distloop”. To complete this task the subject users did not have to
zoom out to the overview state of the database surface.

4. Read the source code of “distloop”. The purpose for this task was to see if the subject
users recognised shrunken text elements on the database surface such as the source code
text of a sound.

5. Go to the song “famous”, inspect a representation of the sound “ohh”, go back to the
song “famous”. The task was designed to see if the subject users utilised the site-map.

Subject Satisfaction
The users were introduced to the prototype database surface. They were told that they
could zoom in and out. However, the zoom out thumbnails were not explained, nor the
behaviour of the site-map.

All but one of the subject users completed the tasks without any trouble. One of the
subject users completed the tasks with a minimum number of actions. The user that
experienced problems saw the images on the screen as a series of steps in a process but
not as zoom scales on a surface. He did not perceive the zoom out thumbnails as objects
of interaction. He also complained about the lack of an update or save button. He thought
the design was too good looking! Supported by the utterance: “Kids will love it!”

All the subject users commented that the approach was different to what they were used
to. But after the completion of the first two tasks they grasped the concept and expressed
their appreciation. The overall attitude towards the interface was that they enjoyed it, they
liked the navigation style, and they were fond of the structure. Those who discovered the
site-map liked it as a navigation tool. They appreciated the idea of having all information
present at once, in contrast to moving around files from application to application,
perhaps changing file format, opening and closing dialogue boxes, and other typical
desktop actions.

The feature that the subject users appreciated the most was that all note data was visual in
every track. However they thought that this design should be extended to include all
sound parameters, allowing control of attributes such as volume, timbre, dynamics,
reverberation, etc. Another suggestion was that, in live performance situations, rules and
algorithms could generate musical elements. Another bash at the direct manipulation
camp.

The Second Prototype
A new prototype was constructed based on a revised design from the evaluation result of
the first one. Strong indications were found that zoom interface paradigm was a
successful technique for visualising the database surface in the context of a music
creation application. However, some of these results were not satisfactory. For instance
why did one of subject users not perceive a flat surface, but instead a series of images?
Would fluent zoom with smooth transitions clearer visualise the database surface and be
more satisfactory than the discrete zoom steps of the first prototype?

It is worth mentioning that the first prototype was strongly constrained by the restrictions
of Macromedia Flash capabilities, a trade of I made to rapidly design an acceptable visual
appearance. The second prototype was actually two prototypes. I wanted to test fluent
zoom with two different approaches to pan. The first of these utilised a grab-and-move
metaphor to pan the database surface. Zoom was view centred. The other prototype used
a trajectory zoom method that allow both zoom and pan in one action. An elegant method
but would it be satisfactory for the subject users? Since the scope of what I needed to
establish did not include the complex functionality of music creation the database surface
was restricted to contain only a couple of articles from the BBC web news site.

Grab-and-Move
The storyboard in fig 7. illustrates how grab-and-move pan works. The user wants to read
the text document to the right. The first step is to move the surface so that the text to be

read is in the centre, the user presses down the left mouse button, which is the "grab"-
action, then moves the surface to the left by moving the mouse in the same direction,
illustrated in the transition from fig 7a to 7b. The user rolls the scroll-wheel away from
himself/herself to zoom in on the surface. Zoom is always, both in and out, centred to the
screen and unrelated to the cursor's position.

Fig 7a Fig 7b Fig 7c
Transition from fig 7a to 7b shows when the user moves the surface.

Transition from fig 7b to 7c shows when the user zoom in on the text in
the centre of the screen. Accomplished by an upward roll on the scroll-wheel.

Trajectory Zoom
Trajectory zoom was used for the other prototype, trajectory zoom enabled both pan and
zoom in one action. Fig 8. shows an example for how this is done. Again the user wants
to read the right document. To move the content on the database surface down to the left,
the user puts the cursor somewhere in the down left area. Then they roll the scroll wheel
towards themselves to zoom out.

Fig 8a Fig 8b Fig 8c
Pan done by zoom out centred to the trajectory marked with a cross.

Fig 8d Fig 8e Fig 8f
Document of interest in focus accomplished by zoom.

Fig 8a-c. displays how the database surface shrinks and centres around the orthogonal
trajectory from the view plane to the cursor's position on the database surface (marked in

fig 8. with a cross). The user now has an overview of the document, but in order to read
the document they need to zoom in on it. In fig 8d. users moved the cursor, and thus the
trajectory, aiming to where they wants to read. In 8d-8f. the zoom magnification is
displayed, where fig 8f. displays the readable view.

Prototype Evaluation
Evaluation was done by four (4) subject users. One of these subject users was a female
graphic designer, the others were computer science students; two female and one male.
They were given a written introduction to the test in which the different zoom techniques
were explained. The test was set up in two sessions, the first tested the grab-and-move
prototype, and the second tested the trajectory zoom prototype. In each session the tasks
was to write down the answers to four questions about the articles on the database
surface. Users were observed while performing the test. A video camera and manual
notes were used for protocol. I wanted to know the subject users opinion of these
interfaces, hence, a debrief interview summarised the evaluation.

Subject Satisfaction
All the subject users agree to that this interface felt very different from what they were
used to, except for one subject user who had implemented a zoom function as an exercise
in a computer graphic course. All subject users did navigate the database surface without
any difficulties, except for one subject user who had to put great effort in handling
trajectory zoom.

One of the subject users had been using a graphic package that made her perform the
zoom actions, using the grab-and-move prototype, with impressive precision. First she
zoomed out to get an overview of the database surface. Then she moved the content to its
proper position. Eventually she zoomed in on the document in one swift swoop, all other
subject users had to do this actions in many repeated steps; first move a little and then
zoom a little.

All the subject users easily mapped zoom direction to the scroll-wheel's roll directions of
the mouse. They preferred the grab-and-move method for pan: they experienced it: "like
moving around a big paper". One user claimed that he got a better overview when using
the trajectory zoom. Two subject users made sure that the text had a broad margin to the
right, this margin was used as a bar which was grabbed each time a users wanted to pan,
they did not want to "touch" the text. Only one subject user gained interest in the
trajectory zoom technique: she would have liked to continue to use and train for the it.
Her comment was that she intuitively felt trajectory zoom to be more powerful than view
centred zoom.

Conclusions
Two prototyped were created and tested. The first one to show if a database surface
navigated by zoom interface paradigm could replace a file system. The selected
application area for this prototype was music creation.

The other prototype was built to see if fluent zoom yielded better results than discrete
zoom and to investigate what methods for pan were satisfactory to the subject users. The
evaluations were base on qualitative user observation methods and cooperative
evaluation.

The evaluation gave strong indications that the subject users enjoyed the experience of
the database surface approach. They explicitly expressed satisfaction with the visual
availability of the entire database content. Fluent zoom was more satisfactory than
discrete zoom. Separated actions for zoom and pan was preferred by the users, thus a pan
technique such as the grab-and-move metaphor should be used in the local scope,
however trajectory zoom could not be rejected as navigation method for the database
surface in the global scope.

The second prototype should be extended with an overview panel to indicate the user's
current visual locus. The result from the debriefing interviews shows that users should be
able to engage multiple view of the database surface.

My conclusion is that the basic idea of using a database surface instead of a file system,
was supported by qualitative user evaluations presented in this paper.

Future works
The next step will be to implement the results from these evaluations in a prototype for
music creation. Multiple views and overview panels will be included. A simple overview
panel such as the zoom out thumbnails of the first prototype would further improve the
design, it would provide a visual cue to the content that is not in locus of the current
view. Also the user requested multiple parameter track, and thus the flattening of the
database surface will be included. This prototype will be built with emphasis to live
music creativity, collaboration, and concurrency. A database will be at its core, allowing
collaboration and music creation across the Internet.

References
[1]. Donald A. Norman, "The Psychology of Everyday Things", Basic Books, New York,
1988
[2]. Apple Computer. "Macintosh Human Interface Guidelines". Addison-Wesley, 1992.
[3]. Niels Ole Bernsen, Multimodality in Language and Speech Systems – From Therory
to Design Support Tool, Chapter to appear in Granström, B. (Ed.): Multimodality in
Language and Speech Systems. Dordrecht: Kluwer Academic Publishers 2001
[4] Roger M. Downs and David Stea “Image and Environments” chapter 1 “Cognitive
Maps and Spatial Behavior”, ISBN 0-202-10058-8 Aldine Publishing Company 1973
[5] Barbera Tversky. "Cognitive Maps, Cognitive Collage and Spatial Mental Models",
Proceeding of the European Conference COSIT 1993, Springer-Verlag
[6] D. Barreau and B. Nardi, “Finding and Reminding: File Organization from the
Desktop”, SIGCHI Bulletin, 27(3), July 1995
[7] Dourish P. Edwards W. K. LaMarca A. Salisbury M., “Using Properties for Uniform
Interaction in the Presto Document System” ACM Computer-Human Interaction
(UIST)’99.

[8] Benjamin B. Bederson and James D. Hollan, Pad++: A Zooming Graphical Interface
Widget for Tk, Proceedings of the 1994 TCL/TK Workshop, 73-84.
[9] www.squeak.com
[10] Black & White is a trademark of Lionhead Studios Ltd
[11] Galactic Battlegrounds is a trademark of Lucasarts Ltd
[12] Macromedia Flash is a registered trademark of Macromedia Inc
[13] WebPAL is a registered trademark of RSC Technology AB
[14] Jonas Löwgren, Sens-A-Patch: Interactiva Visualization of Label Spaces In Banissi,
E. et al. (eds.) Proc. Fifth Int. Conf. Information Visualization (IV2001), pp. 7-12. Los
Alamitos, CA: IEEE Computer Society

